Biomedical Signal Processing and Control 96 (2024) 106569

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc

ELSEVIER

Hypoglycemia and hyperglycemia detection using ECG: A multi-threshold
based personalized fusion model

Darpit Dave °, Kathan Vyas ", Gerard L. Cote “*°, Madhav Erraguntla

@ Wm Michael Barnes ‘64 Department of Industrial and Systems Engineering, Texas A&M University, Emerging Technology Building, College Station, TX 77843, USA
b Department of Computer Science and Engineering, Texas A&M University, L.F. Peterson Building, College Station, TX 77843, USA

¢ Department of Biomedical Engineering, Texas A&M University, Emerging Technology Building, College Station, TX 77843, USA

4 Department of Electrical and Computer Engineering, Wisenbaker Engineering Building, Texas A&M University, College Station, TX 77843, USA

¢ Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX 77843, USA

ARTICLE INFO ABSTRACT

Keywords: Monitoring glucose levels is critical for effective diabetes management. Continuous glucose monitoring devices
estimate interstitial glucose levels and provide alerts for glycemic excursions. However, they are expensive and

invasive. Therefore, low-cost, noninvasive alternatives are useful for patients with diabetes. In this article, we

noninvasive glucose monitoring
ECG

:zzzrggltf:jd explore electrocardiogram signals as a potential alternative to detecting glycemic excursions by extracting intra-
beat (beat-morphology) and inter-beat (heart rate variability) information. Unlike prior methods that focused
only on the standard clinical excursion thresholds (70 mg/dL for hypoglycemia, 180 mg/dL for hyperglycemia),
our proposed approach trains independent machine learning models at various excursion thresholds, aggregating
their outputs for a final prediction. This allows learning morphological patterns in the neighborhood of the

standard excursion thresholds. Our personalized fusion models achieve an AUC of 75 % for hypoglycemia and 78

precision medicine
ECG-beat morphology

heat rate variability (HRV)
noninvasive sensors
machine learning

fusion model % for hyperglycemia detection across patients, resulting in an average improvement of 4 % compared to the
baseline models (trained using only standard clinical thresholds) for detecting glycemic excursions. We also find
that combining morphology and HRV information outperforms using them individually (5 % for hypoglycemia
and 6 % for hyperglycemia). The data used in this article was collected from 12 patients with type-1 diabetes,
each monitored over a 14-day period at Texas Children’s Hospital, Houston. The results indicate that a com-
bination of morphological and HRV features is essential for noninvasive detection of glycemic excursions. Also,
morphological changes can happen at varying glucose levels for different patients and capturing these changes
provide valuable information that leads to improved prediction performance for detecting glycemic excursions.

1. Introduction consequences. Sustained hyperglycemia (high glucose) is often a cata-

lyst for heart diseases, kidney diseases, strokes, blindness, and ampu-

Diabetes mellitus commonly known as diabetes, is the body’s
inability to balance blood glucose (BG) levels. It results from defects in
either insulin secretion, predominant in patients with type-1 diabetes,
where the body fails to produce sufficient insulin for the cells; or insulin
inaction, as seen in patients with type-2 diabetes, where the cells get
resistant to insulin. Diabetes is a serious global health threat with an
estimated 537 million people affected by 2021 and projections indi-
cating a rise to 1.31 billion people by 2050 [1]. Many studies have
shown high correlations between poor glycemic control and various
health conditions [2—7]. Diabetes and its related complications, if not
well managed, can lead to serious short-term and long-term
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tations [&]. On the other hand, hypoglycemia (low glucose) leads to
short-term complications such as loss of consciousness, palpitations,
seizures and in some cases, coma and death [9]. Diabetes is incurable
and can only be managed through proper insulin treatment based on
frequent monitoring of glucose levels [2,10].

Traditionally, glucose was measured through the finger-stick
method, where patients draw a small blood sample by pricking tip of
the finger and then run it through a glucometer [11]. The finger-stick
method is inexpensive and accurate, but it is painful and provides
only a snapshot of the glucose levels. CGM devices overcame these
drawbacks by providing frequent and automated glucose measurements.
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CGMs also implement alert systems that can notify patients about low
and high glucose levels, allowing patients to take intervention measures.
Multiple studies have shown the effectiveness of CGMs in diabetes
management [ 12,13]. However, CGMs, despite their success, are inva-
sive, expensive, and subject to strict regulations which can be a major
deterrent to their use in low-income populations, patients with type-2
diabetes, and the pre-diabetic population [1]. Therefore, noninvasive
alternatives for estimating glucose levels can be very beneficial.

Recent advances in noninvasive technologies, have led researchers to
explore several physiological signals collected noninvasively such as
electrocardiography (ECG), photoplethysmography (PPG), skin con-
ductivity, near-infrared (NIR) spectroscopy, electrodermal activity to
detect glycemic excursions [ 14—17]. These physiological features have
shown correlation with glycemic changes [14,18]. Among them, ECG
signals have emerged to be the most popular because changes in BG
levels stimulate the autonomic nervous system and lead to variations in
the heart functions [19]. ECG signals can capture these variations and
estimate the corresponding glycemic changes accurately.

1.1. ECG: A prominent signal for glucose monitoring

Features extracted from the ECG signal for prediction, can broadly be
categorized into (i) Morphology features (e.g.: QT-interval (QT), R
amplitude, etc.). and (ii) HRV features (e.g.: heart rate, standard devi-
ation of NN-intervals (SDNN), etc.). Early works in this area focused on
the use of features such as heart rate (HR) and heart rate variability
(HRV) measures, morphological patterns like QT-interval (QT), cor-
rected QT-interval (QTc) and related changes [20-23]. These features
were used with an extreme machine learning (ELM) model to detect
nocturnal hypoglycemia episodes in type-1 diabetes population and
reported 78 % sensitivity and 60 % specificity [20]. A popular study in
the literature examined corrected QT-interval (QTc) prolongation dur-
ing hypoglycemia among ten adults with type-1 diabetes [24]. The study
found QTc derived through both, Bazett’s and Fridericia’s formulas, to
be elongated during hypoglycemia compared to the baseline. In another
study comprising 22 subjects (9 healthy, 6 T1DM but otherwise healthy
and 7 T1DM with disease complications) cardiac repolarization features
viz. QTc and RT-amplitude ratio were used for hypoglycemia detection
[22]. More recently, a convolutional neural networks (CNNs) based
model was proposed as an alternative to manual feature engineering for
extracting morphology features from the raw ECG signal [25]. This was
used to identify individual beats as hypoglycemia or normal. The au-
thors also propose a Long-short term memory (LSTM) architecture that
combines a sequence of 200-beats and classifies them as hypoglycemia
or normal. In addition, the authors propose a majority-voting scheme
over a 10-minute period for better annotation of the results. However,
the analysis in this paper is limited to the detection of nocturnal hypo-
glycemia episodes only. A similar approach of using CNN layers to
extract features from the raw ECG-signal was proposed in another study
[26]. The authors adopt a majority-voting scheme over 10-beats in the
terminal of the CNN layer for better classification and interpretability. In
this work, the authors consider a multi-class classification problem by
extending prediction to hypoglycemia, hyperglycemia, and normal
ranges. In our previous study [27], we proposed the use of ECG signal
and accelerometry data to detect hypoglycemia and hyperglycemia
independently. A total of nine time-domain HRV features computed over
5 consecutive windows of 1-minute each were used to predict hypo-
glycemia and hyperglycemia. A recent work also found HRV features
and HR to be prominent for detecting hypoglycemia events over 1-min-
ute non-overlapping windows [28]. The authors in the study use a
combination of HRV features (computed with Garmin Vivoactive 4 s-
based PPG data), along with motion and EDA-based features (from
Empatica E4). The study included 22 individuals (16 males, 6 females)
and reported a prediction performance of AUC = 0.76 for detecting
hypoglycemia.

Multiple glycemic prediction studies based on ECG and PPG signals
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have relied on experiments conducted in controlled settings to acquire
data and perform the analysis. Also, except for two recent studies [26
27], the literature has primarily focused on the detection of hypogly-
cemia only. The goal of diabetes management is to attain euglycemia
and improve the time-in-range (TIR) of the target glucose range. This
requires accurately detecting hypoglycemia and hyperglycemia
[2,26,29]. The majority-voting scheme is a popular approach in the
machine learning literature and has been adopted by previous works to
improve the interpretability of results when aggregating beat-level
predictions over an interval. However, this approach may lead to poor
performance when individual beat-level predictions are inconsistent
within an interval [30]. A better approach is required to aggregate these
individual beat-level predictions and improve performance.

1.2. Glycemic excursion thresholds

A general consensus-based recommendation for hypoglycemia is any
CGM value < 70 mg/dL and for hyperglycemia is any CGM value > 180
mg/dl [2]. However, a recent study by the conglomerate HYPOResolve
[31,32], emphasized the need to define an optimal threshold of sensor
glucose readings that is consistent with the actual hypoglycemia events
occurring in people. The study indicates the need to understand
conventionally defined CGM-based hypoglycemia episodes to actual
patient reported hypoglycemia (PRH).

In a separate independent study [33], the authors noticed that ex-
pected morphological changes are not consistently detected or visible
for all hypoglycemia events (considering 70 mg/dL as the hypoglycemia
threshold). The study examines three HRV features: the standard devi-
ation of the NN intervals (SDNN) and the square root of the mean
standard differences of successive NN intervals (RMSSD) as time-domain
features, and the ratio between low and high frequency (LF:HF) as a
frequency-domain feature. All three features exhibited statistically sig-
nificant changes during hypoglycemia readings, indicating the potential
for detecting hypoglycemia events through HRV features. However, the
observed changes in these features were inconsistent across patients
who experienced hypoglycemia events. The authors identified factors
such as duration of diabetes, physical activity, and rate of declining
glucose values as factors associated with prominent changes in the HRV
features during hypoglycemia events. The study was based on a patient
cohort of 23 patients with type-1 diabetes where hypoglycemia was
defined as glucose < 70 mg/dL.

A recent study [34], explored changes in cardiac repolarization
features like corrected QT-interval, T-wave and HRV features in type-1
diabetes patients during hypoglycemia. A key finding from the study
was that changes in ECG-based features extended beyond the hypogly-
cemia event (defined at 70 mg/dL), indicating morphological changes in
the neighborhood of the standard clinical threshold of hypoglycemia
(70 mg/dL).

Another recent study using noninvasive smartwatches to monitor
interstitial glucose highlights the need to personalize glycemic excursion
thresholds especially when studying associated morphological changes
[35]. The authors redefined and created personalized ‘high’ and ‘low’
glucose thresholds for each participant in the study using the previous
24-hours of their individual CGM readings on a rolling basis. Readings
one standard deviation below (or above for hyperglycemia) the mean for
the last 24-hours of CGM readings are defined as ‘PersLow’ or
hypoglycemia.

Most recently [36], another study using smartwatches for noninva-
sive hypoglycemia detection during cognitive and psychomotor stress
found that although HRV measures constitute relevant features for hy-
poglycemia detection. However, the accuracy of ML decision-making
varies across different levels of hypoglycemia. The authors emphasize
the need to study physiological changes corresponding to glycemic
changes in the presence confounding factors like stress and, glycemic
sequence (euglycemia followed by hypoglycemia).

The above studies show that ECG morphological changes associated
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with low glucose do not necessarily occur at a specific glucose level.
They can happen at different thresholds for different subjects. Even for
the same subject, these can occur at different thresholds at different
times. This indicates the need for a prediction model that incorporates
changes occurring within a range of glucose values in addition to spe-
cific thresholds of 70 mg/dL and 180 mg/dL for detecting hypoglycemia
and hyperglycemia respectively.

There are multiple factors that directly impact blood glucose levels,
like food intake [37], physical activities [38], stress [39]. Additionally,
indirect factors including body temperature [40], autonomic functions
[41] can affect glucose and related fluctuations within the person [42].
However, these factors are extremely personalized, meaning each of
these factors impact glucose dynamics in varying degrees to different
individuals [43]. Investigating the role of these multiple factors simul-
taneously or individually for excursion detection can be valuable, but
the scope of this article is limited to identifying ECG related information
most useful for accurate glycemic excursion detection.

More specifically, the major contributions of our work are:

1. A combination of ECG morphology features and HRV features is
useful for hypoglycemia and hyperglycemia detection as opposed to
their independent use.

2. An ML approach that leverages the patterns in a sequence of beat-
level glycemic predictions for improved interval predictions.

3. A fusion model approach to leverage ECG morphological patterns at
varying thresholds for improved level glycemic predictions at stan-
dard clinical thresholds.

2. Methods and materials

This section describes the dataset used in this study, the data pro-
cessing steps and the experimental setup. We also describe the predic-
tion model used and the different configurations explored in this study.
To provide a summary of all the relevant information in this article and
improve the transparency of reporting machine learning modeling re-
sults in healthcare, we report the necessary details as per the MI-CLAIM
checklist in Appendix T1 [44].

2.1. Clinical datasets

To evaluate the noninvasive detection of glycemic excursions, 12
participants were recruited at Texas Children’s Hospital, Houston-TX,
USA. These 12 participants were adults with type-1 diabetes. Each
participant was enrolled in the study for 14 days. The participants were
asked to wear 3 noninvasive devices (Zephyr Bioharness, Empatica E4,
and Oura ring) during the study period. In addition to a CGM device and
an insulin pump, these three devices are used by the patients as part of
their diabetes management. Data from the Zephyr Bioharness and CGM
(considered as the ground truth) were used in this paper and detailed in
Table 1:

Throughout the study duration, the subjects were asked to wear the
devices continuously, including both day and night periods, except for
the time allocated for charging. However, variability in the available
ECG data across the 24-hour window for each participant indicates that
patients might have removed their device(s) while taking a shower or

Table 1
Devices used in the study and data acquired.

Device Worn as Data Collected and Frequency
Zephyr Chest strap ECG at 250 Hz,
Bioharness Accelerometer at 100 Hz (3-axis),
Heart Rate (HR) at 1 Hz,
HR Confidence (HRC) at 1 Hz
Dexcom CGM Over the Subcutaneous glucose readings at 5 min
arm intervals
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some other activities. The entire study cohort comprises patients with
type-1 diabetes and falls in the age group of 20—40 years. More details on
these patients’ demographic details and glycemic profiles during the
study period can be found in the Appendix. (Appendix T2, Appendix T3,
and Appendix T4).

Of the 12 enrolled patients, 3 patients (Patient ID: 2, 4 and 12) were
excluded from the analysis for hypoglycemia detection and 1 patient
(Patient ID: 5) was excluded for hyperglycemia detection. This exclusion
was based on an extremely low number of available glycemic excursion
events (hypoglycemia/ hyperglycemia) to develop and validate the
proposed approach. Detailed information regarding the glycemic pro-
files of these patients is provided in the Appendix (Appendix T3 and T4).

2.2. Preprocessing

ECG signals are vulnerable to distortions caused by motion artifacts
[45-48], necessitating the preprocessing of the ECG signal to extract
useful information. We conduct a thorough ECG processing to extract
the maximum amount of high-quality data for our subsequent analysis.
We detect R-peaks from the raw ECG signal in the first step using Neu-
roKit2 [49]. In the next step, we identify clean ECG beats based on the
signal-quality measure ‘HRConfidence’ (HRC) provided by Zephyr Bio-
Harness at a frequency of 1 Hz. HRC is a score, expressed as a percentage
of the confidence that the module is picking up heart rate during activity
based on wear detection and quality of ECG. This score ranges from 0 to
100, with 100 indicating the best quality and O representing the worst.
We exclusively consider beats (detected R-peaks) with an HRC score
greater than 90 for the selection of clean ECG beats for our analysis. This
decision is based on the availability of beats for different HRC cut-offs
(Appendix F2) and a thorough visual inspection of the detected beats
at different scores. For the selected beats with the R-peak as the anchor
point, we identify each beat’s remaining peaks (P, Q, S, T). Beats for
which NeuroKit2 failed to detect either of the P, Q, S, and T peaks were
discarded from the analysis. Based on the detection of beats and the
fiducial points, we compute the beat-level morphology features and
heart-rate variability (HRV) features next.

2.3. Validation mechanism

In this study, we implement a five-fold cross-validation scheme with
temporal data splitting. Here, we first order the data based on time-
stamps and segment it into one-hour blocks. Next, we randomly
distribute these one-hour blocks into five equal partitions, ensuring each
partition contains a mix of positive class (hypoglycemia or hyperglyce-
mia) and negative class (non-hypoglycemia or non-hyperglycemia). It is
important that while each partition is guaranteed to have positive class
data samples, the partitions may not be stratified i.e., each partition can
have varying proportions of positive and negative classes. This delib-
erate design mimics a real-world scenario where excursion events are
not identically distributed over time. The main goal behind this vali-
dation mechanism is to minimize the temporal correlation between the
data in the training and test sets. This ensures that the trained model
does not get any undue advantage for making predictions on the test
data, preventing overly optimistic prediction results [12,50]. A visual
representation of our validation mechanism can be found in Fig. 1.

The decision to consider hourly blocks of data is justified by (a) prior
literature indicating that autocorrelation between continuous CGM

values diminishes beyond a period of 30—60 min [51,52] and (b)
considerable evidence supporting a similar validation approach in the

domain of glycemic predictions [25]. The temporal-splitting validation
approach is significantly more rigorous than the simple random splitting
(at the beat-level or CGM-level). This is evidenced by an empirical
comparison of assessing model performance across the two validation
settings (refer to Table TS5 in Appendix).
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Fig. 1. Temporal validation: Validation scheme for splitting hourly blocks of data.

2.4. Feature extraction

2.4.1. Morphology features
We compute morphology features based on the fiducial points (P, Q,
R, S, and T peaks) using the processed data described above. A total of 35

Amplitude features
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morphology features are extracted, comprising 9 Euclidean-based dis-
tances between individual peaks, 10 interval-based distances, 5 ampli-
tudes of individual peaks and 9 slopes computed between the individual
peaks. Additionally, we compute ‘RR’ as the interval distance between
the current beat and the next detected beat, and ‘HR’ is taken as

Distance features

Fig. 2. Extraction of Amplitude, Distance-based, Interval-based, Slope-based features for beat-level prediction.
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provided by Zephyr, including them as features. Fig. 2 provides a visual
representation of the features.

2.4.2. HRYV features

A total of 18 HRV time-domain features are computed using the
NeuroKit2 package. A detailed description of the HRV features extracted
can be found in Appendix T5.

2.4.3. Interval-level features

The beat-level ML model makes glycemic predictions at the indi-
vidual beat-level. We aggregate beat-level predictions within a 1-minute
interval for computing features at the interval-level. The extracted fea-
tures are detailed in Table 2. A probability threshold of 0.5 was used to
convert probabilities to classes. We also include the hour of the day
encoded as a cyclical feature [53,54] (see Table 2).

2.5. Key definitions and evaluation metrics

1. Classification task: This article explores excursion detection as two
separate classification tasks: (a) hypoglycemia detection and (b)
hyperglycemia detection using ECG data as the input. CGM readings
are used only as a reference point to categorize the output label
dichotomously. The nearest CGM reading in the forward direction is
employed for the ECG data point to mark and assign the associated
output label. Except for the beat-level model (which predicts for
individual beats), all models in this article are evaluated for a 1-min-
ute interval prediction. This means that, for every 1-minute interval,
if the associated CGM reading is within the excursion region, it is
classified as a positive class/event. This 1-minute interval window
aligns with established practices in the literature for similar appli-
cations [28,36]. Importantly, these 1-minute intervals are non-
overlapping i.e., each data point belongs to precisely one 1-minute
interval. For the beat-level model, predictions are made for each
individually detected beat. Standard clinical thresholds of < 70mg/
dL for hypoglycemia and > 180mg/dL for hyperglycemia are used as
excursion thresholds [2,55]. This means that all the beats or 1-min-
ute intervals associated with a CGM value will be marked as positive/
negative class based on that single CGM reading. In training multiple
independent beat-level models within the fusion model, where
excursion thresholds other than standard clinical thresholds are
considered have been explicitly specified. However, the final pre-
diction of the fusion model is still being evaluated at the widely
accepted standard clinical thresholds.

2. Evaluation metrics: To provide a comprehensive and robust evalu-
ation of the binary classification models developed in this study, we
report model performance using the Area under the curve (AUC)
metric. The area under the receiver operating characteristic (ROC)
curve characterizes the trade-off between the true positive rate and
the true negative rate at various decision threshold settings. We
provide model performance details on other relevant metrics like
sensitivity (recall/ true positive rate): the ability of the classifier to
detect true incidents correctly. Higher sensitivity indicates a lower

Table 2
Interval-level features extracted by aggregating beat-level predictions.

Features Description

% of hypo beats % of beats classified as hypoglycemia (threshold = 0.5)
The longest sequence of predicted hypoglycemia beats
(threshold = 0.5)

Mean Mean predicted probability

Longest hypo-
sequence

Group 1 % of predicted probabilities in the interval (0,0.2]

Group 2 % of predicted probabilities in the interval (0.2,0.4]

Group 3 % of predicted probabilities in the interval (0.4,0.6]

Group 4 % of predicted probabilities in the interval (0.6,0.8]

Group 5 % of predicted probabilities in the interval (0.8,1]
Hour Hour of the day
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type II error rate, specificity: the ability of the classifier to correctly
detect negative incidents. Higher specificity has a lower type I error
rate, precision (positive predictive value): ratio of true predictions
over total predictions, and fl-score: harmonic mean of precision and
recall (Appendix T7). The above metrics were carefully chosen based
on the ability to provide the reader with a fair estimate of the model
performance as well as standard metrics used for evaluation in the
literature for similar applications [25,28,36,56].

3. Modeling approach: We have adopted a personalized modeling
approach for developing all models in this article. This means the
development of separate independent models for each patient. This
approach is supported by the previous literature [25] and is also
based our findings indicating a significant inter-subject variability in
ECG features among patients. We conducted a multi-way Kruskal-
Wallis H-test for all the twelve patients’ ECG features across hypo-
glycemia, hyperglycemia and normal glucose ranges. A significant
interaction across the 12 subjects indicated a significant
(pvalue < 0.001) difference in ECG features. Further investigation
through pairwise differences between subjects, using a post-hoc
comparison with a two-way Kruskal-Wallis H-test and Dunn’s test,
revealed inter-subject variability across each paired patient combi-
nation for almost all the features. A pvalue < 0.05 was used as evi-
dence of statistical significance.

2.6. Beat-level and Interval-Level models

One ML model for beat-level predictions and three for interval-level
predictions are developed. All the models are based on the Random
Forest (RF) algorithm. RF was chosen based on high performance and
lower variance based on our previous works [9,12,27]:

1. Mpea(Beat — level model) : This model makes predictions for indi-
vidual beats. The model output (predicted probabilities) is aggre-
gated for computing features over 1-minute intervals and used in
interval-level models. The input to this model is the morphology
features described in Fig. 3.

2. Muv(Majority — voting model) : This model makes interval-level
predictions based on a simple majority among the associated beat-
level predictions. For a fair comparison, performance metrics are
derived in 2-steps: (i) the beat-level predicted probabilities are
converted into class labels based on an optimal threshold chosen for
each split. (ii) for predicting the interval-level class, the majority
threshold is varied (against the default 50 % as a majority) to have
the best possible performance for each split.

3. Myorpn(Morphology — features model) : This model uses features
aggregated from posterior probabilities extracted from the output of
M. (Table 2). These features are input to a secondary model to get
interval-level predictions.

4. Mur{HRYV - features model) : This model only relies on HRV fea-
tures to make interval-level predictions. The HRV features (as in
Appendix T5) are computed for a 1-minute interval.

5. Myorpn+arAMorphology — aggregation + HRVfeatures) : In this
model, we combine the input features of My, and My, to make
interval-level predictions. This evaluates the combined effect of
intra-beat (morphology features) information and inter-beat (HRV
features) information.

2.7. Fusion Model

The fusion model (MF) extends the interval-level baseline model
Muiorpn+ury as depicted in Fig. 4. Multiple beat-level models (Mpeq) at
trained at different glycemic excursion thresholds for hypoglycemia and
hyperglycemia. For hypoglycemia, individual classifier models (Mpgear)
are trained at thresholds of 55, 60, 65, 70, 75, 80, 85 and 90. Similarly
for hyperglycemia, individual classifier models (M3.,) are trained at
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Fig. 4. Workflow of the fusion-based approach used in this study.

thresholds of 150, 165, 180, 200, 225 and 250. We hypothesize that
morphological changes may not happen at a specific threshold but
across a range of glycemic values, even for an individual subject and at
different times. To leverage these varying patterns at different glycemic
levels, the interval-level features, derived from the posterior probabili-
ties of multiple beat-level (Mp...) models, trained at different thresholds

are concatenated and used as input at the final step of the fusion model
to make predictions. The fusion model is denoted by MF i+ rry. While
the fusion models consist of features derived from beat-level models
trained at different thresholds, performance evaluation (at the interval-
level) is conducted using the conventional thresholds of 70 mg/dL for
hypoglycemia and 180 mg/dL for hyperglycemia.

3. Results

Aggregating individual beat-level predictions within an interval is
essential for interpretability and making clinical decisions. We evaluate
and compare four different aggregation approaches for two binary
classification tasks: (a) hypoglycemia detection and (b) hyperglycemia
detection. We also propose a fusion-based approach (using morpholog-
ical changes at varying glycemic excursion thresholds) that improves
performance over the baseline model (morphological changes at a single
standard clinical threshold). For the following results, Mp,,, represents
the beat-level model. My, and My, are models using aggregated
features within an interval based on only beat-level predictions (intra-
beat information), My are models based on only HRV features (inter-

beat information), whereas Myopn+ury and MFyp+qry are models
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using aggregated features for an interval based on beat-level predictions
and HRYV features (intra-beat and inter-beat information).

3.1. Performance Comparison: Interval-level aggregation

3.1.1. Hypoglycemia

Performance across the four aggregation approaches for hypoglyce-
mia detection are summarized in Fig. 5 (left). The height of individual
bars shows the mean AUC across the patients whereas the error bars
represent the standard deviation. One-way ANOVA shows there is a
statistically significant difference across models (p<<0.01). Fig. 5 (right)
displays pairwise statistical tests between different aggregation methods
as well as compares the reference beat-level Mj.,, model. Since we are
interested in finding the group (feature-set) with the best performance,
we perform one-tailed pairwise t-tests (Ho: (1 = p2, H, s 1 < ,uz) as
post-hoc analysis.

Pairwise comparisons show statistical significance with My, over
Mpury (p = 0.02, one-tailed). Muwmn+ury has statistically significant

improvement over Myp,; (p = 0.01, one-tailed) and Mz (p<<0.01,
one —tailed). This indicates that models using morphology features
combined with HRV features perform better compared to using either
set of features independently. When comparing model performance for
individual patients, Mysmpi+ury improved performance for 7 patients
(out of 9) over My, and 9 patients (out of 9) over Mygy. Also,
Mitorpn+ury significantly (p = 0.03, one-tailed) improves performance
over the reference model, Mj.,,. The performance of the majority-voting
model M, is significantly lower compared to all other aggregation
approaches.

3.1.2. Hyperglycemia

A performance comparison is summarized in Fig. 6 (left) for hyper-
glycemia detection. One-way ANOV A shows a statistically significant
difference across different models (p<<0.01). Post-hoc pairwise com-
parisons (Ho : 1 = p2, H, : g1t < p2) (Fig. 6 — right) show that, similar to
hypoglycemia, My, is (statistically) significantly better than Mgy
(p < 0.01, one -tailed). Also, combining both sets of features Mypn+nry
offers a significant advantage over Mypn (p<<0.01, onetailed) and Mpygy
(p<<0.01, onetailed) for hyperglycemia detection. The improvement is
consistently observed across all 11 patients for hyperglycemia detection.
This shows that interval-level features (derived from beat-level pre-
dictions) and HRV features complement each other in enhancing pre-

diction performance. Like hypoglycemia detection, Mymompn+ury

significantly improves performance over the base model, Mp.,, (p<<0.01,
one-tailed).
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3.1.3. Performance comparison: fusion-model

Fusion model MF )y, pn+nry significantly improves over the baseline
model, Myopn+ury (best-performing aggregation approach) for both
hypoglycemia (p = 0.03, one-tailed) and hyperglycemia detection (p =
0.02, one-tailed) (Fig. 7). Fig. 8 and Fig. 9, give a patient-wise com-
parison of all the models. MFypn+nry improves performance over the
baseline model, My,pn+nry for 8 patients (out of 9) for hypoglycemia
detection and 10 patients (out of 11) for hyperglycemia detection.
Performance comparison of all the modeling approaches used for hy-
poglycemia and hyperglycemia detection can be found in Table 3.

3.2. Variable importance

We examined the importance of the features for making predictions
at the beat-level (Mp.) and interval-level (Muyy, Muworpny Mugry,

Mytorph +1irV "MF rorpn+1iry ) by using Shapley Additive Explanation (SHAP)
plots [57] and RF-model-based variable importance plots (VIP). SHAP
plots improve interpretability by illustrating the model’s decision con-
cerning predictions vs feature values. RF-based VIP evaluates the
importance of each feature by measuring the reduction in model per-
formance when excluding a predictor in the training process. We aim to
understand the impact of individual features through SHAP plots and the
relative importance of feature categories through VIP. To generate the
VIP, we aggregate importance scores within the category (e.g.: HRV,
interval-level features, etc.).

The SHAP plots, along with actual beat morphology plots, demon-
strate the variable importance for hypoglycemia (Fig. 10) and hyper-
glycemia detection (in Fig. 11) in the Mp,, model. For a sample patient
in Fig. 10, high values of distances: RS, QR, PR, and amplitudes: R; and
low values of RR, and distance: RS show an association with hypogly-
cemia. SHAP plots indicate that features associated with the fiducial
point ‘R’ are pivotal in classifying hypoglycemia for this patient. This
aligns with the adjacent beat morphology plots, highlighting distinct
differences in the R amplitude region (Fig. 10 right panel). In the case of
hyperglycemia detection for patient ID: 10 (Fig. 11), low values of in-
tervals: QT, RT, PT, QR, ST and RR and high HR are driving the model
towards predicting hyperglycemia, consistent with morphological
changes around the ‘T wave’ (Fig. 11 right panel).

At the interval-level (Fig. 12), HRV features contribute approxi-
mately 42 % towards the prediction performance for both hypoglyce-
mia, and hyperglycemia, while interval-level features derived from the
output of Mp,, model account for about 38 %. These findings corrobo-
rate the performance results, underscoring the significance of HRV
features and interval-level features in enhancing predictions.
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Fig. 5. Hypoglycemia detection: (left) model performance comparison across different aggregation approaches (right) pairwise student’s #-test results.
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Fig. 7. Performance comparison of the baseline model against fusion model for: (left) hypoglycemia detection and (right) hyperglycemia detection.

In the case of the fusion model (Fig. 13), features extracted from
thresholds other than the standard threshold of 70 (i.e., 55,60, 65, 75,
80, 85, and 90) for hypoglycemia show high importance (61 %) and
similarly for hyperglycemia, features extracted from thresholds other
than the standard clinical threshold of 180 (i.e., 150, 165, 200, 225 and
250) for hyperglycemia exhibit high importance (57 %). This validates
our hypothesis that morphological changes around the neighborhood of
standard clinical thresholds for excursions provide useful information,
explaining the improvement in the performance of the fusion models.

4. Discussion
4.1. Insights and observations

The relative importance of feature sets in the random forest-based
VIP plots (Fig. 12 and Fig. 13) validates the importance of
morphology features and HRV features. It also indicates a synergistic
relationship between intra-beat and inter-beat information in detecting
glycemic excursions. Fig. 14 presents a comparison of selected
morphology features across hypoglycemia (<70 mg/dL), normal (= 70
mg/dL and < 180 mg/dL) and hyperglycemia (>180 mg/dL) ranges
using boxplots. This portrayal illustrates morphological changes occur-
ring at different glycemic levels [58,59], contributing to glycemic state
classifications as depicted in Figs. 10 and 11. In the case of the fusion-
model, it is evident that incorporating morphological change informa-
tion at different thresholds boosts performance. This observation is

supported by the RF-based importance plots (Fig. 13). A more detailed
breakdown of the fusion features at individual threshold-level features
further confirms that features from various glycemic thresholds
contribute to hypoglycemia and hyperglycemia detection (Appendix
F1).

Upon a more in-depth examination of misclassification errors for our
best-performing model MFury+uorphotog(Fig. 15), we observe an
increasingly improved true detection rate (TP) for lower glucose read-
ings, ranging from 57 % for readings between 65 mg/dL and 70 mg/dL
to 84 % below 55 mg/dL. Similarly, for higher glucose readings the true
detection rate ranges from 65 % for readings between 180 mg/dL and
200 mg/dL to 91 % for readings above 350 mg/dL. This indicates that
the model demonstrates enhanced effectiveness in detecting severe
glycemic excursions, thereby helping in preventing severe hypoglyce-
mia and hyperglycemia.

4.2. Varying excursion thresholds

Learning morphological changes at varying glycemic excursion
thresholds plays a key role for the fusion model in outperforming
baseline models for hypoglycemia and hyperglycemia detection.
Different excursion thresholds result in different numbers of events.
Fig. 16 shows the percentage of hypoglycemia and hyperglycemia values
within a patient profile for different excursion thresholds. The rate of
change for hypoglycemia and hyperglycemia events varies across
different patients for hypoglycemia (pvalue = 0.05) and hyperglycemia
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Fig. 8. Patient-wise performance between fusion-based approaches and best-performing interval-level aggregation approach for hypoglycemia detection.
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Fig. 9. Patient-wise performance between fusion-based approaches and best-performing interval-level aggregation approach for hyperglycemia detection.

(pvalue < 0.001). However, when we compare model performance
(MF ytorpn+nry) against rate of change of excursion events, we do not find
a significant correlation for hypoglycemia (pvalue = 0.38) or hyper-
glycemia (pvalue = 0.41). This corroborates previous findings from the
literature [33-36] that although ECG-based features effectively show
signs of hypoglycemia and hyperglycemia, the changes observed for
different ECG-based features vary across different patients and for
different levels of glucose readings.

4.3. Applicability in real-world settings

In this work, we attempt to provide a realistic evaluation of using
noninvasive wearables for the detection of glycemic excursion events in
the real-world settings. To further understand this, we consider the
current work on two aspects:

4.3.1. Model performance
Glucose-related risk prediction through historical CGM readings and
noninvasive wearables is a well-researched area. Despite this, previous
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Table 3
Performance comparison of different approaches used in the study for hypo-
glycemia detection and hyperglycemia detection.

Model Details Hypoglycemia Hyperglycemia
Beat-level (Mpeq) 0.676 = 0.10 0.721 = 0.10
Majority-Voting (M) 0.25 + 0.09 0.47 + 0.07
Only Morphology features (Masorph) 0.684 + 0.07 0.719 + 0.07
Only HRV features (Myry) 0.629 = 0.08 0.708 = 0.07
Morphology + HRV features (Masorph+Hrv) 0.718 = 0.07 0.769 = 0.07
Fusion (Morphology + HRYV features) 0.749 = 0.10 0.782 = 0.10

(MFsMorph-+HRV)

research has adopted varying approaches for making predictions and
reporting results of machine learning models. Predominantly, two main
paradigms have been considered: (a) sample-based prediction: predic-
tion is performed at each timestamp of the glucose reading, and (b)
event-based prediction: consecutive CGM values (or timestamps) in the
hypoglycemia or hyperglycemia range are considered as a single event
[60]. Most studies [25,28,35,36] using noninvasive signals, have re-
ported model performance for hypoglycemia and hyperglycemia
detection within 1-to-5-minute intervals. These different approaches
significantly impact the imbalance ratio and the performance metrics.
For instance, the PPV reported in this work (Appendix T7) for a 1-minute
interval shows that 9 out of 10 hypoglycemia detections are false alarms.
However, evaluating the same model performance at the event level,
results in only 2.07 false alarms per day. This approach also results in
overlooking short-span hypoglycemia events. Additionally, variations in
choosing glycemic thresholds for defining hypoglycemia and hypergly-
cemia events, different validation approaches (Table 4), and modeling
strategies (precision medicine or population-level) further complicate
the comparison of different studies and their relevance to real-world
settings. Moreover, this article primarily aims to determine the type of
information required to be extracted from the ECG signal for accurate
glycemic excursion detection The advantages and disadvantages of
using specific intervals for making predictions and an optimal approach
for providing real-time predictive alerts need further exploration.

4.3.2. Patient cohort
The dataset used for this study was collected from twelve subjects

Biomedical Signal Processing and Control 96 (2024) 106569

with type-1 diabetes over 14 days, encompassing both day and night in
free-living conditions. This aspect is critical because it captures natural
glucose variations and patterns related to daily physical activities and
eating habits. The twelve subjects in this study, aged between 20—40
years included 7 males and 5 females. Personalized models were
developed for each individual. However, no significant correlation was
found between model performance (for either hypoglycemia or hyper-
glycemia detection) and demographic factors such as age or gender.

Regarding glycemic profiles, the twelve patients had on average
approximately 2 % readings falling within the hypoglycemia range and
about 20 % in the hyperglycemia range. This distribution aligns with
previous studies [9,61] involving data collected over longer periods and
a much larger patient population. Hence, the current cohort is repre-
sentative of the broader type-1 diabetes population in terms of glycemic
profiles. Similarly to demographics, no significant correlation was found
between model performance against the glycemic profiles of these
participants.

This indicates that the approach used in this study is not limited to
subjects of a specific age range, gender groups, or certain glycemic
profiles. Our approach is generalizable to the broader diabetes popula-
tion. A more detailed comparison of this article with other works along
with highlighting key similarities and differences is presented in the next
section.

4.4. Confounding factors impacting glucose dynamics

As we previously mentioned in the introduction section, multiple
direct and indirect factors impact blood glucose levels and their fluc-
tuations. Cardiac autonomic neuropathy (CAN) is an important factor
that can lead to impaired heart responses to physiological stimuli like
glycemic excursions. A common effect is impaired cardiac responses
leading to loss of HRV among such patients [62,63]. This will severely
impact glycemic excursion detection through PPG or ECG data as HRV
derived from these signals will be different in patients with CAN. In
addition to impacting heart rate, CAN among patents can cause
abnormal blood pressure patterns, lead to prolonged QT-intervals (can
be easily confounded with prolongation due to hypoglycemia) and
create an overall imbalance between sympathetic and parasympathetic
nervous system [64]. There is a need to conduct studies to assess

High
distance_RS
distance_QR
distance_PR
amplitude_R
slope_RT
distance_RT
HR
interval RT
RR

slope_PR
slope_QR
slope_RS
interval_RS
distance_PQ
interval_QS
interval_PQ
interval_ST
interval_PR
slope_PS
distance_PS
interval_QT
distance_QS
interval_PS
slope_QS
slope_QT
interval_PT
interval QR
amplitude_Q
amplitude_P
slope PT
distance_QT
distance_PT
amplitude_T
amplitude_S
slope_PQ

Feature Value

T+,T1¥l;lriliflilllllll

Low

[ e e T TR

-0.06

0.05
—0.04
-0.03

~

b=

]
T

-0.01
0.01
0.02

SHAP value (impact on
model output)

— Hypo
—— Non-hypo

Fig. 10. SHAP plots showing how feature values drive model towards hypoglycemia prediction and associated comparison with raw beat-morphology observed for

Patient ID: 5.

10



D. Dave et al.

Biomedical Signal Processing and Control 96 (2024) 106569

High

l

interval_ST
interval_QT
interval_RT
HR
interval_PT
interval_QR
RR
distance_PT
distance_QR
slope_QR
slope_PR
amplitude_T
distance_RT
amplitude_R
slope_RT
distance_QT
distance_PR
interval_RS
interval_PR
interval_QS
amplitude_Q
slope_RS
slope_PT
amplitude_S
interval_PS
distance_QS

Wl
il

Feature Value

slope_QS
distance_PQ
slope_QT
interval_PQ
distance_RS
distance_PS
slope_PQ
slope_PS
amplitude_P

Low

—— hyper
—— Non-hyper

000] ___~_-T-+s+*+TTT"t*f7IItTiTI

0.02{
0.04{

S
S

-0.06 |

-0.02

SHAP value (impact on
model output)

Fig. 11. SHAP plots showing how feature values drive model towards hyperglycemia prediction and associated comparison with raw beat-morphology observed for

Patient ID: 10.

Hypoglycemia: Variable Importance (in %)

18.76

Aggregated probability features 37.39

Feature category

HRV 43.85

60 70

30
Importance Score

40 50

o

10 20

Feature category

Aggregated probability features

Hyperglycemia: Variable Importance (in %)

19.68

Time

38.48

Fig. 12. Interval-level: Relative importance of feature categories for (left) Hypoglycemia and (right) Hyperglycemia detection.

Tlme-B.SS
Features at 70 threhsa!d-ll.Gﬁ
HRV-ITJ'B
Features other than 70 threshmd_ﬁl.?

0 10 20 30 40 50 60 70
Importance Score

Feature-type

Feature-type

0 10 20 30 40 50 60 70
Importance Score
Features other than 180 threshold 56.86
0 10 20 30 40 50 60 70

Importance Score

Fig. 13. Fusion-level: Relative importance of feature categories for (left) Hypoglycemia and (right) Hyperglycemia detection.

glycemic excursion detection performance in the presence of comor-
bidities (e.g., severe neuropathy), and other confounding conditions
such as hypoglycemia unawareness which can lead to fatal conse-
quences. Additionally, electrodermal activity which represents the
electrical response of sweat glands to sympathetic innervation, was
shown to have less pronounced changes during mild hypoglycemia as
compared to severe hypoglycemia [36].

4.5. Comparison to previous works

We provide a comparative analysis of previous works studying

11

noninvasive glycemic predictions, involving hypoglycemia detection,
hyperglycemia detection, and actual glucose value prediction. Specif-
ically, we focus on works using ECG signals and related features as the
input (Table 4). A predominant theme in the literature relied on
morphology features like QT-interval (QT), corrected QT-interval (QTc),
and HRYV features as inputs in model development. More recently, the
advent of deep learning approaches has allowed pattern extraction on
ECG signals through CNN, RNN and LSTM-based models. These works
have reported a higher prediction performance than earlier works using
handcrafted features. However, comparing prediction performance
across different studies is challenging due to the differences in data
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Table 4
Comparison of previous literature for noninvasive glucose (hypoglycemia, hyperglycemia) prediction using ECG signal.

Paper Year ECG features in the study Cohort Prediction Validation Metrics Used Performance reported
Details Tasks approach
Hypoglycemia detection based on 2011 Corrected QT-interval, RT- Patients: 22 Hypoglycemia - = Exploratory analysis.

cardiac repolarization features amplitude ratio, RR Time: 1-hour Changes detected in 15/
[22] interval, T-wave slope, T- recordings 22 hypoglycemia events

wave distance onset/offset Condition:

Controlled

setting

Genetic-Algorithm-Based Multiple 2011 Heart Rate (HR), corrected Patients: 16 Hypoglycemia Patient-based Sensitivity, Sensitivity = 75 %
Regression with Fuzzy Inference QT (QTec), change in HR Time: Specificity Specificity = 50 %
System for Detection of Nocturnal and QTc Overnight time
Hypoglycemic Episodes [21] recordings

Non-invasive hypoglycemia 2016 Heart Rate (HR), corrected Condition: Patient-based Sensitivity, Sensitivity = 78 %
monitoring system using extreme QT (QTc), change in HR Controlled Specificity Specificity = 60 %
learning machine for Type 1 and QTc setting
diabetes [20]

Deep Learning Framework for 2016 Heart Rate (HR), corrected Patient-based Sensitivity, Sensitivity = 80 %
Detection of Hypoglycemic QT (QTc) Specificity, Specificity = 50 %
Episodes in Children with Type 1 Gamma Gamma = 68 %
Diabetes [65]

Paper Year ECG features in Cohort Details Prediction Tasks Validation Metrics Used Performance

the study approach reported

A multiparameter model for non- 2019 Heart Rate (HR), Patients:20 Patients:20 Random AUC, AUC = 94%
invasive detection of QT-interval Time: ~1-2 hCondition: Time: ~1-2 Splitting Sensitivity, Sensitivity =
hypoglycemia [66] Controlled setting hCondition: Specificity 75%,Specificity =

Controlled setting 98%

Precision Medicine and Artificial 2020 CNN-based Patients:8 Hypoglycemia Random Sensitivity, Sensitivity =
Intelligence: A pilot study on morphology Time: 14 daysCondition: Splitting Specificity, 85%,
deep learning for hypoglycemic features Free living Accuracy Specificity =
events detection based on ECG 85%,AUC = 85%
[25]

Hyperglycemia Identification 2021 Morphology Patients: 1119 Hypoglycemia Random AUC, AUC = 94.53%
using ECG in Deep learning era features (distances, Time: ~2-minute Splitting Sensitivity, Sensitivity =
[67] slopes, amplitudes) recordingsCondition: Specificity 87.57%

Controlled setting Specificity =
85.04%

Paper Year ECG features in the Cohort Details Prediction Tasks Validation Metrics Used Performance

study approach reported

Non-invasive Monitoring of Three 2021 CNN-based Patients:16 Hypoglycemia, Random Accuracy Accuracy = 82%
Glucose Ranges Based on ECG By morphology features Time: ~1-2 h Normal, Splitting
Using DBSCAN-CNN [26] Condition: Hyperglycemia

Controlled setting

A Prediction Algorithm for 2022 Corrected QT-interval, Patients:16 Hypoglycemia Random Sensitivity, Sensitivity = 91%,
Hypoglycemia Based on Support 5-HRV features (time- Time: Overnight Splitting Specificity, Specificity = 87%,
Vector Machine Using Glucose domain and frequency time recordings Accuracy Accuracy = 89%
Level and Electrocardiogram[68] domain) Condition:

Controlled setting

Detection of hypoglycemia and 2022 HRYV features (time- Patients:5 Hypoglycemia, Time-based AUC, Hypoglycemia:
hyperglycemia using noninvasive domain) Time: 14 Hyperglycemia splitting Sensitivity, AUC = 76%
wearable sensors: ECG and daysCondition: Specificity Sensitivity = 69%
accelerometry [27] Free-living Specificity = 69%

Hyperglycemia:
AUC = 82%
Sensitivity = 74%
Specificity = 74%
Paper Year ECG features in the Cohort Details Prediction Tasks Validation Metrics Used Performance
study approach reported

Noninvasive blood glucose 2023 CNN-based spatial Patients:16Time: Glucose values Random RMSE, RMSE = 1.56 (mmol/
monitoring using spatiotemporal morphology features, Overnight time Splitting MARD, L)MARD =
ECG and PPG feature fusion and Temporal statistical recordings Parke’s Error 13.88Zone (A+B)
Weight-based Choquet Integral features (~ 103 days) Grid Analysis = 99.38%
Multimodel approach [29] Condition: Controlled

setting
Blood glucose estimation based on 2023 CNN-based Patients: 3 Glucose values Random RMSE RMSE = 0.47 mg/dL
ECG signal [69] morphology features Time: 8 splitting R2=82%
daysCondition: Free
living
This Work 2023 Handcrafted Patients: 12 Hypoglycemia, Time-based AUC Hypoglycemia:
Morphology Time: 14 Hyperglycemia splitting AUC = 76%
(distances, intervals, daysCondition: Free Hyperglycemia:AUC
amplitudes, slopes) living = 80%

features

13



D. Dave et al.

collection, underlying population characteristics (medical history, age,
race, sex, etc.), study protocols, validation approaches used, etc. For
example, data collected in controlled sedentary settings for a short
duration differs significantly from data observed in free-living condi-
tions. This disparity is critical, impacting data quality, as patterns
observed in free-living conditions can deviate significantly from the
controlled settings due to the influence of various external factors like
motion artifacts, food consumption, etc.

From a modeling perspective, the focus of prediction (e.g., hypo-
glycemia or hyperglycemia detection or glucose value prediction) and
validation methods are key aspects that vary across different works in
the literature. Even when concentrating on the same prediction task,
such as hypoglycemia detection, multiple studies have reported per-
formance at the individual beat-level, intervals of one minute, five-
minute or fixed sequence of beats. In this work, we adhere to the most
commonly used 1-minute interval for reporting our results. Given that
ECG data and glucose readings are temporal data streams, it is imper-
ative to employ an appropriate validation scheme to provide more
realistic estimates of performance when deploying the model. Although
commonly used, random splitting can give an overly optimistic perfor-
mance estimate. To underscore this, we compare the results of our model
using random splitting-based validation. (Appendix T6).

4.6. Limitations

As previously discussed, multiple direct and indirect factors impact
blood glucose levels and its fluctuations. It is important to study and
evaluate these changes in blood glucose levels in the presence of other
comorbidities. However, the scope of this study was limited to the ECG
signal alone. An important factor to consider in technology-based
excursion detection is diabetes-related autonomic neuropathy, as it
can impair cardiac responses during glycemic excursions increasing the
risk of severe hypoglycemia [70]. The subjects in this study were not
specifically tested for cardiac autonomic neuropathy (CAN) due to their
young age and shorter duration since diabetes diagnosis [71]. Never-
theless, understanding the effect of CAN on glycemia-induced morpho-
logical changes is important and is a limitation of the current study.
Another limitation of our work is the relatively modest size of our
dataset. Our dataset comprised recordings from twelve participants over
a period of 14-days. Among these twelve patients, only nine were
included in the hypoglycemia detection model, and eleven in the hy-
perglycemia detection model, based on the number of glycemic excur-
sion events they experienced. In total, our analysis included 215
hypoglycemia episodes and 314 hyperglycemia episodes. To overcome
this limitation, we implemented a 5-fold temporal cross-validation
mechanism to ensure accurate estimation of model performance
despite the constraints in data availability. Most prior works (from
Table 4) have employed random data splitting for model training,
neglecting temporal correlations in the data, which may inflate model
performance due to temporal correlations, potentially leading to overly
optimistic results. Appendix T5 presents the higher performance results
achieved when random splitting-based validation is used instead of a
more conservative validation approach adopted in this paper. Despite
the many advantages of the 5-fold temporal cross-validation approach, it
may pose challenges for including patients with an extremely low
number of glycemic excursion events. This is because splitting the data
into 5-folds for cross-validation could result in some folds lacking gly-
cemic excursion events. Training a binary classification model requires
both positive and negative class events, and when no positive class
events are present, training a binary classifier becomes impossible. As a
result, we cannot use such patients for analysis in this study. We
acknowledge that the low precision reported in this work can be a
deterrent to the adoption of technology among patients. However, our
main focus was on extracting key features from ECG signals to detect
glycemic excursions and exploring the hypothesis that ECG morpho-
logical changes occur at different glycemic thresholds, which can
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improve predictive model performance. For giving out real-world pre-
dictive alerts, a comprehensive evaluation based on both, clinical as well
as human behavior aspects is necessary. To address these challenges, we
plan to focus on sustained hypoglycemia [12,61] and consider longer
intervals for evaluating predictive alerts in our future research.

Significant improvements in model performance are necessary for
noninvasive technologies to replace CGM devices effectively in patients
with diabetes. Using multi-modal data such as PPG, electrodermal ac-
tivity (EDA), BioZ, skin temperature etc. in addition to ECG can enhance
performance to acceptable levels and will be the focus of our future
efforts. All the patients in the current study were aged between 20—40
years. It would be valuable to collect and analyze data from younger
individuals (aged 0-20 years) and older populations (>50 years) with
type-1 diabetes as it can cover different lifestyles as well as risk associ-
ated with specific age-groups.

5. Conclusion

This article proposes a noninvasive approach to detecting glycemic
excursions using ECG data. We explore the use of, intra-beat
(morphology features) information and inter-beat (HRV features) in-
formation, evaluating different aggregation approaches for predictive
efficacy. Our findings indicate that, models incorporating morphology-
based features along with HRV features significantly outperform those
using only morphology features or HRV features independently both
hypoglycemia and hyperglycemia. The combination of morphology and
HRYV features achieves an average AUC of 72 % for hypoglycemia
detection and 77 % for hyperglycemia detection. Our proposed fusion
model adeptly learns morphological patterns at multiple glycemic
thresholds, enhancing its ability to learn the morphological changes
more effectively in the hypoglycemia and hyperglycemia ranges. The
fusion model achieves an average AUC of 75 % for hypoglycemia
detection and 78 % for hyperglycemia detection. These results under-
score several key insights: (1) ECG signal is a promising noninvasive
alternative for detecting glycemic excursions, (2) HRV is a useful sup-
plement to morphology features for detecting glycemic excursions, (3)
Higher performance of the fusion model indicates a need to explore
personalized glycemic thresholds for hypoglycemia and hyperglycemia.
These findings have important clinical implications for non-invasive
diabetes monitoring and management.
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Appendix

Appendix T1
Minimum information about clinical artificial intelligence modeling via the MI-CLAIM checklist

Study design (Part 1)

Completed

Notes

The clinical problem in which the model will be employed is clearly
detailed in the paper.
The research question is clearly stated.

The characteristics of the cohorts (training and test sets) are detailed in
the text.

The cohorts (training and test sets) are shown to be representative of
real-world clinical settings.

The state-of-the-art solution used as a baseline for comparison has been
identified and detailed.

Data and optimization (Parts 2, 3)

X (Introduction)

X (Introduction)

X (Methods and
Materials)
X (Methods and
Materials)
X (Discussion)

Completed

Hypoglycemia and hyperglyemia detection using ECG

1) Is intra-beat, inter-beat or a combination of both is need for detection of
glycemic excursions? Are morphological patterns observed at varying glucose
thresholds?

We do not have separate train and test cohorts. But we apply a five-fold temporal

cross-validation for training personalized models. Details in Fig. 1.

Detailed about validation provided in methods and materials section (Fig. 1).

Also, provided explanations on its real-world relevance.

Detail comparison to state-of-the-art works with relevant differences provided in

Discussion section.

Notes

The origin of the data is described and the original format is detailed in
the paper.

Transformations of the data before it is applied to the proposed model
are described.

The independence between training and test sets has been proven in
the paper.

Details on the models that were evaluated, and the code developed to
select the best model are provided.

Is the input data type structured or unstructured?

Model performance (Part 4)

X (Methods and
materials, Appendix)
X (Methods and
Materials)

X (Methods)

X (Methods and

Materials)
Structured

Completed

Details on protocols and relevant patient characteristics provided in Appendix

‘We use a temporal 5-fold cross-validation to mimic a real-world setting and
ensuring no data leakage.

Notes

The primary metric selected to evaluate algorithm performance (e.g.,
AUC, F-score, etc.), including the justification for selection, has been
clearly stated.

The primary metric selected to evaluate the clinical utility of the model
(e.g., PPV, NNT, etc.), including the justification for selection, has
been clearly stated.

The performance comparison between baseline and proposed model is

X (Methods and
materials, Appendix)

X (Methods and
materials)

X (Results, Discussion,

Primarily Area under the receiver operating curve (AUC-ROC). Other metrics
provided in Appendix.

Our proposed approach provides robust performance. Comparison with other

presented with the appropriate statistical significance. Appendix) works in Discussion section and some extra comparison in the Appendix
Model examination (Part 5) Completed Notes
Examination technique 1 X (Methods and Shapley Additive Explanations (SHAP) summary plots to show the impact of a

A discussion of the relevance of the examination results with respect to
model/algorithm performance is presented.

A discussion of the feasibility and significance of model interpretability
at the case level if examination methods are uninterpretable is
presented.

A discussion of the reliability and robustness of the model as the
underlying data distribution shifts is included.

Reproducibility (Part 6): choose appropriate tier of transparency

Results, Discussion)

X (Discussion)

X (Results, Discussion)

X (Discussion)

Completed

predictor on the model performance as a function of the predictor value. Random
Forests based variable importance plots (VIMP) to show impact of feature
categories on the output variable.

Detailed explanation on the relevance of the results discussed

Discussion on the study cohort in this article and the relevant of model
performance in real-world settings.

Notes

Tier 1: complete sharing of the code

Tier 2: allow a third party to evaluate the code for accuracy/fairness;
share the results of this evaluation

Tier 3: release of a virtual machine (binary) for running the code on
new data without sharing its details

Tier 4: no sharing

X

We are in the process to upload the entire python code on our GitHub repository
soon. However, sharing of data will not be made possible at this time. The
authors plan to release the entire dataset in the future through appropriate
channels.
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Appendix T2
Demographics data on subject who are part of the study.

Subject ID Age Gender Body weight (Ib) Height Race/Ethnicity HbA1C
1 41 M 152 5ft 10in white 5.5
2 24 M 195 6ft 3in white 6.8
3 34 M 224 5ft 8in white 6.9
4 34 F 157 5ft 4in white 6.4
5 35 F 170 5ft 11in ‘White 54
6 30 M 200 6ft4in White 59
7 31 F 132 5ft2in ‘White -
8 30 M 160 5ft 10in Multiple 6.5
9 30 F 182 5ft 6in White 5.8
10 29 M 183 6ft 2in white 6.0
11 35 M 185 6ft 2in ‘White 58
12 37 F 138 5ft 5in ‘White 7.2

Appendix T3
Hypoglycemia profile of patients who are part of the study.

Patient ID Total CGM readings Hypoglycemia CGM readings Hypoglycemia events/episodes
1 2408 139 33
2 3068 8 2
3 2840 91 19
4 2251 5 1
5 3195 108 24
6 3379 134 22
7 2815 171 18
8 3268 58 12
9 3758 128 20
10 3412 234 59
11 3610 61 7
12 2637 4 2

Appendix T4
Hyperglycemia profile of patients who are part of the study.

Patient ID Total CGM readings Hyperglycemia CGM readings Hyperglycemia events/episodes
1 2408 165 19
2 3068 856 41
3 2840 660 39
4 2251 586 37
5 3195 26 2
6 3379 437 25
7 2815 166 11
8 3268 355 36
9 3758 497 37
10 3412 145 13
11 3610 184 15
12 2637 1070 41

Appendix T5
HRY features used in the study.

Feature Description
MeanNN (ms) Mean NN Intervals C >
CVNN . L. R . SDNN
Coefficient of variation of NN intervals _—
MeanNN >
CVSD : L . . RMSSD
Coefficient of variation of successive differences —_—
MeanNN
SDNN (ms) Standard deviation of NN intervals
SDSD (ms) Standard deviation of Successive differences
RMSSD (ms) Root mean square of successive interval differences
Pnni_20 (%) Proportion of successive NN intervals that differ by > 20 ms
Pnni_50 (%) Proportion of successive NN intervals that differ by > 50 ms
HR_ Mad Mean absolute deviation of NN intervals
MedianNN (ms) Median NN Intervals
MinNN Minimum of NN Intervals

(continued on next page)
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Appendix T5 (continued)

Feature Description

MaxNN Maximum of NN Intervals
MCVNN . MadNN

Ratio of ———

MedianNN

IQRNN Inter-quartile range of NN intervals
Prc20NN 20th percentile of NN intervals
Prc8ONN 80th percentile of NN intervals
HTI HRYV triangular index. Integral of the density of the RR interval histogram divided by its height
TINN Baseline width of the RR interval histogram
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Appendix F1. Fusion-level: Detailed importance of feature categories for hypoglycemia detection.
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Fusion-level: Detailed breakdown of relative importance of feature categories for hyperglycemia detection

Appendix T6
Performance comparison for different model types and glycemic detection condition in the (proposed) temporal-splitting validation vs random-splitting (at CGM level)
validation approach.

Model Details/Validation Approach Hypoglycemia Hyperglycemia
Time splitting Random splitting Time splitting Random splitting
Beat-level (Mpear) 0.676 = 0.10 0.867 = 0.10 0.737 = 0.10 0.868 = 0.10
Only Morphology features (Maorph) 0.684 + 0.07 0.901 =+ 0.07 0.743 + 0.07 0.934 + 0.07
Only HRV features (Mzry) 0.629 + 0.08 0.815 = 0.07 0.707 % 0.07 0.845 = 0.07
Morphology + HRV features (Muomph+Hry) 0.718 + 0.07 0.913 + 0.07 0.772 + 0.07 0.941 + 0.07
Fusion (Only —Morphology features) (MFazorph) 0.740 = 0.10 0.929 + 0.10 0.789 + 0.10 0.946 + 0.10
Fusion (Morphology + HRYV features) (MFuorph+HrY) 0.749 + 0.10 0.932 + 0.10 0.798 + 0.10 0.946 + 0.10
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Appendix F2. Percentage of detected beats at various HRConfidence thresholds.

Appendix T7
Performance comparison for different model types with additional evaluation metrics.

Model type Hypoglycemia
AUC Sensitivity Specificity Precision F1-score Hypoglycemia events Non-hypoglycemia events
Only morphology 0.68 = 0.09 0.63 = 0.1 0.67 = 0.06 0.08 + 0.03 0.14 = 0.04 5519 135,014
Only HRV 0.62 + 0.14 0.54 £ 0.18 0.65 = 0.07 0.03 + 0.02 0.06 = 0.03
Morphology + HRV 0.71 = 0.09 0.66 + 0.08 0.68 = 0.07 0.09 = 0.03 0.15 = 0.05
Fusion: Morphology + HRV 0.75 + 0.1 0.69 = 0.08 0.70 = 0.06 0.1 = 0.03 0.17 = 0.05
Model type Hyperglycemia
AUC Sensitivity Specificity Precision Fl-score Hyperglycemic events Non-hyperglycemic events
Only morphology 0.68 = 0.09 0.63 = 0.1 0.67 = 0.06 0.08 + 0.03 0.14 = 0.04 25,774 141,767
Only HRV 0.71 = 0.07 0.66 + 0.05 0.66 = 0.05 0.26 = 0.04 0.35 = 0.05
Morphology + HRV 0.77 = 0.07 0.71 £ 0.06 0.71 = 0.05 0.31 = 0.04 0.40 = 0.05
Fusion: Morphology + HRV 0.80 = 0.06 0.73 = 0.05 0.73 = 0.05 0.32 = 0.05 0.42 + 0.05
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