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A  B  S  T  R  A  C  T  
 

Monitoring glucose levels is critical for effective diabetes management. Continuous glucose monitoring devices 

estimate interstitial glucose levels and provide alerts for glycemic excursions. However, they are expensive and 

invasive. Therefore, low-cost, noninvasive alternatives are useful for patients with diabetes. In this article, we 

explore electrocardiogram signals as a potential alternative to detecting glycemic excursions by extracting intra- 

beat (beat-morphology) and inter-beat (heart rate variability) information. Unlike prior methods that focused 

only on the standard clinical excursion thresholds (70 mg/dL for hypoglycemia, 180 mg/dL for hyperglycemia), 

our proposed approach trains independent machine learning models at various excursion thresholds, aggregating 

their outputs for a final prediction. This allows learning morphological patterns in the neighborhood of the 

standard excursion thresholds. Our personalized fusion models achieve an AUC of 75 % for hypoglycemia and 78 

% for hyperglycemia detection across patients, resulting in an average improvement of 4 % compared to the 

baseline models (trained using only standard clinical thresholds) for detecting glycemic excursions. We also find 

that combining morphology and HRV information outperforms using them individually (5 % for hypoglycemia 

and 6 % for hyperglycemia). The data used in this article was collected from 12 patients with type-1 diabetes, 

each monitored over a 14-day period at Texas Children’s Hospital, Houston. The results indicate that a com- 

bination of morphological and HRV features is essential for noninvasive detection of glycemic excursions. Also, 

morphological changes can happen at varying glucose levels for different patients and capturing these changes 

provide valuable information that leads to improved prediction performance for detecting glycemic excursions. 
 

 

 

1. Introduction 

 

Diabetes mellitus commonly known as diabetes, is the body’s 

inability to balance blood glucose (BG) levels. It results from defects in 

either insulin secretion, predominant in patients with type-1 diabetes, 

where the body fails to produce sufficient insulin for the cells; or insulin 

inaction, as seen in patients with type-2 diabetes, where the cells get 

resistant to insulin. Diabetes is a serious global health threat with an 

estimated 537 million people affected by 2021 and projections indi- 

cating a rise to 1.31 billion people by 2050 [1]. Many studies have 

shown high correlations between poor glycemic control and various 

health conditions [2–7]. Diabetes and its related complications, if not 

well  managed,  can  lead  to  serious  short-term  and  long-term 

consequences. Sustained hyperglycemia (high glucose) is often a cata- 

lyst for heart diseases, kidney diseases, strokes, blindness, and ampu- 

tations [8]. On the other hand, hypoglycemia (low glucose) leads to 

short-term complications such as loss of consciousness, palpitations, 

seizures and in some cases, coma and death [9]. Diabetes is incurable 

and can only be managed through proper insulin treatment based on 

frequent monitoring of glucose levels [2,10]. 

Traditionally, glucose was measured through the finger-stick 

method, where patients draw a small blood sample by pricking tip of 

the finger and then run it through a glucometer [11]. The finger-stick 

method is inexpensive and accurate, but it is painful and provides 

only a snapshot of the glucose levels. CGM devices overcame these 

drawbacks by providing frequent and automated glucose measurements. 
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CGMs also implement alert systems that can notify patients about low 

and high glucose levels, allowing patients to take intervention measures. 

Multiple studies have shown the effectiveness of CGMs in diabetes 

management [12,13]. However, CGMs, despite their success, are inva- 

sive, expensive, and subject to strict regulations which can be a major 

deterrent to their use in low-income populations, patients with type-2 

diabetes, and the pre-diabetic population [1]. Therefore, noninvasive 

alternatives for estimating glucose levels can be very beneficial. 

Recent advances in noninvasive technologies, have led researchers to 

explore several physiological signals collected noninvasively such as 

electrocardiography (ECG), photoplethysmography (PPG), skin con- 

ductivity, near-infrared (NIR) spectroscopy, electrodermal activity to 

detect glycemic excursions [14–17]. These physiological features have 

shown correlation with glycemic changes [14,18]. Among them, ECG 

signals have emerged to be the most popular because changes in BG 

levels stimulate the autonomic nervous system and lead to variations in 

the heart functions [19]. ECG signals can capture these variations and 

estimate the corresponding glycemic changes accurately. 

 

1.1. ECG: A prominent signal for glucose monitoring 

 

Features extracted from the ECG signal for prediction, can broadly be 

categorized into (i) Morphology features (e.g.: QT-interval (QT), R 

amplitude, etc.). and (ii) HRV features (e.g.: heart rate, standard devi- 

ation of NN-intervals (SDNN), etc.). Early works in this area focused on 

the use of features such as heart rate (HR) and heart rate variability 

(HRV) measures, morphological patterns like QT-interval (QT), cor- 

rected QT-interval (QTc) and related changes [20–23]. These features 

were used with an extreme machine learning (ELM) model to detect 

nocturnal hypoglycemia episodes in type-1 diabetes population and 

reported 78 % sensitivity and 60 % specificity [20]. A popular study in 

the literature examined corrected QT-interval (QTc) prolongation dur- 

ing hypoglycemia among ten adults with type-1 diabetes [24]. The study 

found QTc derived through both, Bazett’s and Fridericia’s formulas, to 

be elongated during hypoglycemia compared to the baseline. In another 

study comprising 22 subjects (9 healthy, 6 T1DM but otherwise healthy 

and 7 T1DM with disease complications) cardiac repolarization features 

viz. QTc and RT-amplitude ratio were used for hypoglycemia detection 

[22]. More recently, a convolutional neural networks (CNNs) based 

model was proposed as an alternative to manual feature engineering for 

extracting morphology features from the raw ECG signal [25]. This was 

used to identify individual beats as hypoglycemia or normal. The au- 

thors also propose a Long-short term memory (LSTM) architecture that 

combines a sequence of 200-beats and classifies them as hypoglycemia 

or normal. In addition, the authors propose a majority-voting scheme 

over a 10-minute period for better annotation of the results. However, 

the analysis in this paper is limited to the detection of nocturnal hypo- 

glycemia episodes only. A similar approach of using CNN layers to 

extract features from the raw ECG-signal was proposed in another study 

[26]. The authors adopt a majority-voting scheme over 10-beats in the 

terminal of the CNN layer for better classification and interpretability. In 

this work, the authors consider a multi-class classification problem by 

extending prediction to hypoglycemia, hyperglycemia, and normal 

ranges. In our previous study [27], we proposed the use of ECG signal 

and accelerometry data to detect hypoglycemia and hyperglycemia 

independently. A total of nine time-domain HRV features computed over 

5 consecutive windows of 1-minute each were used to predict hypo- 

glycemia and hyperglycemia. A recent work also found HRV features 

and HR to be prominent for detecting hypoglycemia events over 1-min- 

ute non-overlapping windows [28]. The authors in the study use a 

combination of HRV features (computed with Garmin Vivoactive 4 s- 

based PPG data), along with motion and EDA-based features (from 

Empatica E4). The study included 22 individuals (16 males, 6 females) 

and reported a prediction performance of AUC = 0.76 for detecting 
hypoglycemia. 

Multiple glycemic prediction studies based on ECG and PPG signals 

have relied on experiments conducted in controlled settings to acquire 

data and perform the analysis. Also, except for two recent studies [26 

27], the literature has primarily focused on the detection of hypogly- 

cemia only. The goal of diabetes management is to attain euglycemia 

and improve the time-in-range (TIR) of the target glucose range. This 

requires accurately detecting hypoglycemia and hyperglycemia 

[2,26,29]. The majority-voting scheme is a popular approach in the 

machine learning literature and has been adopted by previous works to 

improve the interpretability of results when aggregating beat-level 

predictions over an interval. However, this approach may lead to poor 

performance when individual beat-level predictions are inconsistent 

within an interval [30]. A better approach is required to aggregate these 

individual beat-level predictions and improve performance. 

 

1.2. Glycemic excursion thresholds 

 
A general consensus-based recommendation for hypoglycemia is any 

CGM value < 70 mg/dL and for hyperglycemia is any CGM value > 180 

mg/dl [2]. However, a recent study by the conglomerate HYPOResolve 

[31,32], emphasized the need to define an optimal threshold of sensor 

glucose readings that is consistent with the actual hypoglycemia events 

occurring in people. The study indicates the need to understand 

conventionally defined CGM-based hypoglycemia episodes to actual 

patient reported hypoglycemia (PRH). 

In a separate independent study [33], the authors noticed that ex- 

pected morphological changes are not consistently detected or visible 

for all hypoglycemia events (considering 70 mg/dL as the hypoglycemia 

threshold). The study examines three HRV features: the standard devi- 

ation of the NN intervals (SDNN) and the square root of the mean 

standard differences of successive NN intervals (RMSSD) as time-domain 

features, and the ratio between low and high frequency (LF:HF) as a 

frequency-domain feature. All three features exhibited statistically sig- 

nificant changes during hypoglycemia readings, indicating the potential 

for detecting hypoglycemia events through HRV features. However, the 

observed changes in these features were inconsistent across patients 

who experienced hypoglycemia events. The authors identified factors 

such as duration of diabetes, physical activity, and rate of declining 

glucose values as factors associated with prominent changes in the HRV 

features during hypoglycemia events. The study was based on a patient 

cohort of 23 patients with type-1 diabetes where hypoglycemia was 

defined as glucose ≤ 70 mg/dL. 

A recent study [34], explored changes in cardiac repolarization 

features like corrected QT-interval, T-wave and HRV features in type-1 

diabetes patients during hypoglycemia. A key finding from the study 

was that changes in ECG-based features extended beyond the hypogly- 

cemia event (defined at 70 mg/dL), indicating morphological changes in 

the neighborhood of the standard clinical threshold of hypoglycemia 

(70 mg/dL). 

Another recent study using noninvasive smartwatches to monitor 

interstitial glucose highlights the need to personalize glycemic excursion 

thresholds especially when studying associated morphological changes 

[35]. The authors redefined and created personalized ‘high’ and ‘low’ 

glucose thresholds for each participant in the study using the previous 

24-hours of their individual CGM readings on a rolling basis. Readings 

one standard deviation below (or above for hyperglycemia) the mean for 

the last 24-hours of CGM readings are defined as ‘PersLow’ or 

hypoglycemia. 

Most recently [36], another study using smartwatches for noninva- 

sive hypoglycemia detection during cognitive and psychomotor stress 

found that although HRV measures constitute relevant features for hy- 

poglycemia detection. However, the accuracy of ML decision-making 

varies across different levels of hypoglycemia. The authors emphasize 

the need to study physiological changes corresponding to glycemic 

changes in the presence confounding factors like stress and, glycemic 

sequence (euglycemia followed by hypoglycemia). 

The above studies show that ECG morphological changes associated 
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with low glucose do not necessarily occur at a specific glucose level. 

They can happen at different thresholds for different subjects. Even for 

the same subject, these can occur at different thresholds at different 

times. This indicates the need for a prediction model that incorporates 

changes occurring within a range of glucose values in addition to spe- 

cific thresholds of 70 mg/dL and 180 mg/dL for detecting hypoglycemia 

and hyperglycemia respectively. 

There are multiple factors that directly impact blood glucose levels, 

like food intake [37], physical activities [38], stress [39]. Additionally, 

indirect factors including body temperature [40], autonomic functions 

[41] can affect glucose and related fluctuations within the person [42]. 

However, these factors are extremely personalized, meaning each of 

these factors impact glucose dynamics in varying degrees to different 

individuals [43]. Investigating the role of these multiple factors simul- 

taneously or individually for excursion detection can be valuable, but 

the scope of this article is limited to identifying ECG related information 

most useful for accurate glycemic excursion detection. 

More specifically, the major contributions of our work are: 

 

1. A combination of ECG morphology features and HRV features is 

useful for hypoglycemia and hyperglycemia detection as opposed to 

their independent use. 

2. An ML approach that leverages the patterns in a sequence of beat- 

level glycemic predictions for improved interval predictions. 

3. A fusion model approach to leverage ECG morphological patterns at 

varying thresholds for improved level glycemic predictions at stan- 

dard clinical thresholds. 

 

2. Methods and materials 

 

This section describes the dataset used in this study, the data pro- 

cessing steps and the experimental setup. We also describe the predic- 

tion model used and the different configurations explored in this study. 

To provide a summary of all the relevant information in this article and 

improve the transparency of reporting machine learning modeling re- 

sults in healthcare, we report the necessary details as per the MI-CLAIM 

checklist in Appendix T1 [44]. 

 

2.1. Clinical datasets 

 

To evaluate the noninvasive detection of glycemic excursions, 12 

participants were recruited at Texas Children’s Hospital, Houston-TX, 

USA. These 12 participants were adults with type-1 diabetes. Each 

participant was enrolled in the study for 14 days. The participants were 

asked to wear 3 noninvasive devices (Zephyr Bioharness, Empatica E4, 

and Oura ring) during the study period. In addition to a CGM device and 

an insulin pump, these three devices are used by the patients as part of 

their diabetes management. Data from the Zephyr Bioharness and CGM 

(considered as the ground truth) were used in this paper and detailed in 

Table 1: 

Throughout the study duration, the subjects were asked to wear the 

devices continuously, including both day and night periods, except for 

the time allocated for charging. However, variability in the available 

ECG data across the 24-hour window for each participant indicates that 

patients might have removed their device(s) while taking a shower or 

 
Table 1 

Devices used in the study and data acquired. 
 

 

Device Worn as Data Collected and Frequency 
 

 

 

some other activities. The entire study cohort comprises patients with 

type-1 diabetes and falls in the age group of 20–40 years. More details on 

these patients’ demographic details and glycemic profiles during the 

study period can be found in the Appendix. (Appendix T2, Appendix T3, 

and Appendix T4). 

Of the 12 enrolled patients, 3 patients (Patient ID: 2, 4 and 12) were 

excluded from the analysis for hypoglycemia detection and 1 patient 

(Patient ID: 5) was excluded for hyperglycemia detection. This exclusion 

was based on an extremely low number of available glycemic excursion 

events (hypoglycemia/ hyperglycemia) to develop and validate the 

proposed approach. Detailed information regarding the glycemic pro- 

files of these patients is provided in the Appendix (Appendix T3 and T4). 

 

 

2.2. Preprocessing 

 

ECG signals are vulnerable to distortions caused by motion artifacts 

[45–48], necessitating the preprocessing of the ECG signal to extract 

useful information. We conduct a thorough ECG processing to extract 

the maximum amount of high-quality data for our subsequent analysis. 

We detect R-peaks from the raw ECG signal in the first step using Neu- 

roKit2 [49]. In the next step, we identify clean ECG beats based on the 

signal-quality measure ‘HRConfidence’ (HRC) provided by Zephyr Bio- 

Harness at a frequency of 1 Hz. HRC is a score, expressed as a percentage 

of the confidence that the module is picking up heart rate during activity 

based on wear detection and quality of ECG. This score ranges from 0 to 

100, with 100 indicating the best quality and 0 representing the worst. 

We exclusively consider beats (detected R-peaks) with an HRC score 

greater than 90 for the selection of clean ECG beats for our analysis. This 

decision is based on the availability of beats for different HRC cut-offs 

(Appendix F2) and a thorough visual inspection of the detected beats 

at different scores. For the selected beats with the R-peak as the anchor 

point, we identify each beat’s remaining peaks (P, Q, S, T). Beats for 

which NeuroKit2 failed to detect either of the P, Q, S, and T peaks were 

discarded from the analysis. Based on the detection of beats and the 

fiducial points, we compute the beat-level morphology features and 

heart-rate variability (HRV) features next. 

 

 

2.3. Validation mechanism 

 

In this study, we implement a five-fold cross-validation scheme with 

temporal data splitting. Here, we first order the data based on time- 

stamps and segment it into one-hour blocks. Next, we randomly 

distribute these one-hour blocks into five equal partitions, ensuring each 

partition contains a mix of positive class (hypoglycemia or hyperglyce- 

mia) and negative class (non-hypoglycemia or non-hyperglycemia). It is 

important that while each partition is guaranteed to have positive class 

data samples, the partitions may not be stratified i.e., each partition can 

have varying proportions of positive and negative classes. This delib- 

erate design mimics a real-world scenario where excursion events are 

not identically distributed over time. The main goal behind this vali- 

dation mechanism is to minimize the temporal correlation between the 

data in the training and test sets. This ensures that the trained model 

does not get any undue advantage for making predictions on the test 

data, preventing overly optimistic prediction results [12,50]. A visual 

representation of our validation mechanism can be found in Fig. 1. 

The decision to consider hourly blocks of data is justified by (a) prior 

literature indicating that autocorrelation between continuous CGM 

values diminishes beyond a period of 30–60 min [51,52] and (b) 
considerable evidence supporting a similar validation approach in the 

Zephyr 

Bioharness 

Chest strap ECG at 250 Hz, 

Accelerometer at 100 Hz (3-axis), 

Heart Rate (HR) at 1 Hz, 

HR Confidence (HRC) at 1 Hz 

domain of glycemic predictions [25]. The temporal-splitting validation 

approach is significantly more rigorous than the simple random splitting 

(at the beat-level or CGM-level). This is evidenced by an empirical 
Dexcom CGM Over the 

arm 

Subcutaneous glucose readings at 5 min 

intervals 
comparison of assessing model performance across the two validation 

settings (refer to Table T5 in Appendix). 
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Fig. 1. Temporal validation: Validation scheme for splitting hourly blocks of data. 

 

2.4. Feature extraction 

 

2.4.1. Morphology features 

We compute morphology features based on the fiducial points (P, Q, 

R, S, and T peaks) using the processed data described above. A total of 35 

morphology features are extracted, comprising 9 Euclidean-based dis- 

tances between individual peaks, 10 interval-based distances, 5 ampli- 

tudes of individual peaks and 9 slopes computed between the individual 

peaks. Additionally, we compute ‘RR’ as the interval distance between 

the current beat and the next detected beat, and ‘HR’ is taken as 

 
  

 

 

 

 

Fig. 2. Extraction of Amplitude, Distance-based, Interval-based, Slope-based features for beat-level prediction. 
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provided by Zephyr, including them as features. Fig. 2 provides a visual 

representation of the features. 

 

2.4.2. HRV features 

A total of 18 HRV time-domain features are computed using the 

NeuroKit2 package. A detailed description of the HRV features extracted 

can be found in Appendix T5. 

 

2.4.3. Interval-level features 

The beat-level ML model makes glycemic predictions at the indi- 

vidual beat-level. We aggregate beat-level predictions within a 1-minute 

interval for computing features at the interval-level. The extracted fea- 

tures are detailed in Table 2. A probability threshold of 0.5 was used to 

convert probabilities to classes. We also include the hour of the day 

encoded as a cyclical feature [53,54] (see Table 2). 

 

2.5. Key definitions and evaluation metrics 

 

1. Classification task: This article explores excursion detection as two 

separate classification tasks: (a) hypoglycemia detection and (b) 

hyperglycemia detection using ECG data as the input. CGM readings 

are used only as a reference point to categorize the output label 

dichotomously. The nearest CGM reading in the forward direction is 

employed for the ECG data point to mark and assign the associated 

output label. Except for the beat-level model (which predicts for 

individual beats), all models in this article are evaluated for a 1-min- 

ute interval prediction. This means that, for every 1-minute interval, 

if the associated CGM reading is within the excursion region, it is 

classified as a positive class/event. This 1-minute interval window 

aligns with established practices in the literature for similar appli- 

cations [28,36]. Importantly, these 1-minute intervals are non- 

overlapping i.e., each data point belongs to precisely one 1-minute 

interval. For the beat-level model, predictions are made for each 

individually detected beat. Standard clinical thresholds of < 70mg/ 

dL for hypoglycemia and > 180mg/dL for hyperglycemia are used as 

excursion thresholds [2,55]. This means that all the beats or 1-min- 

ute intervals associated with a CGM value will be marked as positive/ 

negative class based on that single CGM reading. In training multiple 

independent beat-level models within the fusion model, where 

excursion thresholds other than standard clinical thresholds are 

considered have been explicitly specified. However, the final pre- 

diction of the fusion model is still being evaluated at the widely 

accepted standard clinical thresholds. 

2. Evaluation metrics: To provide a comprehensive and robust evalu- 

ation of the binary classification models developed in this study, we 

report model performance using the Area under the curve (AUC) 

metric. The area under the receiver operating characteristic (ROC) 

curve characterizes the trade-off between the true positive rate and 

the true negative rate at various decision threshold settings. We 

provide model performance details on other relevant metrics like 

sensitivity (recall/ true positive rate): the ability of the classifier to 

detect true incidents correctly. Higher sensitivity indicates a lower 

 
Table 2 

Interval-level features extracted by aggregating beat-level predictions. 
 

 

Features Description 
 

 

% of hypo beats % of beats classified as hypoglycemia (threshold = 0.5) 

type II error rate, specificity: the ability of the classifier to correctly 

detect negative incidents. Higher specificity has a lower type I error 

rate, precision (positive predictive value): ratio of true predictions 

over total predictions, and f1-score: harmonic mean of precision and 

recall (Appendix T7). The above metrics were carefully chosen based 

on the ability to provide the reader with a fair estimate of the model 

performance as well as standard metrics used for evaluation in the 

literature for similar applications [25,28,36,56]. 

3. Modeling approach: We have adopted a personalized modeling 

approach for developing all models in this article. This means the 

development of separate independent models for each patient. This 

approach is supported by the previous literature [25] and is also 

based our findings indicating a significant inter-subject variability in 

ECG features among patients. We conducted a multi-way Kruskal- 

Wallis H-test for all the twelve patients’ ECG features across hypo- 

glycemia, hyperglycemia and normal glucose ranges. A significant 

interaction across the 12 subjects indicated a significant 

(pvalue < 0.001) difference in ECG features. Further investigation 

through pairwise differences between subjects, using a post-hoc 

comparison with a two-way Kruskal-Wallis H-test and Dunn’s test, 

revealed inter-subject variability across each paired patient combi- 

nation for almost all the features. A pvalue < 0.05 was used as evi- 

dence of statistical significance. 

 

2.6. Beat-level and Interval-Level models 

 

One ML model for beat-level predictions and three for interval-level 

predictions are developed. All the models are based on the Random 

Forest (RF) algorithm. RF was chosen based on high performance and 

lower variance based on our previous works [9,12,27]: 

 

1. MBeat(Beat - level model) : This model makes predictions for indi- 

vidual beats. The model output (predicted probabilities) is aggre- 

gated for computing features over 1-minute intervals and used in 

interval-level models. The input to this model is the morphology 

features described in Fig. 3. 

2. MMV(Majority - voting model) : This model makes interval-level 

predictions based on a simple majority among the associated beat- 

level predictions. For a fair comparison, performance metrics are 

derived in 2-steps: (i) the beat-level predicted probabilities are 

converted into class labels based on an optimal threshold chosen for 

each split. (ii) for predicting the interval-level class, the majority 

threshold is varied (against the default 50 % as a majority) to have 

the best possible performance for each split. 

3. MMorph(Morphology - features model) : This model uses features 

aggregated from posterior probabilities extracted from the output of 

MBeat (Table 2). These features are input to a secondary model to get 

interval-level predictions. 

4. MHRV(HRV - features model) : This model only relies on HRV fea- 

tures to make interval-level predictions. The HRV features (as in 

Appendix T5) are computed for a 1-minute interval. 

5. MMorph+HRV(Morphology - aggregation + HRVfeatures) : In this 

model, we combine the input features of MMorph and MHRV to make 

interval-level predictions. This evaluates the combined effect of 

intra-beat (morphology features) information and inter-beat (HRV 

features) information. 

Longest hypo- 

sequence 

The longest sequence of predicted hypoglycemia beats 

(threshold = 0.5) 

2.7. Fusion Model 

Mean Mean predicted probability 

Group 1  % of predicted probabilities in the interval (0,0.2] 

Group 2 % of predicted probabilities in the interval (0.2,0.4] 

Group 3 % of predicted probabilities in the interval (0.4,0.6] 

Group 4 % of predicted probabilities in the interval (0.6,0.8] 

Group 5  % of predicted probabilities in the interval (0.8,1] 

Hour Hour of the day 

The fusion model (MF) extends the interval-level baseline model 

MMorph+HRV as depicted in Fig. 4. Multiple beat-level models (MBeat) at 

trained at different glycemic excursion thresholds for hypoglycemia and 

hyperglycemia. For hypoglycemia, individual classifier models (MBeat) 

are trained at thresholds of 55, 60, 65, 70, 75, 80, 85 and 90. Similarly 

for hyperglycemia, individual classifier models (MBeat) are trained at 
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Fig. 3. Workflow of different interval-level modeling approaches in this study and their comparative analysis. 

 

 

Fig. 4. Workflow of the fusion-based approach used in this study. 

 

thresholds of 150, 165, 180, 200, 225 and 250. We hypothesize that 

morphological changes may not happen at a specific threshold but 

across a range of glycemic values, even for an individual subject and at 

different times. To leverage these varying patterns at different glycemic 

levels, the interval-level features, derived from the posterior probabili- 

ties of multiple beat-level (MBeat) models, trained at different thresholds 

are concatenated and used as input at the final step of the fusion model 

to make predictions. The fusion model is denoted by MFMorph+HRV. While 

the fusion models consist of features derived from beat-level models 

trained at different thresholds, performance evaluation (at the interval- 

level) is conducted using the conventional thresholds of 70 mg/dL for 

hypoglycemia and 180 mg/dL for hyperglycemia. 

3. Results 

 

Aggregating individual beat-level predictions within an interval is 

essential for interpretability and making clinical decisions. We evaluate 

and compare four different aggregation approaches for two binary 

classification tasks: (a) hypoglycemia detection and (b) hyperglycemia 

detection. We also propose a fusion-based approach (using morpholog- 

ical changes at varying glycemic excursion thresholds) that improves 

performance over the baseline model (morphological changes at a single 

standard clinical threshold). For the following results, MBeat represents 

the beat-level model. MMV and MMorph are models using aggregated 

features within an interval based on only beat-level predictions (intra- 

beat information), MHRV are models based on only HRV features (inter- 

beat information), whereas MMorph+HRV and MFMorph+HRV are models 
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using aggregated features for an interval based on beat-level predictions 

and HRV features (intra-beat and inter-beat information). 

 

3.1. Performance Comparison: Interval-level aggregation 

 

3.1.1. Hypoglycemia 

Performance across the four aggregation approaches for hypoglyce- 

mia detection are summarized in Fig. 5 (left). The height of individual 

bars shows the mean AUC across the patients whereas the error bars 

represent the standard deviation. One-way ANOVA shows there is a 

statistically significant difference across models (p≪0.01). Fig. 5 (right) 

displays pairwise statistical tests between different aggregation methods 

as well as compares the reference beat-level MBeat model. Since we are 

interested in finding the group (feature-set) with the best performance, 

we perform one-tailed pairwise t-tests (H0 : μ1 = μ2, Ha : μ1 < μ2) as 

3.1.3. Performance comparison: fusion-model 

Fusion model MFMorph+HRV significantly improves over the baseline 

model, MMorph+HRV (best-performing aggregation approach) for both 

hypoglycemia (p = 0.03, one-tailed) and hyperglycemia detection (p = 

0.02, one-tailed) (Fig. 7). Fig. 8 and Fig. 9, give a patient-wise com- 

parison of all the models. MFMorph+HRV improves performance over the 

baseline model, MMorph+HRV for 8 patients (out of 9) for hypoglycemia 

detection and 10 patients (out of 11) for hyperglycemia detection. 

Performance comparison of all the modeling approaches used for hy- 

poglycemia and hyperglycemia detection can be found in Table 3. 

 

3.2. Variable importance 

We examined the importance of the features for making predictions 

at the beat-level (MBeat) and interval-level (MMV, MMorph, MHRV, 
post-hoc analysis. 

Pairwise comparisons show statistical significance with MMorph over MMorph +HRV ,MF Morph+HRV ) by using Shapley Additive Explanation (SHAP) 

MHRV (p = 0.02, one-tailed). MMorph 
 

+HRV has statistically significant 
plots [57] and RF-model-based variable importance plots (VIP). SHAP 
plots improve interpretability by illustrating the model’s decision con- 

improvement over MMorph (p = 0.01, one-tailed) and MHRV(p≪0.01, 

one -tailed). This indicates that models using morphology features 

combined with HRV features perform better compared to using either 

set of features independently. When comparing model performance for 

individual patients, MMorph+HRV improved performance for 7 patients 

(out of 9) over MMorph and 9 patients (out of 9) over MHRV. Also, 

MMorph+HRV significantly (p = 0.03, one-tailed) improves performance 

over the reference model, MBeat. The performance of the majority-voting 

model MMV is significantly lower compared to all other aggregation 

approaches. 

 

3.1.2. Hyperglycemia 

A performance comparison is summarized in Fig. 6 (left) for hyper- 

glycemia detection. One-way ANOVA shows a statistically significant 

difference across different models (p≪0.01). Post-hoc pairwise com- 

parisons (H0 : μ1 = μ2, Ha : μ1 < μ2) (Fig. 6 – right) show that, similar to 

hypoglycemia, MMorph is (statistically) significantly better than MHRV 

(p < 0.01, one -tailed). Also, combining both sets of features MMorph+HRV 

offers a significant advantage over MMorph (p≪0.01, onetailed) and MHRV 

(p≪0.01, onetailed) for hyperglycemia detection. The improvement is 

consistently observed across all 11 patients for hyperglycemia detection. 

This shows that interval-level features (derived from beat-level pre- 

dictions) and HRV features complement each other in enhancing pre- 

diction  performance.  Like  hypoglycemia  detection,  MMorph+HRV 

significantly improves performance over the base model, MBeat (p≪0.01, 
one-tailed). 

cerning predictions vs feature values. RF-based VIP evaluates the 

importance of each feature by measuring the reduction in model per- 

formance when excluding a predictor in the training process. We aim to 

understand the impact of individual features through SHAP plots and the 

relative importance of feature categories through VIP. To generate the 

VIP, we aggregate importance scores within the category (e.g.: HRV, 

interval-level features, etc.). 

The SHAP plots, along with actual beat morphology plots, demon- 

strate the variable importance for hypoglycemia (Fig. 10) and hyper- 

glycemia detection (in Fig. 11) in the MBase model. For a sample patient 

in Fig. 10, high values of distances: RS, QR, PR, and amplitudes: R; and 

low values of RR, and distance: RS show an association with hypogly- 

cemia. SHAP plots indicate that features associated with the fiducial 

point ‘R’ are pivotal in classifying hypoglycemia for this patient. This 

aligns with the adjacent beat morphology plots, highlighting distinct 

differences in the R amplitude region (Fig. 10 right panel). In the case of 

hyperglycemia detection for patient ID: 10 (Fig. 11), low values of in- 

tervals: QT, RT, PT, QR, ST and RR and high HR are driving the model 

towards predicting hyperglycemia, consistent with morphological 

changes around the ‘T wave’ (Fig. 11 right panel). 

At the interval-level (Fig. 12), HRV features contribute approxi- 

mately 42 % towards the prediction performance for both hypoglyce- 

mia, and hyperglycemia, while interval-level features derived from the 

output of MBase model account for about 38 %. These findings corrobo- 

rate the performance results, underscoring the significance of HRV 

features and interval-level features in enhancing predictions. 

 

  
 

Fig. 5. Hypoglycemia detection: (left) model performance comparison across different aggregation approaches (right) pairwise student’s t-test results. 
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Fig. 6. Hyperglycemia detection: (left) model performance comparison across different aggregation approaches (right) pairwise student’s t-test results. 

 

 

Fig. 7. Performance comparison of the baseline model against fusion model for: (left) hypoglycemia detection and (right) hyperglycemia detection. 

 

In the case of the fusion model (Fig. 13), features extracted from 

thresholds other than the standard threshold of 70 (i.e., 55,60, 65, 75, 

80, 85, and 90) for hypoglycemia show high importance (61 %) and 

similarly for hyperglycemia, features extracted from thresholds other 

than the standard clinical threshold of 180 (i.e., 150, 165, 200, 225 and 

250) for hyperglycemia exhibit high importance (57 %). This validates 

our hypothesis that morphological changes around the neighborhood of 

standard clinical thresholds for excursions provide useful information, 

explaining the improvement in the performance of the fusion models. 

 

4. Discussion 

 

4.1. Insights and observations 

 

The relative importance of feature sets in the random forest-based 

VIP plots (Fig. 12 and Fig. 13) validates the importance of 

morphology features and HRV features. It also indicates a synergistic 

relationship between intra-beat and inter-beat information in detecting 

glycemic excursions. Fig. 14 presents a comparison of selected 

morphology features across hypoglycemia (<70 mg/dL), normal (≥ 70 

mg/dL and ≤ 180 mg/dL) and hyperglycemia (>180 mg/dL) ranges 

using boxplots. This portrayal illustrates morphological changes occur- 

ring at different glycemic levels [58,59], contributing to glycemic state 

classifications as depicted in Figs. 10 and 11. In the case of the fusion- 

model, it is evident that incorporating morphological change informa- 

tion at different thresholds boosts performance. This observation is 

supported by the RF-based importance plots (Fig. 13). A more detailed 

breakdown of the fusion features at individual threshold-level features 

further confirms that features from various glycemic thresholds 

contribute to hypoglycemia and hyperglycemia detection (Appendix 

F1). 

Upon a more in-depth examination of misclassification errors for our 

best-performing model MFHRV+Morphology(Fig. 15), we observe an 

increasingly improved true detection rate (TP) for lower glucose read- 

ings, ranging from 57 % for readings between 65 mg/dL and 70 mg/dL 

to 84 % below 55 mg/dL. Similarly, for higher glucose readings the true 

detection rate ranges from 65 % for readings between 180 mg/dL and 

200 mg/dL to 91 % for readings above 350 mg/dL. This indicates that 

the model demonstrates enhanced effectiveness in detecting severe 

glycemic excursions, thereby helping in preventing severe hypoglyce- 

mia and hyperglycemia. 

 

4.2. Varying excursion thresholds 

 

Learning morphological changes at varying glycemic excursion 

thresholds plays a key role for the fusion model in outperforming 

baseline models for hypoglycemia and hyperglycemia detection. 

Different excursion thresholds result in different numbers of events. 

Fig. 16 shows the percentage of hypoglycemia and hyperglycemia values 

within a patient profile for different excursion thresholds. The rate of 

change for hypoglycemia and hyperglycemia events varies across 

different patients for hypoglycemia (pvalue = 0.05) and hyperglycemia 



D. Dave et al. Biomedical Signal Processing and Control 96 (2024) 106569 

9 

 

 

 

 
 

Fig. 8. Patient-wise performance between fusion-based approaches and best-performing interval-level aggregation approach for hypoglycemia detection. 

 

 

Fig. 9. Patient-wise performance between fusion-based approaches and best-performing interval-level aggregation approach for hyperglycemia detection. 

 

(pvalue < 0.001). However, when we compare model performance 

(MFMorph+HRV) against rate of change of excursion events, we do not find 

a significant correlation for hypoglycemia (pvalue = 0.38) or hyper- 

glycemia (pvalue = 0.41). This corroborates previous findings from the 

literature [33–36] that although ECG-based features effectively show 

signs of hypoglycemia and hyperglycemia, the changes observed for 

different ECG-based features vary across different patients and for 

different levels of glucose readings. 

4.3. Applicability in real-world settings 

 

In this work, we attempt to provide a realistic evaluation of using 

noninvasive wearables for the detection of glycemic excursion events in 

the real-world settings. To further understand this, we consider the 

current work on two aspects: 

 

4.3.1. Model performance 

Glucose-related risk prediction through historical CGM readings and 

noninvasive wearables is a well-researched area. Despite this, previous 
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Table 3 

Performance comparison of different approaches used in the study for hypo- 

glycemia detection and hyperglycemia detection. 

Model Details Hypoglycemia Hyperglycemia 

Beat-level (MBeat ) 0.676 ± 0.10 0.721 ± 0.10 

Majority-Voting (MMV ) 0.25 ± 0.09 0.47 ± 0.07 

Only Morphology features (MMorph) 0.684 ± 0.07 0.719 ± 0.07 

Only HRV features (MHRV ) 0.629 ± 0.08 0.708 ± 0.07 

Morphology + HRV features (MMorph+HRV) 0.718 ± 0.07 0.769 ± 0.07 

Fusion (Morphology + HRV features) 0.749 ± 0.10 0.782 ± 0.10 

(MFMorph+HRV )   

 

 

research has adopted varying approaches for making predictions and 

reporting results of machine learning models. Predominantly, two main 

paradigms have been considered: (a) sample-based prediction: predic- 

tion is performed at each timestamp of the glucose reading, and (b) 

event-based prediction: consecutive CGM values (or timestamps) in the 

hypoglycemia or hyperglycemia range are considered as a single event 

[60]. Most studies [25,28,35,36] using noninvasive signals, have re- 

ported model performance for hypoglycemia and hyperglycemia 

detection within 1-to-5-minute intervals. These different approaches 

significantly impact the imbalance ratio and the performance metrics. 

For instance, the PPV reported in this work (Appendix T7) for a 1-minute 

interval shows that 9 out of 10 hypoglycemia detections are false alarms. 

However, evaluating the same model performance at the event level, 

results in only 2.07 false alarms per day. This approach also results in 

overlooking short-span hypoglycemia events. Additionally, variations in 

choosing glycemic thresholds for defining hypoglycemia and hypergly- 

cemia events, different validation approaches (Table 4), and modeling 

strategies (precision medicine or population-level) further complicate 

the comparison of different studies and their relevance to real-world 

settings. Moreover, this article primarily aims to determine the type of 

information required to be extracted from the ECG signal for accurate 

glycemic excursion detection The advantages and disadvantages of 

using specific intervals for making predictions and an optimal approach 

for providing real-time predictive alerts need further exploration. 

 

4.3.2. Patient cohort 

The dataset used for this study was collected from twelve subjects 

with type-1 diabetes over 14 days, encompassing both day and night in 

free-living conditions. This aspect is critical because it captures natural 

glucose variations and patterns related to daily physical activities and 

eating habits. The twelve subjects in this study, aged between 20–40 

years included 7 males and 5 females. Personalized models were 

developed for each individual. However, no significant correlation was 

found between model performance (for either hypoglycemia or hyper- 

glycemia detection) and demographic factors such as age or gender. 

Regarding glycemic profiles, the twelve patients had on average 

approximately 2 % readings falling within the hypoglycemia range and 

about 20 % in the hyperglycemia range. This distribution aligns with 

previous studies [9,61] involving data collected over longer periods and 

a much larger patient population. Hence, the current cohort is repre- 

sentative of the broader type-1 diabetes population in terms of glycemic 

profiles. Similarly to demographics, no significant correlation was found 

between model performance against the glycemic profiles of these 

participants. 

This indicates that the approach used in this study is not limited to 

subjects of a specific age range, gender groups, or certain glycemic 

profiles. Our approach is generalizable to the broader diabetes popula- 

tion. A more detailed comparison of this article with other works along 

with highlighting key similarities and differences is presented in the next 

section. 

 

4.4. Confounding factors impacting glucose dynamics 

 

As we previously mentioned in the introduction section, multiple 

direct and indirect factors impact blood glucose levels and their fluc- 

tuations. Cardiac autonomic neuropathy (CAN) is an important factor 

that can lead to impaired heart responses to physiological stimuli like 

glycemic excursions. A common effect is impaired cardiac responses 

leading to loss of HRV among such patients [62,63]. This will severely 

impact glycemic excursion detection through PPG or ECG data as HRV 

derived from these signals will be different in patients with CAN. In 

addition to impacting heart rate, CAN among patents can cause 

abnormal blood pressure patterns, lead to prolonged QT-intervals (can 

be easily confounded with prolongation due to hypoglycemia) and 

create an overall imbalance between sympathetic and parasympathetic 

nervous system [64]. There is a need to conduct studies to assess 

 

  
 

Fig. 10. SHAP plots showing how feature values drive model towards hypoglycemia prediction and associated comparison with raw beat-morphology observed for 

Patient ID: 5. 
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Fig. 11. SHAP plots showing how feature values drive model towards hyperglycemia prediction and associated comparison with raw beat-morphology observed for 

Patient ID: 10. 

 

 

Fig. 12. Interval-level: Relative importance of feature categories for (left) Hypoglycemia and (right) Hyperglycemia detection. 

 

 

Fig. 13. Fusion-level: Relative importance of feature categories for (left) Hypoglycemia and (right) Hyperglycemia detection. 

 

glycemic excursion detection performance in the presence of comor- 

bidities (e.g., severe neuropathy), and other confounding conditions 

such as hypoglycemia unawareness which can lead to fatal conse- 

quences. Additionally, electrodermal activity which represents the 

electrical response of sweat glands to sympathetic innervation, was 

shown to have less pronounced changes during mild hypoglycemia as 

compared to severe hypoglycemia [36]. 

 

4.5. Comparison to previous works 

 

We provide a comparative analysis of previous works studying 

noninvasive glycemic predictions, involving hypoglycemia detection, 

hyperglycemia detection, and actual glucose value prediction. Specif- 

ically, we focus on works using ECG signals and related features as the 

input (Table 4). A predominant theme in the literature relied on 

morphology features like QT-interval (QT), corrected QT-interval (QTc), 

and HRV features as inputs in model development. More recently, the 

advent of deep learning approaches has allowed pattern extraction on 

ECG signals through CNN, RNN and LSTM-based models. These works 

have reported a higher prediction performance than earlier works using 

handcrafted features. However, comparing prediction performance 

across different studies is challenging due to the differences in data 
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Fig. 14. Comparing HRV features across hypoglycemia, normal and hyperglycemia glucose ranges. 

 

 

Fig. 15. Analysis of misclassification errors vs. glucose values for: (left) hypoglycemia detection (right) hyperglycemia detection. 

 

 

 

Fig. 16. Number of glycemic excursion events (individual beats) at different excursion thresholds for: (left) hypoglycemia detection and (right) hyperglyce- 

mia detection. 
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Table 4 

Comparison of previous literature for noninvasive glucose (hypoglycemia, hyperglycemia) prediction using ECG signal. 

Paper Year ECG features in the study Cohort Prediction Validation Metrics Used Performance reported 

   Details Tasks approach   

Hypoglycemia detection based on 

cardiac repolarization features 

[22] 

2011 Corrected QT-interval, RT- 

amplitude ratio, RR 

interval, T-wave slope, T- 

wave distance onset/offset 

Patients: 22 

Time: 1-hour 

recordings 

Condition: 

Controlled 

setting 

Hypoglycemia - - Exploratory analysis. 

Changes detected in 15/ 

22 hypoglycemia events 

Genetic-Algorithm-Based Multiple 

Regression with Fuzzy Inference 

System for Detection of Nocturnal 

Hypoglycemic Episodes [21] 

Non-invasive hypoglycemia 

monitoring system using extreme 

learning machine for Type 1 

diabetes [20] 

Deep Learning Framework for 

Detection of Hypoglycemic 

Episodes in Children with Type 1 

Diabetes [65] 

2011 Heart Rate (HR), corrected 

QT (QTc), change in HR 

and QTc 

 

2016 Heart Rate (HR), corrected 

QT (QTc), change in HR 

and QTc 

 

2016 Heart Rate (HR), corrected 

QT (QTc) 

Patients:16 

Time: 

Overnight time 

recordings 

Condition: 

Controlled 

setting 

Hypoglycemia Patient-based Sensitivity, 

Specificity 

 

 

Patient-based Sensitivity, 

Specificity 

 

 

Patient-based Sensitivity, 

Specificity, 

Gamma 

Sensitivity = 75 % 

Specificity = 50 % 

 

 

Sensitivity = 78 % 

Specificity = 60 % 

 

 

Sensitivity = 80 % 

Specificity = 50 % 

Gamma = 68 % 

 

Paper Year ECG features in Cohort Details 

the study 

Prediction Tasks Validation 

approach 

Metrics Used Performance 

reported 

A multiparameter model for non- 2019 Heart Rate (HR), Patients:20 Patients:20 Random AUC, AUC = 94% 

invasive detection of  QT-interval Time: ~1–2 hCondition: Time: ~1–2 Splitting Sensitivity, Sensitivity = 

hypoglycemia [66]  Controlled setting hCondition:  Specificity 75%,Specificity = 
   Controlled setting   98% 

Precision Medicine and Artificial 2020 CNN-based Patients:8 Hypoglycemia Random Sensitivity, Sensitivity = 

Intelligence: A pilot study on  morphology Time: 14 daysCondition:  Splitting Specificity, 85%, 

deep learning for hypoglycemic  features Free living   Accuracy Specificity = 

events detection based on ECG      85%,AUC = 85% 

[25]       

Hyperglycemia Identification 2021 Morphology Patients: 1119 Hypoglycemia Random AUC, AUC = 94.53% 

using ECG in Deep learning era  features (distances, Time: ~2-minute  Splitting Sensitivity, Sensitivity = 

[67]  slopes, amplitudes) recordingsCondition:   Specificity 87.57% 

  Controlled setting    Specificity = 

      85.04% 

Paper Year ECG features in the Cohort Details Prediction Tasks Validation Metrics Used Performance 

  study  approach  reported 

Non-invasive Monitoring of Three 2021 CNN-based Patients:16 Hypoglycemia, Random Accuracy Accuracy = 82% 

Glucose Ranges Based on ECG By  morphology features Time: ~1–2 h Normal, Splitting   

Using DBSCAN-CNN [26]  Condition: Hyperglycemia    

  Controlled setting     

A Prediction Algorithm for 2022 Corrected QT-interval, Patients:16 Hypoglycemia Random Sensitivity, Sensitivity = 91%, 

Hypoglycemia Based on Support  5-HRV features (time- Time: Overnight  Splitting Specificity, Specificity = 87%, 

Vector Machine Using Glucose  domain and frequency time recordings   Accuracy Accuracy = 89% 

Level and Electrocardiogram[68]  domain) Condition:     

  Controlled setting     

Detection of hypoglycemia and 2022 HRV features (time- Patients:5 Hypoglycemia, Time-based AUC, Hypoglycemia: 

hyperglycemia using noninvasive  domain) Time: 14 Hyperglycemia splitting Sensitivity, AUC = 76% 

wearable sensors: ECG and  daysCondition:   Specificity Sensitivity = 69% 

accelerometry [27]  Free-living    Specificity = 69% 

      Hyperglycemia: 

      AUC = 82% 

      Sensitivity = 74% 

      Specificity = 74% 

Paper Year ECG features in the Cohort Details Prediction Tasks Validation Metrics Used Performance 

  study  approach  reported 

Noninvasive blood glucose 2023 CNN-based spatial Patients:16Time: Glucose values Random RMSE, RMSE = 1.56 (mmol/ 

monitoring using spatiotemporal  morphology features, Overnight time  Splitting MARD, L)MARD = 

ECG and PPG feature fusion and  Temporal statistical recordings   Parke’s Error 13.88Zone (A+B) 

Weight-based Choquet Integral  features (~ 103 days)   Grid Analysis = 99.38% 

Multimodel approach [29]  Condition: Controlled     

  setting     

Blood glucose estimation based on 

ECG signal [69] 

2023 CNN-based Patients: 3 

morphology features Time: 8 

Glucose values Random 

splitting 

RMSE RMSE = 0.47 mg/dL 

R2 = 82% 

  daysCondition: Free     

  living     

This Work 2023 Handcrafted Patients: 12 Hypoglycemia, Time-based AUC Hypoglycemia: 

  Morphology Time: 14 Hyperglycemia splitting  AUC = 76% 

  (distances, intervals, daysCondition: Free    Hyperglycemia:AUC 

  amplitudes, slopes) living    = 80% 

  features     
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collection, underlying population characteristics (medical history, age, 

race, sex, etc.), study protocols, validation approaches used, etc. For 

example, data collected in controlled sedentary settings for a short 

duration differs significantly from data observed in free-living condi- 

tions. This disparity is critical, impacting data quality, as patterns 

observed in free-living conditions can deviate significantly from the 

controlled settings due to the influence of various external factors like 

motion artifacts, food consumption, etc. 

From a modeling perspective, the focus of prediction (e.g., hypo- 

glycemia or hyperglycemia detection or glucose value prediction) and 

validation methods are key aspects that vary across different works in 

the literature. Even when concentrating on the same prediction task, 

such as hypoglycemia detection, multiple studies have reported per- 

formance at the individual beat-level, intervals of one minute, five- 

minute or fixed sequence of beats. In this work, we adhere to the most 

commonly used 1-minute interval for reporting our results. Given that 

ECG data and glucose readings are temporal data streams, it is imper- 

ative to employ an appropriate validation scheme to provide more 

realistic estimates of performance when deploying the model. Although 

commonly used, random splitting can give an overly optimistic perfor- 

mance estimate. To underscore this, we compare the results of our model 

using random splitting-based validation. (Appendix T6). 

 

4.6. Limitations 

 

As previously discussed, multiple direct and indirect factors impact 

blood glucose levels and its fluctuations. It is important to study and 

evaluate these changes in blood glucose levels in the presence of other 

comorbidities. However, the scope of this study was limited to the ECG 

signal alone. An important factor to consider in technology-based 

excursion detection is diabetes-related autonomic neuropathy, as it 

can impair cardiac responses during glycemic excursions increasing the 

risk of severe hypoglycemia [70]. The subjects in this study were not 

specifically tested for cardiac autonomic neuropathy (CAN) due to their 

young age and shorter duration since diabetes diagnosis [71]. Never- 

theless, understanding the effect of CAN on glycemia-induced morpho- 

logical changes is important and is a limitation of the current study. 

Another limitation of our work is the relatively modest size of our 

dataset. Our dataset comprised recordings from twelve participants over 

a period of 14-days. Among these twelve patients, only nine were 

included in the hypoglycemia detection model, and eleven in the hy- 

perglycemia detection model, based on the number of glycemic excur- 

sion events they experienced. In total, our analysis included 215 

hypoglycemia episodes and 314 hyperglycemia episodes. To overcome 

this limitation, we implemented a 5-fold temporal cross-validation 

mechanism to ensure accurate estimation of model performance 

despite the constraints in data availability. Most prior works (from 

Table 4) have employed random data splitting for model training, 

neglecting temporal correlations in the data, which may inflate model 

performance due to temporal correlations, potentially leading to overly 

optimistic results. Appendix T5 presents the higher performance results 

achieved when random splitting-based validation is used instead of a 

more conservative validation approach adopted in this paper. Despite 

the many advantages of the 5-fold temporal cross-validation approach, it 

may pose challenges for including patients with an extremely low 

number of glycemic excursion events. This is because splitting the data 

into 5-folds for cross-validation could result in some folds lacking gly- 

cemic excursion events. Training a binary classification model requires 

both positive and negative class events, and when no positive class 

events are present, training a binary classifier becomes impossible. As a 

result, we cannot use such patients for analysis in this study. We 

acknowledge that the low precision reported in this work can be a 

deterrent to the adoption of technology among patients. However, our 

main focus was on extracting key features from ECG signals to detect 

glycemic excursions and exploring the hypothesis that ECG morpho- 

logical changes occur at different glycemic thresholds, which can 

improve predictive model performance. For giving out real-world pre- 

dictive alerts, a comprehensive evaluation based on both, clinical as well 

as human behavior aspects is necessary. To address these challenges, we 

plan to focus on sustained hypoglycemia [12,61] and consider longer 

intervals for evaluating predictive alerts in our future research. 

Significant improvements in model performance are necessary for 

noninvasive technologies to replace CGM devices effectively in patients 

with diabetes. Using multi-modal data such as PPG, electrodermal ac- 

tivity (EDA), BioZ, skin temperature etc. in addition to ECG can enhance 

performance to acceptable levels and will be the focus of our future 

efforts. All the patients in the current study were aged between 20–40 

years. It would be valuable to collect and analyze data from younger 

individuals (aged 0–20 years) and older populations (>50 years) with 

type-1 diabetes as it can cover different lifestyles as well as risk associ- 

ated with specific age-groups. 

 

5. Conclusion 

 

This article proposes a noninvasive approach to detecting glycemic 

excursions using ECG data. We explore the use of, intra-beat 

(morphology features) information and inter-beat (HRV features) in- 

formation, evaluating different aggregation approaches for predictive 

efficacy. Our findings indicate that, models incorporating morphology- 

based features along with HRV features significantly outperform those 

using only morphology features or HRV features independently both 

hypoglycemia and hyperglycemia. The combination of morphology and 

HRV features achieves an average AUC of 72 % for hypoglycemia 

detection and 77 % for hyperglycemia detection. Our proposed fusion 

model adeptly learns morphological patterns at multiple glycemic 

thresholds, enhancing its ability to learn the morphological changes 

more effectively in the hypoglycemia and hyperglycemia ranges. The 

fusion model achieves an average AUC of 75 % for hypoglycemia 

detection and 78 % for hyperglycemia detection. These results under- 

score several key insights: (1) ECG signal is a promising noninvasive 

alternative for detecting glycemic excursions, (2) HRV is a useful sup- 

plement to morphology features for detecting glycemic excursions, (3) 

Higher performance of the fusion model indicates a need to explore 

personalized glycemic thresholds for hypoglycemia and hyperglycemia. 

These findings have important clinical implications for non-invasive 

diabetes monitoring and management. 
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Appendix T1 

Minimum information about clinical artificial intelligence modeling via the MI-CLAIM checklist 
 

Study design (Part 1) Completed Notes 

The clinical problem in which the model will be employed is clearly 

detailed in the paper. 

X (Introduction) Hypoglycemia and hyperglyemia detection using ECG 

The research question is clearly stated. X (Introduction) 1) Is intra-beat, inter-beat or a combination of both is need for detection of 

glycemic excursions?Are morphological patterns observed at varying glucose 

thresholds? 

The characteristics of the cohorts (training and test sets) are detailed in 

the text. 

The cohorts (training and test sets) are shown to be representative of 

real-world clinical settings. 

X (Methods and 

Materials) 

X (Methods and 

Materials) 

We do not have separate train and test cohorts. But we apply a five-fold temporal 

cross-validation for training personalized models. Details in Fig. 1. 

Detailed about validation provided in methods and materials section (Fig. 1). 

Also, provided explanations on its real-world relevance. 

The state-of-the-art solution used as a baseline for comparison has been 

identified and detailed. 

X (Discussion) Detail comparison to state-of-the-art works with relevant differences provided in 

Discussion section. 

 

Data and optimization (Parts 2, 3) Completed Notes 

The origin of the data is described and the original format is detailed in 

the paper. 

Transformations of the data before it is applied to the proposed model 

are described. 

X (Methods and 

materials, Appendix) 

X (Methods and 

Materials) 

Details on protocols and relevant patient characteristics provided in Appendix 

The independence between training and test sets has been proven in 

the paper. 

Details on the models that were evaluated, and the code developed to 

select the best model are provided. 

X (Methods) We use a temporal 5-fold cross-validation to mimic a real-world setting and 

ensuring no data leakage. 

X (Methods and 

Materials) 

Is the input data type structured or unstructured? Structured 

 

 

Model performance (Part 4) Completed Notes 

The primary metric selected to evaluate algorithm performance (e.g., 

AUC, F-score, etc.), including the justification for selection, has been 

clearly stated. 

The primary metric selected to evaluate the clinical utility of the model 

(e.g., PPV, NNT, etc.), including the justification for selection, has 

been clearly stated. 

The performance comparison between baseline and proposed model is 

presented with the appropriate statistical significance. 

X (Methods and 

materials, Appendix) 

 

X (Methods and 

materials) 

 

X (Results, Discussion, 

Appendix) 

Primarily Area under the receiver operating curve (AUC-ROC). Other metrics 

provided in Appendix. 

 

 

 

 

Our proposed approach provides robust performance. Comparison with other 

works in Discussion section and some extra comparison in the Appendix 

 

Model examination (Part 5) Completed Notes 

Examination technique 1 X (Methods and 

Results, Discussion) 

Shapley Additive Explanations (SHAP) summary plots to show the impact of a 

predictor on the model performance as a function of the predictor value. Random 

Forests based variable importance plots (VIMP) to show impact of feature 

categories on the output variable. 

A discussion of the relevance of the examination results with respect to 

model/algorithm performance is presented. 

A discussion of the feasibility and significance of model interpretability 

at the case level if examination methods are uninterpretable is 

presented. 

A discussion of the reliability and robustness of the model as the 

underlying data distribution shifts is included. 

X (Discussion) 

 

X (Results, Discussion) Detailed explanation on the relevance of the results discussed 

 

 

X (Discussion) Discussion on the study cohort in this article and the relevant of model 

performance in real-world settings. 

 

Reproducibility (Part 6): choose appropriate tier of transparency Completed Notes 

Tier 1: complete sharing of the code X We are in the process to upload the entire python code on our GitHub repository 

soon. However, sharing of data will not be made possible at this time. The 

authors plan to release the entire dataset in the future through appropriate 

channels. 

Tier 2: allow a third party to evaluate the code for accuracy/fairness; 

share the results of this evaluation 

Tier 3: release of a virtual machine (binary) for running the code on 

new data without sharing its details 

Tier 4: no sharing 
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Appendix T2 

Demographics data on subject who are part of the study. 
 

Subject ID Age Gender Body weight (lb) Height Race/Ethnicity HbA1C 

1 41 M 152 5ft 10in white 5.5 

2 24 M 195 6ft 3in white 6.8 

3 34 M 224 5ft 8in white 6.9 

4 34 F 157 5ft 4in white 6.4 

5 35 F 170 5ft 11in White 5.4 

6 30 M 200 6ft4in White 5.9 

7 31 F 132 5ft2in White - 

8 30 M 160 5ft 10in Multiple 6.5 

9 30 F 182 5ft 6in White 5.8 

10 29 M 183 6ft 2in white 6.0 

11 35 M 185 6ft 2in White 5.8 

12 37 F 138 5ft 5in White 7.2 

 

 

 

 

Appendix T3 

Hypoglycemia profile of patients who are part of the study. 
 

Patient ID Total CGM readings Hypoglycemia CGM readings Hypoglycemia events/episodes 

1 2408 139 33 

2 3068 8 2 

3 2840 91 19 

4 2251 5 1 

5 3195 108 24 

6 3379 134 22 

7 2815 171 18 

8 3268 58 12 

9 3758 128 20 

10 3412 234 59 

11 3610 61 7 

12 2637 4 2 

 

 

 

 

Appendix T4 

Hyperglycemia profile of patients who are part of the study. 
 

Patient ID Total CGM readings Hyperglycemia CGM readings Hyperglycemia events/episodes 

1 2408 165 19 

2 3068 856 41 

3 2840 660 39 

4 2251 586 37 

5 3195 26 2 

6 3379 437 25 

7 2815 166 11 

8 3268 355 36 

9 3758 497 37 

10 3412 145 13 

11 3610 184 15 

12 2637 1070 41 

 

 

 

 

Appendix T5 

HRV features used in the study. 
 

Feature Description 
 

MeanNN (ms) Mean NN Intervals 

CVNN 
Coefficient of variation of NN intervals  

SDNN 

MeanNN 

CVSD 
Coefficient of variation of successive differences 

RMSSD 

MeanNN 

SDNN (ms) Standard deviation of NN intervals 

SDSD (ms) Standard deviation of Successive differences 

RMSSD (ms) Root mean square of successive interval differences 

Pnni_20 (%) Proportion of successive NN intervals that differ by > 20 ms 

Pnni_50 (%) Proportion of successive NN intervals that differ by > 50 ms 

HR_Mad Mean absolute deviation of NN intervals 

MedianNN (ms) Median NN Intervals 

MinNN Minimum of NN Intervals 

(continued on next page) 
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( ) 

 

Appendix T5 (continued ) 
 

Feature Description 
 

MaxNN Maximum of NN Intervals 

MCVNN 
Ratio of 

MadNN 

MedianNN 

IQRNN Inter-quartile range of NN intervals 

Prc20NN 20th percentile of NN intervals 

Prc80NN 80th percentile of NN intervals 

HTI HRV triangular index. Integral of the density of the RR interval histogram divided by its height 

TINN Baseline width of the RR interval histogram 

 

 

Appendix F1. Fusion-level: Detailed importance of feature categories for hypoglycemia detection. 

 

 

Fusion-level: Detailed breakdown of relative importance of feature categories for hyperglycemia detection 

 

 

 

 

 

Appendix T6 

Performance comparison for different model types and glycemic detection condition in the (proposed) temporal-splitting validation vs random-splitting (at CGM level) 

validation approach. 
 

Model Details/Validation Approach 
 

Hypoglycemia 
  

Hyperglycemia 
 

 
Time splitting Random splitting 

 
Time splitting Random splitting 

Beat-level (MBeat ) 0.676 ± 0.10 0.867 ± 0.10  0.737 ± 0.10 0.868 ± 0.10  

Only Morphology features (MMorph) 0.684 ± 0.07 0.901 ± 0.07  0.743 ± 0.07 0.934 ± 0.07  

Only HRV features (MHRV ) 0.629 ± 0.08 0.815 ± 0.07  0.707 ± 0.07 0.845 ± 0.07  

Morphology + HRV features (MMorph+HRV) 0.718 ± 0.07 0.913 ± 0.07  0.772 ± 0.07 0.941 ± 0.07  

Fusion (Only –Morphology features) (MFMorph) 0.740 ± 0.10 0.929 ± 0.10  0.789 ± 0.10 0.946 ± 0.10  

Fusion (Morphology + HRV features) (MFMorph+HRV) 0.749 ± 0.10 0.932 ± 0.10  0.798 ± 0.10 0.946 ± 0.10  
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Appendix F2. Percentage of detected beats at various HRConfidence thresholds. 

 

 

 

 

 

Appendix T7 

Performance comparison for different model types with additional evaluation metrics. 
 

Model type 
    

Hypoglycemia 
 

 
AUC Sensitivity Specificity Precision F1-score Hypoglycemia events Non-hypoglycemia events 

 

Only morphology 0.68 ± 0.09 0.63 ± 0.1 0.67 ± 0.06 0.08 ± 0.03 0.14 ± 0.04 5519 135,014  

Only HRV 0.62 ± 0.14 0.54 ± 0.18 0.65 ± 0.07 0.03 ± 0.02 0.06 ± 0.03    

Morphology + HRV 0.71 ± 0.09 0.66 ± 0.08 0.68 ± 0.07 0.09 ± 0.03 0.15 ± 0.05    

Fusion: Morphology + HRV 0.75 ± 0.1 0.69 ± 0.08 0.70 ± 0.06 0.1 ± 0.03 0.17 ± 0.05    

 

 

Model type 

     

 

Hyperglycemia 

  

 
AUC Sensitivity Specificity Precision F1-score Hyperglycemic events Non-hyperglycemic events 

Only morphology 0.68 ± 0.09 0.63 ± 0.1 0.67 ± 0.06 0.08 ± 0.03 0.14 ± 0.04 25,774 141,767 

Only HRV 0.71 ± 0.07 0.66 ± 0.05 0.66 ± 0.05 0.26 ± 0.04 0.35 ± 0.05   

Morphology + HRV 0.77 ± 0.07 0.71 ± 0.06 0.71 ± 0.05 0.31 ± 0.04 0.40 ± 0.05   

Fusion: Morphology + HRV 0.80 ± 0.06 0.73 ± 0.05 0.73 ± 0.05 0.32 ± 0.05 0.42 ± 0.05   
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