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Abstract— We introduce a family of information leakage mea-
sures called maximal (α, β)-leakage (MαbeL), parameterized by
real numbers α and β greater than or equal to 1. The measure
is formalized via an operational definition involving an adversary
guessing an unknown (randomized) function of the data given the
released data. We obtain a simplified computable expression for
the measure and show that it satisfies several basic properties
such as monotonicity in β for a fixed α, non-negativity, data
processing inequalities, and additivity over independent releases.
We highlight the relevance of this family by showing that it
bridges several known leakage measures, including maximal
α-leakage (β = 1), maximal leakage (α = ∞, β = 1),
local differential privacy (LDP) (α = ∞, β = ∞), and local
Rényi differential privacy (LRDP) (α = β), thereby giving
an operational interpretation to local Rényi differential privacy.
We also study a conditional version of MαbeL on leveraging
which we recover differential privacy and Rényi differential
privacy. A new variant of LRDP, which we call maximal Rényi
leakage, appears as a special case of MαbeL for α = ∞ that
smoothly tunes between maximal leakage (β = 1) and LDP
(β = ∞). Finally, we show that a vector form of the maximal
Rényi leakage relaxes differential privacy under Gaussian and
Laplacian mechanisms.

Index Terms— Maximal leakage, maximal α-leakage, (local)
differential privacy, (local) Rényi differential privacy, Shannon
channel capacity.

I. INTRODUCTION

HOW much information does an observation released to
an adversary reveal/leak about correlated sensitive data?

This fundamental question arises in many privacy problems
whenever data about users is stored (e.g., social networks and
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cloud-based services) and a certain level of information leak-
age is unavoidable in exchange for certain services. Limiting
such an information leakage is desirable. Quantifying such
leakage is the first step towards limiting it. In an effort to
quantify this leakage precisely, a variety of privacy measures
have been proposed in computer science [2], [3], [4], [5], [6],
[7], [8] and in information theory [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20].

For any leakage measure, one of the key challenges is
to associate an operational interpretation to it, so that a
certain amount of leakage corresponds to a particular privacy
guarantee. Only a few leakage measures possess such an
operational meaning. For example, the works in [16] and [17],
which pertain to the release of observation due to a side
channel, measure privacy in terms of an adversary’s gain in
guessing the sensitive data after observing the released data.
In particular, Issa et al. [16] consider an adversary interested
in guessing a possibly randomized function of X . They study
the logarithm of the multiplicative increase, upon observing Y ,
of the probability of correctly guessing a randomized function
of X , say U , maximized over all the random variables U such
that U − X − Y forms a Markov chain. This maximization
captures the scenario that the function of interest U is unknown
to the system designer. The resulting quantity is referred to as
maximal leakage (MaxL). Liao et al. [17] later generalized
maximal leakage to a family of leakages, maximal α-leakage
(Max-αL) that consider a family of losses, namely α-loss,
to quantify the adversarial gain. Thus, similar to MaxL, Max-
αL quantifies the maximal logarithmic gain in a monotonically
increasing power function (dependent on α) applied to the
probability of correctly guessing. By doing so, [17] presents
an operational interpretation of leakage measures using adver-
sarial loss functions.

Among leakage measures motivated by worst-case adver-
saries, differential privacy (DP) [2] has emerged as the
gold standard. Relegating precise definitions to the sequel,
we state that a differentially private algorithm guarantees that
its outputs restrict the adversary from distinguishing between
neighboring datasets (i.e., the datasets that differ only in a
single data entry), where each dataset can be viewed as n
instantiations of X . An operational interpretation of DP in the
framework of hypothesis testing is given by Kairouz et al. [21],
where they show that it determines the trade-off between prob-
abilities of false alarm and missed detection. When privacy
guarantees have to be provided in a distributed setting, local
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differential privacy (LDP) [5], [6] provides strong privacy
guarantees between any two realizations of X . Issa et al. [16]
extended their definition of maximal leakage to introduce a
worst-case measure via maximal realizable leakage (MaxRL)
by taking a maximum over all realizations of Y . They show
that maximizing MaxRL over all the distributions PX yields
LDP, thereby providing an operational interpretation to the lat-
ter. In the context of composing DP outputs sequentially, Rényi
differential privacy (RDP) [15] has emerged as a better variant
to compute tight DP guarantees over multiple compositions
of differentially private algorithms. Specifically, RDP relaxes
DP based on the Rényi divergence [22]. One can define local
Rényi differential privacy (LRDP) as a generalization of LDP
based on the Rényi divergence. All the aforementioned leakage
measures find applications in many areas such as privacy
utility trade-offs [17], [23], [24], hypothesis testing [25],
source coding [26], Census data [27], anomaly detec-
tion [28], age of information [29], membership inference [19],
deep learning [30], posterior sampling [31], and mechanism
design [32].

No single measure of privacy/information leakage suits
all the scenarios in practice. In spite of the existence of
a large number of privacy measures in the literature, it is
often challenging to make an informed choice of a measure
for a particular application in view of the diversity and
complexity of various privacy measures. This compels a need
for a unification of privacy leakage measures, in general,
via a principled approach. In this paper, motivated by [16]
and [17], we propose a family of information leakage mea-
sures, called maximal (α, β)-leakage (MαbeL), unifying all
the aforementioned leakage measures into a structured land-
scape of leakage measures in an operationally motivated
manner.

A. Main Contributions

The main contributions of this paper are as follows.
• We introduce MαbeL in the framework of a guessing

adversary, which is parameterized by two real num-
bers α ∈ [1,∞] and β ∈ [1,∞](Definition 9), and
obtain a simplified computable expression for it (The-
orem 1) [1]. We prove that it satisfies all the axiomatic
properties of a measure of information leakage, including
non-negativity, monotonicity in β for a fixed α, data-
processing inequalities, and additivity over independent
releases (Theorem 2) [1]. We also show that it is contin-
uous at (α, β) ∈ [1,∞] × [1,∞], with the exception of
α = β = 1 (Theorem 6).

• We show that this family of measures encompasses a
host of existing leakage measures: in particular, Max-αL
(β = 1), MaxL (α → ∞, β = 1), LDP (α → ∞, β →
∞), LRDP (α = β) (Proposition 1 and Figure 1a) [1].
Theorem 2 gives another proof that LDP satisfies both
the post-processing and linkage inequalities1 unlike DP
which does not satisfy the linkage inequality [33].
Interestingly, MαbeL is defined apparently in terms of

1In the context of privacy, ‘linkage inequality’ is often used interchangeably
with ‘preprocessing inequality.’

average-case analysis (in the spirit of MaxL and Max-
αL), and yet, it recovers the worst-case LDP and LRDP
by exploiting the interplay between the parameters α
and β.

• We propose conditional MαbeL which takes into account
the side-information an adversary may have and obtain
a simplified computable expression for it (Theorem 3).
We prove that MαbeL upper bounds conditional MαbeL
if the side-information is conditionally independent of
the released data given the original data (Theorem 4).
That is, minimizing MαbeL is still a reasonable objective
for a situation in which an adversary has access to side
information which is unknown to the system designer.
We also show that conditional MαbeL is subadditive over
multiple releases (Theorem 5).

• We generalize the conditional MαbeL to a vector form
which allows us to quantify the leakage associated with
a change in only one entry of dataset with an assumption
that an adversary has the knowledge of all the remain-
ing entries (Definition 11). We show that this naturally
recovers DP and RDP (Proposition 3). An important
consequence of our results is an operational interpretation
to RDP and LRDP. We note that this subsumes an
operational meaning of LDP given by Issa et al. [16]
via maximal realizable leakage.

• We introduce a reparameterization of MαbeL, called
maximal (α, τ )-leakage, in terms of α and τ with α ≥
1 and β = ατ

α+τ−1 , where τ ≥ 1. We show that this
new measure, in contrast to MαbeL, is monotonic in both
orders (Lemma 1) and maintains continuity at all points
(α, τ) ∈ [1,∞]×[1,∞] (Theorem 6). A new information-
theoretic quantity arises as a special case of this leakage
measure when α → 1. We call this measure τ -Shannon
leakage and show that it recovers KL-divergence and
Shannon channel capacity when τ = ∞ and τ = 1,
respectively (Proposition 4 and Figure 2b).

• A new variant of LRDP, which we call maximal Rényi
leakage, appears as a special case of MαbeL when
α = ∞ (Definition 8) that smoothly tunes between
maximal leakage (β = 1) and LDP (β = ∞). Finally,
we show that a vector form of maximal Rényi leakage
relaxes differential privacy under Laplacian and Gaussian
mechanisms (Proposition 5).

B. Related Work

There are different approaches to quantifying information
leakage. The works [3], [4], and [7] quantify leakage similar
to maximal leakage with an adversary interested in guessing
X itself rather than its randomized functions. A variant of
maximal leakage capturing the amount of information leaked
about X due to disclosing a single outcome Y = y rather
than focusing on the average outcome as in maximal leakage
has been studied in [20] and [34]. Several measures have
been proposed to quantify information leakage, e.g., maximal
correlation [35], [36], probability of correctly guessing [14],
total variation distance [18], mutual information [10], [13],
[37], [38], [39], [40], [41], [42].
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The notion of DP is known to be very strict and has limited
applicability [43], [44]. Approximate differential privacy is
proposed as a relaxation of DP to allow data releases with
higher utility [45]. Resorting to the fact that composition with
RDP has a simple linear form compared to DP, the authors
of [30] developed a method called Moments Accountant (MA)
where the privacy guarantees are obtained first in terms of RDP
before translating them to those of DP. The shuffle model for
differential privacy, where a shuffler randomly permutes the
(randomized) data of all the users before forwarding them to
the (untrusted) server, is introduced in [46] and [47]. The
authors of [48] and [49] obtained privacy gurantees with
local randomized mechanisms for approximate DP and RDP,
respectively. The role of interactivity in LDP is studied by
Joseph et al. [50]. Though there has been a lot of work building
up on (L)DP and (L)RDP in the literature, an operational inter-
pretation to (L)RDP remained open so far which we settled by
introducing MαbeL that subsumes (L)RDP as a special case
for α = β. For an extensive list of leakage measures see the
surveys by Wagner and Eckhoff [51], Bloch et al. [52], and
Hsu et al. [53].

C. Organization of the Paper

The remainder of this paper is organized as follows.
We review various relevant information leakage measures in
Section II. We introduce (conditional) MαbeL in Section III
and prove that it satisfies the axiomatic properties of a leakage
measure. In Section IV, we show that MαbeL recovers sev-
eral existing information leakage measures as special cases.
We present our results on reparameterization of MαbeL in
Section V. We extend the notion of the leakage to contin-
uous alphabets in Section VI and discuss its applications in
Section VI-A.

Notation. We use capital letters to denote random vari-
ables, e.g., X , and capital calligraphic letters to denote their
corresponding alphabet, e.g., X . We write U − X − Y to
denote that the random variables form a Markov chain. We use
supp(X) := {x : PX(x) > 0} to denote the support set
of a discrete random variable X . We use H(X), I(X; Y ),
and D(PX∥QX) to denote entropy, mutual information, and
relative entropy, respectively. Given two probability distribu-
tions PX and QX over an alphabet X , we write PX ≪ QX

to denote that PX is absolutely continuous with respect to
QX . We also consider continuous random variables and use
fX to denote the probability density function of X . We use
log to denote the natural logarithm. Throughout the sequel,
we use the terms privacy mechanisms and conditional distri-
butions interchangeably. Finally, in our analyses, we employ
the extended real number line, extending the real numbers to
include positive and negative infinity.

II. OVERVIEW OF EXISTING INFORMATION
LEAKAGE MEASURES

We review the definitions of some existing information
leakage measures.

Definition 1 (Maximal leakage [16]): Let PXY be a joint
distribution on finite alphabet X×Y , where X and Y represent

the original data and the released data, respectively. The
maximal leakage from X to Y is defined as

L(X → Y ) := sup
U−X−Y

log
max
PÛ|Y

∑
u,y PUY (u, y)PÛ |Y (u|y)

max
PÛ

∑
u PU (u)PÛ (u)

,

(1)

where U represents any randomized function of X that an
adversary is interested in guessing and takes values in an
arbitrary finite alphabet. Moreover, Û is an estimator of U
with the same support as U .

Liao et al. [17] generalized maximal leakage by introducing
a tunable leakage measure known as maximal α-leakage.

Definition 2 (Maximal α-leakage [17]): Given a joint dis-
tribution PXY on finite alphabet X×Y , the maximal α-leakage
from X to Y is defined as

Lmax
α (X → Y )

:=
α

α− 1
sup

U−X−Y
log

max
PÛ|Y

∑
u,y PUY (u, y)PÛ |Y (u|y)

α−1
α

max
PÛ

∑
u PU (u)PÛ (u)

α−1
α

,

(2)

for α ∈ (1,∞) and by continuous extension of (2) for α =
1 and α = ∞, where U represents any randomized function
of X with an arbitrary finite alphabet, and Û is an estimator
of U with the same support as U .
Liao et al. [17] showed that

Lmax
α (X → Y ) = sup

PX̃

IS
α(X̃; Y ), (3)

where the supremum is over all the probability distributions
PX̃ on the support of PX and IS

α(·; ·) is the Sibson mutual
information of order α [54]. Maximal α-leakage recovers
Shannon channel capacity (and mutual information) and max-
imal leakage for α = 1 and α = ∞, respectively.

Conditional versions of maximal leakage and maximal α-
leakage are also defined to quantify the leakage when the
adversary has access to side-information [16, Definition 6],
[55, Definition 3].

Definition 3 (Local differential privacy [5], [6]): Given a
conditional distribution PY |X with X and Y taking values in
finite sets X and Y , respectively, the local differential privacy
(LDP) is defined as

LLDP(X → Y ) := max
y∈Y,

x,x′∈X

log
PY |X(y|x)
PY |X(y|x′)

. (4)

Let xn = (x1, x2, . . . , xn) denote a dataset comprising n
points from X . We say xn = (x1, x2, . . . , xn) and x̃n =
(x̃1, x̃2, . . . , x̃n) are neighbouring datasets, denoted xn ∼ x̃n,
if the Hamming distance between them is 1, i.e.,

∑n
i=1 1{xi ̸=

x̃i} = 1, or in other words if there exists a unique i ∈ [1 : n]
such that xi ̸= x̃i. The following notion of differential privacy
captures the privacy incurred of a user in participating in a
dataset.

Definition 4 (Differential privacy [2]): Given a conditional
distribution PY |Xn with Xn and Y taking values in finite sets
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Xn and Y , respectively, the differential privacy (DP) is defined
as

LDP(X → Y ) := max
y∈Y,xn,x̃n∈Xn:

xn∼x̃n

log
PY |Xn(y|xn)
PY |Xn(y|x̃n)

. (5)

Definition 5 (Maximal realizable leakage [16]): Given a
joint distribution PXY on finite alphabets X and Y , the
maximal realizable leakage from X to Y is defined as

Lr(X → Y ) = sup
U−X−Y

log
max

y
max

u
PU |Y (u|y)

max
u

PU (u)
(6)

where U takes values in an arbitrary finite alphabet.
In [16], it has been shown that

LLDP(X → Y ) = sup
PX

Lr(X → Y ), (7)

where the supremum is over all probability distribution PX .
A natural relaxation of DP is introduced by Mironov [15]
based on the Rényi divergence to allow stronger results for
composition.

Definition 6 (Rényi differential privacy [15]): Given a
conditional distribution PY |Xn with Xn and Y taking values
in finite sets Xn and Y , respectively, the Rényi differential
privacy (RDP) of order α is defined as

LRDP
α (X → Y )

:= max
xn,x̃n∈Xn:

xn∼x̃n

Dα(PY |Xn=xn∥PY |Xn=x̃n) (8)

= max
xn,x̃n∈Xn:

xn∼x̃n

1
α− 1

log
∑

y

PY |Xn(y|x̃n)1−αPY |Xn(y|xn)α.

(9)

We may define local Rényi differential privacy as a gen-
eralization of local differential privacy based on the Rényi
divergence [22].

Definition 7 (Local Rényi differential privacy): Given a
conditional distribution PY |X with X and Y taking values in
finite sets X and Y , respectively, the local Rényi differential
privacy (LRDP) of order α is defined as

LLRDP
α (X → Y )

:= max
x,x′∈X

Dα(PY |X=x∥PY |X=x′) (10)

= max
x,x′∈X

1
α− 1

log
∑

y

PY |X(y|x′)1−αPY |X(y|x)α. (11)

As α → ∞, it can be verified using L’Hôpital’s rule that
LRDP and RDP simplify to LDP and DP, respectively.

III. A UNIFIED MEASURE OF INFORMATION LEAKAGE

In this section, we introduce a unified leakage measure,
called maximal (α, β)-leakage (MαbeL). The new leakage
measure includes maximal leakage, maximal α-leakage, local
Rényi differential privacy and local differential privacy as its
special cases. As our unified measure includes these leakage
measures, its definition naturally inherits some complexity,
mirroring that of the definitions of these existing measures.

However, in Theorem 1, we shed light on its inherent com-
plexity and significantly simplify it, thereby allowing us to
relate to a large class of privacy measures. Furthermore,
to recover Rényi differential privacy and differential privacy,
we introduce conditional MαbeL, and provide a simplified
form for it in Theorem 3.

A. MαbeL

Before introducing our most general unified leakage mea-
sure, we start with a measure which smoothly transitions
between maximal leakage and LDP. The following definition
makes use of the similarity between the definitions of maximal
leakage and maximal realizable leakage, and the fact that the
latter is related to LDP via (7).

Definition 8 (Maximal Rényi leakage of order β): Given a
conditional distribution PY |X (or fY |X ) on alphabets X and Y ,
maximal Rényi leakage of order β from X to Y for β ∈ [1,∞)
is defined as
Lβ(X → Y ) := sup

PX

sup
U→X→Y

log

max
PÛ|Y

EY

(∑
u

PU |Y (u|Y )PÛ |Y (u|Y )

)β
1/β

max
PÛ

∑
u

PU (u)PÛ (u)
.

(12)

where Û represents an estimator taking values from the same
arbitrary finite alphabet as U . It is defined by continuous
extension for β →∞.

There are two important aspects to this definition. First,
we introduce a parameter β in the numerator in (12) thereby
allowing a continuous transition from a simple average over y
(at β = 1) to a maximum over y (at β →∞). Thus, ignoring
for the moment the supremum over PX , when β → ∞ we
recover maximal realizable leakage, and at β = 1 we recover
maximal leakage. Secondly, by introducing the supremum over
PX , we do not change the value at β = 1, since maximal
leakage depends on the distribution of X only through its
support, and at β →∞ we recover LDP due to (7).

As a next step, we combine the definition of maximal
Rényi leakage with that of maximal α-leakage, keeping both
as special cases, and including both α and β as independent
parameters. Remarkably, this yields our most general unified
measure which also recovers LDP and LRDP.

Definition 9 (Maximal (α, β)-leakage (MαbeL)): Given a
conditional distribution PY |X (or fY |X ) on supports X and
Y , the maximal (α, β)-leakage from X to Y for (α, β) ∈
(1,∞)× [1,∞) is defined as

Lα,β(X → Y ) := sup
PX

sup
U→X→Y

α

α− 1

log

max
PÛ|Y

EY

(∑
u

PU |Y (u|Y )PÛ |Y (u|Y )
α−1

α

)β
1/β

max
PÛ

∑
u

PU (u)PÛ (u)
α−1

α

.

(13)
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where Û represents an estimator taking values from the
same arbitrary finite alphabet as U . MαbeL is defined by
its continuous extension for (α, β) ∈ {1,∞} × [1,∞) \
{(1, 1)} and (α, β) ∈ (1,∞) × {∞}. It is also defined by
lim

β→∞
lim
α→1

Lα,β(X → Y ) and lim
β→∞

lim
α→∞

Lα,β(X → Y ) for

(1,∞) and (∞,∞), respectively.
We remark that the definition of MαbeL in (13) recovers the

definition of maximal α-leakage from (2) when β = 1. While
at the outset this simplification does not appear to be the same
as that of maximal α-leakage in (2) (i.e., the latter does not
include a supremum over PX ), maximal α-leakage depends on
the distribution of X only through its support (see (3)), and
therefore, including the supremum over PX does not change
its value.

We also observe that the definition of MαbeL specializes
to the definition of maximal Rényi leakage of order β in (12)
for α = ∞.

In the following theorem, we present a simplification of
the expression of MαbeL in (13). As a special case of α →
∞, it also includes a simplified form for the maximal Rényi
leakage of order β introduced in Definition 8.

Theorem 1: Let X and Y take values from finite supports
X and Y , respectively. For (α, β) ∈ (1,∞)× [1,∞), MαbeL
defined in (13) simplifies to

Lα,β(X → Y ) = max
x′∈X

sup
PX̃

α

(α− 1)β

log
∑
y∈Y

PY |X(y|x′)1−β

(∑
x∈X

PX̃(x)PY |X(y|x)α

)β/α

,

(14)

where PX̃ is a probability distribution on the support of PX .
For α → ∞, since Definition 9 simplifies to the definition
of maximal Rényi leakage of order β in (12), (14) simplifies
maximal Rényi leakage of order β to

Lβ(X → Y )

= max
x′∈X

1
β

log
∑
y∈Y

PY |X(y|x′)1−β max
x∈X

PY |X(y|x)β . (15)

A detailed proof for Theorem 1 is given in Appendix A.
For β ≤ α, the quantity inside the log in (14) is concave

in PX̃ ; thus the supremum over PX̃ can be efficiently solved
using convex optimization techniques. As we will show in
Section IV, for β ≥ α, the supremum over PX̃ can be replaced
by a maximum over x ∈ X . Thus, in either case the quantity
in (14) can be efficiently computed for finite alphabets.

Remark 1: To achieve a finite value for MαbeL, it is
necessary that PY ≪ PY |X=x′ for each x′ ∈ X . Failure to
satisfy this condition leads to infinite leakage when β > 1.

Like other leakage measures, MαbeL satisfies several basic
properties such as non-negativity, data processing inequalities
and additivity, as shown in the following theorem.

Theorem 2: Let X and Y take values from finite alphabets
X and Y , respectively. For α ∈ (1,∞) and β ∈ [1,∞),
MαbeL

1) is monotonically non-decreasing in β for a fixed α;

2) satisfies data processing inequalities, i.e., for the Markov
chain X − Y − Z:

Lα,β(X → Z) ≤ Lα,β(X → Y ) (16a)
Lα,β(X → Z) ≤ Lα,β(Y → Z). (16b)

3) is non-negative, i.e.,

Lα,β(X → Y ) ≥ 0 (17)

with equality if and only if X and Y are independent.
4) satisfies additivity: i.e., if (Xi, Yi) for i = 1, 2, . . . , n

are independent, then

Lα,β(X1, . . . , Xn → Y1, . . . , Yn) =
n∑

i=1

Lα,β(Xi → Yi).

(18)

A detailed proof of Theorem 2 is in Appendix B.
Remark 2: MαbeL is continuous at (α, β) ∈ [1,∞] ×

[1,∞], with the exception of the point (α, β) = (1, 1). The
proof of this property relies on a reparameterization of MαbeL
and is covered in detail in Section V.

B. Conditional MαbeL

Analogously to the connection between MαbeL and
maximal leakage, we define conditional MαbeL based on
conditional maximal leakage as follows.

Definition 10 (Conditional MαbeL): Let Z be the knowl-
edge of an adversary or third-party about (X,Y ). Given a
conditional distribution PY |X,Z (or fY |X,Z) and a marginal
distribution PZ (or fZ) on supports X ,Y and Z , the condi-
tional MαbeL from X to Y given Z for (α, β) ∈ (1,∞) ×
[1,∞) is defined as

Lα,β(X → Y |Z) := sup
PX|Z

sup
U→X→Y |Z

α

(α− 1)β

log

max
PÛ|Z,Y

E

(∑
u

PU |Z,Y (u|Z, Y )PÛ |Z,Y (u|Z, Y )
α−1

α

)β

max
PÛ|Z

E

(∑
u

PU |Z(u|Z)PÛ |Z(u|Z)
α−1

α

)β
.

(19)

Here Û represents an estimator taking values from the same
arbitrary finite alphabet as U , and the expression U−X−Y |Z
represents the conditional Markov chain constraint where

PUXY |Z(u, x, y|z)
= PX|Z(x|z) PU |XZ(u|x, z) PY |XZ(y|x, z).

Thus, the conditional Markov chain U −X − Y |Z is equiv-
alent to the Markov chain U − (X,Z) − Y . The continuous
extensions can be defined analogously to Definition 9.

For a similar reason to that stated below Definition 9, the
definition of conditional MαbeL in (19) recovers the defini-
tion of conditional maximal α-leakage (and thus conditional
maximal leakage) for β = 1. The following theorem simplifies
the expression of conditional MαbeL.
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Theorem 3: Let X , Y , and Z take values from finite sup-
ports X , Y , and Z , respectively. For (α, β) ∈ (1,∞)× [1,∞),
conditional MαbeL defined in (19) simplifies to

Lα,β(X → Y |Z)

= max
z∈Z

max
x′∈X

sup
PX̃|Z

α

(α− 1)β
log

[∑
y∈Y

PY |X,Z(y|x′, z)1−β

×

(∑
x∈X

PY |X,Z(y|x, z)αPX̃|Z(x|z)

) β
α
]

(20)

where PX̃|Z is a distribution on the support of PX|Z .
A detailed proof of Theorem 3 is in Appendix C.
Remark 3: Interestingly, despite the fact that there is an

expectation over z in the definition of conditional MαbeL,
the simplified form has a maximum over z. This is in contrast
to some other conditional measures in [56], [57], and [58].

Under a specific Markov chain, the following theorem
shows the effect of the side information Z on leakage about
any function U of X through Y .

Theorem 4: Let X , Y , and Z take values from finite
alphabets X , Y , and Z , respectively. If Z − X − Y holds,
for (α, β) ∈ (1,∞)× [1,∞), we have

Lα,β(X → Y |Z) ≤ Lα,β(X → Y ), (21)

with equality if for some z ∈ supp(Z),

supp(X) = supp(X|Z = z).

A detailed proof of Theorem 4 is in Appendix D. Therefore,
minimizing Lα,β(X → Y ) is still a reasonable objective
for a situation in which an adversary has access to side
information Z which is unknown to the system designer. The
following theorem shows that successive releases increase the
total leakage.

Theorem 5 (Sub-Additivity/Composition): Let Z represent
the side information of an adversary and X , Y1, Y2, and Z take
values from finite supports X , Y1, Y2, and Z , respectively. For
(α, β) ∈ (1,∞)× [1,∞), we have

Lα,β(X → Y1, Y2|Z)
≤ Lα,β(X → Y1|Z) + Lα,β(X → Y2|Y1, Z). (22)

A detailed proof of Theorem 5 is in Appendix E.
Remark 4: In the scenario where no side information is

available to an adversary, applying Theorem 5, we can show
that

Lα,β(X → Y1, Y2) ≤ Lα,β(X → Y1) + Lα,β(X → Y2|Y1).
(23)

Combining this result with Theorem 4, we can conclude that
if Y1 −X − Y2 holds, then

Lα,β(X → Y1, Y2) ≤ Lα,β(X → Y1) + Lα,β(X → Y2).
(24)

Equation (24) recovers Liao et al.’s result [17] on the
sub-additivity of maximal α-leakage, and equation (23)
generalizes it.

Remark 5: Repeated use of privacy mechanisms on the
outcome of previous private releases requires computing the
overall privacy guarantees, a problem known as composition.
A related useful property of any privacy measure, namely,
composability, identifies the ease of computing this overall
privacy. Let X be a sensitive random variable, M1 and M2

be privacy mechanisms,2 and M be their composition. M
is called adaptive if M(X) = (M1(X),M2(X,M1(X))),
that is, the output of M2 depends on both X and
M1(X). In contrast, M is called non-adaptive if M(X) =
(M1(X),M2(X)), that is, the output of M2 depends on
M1(X) only through the random variable X . In (22),
let PY1|X,Z , PY2|X,Z,Y1 , and PY1,Y2|X,Z be privacy mecha-
nisms associated with privacy measures Lα,β(X → Y1|Z),
Lα,β(X → Y2|Y1, Z), and Lα,β(X → Y1, Y2|Z), respectively.
Random variables Y1 and Y2 can be viewed as M1(X)
and M2 (X,M1(X)), respectively. Thus, this implies that
MαbeL satisfies adaptive composition. In (24), random vari-
ables Y1 and Y2 can be viewed as M1(X) and M2(X),
respectively, leading to a non-adaptive composition result for
MαbeL. It is known that DP and Rényi DP mechanisms
also satisfy composability. In Section IV, we show that DP
and Rényi DP can be recovered through conditional MαbeL.
Consequently, we can employ (22) to establish bounds for the
adaptive composition of Rényi DP and DP mechanisms.

IV. RELATIONSHIPS OF OTHER LEAKAGE MEASURES
WITH (CONDITIONAL) MαBEL

As mentioned earlier, (conditional) MαbeL recovers (con-
ditional) maximal α-leakage for β = 1 which simplifies to
(conditional) maximal leakage for β = 1 and α → ∞.
Moreover, in this section we show that MαbeL includes
various other leakage measures, particularly, different notions
of DP (see Fig. 1a).

Proposition 1: MαbeL can be simplified as follows:
• If α ≤ β, then

Lα,β(X → Y ) =
α(β − 1)
(α− 1)β

LLRDP
β (X → Y ).

• Lβ,β(X → Y ) = LLRDP
β (X → Y ).

• L∞,∞(X → Y ) = lim
β→∞

lim
α→∞

Lα,β(X → Y )

= LLDP(X → Y ).
A detailed proof of Proposition 1 is in Appendix F. The

key result of Proposition 1 is captured in Fig. 1a which shows
that LDP (top right corner point in Fig. 1a) is the limiting
point of MαbeL as (α →∞, β →∞). In particular, MαbeL
reduces to maximal Rényi leakage of order β (defined in (12))
for α = ∞ (illustrated by the gold vertical line in Fig. 1a).

Proposition 2: Conditional MαbeL can be simplified as
follows:
• If α ≤ β, then

Lα,β(X → Y |Z) = max
z,x′,x

α

(α− 1)β

2As previously mentioned, we employ the terms privacy mechanisms and
conditional distributions interchangeably.
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Fig. 1. Subplots 1a and 1b show the relationships between existing leakage measures with MαbeL and vector MαbeL, respectively.

log
∑

y

PY |X,Z(y|x′, z)1−βPY |X,Z(y|x, z)β .

• If α = β, then

Lβ,β(X → Y |Z) = max
z,x′,x

1
β − 1

log
∑

y

PY |X,Z(y|x′, z)1−βPY |X,Z(y|x, z)β .

• L∞,∞(X → Y |Z) = lim
β→∞

lim
α→∞

Lα,β(X → Y |Z)

= max
z,x′,y,x

log
PY |X,Z(y|x, z)
PY |X,Z(y|x′, z)

.

• L∞,β(X → Y |Z) = max
z,x′

1
β

log
∑

y

PY |X,Z(y|x′, z)1−β max
x

PY |X,Z(y|x, z)β .

The proof of Proposition 2 follows from Theorem 3 and
similar steps as those in the proofs of Proposition 1 and
equation (15).

A. Vector MαbeL

In this section, we show that conditional MαbeL can be
used to derive a general version of DP and RDP rather than
their local versions (see Fig. 1b). Specifically, given a dataset
with n entries, we define a vector form of MαbeL as when
the adversary has access to all but one of the entries.

Definition 11 (Vector MαbeL): Let Xn =
(X1, X2, . . . , Xn) and X−i represent a dataset with n
entries and all entries except the ith, respectively. Vector
MαbeL is defined as

Lvec
α,β(Xn → Y ) := max

i
Lα,β(Xi → Y |X−i). (25)

Proposition 3: For finite alphabets, vector MαbeL defined
in (25) simplifies to

Lvec
α,β(Xn → Y ) = max

i,x−i,x′i

sup
PX̃i|X−i

α

(α− 1)β

log

[∑
y

PY |Xi,X−i
(y|x′i, x−i)1−β

(∑
xi

PY |Xi,X−i
(y|xi, x−i)αPX̃i|X−i

(xi|x−i)

) β
α
]
, (26)

where PX̃i|X−i
is a distribution on the support of PXi|X−i

.
Moreover, it recovers
• vector maximal α-leakage (and thus vector maximal

leakage) when β = 1, that is,

Lvec
α,1(X

n → Y ) = max
i,x−i

sup
PX̃i|X−i

α

α− 1

log
∑

y

[∑
xi

PY |Xi,X−i
(y|xi, x−i)αPX̃i|X−i

(xi|x−i)

] 1
α

(27)

• a scaled RDP of order β when α ≤ β, that is,

Lvec
α,β(Xn → Y ) = max

xn∼x′n

α

(α− 1)β

log
∑

y

PY |Xn(y|x′n)1−βPY |Xn(y|xn)β ; (28)

• RDP of order α = β when α = β, that is,

Lvec
α=β(Xn → Y ) = max

xn∼x′n

1
β − 1

log
∑

y

PY |Xn(y|x′n)1−βPY |Xn(y|xn)β ; (29)

• DP when α, β →∞;
• a variant of RDP of order β for α →∞ and an arbitrary

β, which we call vector maximal Rényi leakage. That is,

Lvec
∞,β(Xn → Y )

= max
i,x′i,x−i

1
β

log

[∑
y

PY |Xi,X−i
(y|x′i, x−i)1−β

× max
xi

PY |Xi,X−i
(y|xi, x−i)β

]
. (30)

We remark that vector maximal Rényi leakage defined
in (30) differs from RDP of order β mainly in that the max
over xi is inside the summation over y rather than outside.
A detailed proof of Proposition 3 can be found in Appendix G.
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V. MAXIMAL (α, τ)-LEAKAGE: A REPARAMETERIZATION
OF MαBEL

Maximal (α, β)-leakage is not uniquely defined at α = β =
1. As α = β → 1, it can be verified using L’Hôpital’s rule
that maximal (α = β)-leakage, i.e., local Rényi DP, simplifies
to

max
x,x′

DKL

(
PY |X(y|x)∥PY |X(y|x′)

)
whereas the limit of maximal (α, β = 1)-leakage, i.e., maxi-
mal α-leakage, gives Shannon channel capacity as α → 1 [17].
In this section, we consider a reparameterization which leads
to a new measure. The new measure is uniquely defined in
all its endpoints and it is monotonic in both orders (unlike
maximal (α, β)-leakage which is monotonic in only one of its
orders). Let τ ∈ [1,∞) and β = ατ

τ+α−1 , where α ∈ (1,∞).
We may re-write the expression of maximal (α, β)-leakage
in (14) in terms of α and τ , as follows.

Lα,τ (X → Y )

= max
x′

sup
PX̃

(
1

α− 1
+

1
τ

)
log

[∑
y

PY |X(y|x′)
(τ−1)(1−α)

τ+α−1

×

(∑
x

PX̃(x)PY |X(y|x)α

) τ
τ+α−1

]
. (31)

This measure is defined by its continuous extension for
(α, τ) ∈ {1,∞} × [1,∞) and (α, τ) ∈ (1,∞) × {∞}.
It is also defined by lim

τ→∞
lim

α→∞
Lα,τ (X → Y ) and

lim
τ→∞

lim
α→1

Lα,τ (X → Y ) for (α = ∞, τ = ∞) and (α =
1, τ = ∞), respectively. We call the quantity in (31) maximal
(α, τ)-leakage. It is important to note that β is non-decreasing
in τ for a fixed α and so α > β (if τ →∞, then β → α, see
Fig. 2a).

Lemma 1: For (α, τ) ∈ (1,∞) × [1,∞), maximal (α, τ)-
leakage can be represented by

Lα,τ (X → Y )

= max
x′

sup
PX̃

inf
QY

1
α− 1

log

[∑
x,y

PX̃(x)PY |X(y|x)α

×
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α
]
, (32)

and it is non-decreasing in τ and α for a fixed α and τ ,
respectively.

A detailed proof is in Appendix H.
Remark 6: Some of the relationships to other measures

become clear from this lemma. Namely, if τ = 1, then we
see the expression of maximal α-leakage in terms of Sibson
mutual information, that is,

sup
PX̃

inf
QY

Dα(PX̃ × PY |X∥PX̃ ×QY ) = sup
PX̃

IS
α (X̃; Y ). (33)

If τ →∞, then we see the definition of LRDP as

max
x,x′

Dα(PY |X=x∥PY |X=x′). (34)

Note that τ
τ+α−1 < 1 for τ ∈ [1,∞) and α ∈ (1,∞),

and so the quantity inside the logarithm in (31) is concave

in PX̃ . Now we consider some endpoints of α and τ values
(see Fig. 2b). If τ = 1, then we recover maximal α-leakage
which reduces to maximal leakage when α = ∞.

If τ = ∞, then we recover local Rényi differential privacy
of order α which simplifies to local differential privacy for
α = ∞. If α = ∞, then we recover maximal Rényi leakage
of order τ , that is,

Lα=∞,τ (X → Y )

= max
x′

1
τ

log
∑

y

PY |X(y|x′)1−τ max
x

PY |X(y|x)τ . (35)

Following similar steps as those in the proof of Proposition 1,
we can also show that

Lα=∞,τ=∞(X → Y ) = lim
τ→∞

lim
α→∞

Lα,τ (X → Y )

= LLDP(X → Y ). (36)

Proposition 4: For α → 1, maximal (α, τ)-leakage simpli-
fies to

Lα=1,τ (X → Y ) = max
x′

sup
PX̃

[
1
τ

I(X̃; Y )

+
(

1− 1
τ

)
DKL

(
PY |X(y|x)∥PY |X(y|x′)|PX̃(x)

) ]
. (37)

We call the quantity in (37) the τ -Shannon leakage.
A detailed proof of Proposition 4 is in Appendix I.

Remark 7: For τ →∞, τ -Shannon leakage simplifies to

Lα=1,τ=∞(X → Y )
= lim

τ→∞
lim
α→1

Lα,τ (X → Y ) (38)

= max
x′

sup
PX̃

DKL

(
PY |X(y|x)∥PY |X(y|x′)|PX̃(x)

)
(39)

= max
x,x′

DKL

(
PY |X(y|x)∥PY |X(y|x′)

)
. (40)

(40) follows because DKL

(
PY |X(y|x)∥PY |X(y|x′)|PX̃(x)

)
is linear in PX̃ and so the supremum is attained at an extreme
point. This quantity is KL divergence. Also, for τ = 1, τ -
Shannon leakage is given by

Lα=1,τ=1(X → Y ) = sup
PX̃

I(X̃; Y ) (41)

which is Shannon channel capacity. So τ -Shannon leakage
smoothly tunes between KL divergence (τ = ∞) and Shannon
channel capacity (τ = 1).

Theorem 6: Let PY ≪ PY |X=x′ for each x′ ∈ X . Maximal
(α, τ)-leakage is continuous in (α, τ) for all (α, τ) ∈ [1,∞]×
[1,∞], and MαbeL is continuous in (α, β) for all (α, β) ∈
[1,∞]× [1,∞] \ {(1, 1)}.

The proof of Theorem 6 can be found in Appendix J. Similar
to the definition of vector MαbeL, maximal (α, τ)-leakage can
be generalized to a vector form.

VI. CONTINUOUS ALPHABETS

In this section, we generalize Theorem 1 and Theorem 3 to
continuous alphabets.
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Fig. 2. Subplot 2a shows β vs α curves across different τ values. Subplot 2b shows relationship between maximal (α, τ)-leakage and other leakage measures
as a function of α and τ .

Theorem 7: Let X and Y be continuous random variables
having a continuous joint pdf fXY . MαbeL defined in (13)
simplifies to

Lα,β(X → Y ) = max
x′:fX(x′)>0

sup
fX̃

α

(α− 1)β

log
∫
Y

fY |X(y|x′)1−β

(∫
X

fX̃(x)fY |X(y|x)αdx

)β/α

dy,

(42)

where fX̃ is a pdf on X .
The proof of Theorem 7 and expressions similar to (42) for

the other cases, i.e., for discrete X and continuous Y , and
continuous X and discrete Y can be found in Appendix K.

Theorem 8: Let X , Y , and Z be continuous random vari-
ables having a continuous joint pdf fXY Z . The conditional
MαbeL defined in (19) simplifies to

Lα,β(X → Y |Z)

= max
z

max
x′

sup
fX̃|Z=z

α

(α− 1)β
log

[∫
Y

fY |X,Z(y|x′, z)1−β

×
(∫

X
fY |X,Z(y|x, z)αfX̃|Z=z(x) dx

) β
α

dy

]
(43)

where fX̃|Z=z is a pdf on the support of fX|Z=z for any z
that fZ(z) > 0.

The proof of Theorem 8 follows a similar approach to the
proof of Theorem 7, and expressions similar to (43) for the
other cases, i.e., for discrete X and continuous Y , and contin-
uous X and discrete Y , can be derived similarly. Moreover,
by applying similar steps to the proof of Proposition 1, we can
recover RDP, DP, and vector maximal Rényi leakage as special
cases of vector MαbeL for continuous alphabets.

A. Results for Known Mechanisms

In this section, we show how vector MαbeL relaxes dif-
ferential privacy through vector maximal Rényi leakage under

Gaussian and Laplacian mechanisms (see Fig. 3). The proofs
for this section can be found in Appendix L.

Proposition 5: Let h : Xn → R be a real-valued func-
tion such that for all i, x−i, xi, x̃i we have |h(x−i, xi) −
h(x−i, x̃i)| ≤ δ, where xn = {x−i, xi} and x̃n = {x−i, x̃i}
are neighboring datasets, and δ is a sensitivity parameter. For
β ∈ (1,∞),

• if M(xn) = h(xn) + N where N ∼ Lap (0, b), then

Lvec
∞,β(Xn → M(Xn)) ≤ 1

β

log
[
1
2
− 1

2(β − 1)
+
(

1
2

+
1

2(β − 1)

)
exp

(
(β − 1)δ

b

)]
;

(44)

• if M(xn) = h(xn) + N where N ∼ N (0, σ2), then

Lvec
∞,β(Xn → M(Xn))

≤ 1
β

log

[
1
2

+
1

2
√

β − 1
erfi

(√
β − 1
2σ2

δ

)

+
1
2

exp
(

β(β − 1)δ2

2σ2

)(
1 + erf

(
(β − 1)δ√

2σ

))]
,

(45)

where erf indicates the error function, that is, erf(x) =
2√
π

∫ x

0
e−t2 dt, and erfi indicates the imaginary error

function, that is, erfi(x) = 2√
π

∫ x

0
et2 dt.

Both upper bounds are achieved with equality if there exist
i and x−i such that the function h(x−i, xi) is surjective in xi

and max
xi,x̃i

|h(x−i, xi)− h(x−i, x̃i)| = δ.

For n = 1, the upper bounds on vector maximal Rényi
leakage in (44) and (45) collapse to upper bounds on maximal
Rényi leakage under Laplacian and Gaussian mechanisms,
respectively.
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Fig. 3. Subplots 3a and 3b compare vector maximal Renyi leakage and Renyi differential privacy under Laplacian mechanisms with b = 1 and b = 30,
respectively. Subplots 3c and 3d compare vector maximal Renyi leakage and Renyi differential privacy under Gaussian mechanisms with σ = 1 and σ = 20,
respectively. In all subplots, we consider a situation in which the upper bounds (44) and (45) are achieved with equality, and the sensitivity parameter is 1.

VII. CONCLUSION

In this paper, we have introduced a new measure of infor-
mation leakage called maximal (α, β)-leakage that bridges
several existing leakage measures, including maximal α-
leakage (β = 1), maximal leakage (α = ∞, β = 1),
(local) differential privacy (α = ∞, β = ∞), (local) Rényi
differential privacy (α = β), and a variant of RDP, which
we call vector maximal Rényi leakage (α = ∞). This pro-
vides a much-needed operational interpretation to (local) RDP.
We believe that our work has taken a step towards identifying
the common characteristics of various information leakage
measures despite their diversity. For example, our formulation
allows us to smoothly transition from average-case leakage
measures to worst-case leakage measures by exploiting the
interplay between the parameters α and β. Finally, we posit
that the unification provided by our guessing framework
allows us to tailor the proposed leakage measure to study
privacy-utility tradeoffs under different settings depending on
the context.

APPENDIX A
PROOF OF THEOREM 1

For α ∈ (1,∞) and β ∈ [1,∞), we first bound Lα,β(X →
Y ) from above and then, give an achievable scheme.

Upper Bound: Consider the optimization in the denominator
of (13):

max
PÛ

∑
u

PU (u)PÛ (u)
α−1

α . (46)

This is solved by

PU (u)PÛ (u)−1/α = ν (47)

for some constant ν. So we have

PÛ (u) =
PU (u)α∑
u′ PU (u′)α

. (48)

Thus the denominator becomes∑
u

PU (u)
(

PU (u)α∑
u′ PU (u′)α

)α−1
α

=

(∑
u

PU (u)α

) 1
α

. (49)

Similarly, the numerator becomes∑
y

PY (y)

(∑
u

PU |Y (u|y)α

)β/α
1/β

. (50)

Thus, the logarithmic term in (13) reduces to

log

[∑
y PY (y)

(∑
u PU |Y (u|y)α

)β/α
]1/β

(
∑

u PU (u)α)1/α
(51)

= log

[∑
y PY (y)1−β (

∑
u PU,Y (u, y)α)β/α

]1/β

(
∑

u PU (u)α)1/α
(52)

=
1
β

log
∑

y

PY (y)1−β

(∑
u PU (u)αPY |U (y|u)α∑

u PU (u)α

) β
α

.

(53)

Authorized licensed use limited to: Arizona State University. Downloaded on August 16,2024 at 15:01:21 UTC from IEEE Xplore.  Restrictions apply. 



4378 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 6, JUNE 2024

Using Jensen’s inequality and the Markov chain U −X − Y ,
we have

PY |U (y|u)α =

(∑
x

PX|U (x|u)PY |X(y|x)

)α

(54)

≤
∑

x

PX|U (x|u)PY |X(y|x)α. (55)

So MαbeL may be bounded from above by

Lα,β(X → Y )

≤ sup
PX

sup
U→X→Y

α

(α− 1)β
log
∑

y

PY (y)1−β

×


∑
u,x

PU (u)αPX|U (x|u)PY |X(y|x)α

∑
u PU (u)α


β
α

(56)

≤ sup
PX

sup
PX̃

α

(α− 1)β
log
∑

y

PY (y)1−β

×

(∑
x

PX̃(x)PY |X(y|x)α

) β
α

(57)

where

PX̃(x) =
∑

u PU (u)αPX|U (x|u)∑
u PU (u)α

. (58)

Lower Bound: The proof is based on the expression in (53)
as well as “shattering” method. Consider a random variable U
such that U → X → Y form a Markov chain and H(X|U) =
0. For each x, let Ux be a finite set such that U = u ∈ Ux

if and only if X = x and U =
⋃

x∈X Ux. Moreover, given
X = x let U be uniformly distributed on Ux. That is,

PU |X(u|x) =


1
|Ux|

for all u ∈ Ux

0 otherwise,
(59)

and so

PY |U (y|u) =

{
PY |X(y|x) for all u ∈ Ux

0 otherwise.
(60)

Therefore, we have∑
u PU (u)αPY |U (y|u)α∑

u PU (u)α
(61)

=

∑
x∈X

∑
u∈Ux

(
PX(x)PU |X(u|x)

PX|U (x|u)

)α

PY |U (y|u)α

∑
x∈X

∑
u∈Ux

(
PX(x)PU |X(u|x)

PX|U (x|u)

)α (62)

=
∑

x |Ux|1−αPX(x)αPY |X(y|x)α∑
x |Ux|1−αPX(x)α

. (63)

So we may bound MαbeL from below by

Lα,β(X → Y )

≥ sup
PX

sup
Ux

α

(α− 1)β
log
∑

y

PY (y)1−β

×
(∑

x |Ux|1−αPX(x)αPY |X(y|x)α∑
x |Ux|1−αPX(x)α

) β
α

(64)

= sup
PX

sup
PX̃

α

(α− 1)β
log
∑

y

PY (y)1−β

×

(∑
x

PX̃(x)PY |X(y|x)α

) β
α

(65)

where

PX̃(x) =
|Ux|1−αPX(x)α∑
x |Ux|1−αPX(x)α

, (66)

and we have used the fact that any distribution PX̃(x) can be
reached with appropriate choice of |Ux|, assuming PX(x) >
0 for all x; this condition can be assumed because any PX

is arbitrarily close to a distribution with full support. Thus,
combining (57) and (65), we have

Lα,β(X → Y ) = sup
PX

sup
PX̃

α

(α− 1)β

log
∑

y

PY (y)1−β

(∑
x

PX̃(x)PY |X(y|x)α

) β
α

. (67)

Note that the choice of PX only impacts PY , and the quantity
inside the log is convex in PY . Since the supremum of a
convex function is attained at an extreme point, we may
simplify (67) as follows.

Lα,β(X → Y ) = max
x′

sup
PX̃

α

(α− 1)β

log
∑

y

PY |X(y|x′)1−β

(∑
x

PX̃(x)PY |X(y|x)α

)β/α

.

(68)

We now obtain the expression of maximal Rényi leakage.
We first bound maximal Rényi leakage from above as follows.

Lα,β(X → Y )

= max
x′

sup
PX̃

α

(α− 1)β
log
∑

y

PY |X(y|x′)1−β

×

(∑
x

PX̃(x) PY |X(y|x)α

)β/α

(69)

≤ max
x′

sup
PX̃

α

(α− 1)β
log
∑

y

PY |X(y|x′)1−β

×

(∑
x

PX̃(x) max
x

PY |X(y|x)α

)β/α

(70)

= max
x′

sup
PX̃

α

(α− 1)β
log
∑

y

PY |X(y|x′)1−β

×

(
max

x
PY |X(y|x)α

∑
x

PX̃(x)

)β/α

(71)

=
α

(α− 1)β
max

x′
log
∑

y

PY |X(y|x′)1−β

×max
x

PY |X(y|x)β . (72)
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So

lim
α→∞

Lα,β(X → Y )

≤ 1
β

max
x′

log
∑

y

PY |X(y|x′)1−β max
x

PY |X(y|x)β . (73)

We now provide an achievable scheme. We have

Lα,β(X → Y )

= max
x′

sup
PX̃

α

(α− 1)β
log
∑

y

PY |X(y|x′)1−β

×

(∑
x

PX̃(x) PY |X(y|x)α

)β/α

(74)

≥ max
x′

sup
PX̃

α

(α− 1)β
log
∑

y

PY |X(y|x′)1−β

×
(
PX̃(x∗y) PY |X(y|x∗y)α

)β/α
(75)

≥ α

(α− 1)β
max

x′
log
∑

y

PY |X(y|x′)1−β

× |X |−
β
α PY |X(y|x∗y)β (76)

=
α

(α− 1)β
max

x′

[
log |X |−

β
α

+ log
∑

y

PY |X(y|x′)1−β PY |X(y|x∗y)β

]
(77)

= − 1
α− 1

log |X |+ α

(α− 1)β

max
x′

log
∑

y

PY |X(y|x′)1−β PY |X(y|x∗y)β (78)

= − 1
α− 1

log |X |+ α

(α− 1)β

max
x′

log
∑

y

PY |X(y|x′)1−β max
x

PY |X(y|x)β (79)

where x∗y = arg max
x

PY |X(y|x) for y ∈ Y . So

lim
α→∞

Lα,β(X → Y )

≥ 1
β

max
x′

log
∑

y

PY |X(y|x′)1−β max
x

PY |X(y|x)β . (80)

Combining (73) and (80), we get

lim
α→∞

Lα,β(X → Y )

=
1
β

max
x′

log
∑

y

PY |X(y|x′)1−β max
x

PY |X(y|x)β . (81)

APPENDIX B
PROOF OF THEOREM 2

Monotonicity in β: For α ∈ (1,∞), β1, β2 ∈ [1,∞) and
β2 > β1, consider the argument of the logarithm in (14):

∑
y

PY |X(y|x′)1−β1

(∑
x

PX̃(x)PY |X(y|x)α

) β1
α

(82)

=
∑

y

PY |X(y|x′)

(
PY |X(y|x′)−α

×
∑

x

PX̃(x)PY |X(y|x)α

) β2β1
αβ2

(83)

≤

(∑
y

PY |X(y|x′)
(

PY |X(y|x′)−α

×
∑

x

PX̃(x)PY |X(y|x)α

) β2
α

) β1
β2

(84)

=

∑
y

PY |X(y|x′)1−β2

(∑
x

PX̃(x)PY |X(y|x)α

) β2
α


β1
β2

(85)

where the inequality results from applying Jensen’s inequality
to the concave function f : x → xp (x ≥ 0, p < 1). For
α ∈ (1,∞) and β ∈ [1,∞), the function f : t → α

(α−1)β log t
is increasing in t > 0. Therefore, we have

α

(α− 1)β1
log
∑

y

PY |X(y|x′)1−β1

×

(∑
x

PX̃(x)PY |X(y|x)α

) β1
α

(86)

≤ α

(α− 1)β2
log
∑

y

PY |X(y|x′)1−β2

×

(∑
x

PX̃(x)PY |X(y|x)α

) β2
α

. (87)

Taking the maximum over x′ and supremum over PX̃ com-
pletes the proof. Another way to prove this property is to
consider the numerator in (13) as the β-norm of a random vari-
able. Since the β-norm of a random variable is non-decreasing
in β, maximal (α, β)-leakage is non-decreasing in β.

Data processing inequalities: Let random variables X, Y, Z
form a Markov chain, i.e., X−Y −Z. Based on the expression
of maximal (α, β)-leakage in (67) we first prove the post-
processing inequality, that is

Lα,β(X → Z) ≤ Lα,β(X → Y ). (88)

For any y ∈ Y , let

g(y) =

(∑
x

PX̃(x)PY |X(y|x)α

) 1
α

(89)

and

cz(y) =
PY (y) PZ|Y (z|y)

PZ(z)
(90)

such that
∑

y cz(y) = 1. We have

∑
y

PY (y)1−β

(∑
x

PX̃(x)PY |X(y|x)α

) β
α

(91)

=
∑

y

PY (y)1−βg(y)β (92)

=
∑
y,z

PY (y)PZ|Y (z|y)
(

g(y)
PY (y)

)β

(93)
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=
∑

z

PZ(z)
∑

y

cz(y)
(

g(y)
PY (y)

)β

(94)

≥
∑

z

PZ(z)

(∑
y

cz(y)
g(y)

PY (y)

)β

(95)

=
∑

z

PZ(z)1−β

(∑
y

PZ|Y (z|y)g(y)

)β

(96)

where (95) follows from applying Jensen’s inequality to the
convex function f : x → xp (x ≥ 0, p ≥ 1). Recalling the
definition of g(y) from (89), we have∑

y

PZ|Y (z|y)g(y) (97)

=
∑

y

PZ|Y (z|y)
(∑

x

PX̃(x)PY |X(y|x)α

) 1
α

(98)

=
∑

y

(∑
x

(
PX̃(x)

1
α PZ|Y (z|y)PY |X(y|x)

)α
) 1

α

(99)

≥
(∑

x

(∑
y

PX̃(x)
1
α PZ|Y (z|y)PY |X(y|x)

)α
) 1

α

(100)

=

(∑
x

PX̃(x)PZ|X(z|x)α

) 1
α

(101)

where
• (100) follows because p-norm satisfies the triangle

inequality for p ∈ (1,∞),
• (101) follows because the Markov chain X−Y −Z holds.

Applying (101) to (96), and using the fact that for α ∈ (1,∞)
and β ∈ [1,∞), the function f : t → α

(α−1)β log t is increasing
in t > 0, gives

α

(α− 1)β
log
∑

y

PY (y)1−β

(∑
x

PX̃(x)PY |X(y|x)α

) β
α

≥ α

(α− 1)β
log
∑

z

PZ(z)1−β

(∑
x

PX̃(x)PZ|X(z|x)α

) β
α

.

(102)

Taking suprema over PX and PX̃ completes the proof.
We now prove the linkage inequality, that is

Lα,β(X → Z) ≤ Lα,β(Y → Z), (103)

using the definition of maximal (α, β)-leakage in (13). Let

f(PUZ) =
α

α− 1

log

max
PÛ|Z

∑
z

PZ(z)

(∑
u

PU |Z(u|z)PÛ |Z(u|z)
α−1

α

)β
1/β

max
PÛ

∑
u

PU (u)PÛ (u)
α−1

α

.

(104)

For the Markov chain X − Y − Z, we have

Lα,β(X → Z) = sup
PX

sup
U→X→Z

f(PUZ) (105)

= sup
PX

sup
U→X→Y→Z

f(PUZ) (106)

≤ sup
PX

sup
U→Y→Z

f(PUZ) (107)

≤ sup
PY

sup
U→Y→Z

f(PUZ) (108)

= Lα,β(Y → Z)

where (106) follows because PUZ are the same under the
Markov chains U −X − Z and U −X − Y − Z, and (108)
follows from the fact that a subset of all distributions PY is
reachable from the distribution PX .

Non-negativity: Consider the logarithmic term in (14):

log
∑

y

PY |X(y|x′)1−β

(∑
x

PX̃(x)PY |X(y|x)α

) β
α

(109)

≥ log
∑

y

PY |X(y|x′)1−β

(∑
x

PX̃(x)PY |X(y|x)
)β

(110)

= log
∑

y

PY |X(y|x′)
(∑

x PX̃(x)PY |X(y|x)
PY |X(y|x′)

)β

(111)

≥ log

(∑
y

PY |X(y|x′)
∑

x PX̃(x)PY |X(y|x)
PY |X(y|x′)

)β

(112)

= log
(∑

x,y

PX̃(x)PY |X(y|x)
)β

= log 1 = 0 (113)

where both inequalities follow from applying Jensen’s inequal-
ity to the convex function f : x → xp (x ≥ 0, p ≥ 1) and the
fact that logarithmic functions are increasing. Equality holds
in the first inequality if and only if for any y ∈ Y , PY |X(y|x)
are the same for all x ∈ X . Thus, we have

PY |X(y|x) = PY (y) x ∈ X , y ∈ Y (114)

which means X and Y are independent. This condition is also
sufficient for equality in the second inequality.

Additivity: We first prove additivity for n = 2. We have
PX1Y1X2Y2 = PX1Y1 · PX2Y2 . To prove the additivity in (18),
using Theorem 1 it suffices to show that

sup
PX̃1,X̃2

∑
y1,y2

PY1Y2|X1X2(y1, y2|x′1, x′2)1−β

×

(∑
x1,x2

PX̃1,X̃2
(x1, x2)PY1Y2|X1X2(y1, y2|x1, x2)α

)β/α

(115)

= sup
PX̃i
i∈1,2

2∏
i=1

(∑
yi

PY |X(yi|x′i)1−β

×

(∑
xi

PX̃i
(xi)PYi|Xi

(yi|xi)α

)β/α)
, (116)
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for every x′1, x
′
2. We simplify LHS in (115) as

sup
PX̃1,X̃2

∑
y1,y2

PY1Y2|X1X2(y1, y2|x′1, x′2)1−β

×
( ∑

x1,x2

PX̃1,X̃2
(x1, x2)PY1Y2|X1X2(y1, y2|x1, x2)α

)β/α

= sup
PX̃1,X̃2

∑
y1,y2

PY1|X1(y1|x′1)1−βPY2|X2(y2|x′2)1−β

( ∑
x1,x2

PX̃1,X̃2
(x1, x2)PY1|X1(y1|x1)αPY2|X2(y2|x2)α

)β/α

.

(117)

Let k(y1) =
∑

x1
PX̃1

(x1)PY1|X1(y1|x1)α, for all y1, so that
we can define a set of probability distributions over X1 as

PX̂1
(x1|y1) =

PX̃1
(x1)PY1|X1(y1|x1)α

k(y1)
. (118)

Thus, (117) is equal to

sup
PX̃1,X̃2

∑
y1,y2

PY1|X1(y1|x′1)1−βPY2|X2(y2|x′2)1−β

[ ∑
x1,x2

k(y1)PX̂1|Y1
(x1|y1)PX̃2|X̃1

(x2|x1)

PY2|X2(y2|x2)α
]β/α

(119)

≤ sup
PX̃1

,PX̃2|X1

∑
y1

PY1|X1(y1|x1)1−β

(∑
x1

PX̃1
(x1)PY1|X1(y1|x1)α

) β
α max

ỹ1

∑
y2

PY2|X2(y2|x′2)1−β

( ∑
x1,x2

PX̂1|Y1
(x1|ỹ1)PX̃2|X̃1

(x2|x1)PY2|X2(y2|x2)α
)β/α

(120)

= sup
PX̃1

,PX̃2|X1

∑
y1

PY1|X1(y1|x1)1−β

(∑
x1

PX̃1
(x1)PY1|X1(y1|x1)α

) β
α ∑

y2

PY2|X2(y2|x′2)1−β

( ∑
x1,x2

PX̂1|Y1
(x1|y∗1)PX̃2|X̃1

(x2|x1)PY2|X2(y2|x2)α
)β/α

(121)

We now define

PX̂2
(x2) =

∑
x1

PX̂1|Y1
(x1|y∗1)PX2|X1(x2|x1),

which is a probability distribution over X2. Then, (121) is
equal to

sup
PX̃1

,

PX̂2

∑
y1

PY1|X1(y1|x′1)1−β
(∑

x1

PX̃1
(x1)PY1|X1(y1|x1)α

) β
α

×
∑
y2

PY2|X2(y2|x′2)1−β
(∑

x2

PX̂2
(x2)PY2|X2(y2|x2)α

) β
α

(122)

= sup
PX̃i
i∈1,2

2∏
i=1

(∑
yi

PY |X(yi|x′i)1−β

×
(∑

xi

PX̃i
(xi)PYi|Xi

(yi|xi)α
)β/α

)
. (123)

This proves (115) as the lower bound part of (115) is trivial.
Thus we have

Lα,β(X1, X2→Y1, Y2)=Lα,β(X1 → Y1)+Lα,β(X2 → Y2).
(124)

Using (124) twice, we have

Lα,β(X3 → Y 3)

= Lα,β(X2 → Y 2) + Lα,β(X3 → Y3) (125)
= Lα,β(X1 → Y1) + Lα,β(X2 → Y2) + Lα,β(X3 → Y3).

(126)

Similarly, by repeated application of (124) (n − 1) times,
we get (18).

APPENDIX C
PROOF OF THEOREM 3

For α ∈ (1,∞) and β ∈ [1,∞), we first bound Lα,β(X →
Y |Z) from above and then, present an achievable scheme.

Upper Bound: Similarly to (49), the numerator and denom-
inator of (19) become

∑
z,y

PZ,Y (z, y)

(∑
u

PU |Z,Y (u|z, y)α

)β/α

(127)

and ∑
z

PZ(z)

(∑
u

PU |Z(u|z)α

)β/α

, (128)

respectively. Thus, the logarithmic term in (19) reduces to

log

∑
z,y

PZ,Y (z, y)

(∑
u

PU |Z,Y (u|z, y)α

)β/α

∑
z

PZ(z)

(∑
u

PU |Z(u|z)α

)β/α
(129)

= log

∑
z

PZ(z)
∑

y

PY |Z(y|z)

(∑
u

PU |Z,Y (u|z, y)α

)β/α

∑
z

PZ(z)

(∑
u

PU |Z(u|z)α

)β/α

(130)

≤ log max
z

∑
y

PY |Z(y|z)

(∑
u

PU |Z,Y (u|z, y)α

)β/α

(∑
u

PU |Z(u|z)α

)β/α

(131)
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= max
z

log

∑
y

PY |Z(y|z)1−β

(∑
u

PY,U |Z(y, u|z)α

)β/α

(∑
u

PU |Z(u|z)α

)β/α

(132)

where (131) follows from the fact that for any non-negative
ai and bi, we have

∑
i ai∑
i bi

≤ maxi
ai

bi
. Moreover, we have

PY,U |Z(y, u|z)α = PU |Z(u|z)αPY |U,Z(y|u, z)α (133)

and

PY |U,Z(y|u, z)α =

(∑
x

PX|U,Z(x|u, z)PY |X,Z(y|x, z)

)α

(134)

≤
∑

x

PX|U,Z(x|u, z)PY |X,Z(y|x, z)α

(135)

where the equality follows because U −X − Y |Z holds, and
the inequality follows from applying Jensen’s inequality to the
convex function f : x → xp (x ≥ 0, p > 1). Applying (135)
to (132), we may bound Lα,β(X → Y |Z) from above by

Lα,β(X → Y |Z)

≤ sup
PX|Z

sup
U→X→Y |Z

max
z

α

(α− 1)β
log
∑

y

PY |Z(y|z)1−β


∑

x

PY |X,Z(y|x, z)α
∑

u

PU |Z(u|z)αPX|U,Z(x|u, z)∑
u

PU |Z(u|z)α


β
α

(136)

≤ max
z

sup
PX|Z=z

sup
PX̃|Z=z

≪PX|Z=z

α

(α− 1)β
log
∑

y

PY |Z(y|z)1−β

(∑
x

PY |X,Z(y|x, z)αPX̃|Z=z(x)

) β
α

(137)

where

PX̃|Z=z(x) =

∑
u

PU |Z(u|z)αPX|U,Z(x|u, z)∑
u

PU |Z(u|z)α
. (138)

Lower Bound: For this proof, we use the expression in (129) as
well as shattering method. For a given conditional distribution
PY |X,Z , let

z∗ = arg max
z

sup
PX|Z=z

sup
PX̃|Z=z

≪PX|Z=z

∑
y

PY |Z(y|z)1−β

(∑
x

PX̃|Z=z(x)PY |X,Z(y|x, z)α

) β
α

(139)

and

Xz∗ = {x ∈ X : PX,Z(x, z∗) > 0}. (140)

Consider a random variable U whose alphabet consists
of several disjoint subsets. For all x ∈ Xz∗ , let Ux,z∗

be disjoint, finite sets. Moreover, let U0 be a finite
set (disjoint from those above) such that U = U0 ∪⋃

x∈Xz∗
Ux,z∗ . We now define the conditional distribution

PU |X,Z as

PU |X,Z(u|x, z) =


1

|Ux,z∗ |
, z = z∗, u ∈ Ux,z∗

1
|U0| , z ̸= z∗, u ∈ U0

0, otherwise.

(141)

So the numerator of (129) reduces to

∑
z,y

PZ,Y (z, y)

(∑
u

PU |Z,Y (u|z, y)α

)β/α

(142)

=
∑

z ̸=z∗,y

PZ,Y (z, y)

(∑
u

PU |Z,Y (u|z, y)α

)β/α

+ PZ(z∗)
∑

y

PY |Z(y|z∗)1−β

(∑
u

PU,Y |Z(u, y|z∗)α

)β/α

.

(143)

where(∑
u

PU |Z,Y (u|z, y)α

)β/α

(144)

=

(∑
u

(∑
x

PX|Z,Y (x|z, y)PU |Z,X(u|z, x)

)α)β/α

(145)

=

(
|U0|

(∑
x

PX|Z,Y (x|z, y)
1
|U0|

)α)β/α

(146)

=
(
|U0|1−α

)β/α
(147)

and(∑
u

PU,Y |Z(u, y|z∗)α

)β/α

(148)

=
(∑

u

[∑
x′

PX|Z(x′|z∗)

× PU |X,Z(u|x′, z∗)PY |X,Z(y|x′, z∗)
]α)β/α

(149)

=
(∑

x

∑
u∈Ux,z∗

[∑
x′

PX|Z(x′|z∗)

× PU |X,Z(u|x′, z∗)PY |X,Z(y|x′, z∗)
]α)β/α

(150)

=

(∑
x

|Ux,z∗ |

[
PX|Z(x|z∗)

× 1
|Ux,z∗ |

PY |X,Z(y|x, z∗)

]α) β
α

(151)
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=

(∑
x

|Ux,z∗ |1−αPX|Z(x|z∗)α PY |X,Z(y|x, z∗)α

)β/α

.

(152)

Here (145) and (149) follow because U − X − Y |Z holds.
Applying (147) and (152) to (143), the numerator of (129)
becomes

1− PZ(z∗)
|U0|(1−

1
α )β

+ PZ(z∗)
∑

y

PY |Z(y|z∗)1−β

(∑
x

|Ux,z∗ |1−αPX|Z(x|z∗)α PY |X,Z(y|x, z∗)α

)β/α

.

(153)

Similarly, the denominator of (129) becomes

1− PZ(z∗)
|U0|(1−

1
α )β

+ PZ(z∗)

(∑
x

|Ux,z∗ |1−αPX|Z(x|z∗)α

)β/α

.

(154)

Note that for α ∈ (1,∞) and β ∈ [1,∞),
1− PZ(z∗)
|U0|(1−

1
α )β

→ 0

as |U0| → ∞. So we may bound the conditional maximal
(α, β)-leakage from below by

Lα,β(X → Y |Z)

≥ sup
PX|Z=z∗

sup
Ux,z∗

α

(α− 1)β
log
∑

y

PY |Z(y|z∗)1−β

∑
x

PY |X,Z(y|x, z∗)α |Ux,z∗ |1−αPX|Z(x|z∗)α∑
x

|Ux,z∗ |1−αPX|Z(x|z∗)α


β
α

(155)

= sup
PX|Z=z∗

sup
PX̃|Z=z∗≪PX|Z=z∗

α

(α− 1)β

log
∑

y

PY |Z(y|z∗)1−β

(∑
x

PY |X,Z(y|x, z∗)α

× PX̃|Z=z∗(x)

) β
α

, (156)

where here

PX̃|Z=z∗(x) =
|Ux,z∗ |1−αPX|Z(x|z∗)α∑
x

|Ux,z∗ |1−αPX|Z(x|z∗)α
(157)

and we have used the fact that any distribution PX̃|Z=z∗(x)
can be reached with appropriate choice of |Ux,z∗ |. Recalling
the definition of z∗ from (139), we may re-write (156) as

max
z

sup
PX|Z=z

sup
PX̃|Z=z

≪PX|Z=z

α

(α− 1)β
log
∑

y

PY |Z(y|z)1−β

(∑
x

PY |X,Z(y|x, z)α PX̃|Z=z(x)

) β
α

(158)

Therefore, combining (137) and (158), we have

Lα,β(X → Y |Z)

= max
z

sup
PX|Z=z

sup
PX̃|Z=z≪
PX|Z=z

α

(α− 1)β
log
∑

y

PY |Z(y|z)1−β

(∑
x

PY |X,Z(y|x, z)αPX̃|Z=z(x)

) β
α

. (159)

Since the choice of PX|Z=z only impacts PY |Z , and the
supremum of a convex function is attained at an extreme point,
we may simplify (159) as follows.

max
z

max
x′

sup
PX̃|Z=z≪
PX|Z=z

α

(α− 1)β
log
∑

y

PY |X,Z(y|x′, z)1−β

(∑
x

PY |X,Z(y|x, z)αPX̃|Z=z(x)

) β
α

. (160)

APPENDIX D
PROOF OF THEOREM 4

From (20), we have

Lα,β(X → Y |Z)

= max
z

max
x′

sup
PX̄≪

PX|Z=z

α

(α− 1)β
log
∑

y

PY |X,Z(y|x′, z)1−β

(∑
x

PY |X,Z(y|x, z)αPX̄(x)

) β
α

(161)

= max
z

max
x′

sup
PX̄≪

PX|Z=z

α

(α− 1)β
log
∑

y

PY |X(y|x′)1−β

(∑
x

PY |X(y|x)αPX̄(x)

) β
α

(162)

≤ max
x′

sup
PX̄≪PX

α

(α− 1)β
log
∑

y

PY |X(y|x′)1−β

(∑
x

PY |X(y|x)αPX̄(x)

) β
α

(163)

= Lα,β(X → Y ),

where (162) follows because the Markov chain Z − X − Y
holds, and (163) follows from the fact that for any z, the
support of PX|Z=z is a subset of the support of PX . The
equality is achieved if for some z ∈ supp(Z), supp(X) =
supp(X|Z = z).

APPENDIX E
PROOF OF THEOREM 5

We have

Lα,β(X → Y1, Y2|Z)

= max
z,x′

sup
PX̃|Z

α

(α− 1)β
log

∑
y1,y2

PY1,Y2|X,Z(y1, y2|x′, z)1−β

(∑
x

PX̃|Z(x|z)PY1,Y2|X,Z(y1, y2|x, z)α

)β/α

. (164)
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We reduce the argument of the logarithm in (164) as follows.∑
y1,y2

PY1,Y2|X,Z(y1, y2|x′, z)1−β

(∑
x

PX̃|Z(x|z) PY1,Y2|X,Z(y1, y2|x, z)α

)β/α

(165)

=
∑
y1,y2

PY1|X,Z(y1|x′, z)1−βPY2|Y1,X,Z(y2|y1, x
′, z)1−β

(∑
x

PX̃|Z(x|z)PY1|X,Z(y1|x, z)α

× PY2|Y1,X,Z(y2|y1, x, z)α

)β/α

. (166)

Let K(y1, z) =
∑

x

PX̃|Z(x|z)PY1|X,Z(y1|x, z)α, for all y1 ∈

Y1 and z ∈ Z . So, we can construct a set of distributions over
X as

PX̄|Y1,Z(x|y1, z) =
PX̃|Z(x|z)PY1|X,Z(y1|x, z)α

K(y1, z)
. (167)

Thus, we may rewrite the expression in (166) as∑
y1,y2

PY1|X,Z(y1|x′, z)1−βPY2|Y1,X,Z(y2|y1, x
′, z)1−β

(∑
x

PX̄|Y1,Z(x|y1, z) K(y1, z)

× PY2|Y1,X,Z(y2|y1, x, z)α

) β
α

(168)

=
∑
y1,y2

[
PY1|X,Z(y1|x′, z)1−βPY2|Y1,X,Z(y2|y1, x

′, z)1−β

×
(∑

x

PX̃|Z(x|z)PY1|X,Z(y1|x, z)α

) β
α

×
(∑

x

PX̄|Y1,Z(x|y1, z) PY2|Y1,X,Z(y2|y1, x, z)α

) β
α

]
(169)

=
∑
y1

[
PY1|X,Z(y1|x′, z)1−β

(∑
x

PX̃|Z(x|z)

× PY1|X,Z(y1|x, z)α

) β
α ∑

y2

PY2|Y1,X,Z(y2|y1, x
′, z)1−β

(∑
x

PX̄|Y1,Z(x|y1, z) PY2|Y1,X,Z(y2|y1, x, z)α

) β
α

]
(170)

≤
[∑

y1

PY1|X,Z(y1|x′, z)1−β
(∑

x

PX̃|Z(x|z)

PY1|X,Z(y1|x, z)α
) β

α

][
max
y′1∈Y

∑
y2

PY2|Y1,X,Z(y2|y′1, x′, z)1−β

(∑
x

PX̄|Y1,Z(x|y′1, z)PY2|Y1,X,Z(y2|y′1, x, z)α

) β
α
]
. (171)

Applying (171) to (164), we have

Lα,β(X → Y1, Y2|Z)

≤ max
z,x′

sup
PX̃|Z

α

(α− 1)β

[
log
∑
y1

PY1|X,Z(y1|x′, z)1−β

×
(∑

x

PX̃|Z(x|z)PY1|X,Z(y1|x, z)α
) β

α

+ max
y′1

log
∑
y2

PY2|Y1,X,Z(y2|y′1, x′, z)1−β

(∑
x

PX̄|Y1,Z(x|y′1, z)PY2|Y1,X,Z(y2|y′1, x, z)α
) β

α

]
(172)

≤ max
z,x′

sup
PX̃|Z

α

(α− 1)β
log
∑
y1

PY1|X,Z(y1|x′, z)1−β

(∑
x

PX̃|Z(x|z)PY1|X,Z(y1|x, z)α

) β
α

+ max
y′1,z,x′

sup
PX̄|Y1,Z

α

(α− 1)β
log
∑
y2

PY2|Y1,X,Z(y2|y′1, x′, z)1−β

(∑
x

PX̄|Y1,Z(x|y′1, z)PY2|Y1,X,Z(y2|y′1, x, z)α

) β
α

(173)

= Lα,β(X → Y1|Z) + Lα,β(X → Y2|Y1, Z). (174)

APPENDIX F
PROOF OF PROPOSITION 1

For α ≤ β, maximal (α, β)-leakage simplifies to

Lα,β(X → Y )

= max
x′

sup
PX̃

α

(α− 1)β
log
∑

y

PY |X(y|x′)1−β

(∑
x

PX̃(x)PY |X(y|x)α

)β/α

(175)

= max
x′

max
x

α

(α− 1)β
log
∑

y

PY |X(y|x′)1−βPY |X(y|x)β ,

(176)

where (176) follows because the argument of the logarithm
in (175) is convex in PX̃ and so the supremum is attained at
an extreme point. This quantity represents a scaled version of
LRDP of order β which is exactly equal to LRDP for α = β.
We now take the limits of maximal α, β-leakage in (14) as
α →∞ and β →∞. We have

lim
β→∞

lim
α→∞

Lα,β(X → Y ) = lim
β→∞

Lβ(X → Y ), (177)

We first bound lim
β→∞

Lβ(X → Y ) from above as follows.

Lβ(X → Y )

= max
x′

1
β

log
∑

y

PY |X(y|x′)1−β max
x

PY |X(y|x)β (178)

= max
x′

1
β

log
∑

y

PY |X(y|x′)

(
max

x
PY |X(y|x)

PY |X(y|x′)

)β

(179)
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≤ max
x′

1
β

log
∑

y

PY |X(y|x′) max
y

(
max

x
PY |X(y|x)

PY |X(y|x′)

)β

(180)

= max
x′

1
β

log max
y

(
max

x
PY |X(y|x)

PY |X(y|x′)

)β∑
y

PY |X(y|x′)

(181)

= max
x′,y

log

(
max

x
PY |X(y|x)

PY |X(y|x′)

)
(182)

= max
x′,y,x

log
(

PY |X(y|x)
PY |X(y|x′)

)
(183)

As the next step, we provide an achievable scheme. Let

x∗, y∗, x′∗ = arg max
x,y,x′

PY |X(y|x)
PY |X(y|x′)

, we have

Lβ(X → Y )

= max
x′

1
β

log
∑

y

PY |X(y|x′)1−β max
x

PY |X(y|x)β (184)

≥ max
x′

1
β

log max
y

[
PY |X(y|x′)1−β max

x
PY |X(y|x)β

]
(185)

=
1
β

log max
y,x,x′

(
PY |X(y|x)
PY |X(y|x′)

)β

PY |X(y|x′) (186)

≥ 1
β

log
(

PY |X(y∗|x∗)
PY |X(y∗|x′∗)

)β

PY |X(y∗|x′∗) (187)

= log
PY |X(y∗|x∗)
PY |X(y∗|x′∗)

+
1
β

log PY |X(y∗|x′∗), (188)

So

lim
β→∞

Lβ(X → Y ) ≥ log
PY |X(y∗|x∗)
PY |X(y∗|x′∗)

= max
x,y,x′

log
PY |X(y|x)
PY |X(y|x′)

. (189)

Combining (183) and (189) gives

lim
β→∞

Lβ(X → Y ) = max
x,y,x′

log
PY |X(y|x)
PY |X(y|x′)

, (190)

which is LDP.

APPENDIX G
PROOF OF PROPOSITION 3

Applying Theorem 3, for finite alphabets, vector maximal
(α, β)-leakage defined in (25) simplifies to

Lvec
α,β(Xn → Y ) = max

i,x−i,x′i

sup
PX̃i|X−i

α

(α− 1)β

log
∑

y

PY |Xi,X−i
(y|x′i, x−i)1−β

(∑
xi

PY |Xi,X−i
(y|xi, x−i)αPX̃i|X−i

(xi|x−i)

) β
α

, (191)

where PX̃i|X−i
is a distribution on the support of PXi|X−i

.
The expression of vector maximal α-leakage in (27) can be
readily obtained by setting β equal to 1. For α ≤ β, applying
Proposition 2, we can simplify the above expression to

Lvec
α≤β(Xn → Y ) = max

i,x−i,x′i,xi

α

(α− 1)β

log
∑

y

PY |Xi,X−i
(y|x′i, x−i)1−βPY |Xi,X−i

(y|xi, x−i)β .

(192)

Note that (x′i, x−i) and (xi, x−i) can be considered as two
datasets which differ only in the ith entries. So, the maximums
over xi, x

′
i, and x−i explore neighboring datasets differing

in ith entries, and the maximum across all i ensures the
consideration of all possible neighboring datasets. Thus, the
above expression may be rewritten to the following form:

max
xn∼x′n

α

(α− 1)β
log
∑

y

PY |Xn(y|x′n)1−βPY |Xn(y|xn)β ,

(193)

which is a scaled RDP of order β with the scaling factor

of
α(β − 1)
(α− 1)β

. Moreover, when α = β, this quantity is exactly

equal to RDP of order α = β which in turn recovers DP as α =
β → ∞. For α → ∞ and an arbitrary β, applying Proposi-
tion 2, we get the expression of vector maximal Rényi leakage.

APPENDIX H
PROOF OF LEMMA 1

We first prove the expression (32) which provides a still
other representation of the leakage measure.

Consider any γ ∈ (−∞, 0]∪[1,∞), and any constants C(y)
for y ∈ Y . Furthermore, consider the optimization problem

inf
QY

∑
y

C(y)QY (y)γ . (194)

γ is in the range where (194) is convex in QY , so it is solved
by setting the derivative of QY (y) to a constant:

ν =
∂

∂QY (y)

∑
y

C(y)QY (y)γ = C(y) γ QY (y)γ−1. (195)

We can see that the optimal choice is therefore

QY (y) =
C(y)1/(1−γ)∑
y′ C(y′)1/(1−γ)

. (196)

Thus (194) becomes∑
y C(y)C(y)γ/(1−γ)(∑

y′ C(y′)1/(1−γ)
)γ =

(∑
y

C(y)1/(1−γ)

)1−γ

. (197)

In our case, we have γ = 1−α
τ < 0, and

C(y) =
∑

x

PX̃(x)PY |X(y|x)αPY |X(y|x′)(1− 1
τ )(1−α).

(198)
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Applying the result in (197) to our case, we find that (32) is
equal to

max
x′

sup
PX̃

1
α− 1

log
[∑

y

(∑
x

PX̃(x)PY |X(y|x)α

× PY |X(y|x′)(1− 1
τ )(1−α)

) τ
τ+α−1

] τ+α−1
τ

(199)

= max
x′

sup
PX̃

(
1

α− 1
+

1
τ

)
log
∑

y

PY |X(y|x′)
(τ−1)(1−α)

τ+α−1

×

(∑
x

PX̃(x)PY |X(y|x)α

) τ
τ+α−1

(200)

which is precisely (31).
Moreover, we claim that maximal (α, τ)-leakage is

non-decreasing in τ and α for a fixed α and τ , respectively.
Since β is increasing in τ , the first claim, that the measure is
non-decreasing in τ , is equivalent to it being non-decreasing
in β, which we have already proved in Appendix B. Given
the expression (32), we prove that Lα,τ (X → Y ) is
non-decreasing in α for a fixed τ as follows. We may write
the objective function in (32) as

1
α− 1

log
∑
x,y

PX̃(x)PY |X(y|x)

×

(
PY |X(y|x)

QY (y)
1
τ PY |X(y|x′)1− 1

τ

)α−1

. (201)

This expression is non-decreasing in α due to the fact that,
for any distribution PZ , and any constants C(z),

1
α− 1

log
∑

z

PZ(z)C(z)α−1 (202)

is non-decreasing in α for α > 1.

APPENDIX I
PROOF OF PROPOSITION 4

For a fixed τ , we have

lim
α→1

Lα,τ (X → Y )

= lim
α→1

max
x′

sup
PX̃

inf
QY

1
α− 1

log
∑
x,y

PX̃(x)PY |X(y|x)α

×
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α

(203)

= max
x′

lim
α→1

sup
PX̃

inf
QY

1
α− 1

log
∑
x,y

PX̃(x)PY |X(y|x)α

×
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α

(204)

= max
x′

inf
α

sup
PX̃

inf
QY

1
α− 1

log
∑
x,y

PX̃(x)PY |X(y|x)α

×
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α

(205)

= max
x′

inf
α

inf
QY

sup
PX̃

1
α− 1

log
∑
x,y

PX̃(x)PY |X(y|x)α

×
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α

(206)

= max
x′

inf
QY

inf
α

sup
PX̃

1
α− 1

log
∑
x,y

PX̃(x)PY |X(y|x)α

×
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α

(207)

= max
x′

inf
QY

lim
α→1

sup
PX̃

1
α− 1

log
∑
x,y

PX̃(x)PY |X(y|x)α

×
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α

(208)

= max
x′

inf
QY

lim
α→1

max
x

1
α− 1

log
∑

y

PY |X(y|x)α

×
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α

(209)

= max
x′

inf
QY

max
x

lim
α→1

1
α− 1

log
∑

y

PY |X(y|x)α

×
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α

(210)

= max
x′

inf
QY

max
x

∑
y

PY |X(y|x) log
PY |X(y|x)

QY (y)
1
τ PY |X(y|x′)1− 1

τ

(211)

= max
x′

inf
QY

sup
PX̃

∑
x,y

PX̃(x)PY |X(y|x)

× log
PY |X(y|x)

QY (y)
1
τ PY |X(y|x′)1− 1

τ

(212)

= max
x′

sup
PX̃

inf
QY

∑
x,y

PX̃(x)PY |X(y|x)

× log
PY |X(y|x)

QY (y)
1
τ PY |X(y|x′)1− 1

τ

(213)

= max
x′

sup
PX̃

inf
QY

∑
x,y

PX̃(x)PY |X(y|x)

× log
(

PY |X(y|x)
PY |X(y|x′)

)1− 1
τ
(

PY |X(y|x)
QY (y)

) 1
τ

(214)

= max
x′

sup
PX̃

inf
QY

(1− 1
τ

)
∑
x,y

PX̃(x)PY |X(y|x)

× log
(

PY |X(y|x)
PY |X(y|x′)

)
+

1
τ

∑
x,y

PX̃(x)PY |X(y|x) log
(

PY |X(y|x)
QY (y)

)
(215)

= max
x′

sup
PX̃

[
(1− 1

τ
)DKL

(
PY |X(y|x)∥PY |X(y|x′)|PX̃(x)

)
+

1
τ

inf
QY

DKL(PX̃(x)PY |X(y|x)∥PX̃(x)QY (y))

]
(216)

= max
x′

sup
PX̃

(1− 1
τ

)DKL

(
PY |X(y|x)∥PY |X(y|x′)|PX̃(x)

)
+

1
τ

I(X̃; Y ), (217)

where
• (205) and (208) follow because the objective function is

non-decreasing in α,
• (206) follows because the quantity inside the log is linear

(and thus concave) in PX̃ and convex in QY ,
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• (209) follows because the quantity inside the log is linear
in PX̃ and so supremum is attained at a corner point,

• (211) follows from L’Hopital’s rule,
• (212) follows because the objective function in (212) is

linear in PX̃ and so the sup is attained at a corner point,
• (213) follows because the objective is linear (thus

concave) in PX̃ and convex in QY .

APPENDIX J
PROOF OF THEOREM 6

We first prove the continuity of maximal (α, τ)-leakage,
and following that, we demonstrate the continuity of MαbeL.
In our analysis, we employ the extended real number line.

A. Continuity of Maximal (α, τ )-Leakage

Let

τ−ϵ (τ0) =


τ0 − ϵ if τ0 ∈ (1,∞)
1
ϵ

if τ0 = ∞
1 if τ0 = 1,

(218)

τ+
ϵ (τ0) =

{
τ0 + ϵ if τ0 ∈ [1,∞)
∞ if τ0 = ∞,

(219)

α−ϵ (α0) =


α0 − ϵ if α0 ∈ (1,∞)
1
ϵ

if α0 = ∞
1 if α0 = 1,

(220)

and

α+
ϵ (α0) =

{
α0 + ϵ if α0 ∈ [1,∞)
∞ if α0 = ∞.

(221)

To prove the continuity of maximal (α, τ)-leakage at
(α0, τ0) ∈ [1,∞] × [1,∞], we define a rectangular
region characterized by its corners at (α−ϵ (α0), τ−ϵ (τ0)),
(α−ϵ (α0), τ+

ϵ (τ0)), (α+
ϵ (α0), τ−ϵ (τ0)), and (α+

ϵ (α0), τ+
ϵ (τ0)),

with the point (α0, τ0) lying inside or on the borders of this
region, and we show that

lim
ϵ→0

inf
α∈[α−ϵ (α0),α

+
ϵ (α0)],

τ∈[τ−ϵ (τ0),τ
+
ϵ (τ0)]

Lα,τ (X → Y )

= lim
ϵ→0

sup
α∈[α−ϵ (α0),α

+
ϵ (α0)],

τ∈[τ−ϵ (τ0),τ
+
ϵ (τ0)]

Lα,τ (X → Y ) (222)

= Lα0,τ0(X → Y ). (223)

Note that the rectangular region converges to the point (α0, τ0)
as ϵ → 0. We recall that
Lα=1,τ (X → Y )) = τ -Shannon leakage
Lα=∞,τ (X → Y ) = Maximal Rényi leakage of order τ

Lα,τ=∞(X → Y ) = LLRDP
α (X → Y )

Lα=∞,τ=∞(X → Y ) = LLDP(X → Y ).

(224)

Lower bound: For (α, τ) ∈ (1,∞)× [1,∞), we have

Lα,τ (X → Y ) = max
x′

sup
PX̃

Qx′,PX̃
(α, τ), (225)

where

Qx′,PX̃
(α, τ) =

(
1

α− 1
+

1
τ

)
log
∑

y

PY |X(y|x′)
(τ−1)(1−α)

τ+α−1

×

(∑
x

PX̃(x)PY |X(y|x)α

) τ
τ+α−1

. (226)

Qx′,PX̃
(α, τ) is continuous in (α, τ), for all (α, τ) ∈ (1,∞)×

[1,∞), and it may be defined by its continuous extension at
α = ∞, τ = ∞, or α = 1, (227), as shown at the bottom of
the next page. We know that (225) holds for (α, τ) ∈ (1,∞)×
[1,∞). Now we show that it also holds for (α, τ) ∈ [1,∞]2 \
(1,∞) × [1,∞). Employing (224) and (227), for (α, τ) ∈
{1,∞}× [1,∞], we can see that

max
x′

sup
PX̃

Qx′,PX̃
(α, τ) = Lα,τ (X → Y ). (228)

For α ∈ (1,∞) and τ = ∞, we also have

max
x′

sup
PX̃

Qx′,PX̃
(α, τ = ∞)

= max
x′

sup
PX̃

1
α− 1

log
∑
x,y

PX̃(x)PY |X(y|x′)1−αPY |X(y|x)α

(229)

= max
x′

max
x

1
α− 1

log
∑

y

PY |X(y|x′)1−αPY |X(y|x)α

(230)
= Lα,τ=∞(X → Y ), (231)

where (230) follows because the quantity inside the logarithm
is linear in PX̃ and so the supremum is achieved at an
endpoint.

For (α0, τ0) ∈ [1,∞]× [1,∞], we have

lim
ϵ→0

inf
α∈[α−ϵ (α0),α

+
ϵ (α0)],

τ∈[τ−ϵ (τ0),τ
+
ϵ (τ0)]

Lα,τ (X → Y ) (232)

= lim
ϵ→0

Lα−ϵ (α0),τ
−
ϵ (τ0)

(X → Y ) (233)

= lim
ϵ→0

max
x′

sup
PX̃

Qx′,PX̃
(α−ϵ (α0), τ−ϵ (τ0)) (234)

= max
x′

lim
ϵ→0

sup
PX̃

Qx′,PX̃
(α−ϵ (α0), τ−ϵ (τ0)) (235)

= max
x′

sup
ϵ>0

sup
PX̃

Qx′,PX̃
(α−ϵ (α0), τ−ϵ (τ0)) (236)

= max
x′

sup
PX̃

sup
ϵ>0

Qx′,PX̃
(α−ϵ (α0), τ−ϵ (τ0)) (237)

= max
x′

sup
PX̃

lim
ϵ→0

Qx′,PX̃
(α−ϵ (α0), τ−ϵ (τ0)) (238)

= max
x′

sup
PX̃

Qx′,PX̃
(α−0 (α0), τ−0 (τ0)) (239)

= max
x′

sup
PX̃

Qx′,PX̃
(α0, τ0) (240)

= Lα0,τ0(X → Y ) (241)

where (233) follows because Lα,τ (X → Y ) is non-decreasing
in α and τ . (236) and (238) follow because Qx′,PX̃

(α, τ) is
non-decreasing in α and τ for a fixed τ and α, respectively.
Moreover, α−ϵ (α0) and τ−ϵ (τ0) are non-increasing in ϵ for
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a fixed α0 and τ0, respectively. The equality (239) follows
because Qx′,PX̃

(α−ϵ (α0), τ−ϵ (τ0)) is continuous in ϵ.
Upper Bound: For (α, τ) ∈ (1,∞) × [1,∞), consider the

expression of Lα,τ (X → Y ) in (32):

Lα,τ (X → Y )

= max
x′

sup
PX̃

inf
QY

1
α− 1

log
∑
x,y

PX̃(x)PY |X(y|x)α

×
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α

(242)

= max
x′

inf
QY

sup
PX̃

1
α− 1

log
∑
x,y

PX̃(x)PY |X(y|x)α

×
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α

(243)

= max
x′

inf
QY

max
x

1
α− 1

log
∑

y

PY |X(y|x)α

×
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α

(244)

where (243) follows because the quantity inside the logarithm
is convex in QY and linear (so concave) in PX̃ , and (244)
follows because the quantity inside the logarithm is linear in
PX̃ and so the supremum is achieved at an endpoint. Consider
the objective in (244):

fx′,QY ,x(α, τ)

=
1

α− 1
log
∑

y

PY |X(y|x)α
(
QY (y)

1
τ PY |X(y|x′)1− 1

τ

)1−α

(245)

= log

[∑
y

PY |X(y|x)

(
PY |X(y|x) QY (y)−

1
τ

× PY |X(y|x′)−1+ 1
τ

)α−1]1/α−1

. (246)

fx′,QY ,x(α, τ) may be defined by its continuous extension at
α = ∞, τ = ∞, or α = 1, (247), as shown at the bottom of
the next page.

Looking at (244), for (α, τ) ∈ (1,∞) × [1,∞), it is clear
that

Lα,τ (X → Y ) = max
x′

inf
QY

max
x

fx′,QY ,x(α, τ). (248)

We now show that the above equality also holds for (α, τ) ∈
[1,∞]2 \ (1,∞) × [1,∞). Employing (247), for α ∈ (1,∞)
and τ = ∞, we have

max
x′

inf
QY

max
x

fx′,QY ,x(α, τ = ∞)

= LLRDP
α (X → Y ) (249)

= Lα,τ=∞(X → Y ). (250)

Similarly, for α = τ = ∞, we have

max
x′

inf
QY

max
x

fx′,QY ,x(α = ∞, τ = ∞)

= LLDP(X → Y ) (251)
= Lα=∞,τ=∞(X → Y ). (252)

Applying similar steps to equations (211)-(217), for α = 1 and
τ ∈ [1,∞], we have

max
x′

inf
QY

max
x

fx′,QY ,x(α = 1, τ)

= Lα=1,τ (X → Y ) (253)
= τ -Shannon leakage. (254)

For α = ∞ and τ ∈ [1,∞), we have

max
x′

inf
QY

max
x

fx′,QY ,x(α = ∞, τ)

= max
x′

inf
QY

max
x,y

log PY |X(y|x) QY (y)−
1
τ PY |X(y|x′)−1+ 1

τ

(255)

=
1
τ

max
x′

inf
QY

max
y

log QY (y)−1 PY |X(y|x′)1−τ

×max
x

PY |X(y|x)τ (256)

=
1
τ

max
x′

inf
QY

max
y

log QY (y)−1

×
PY |X(y|x′)1−τ max

x
PY |X(y|x)τ∑

y′

PY |X(y′|x′)1−τ max
x

PY |X(y′|x)τ

×
∑
y′

PY |X(y′|x′)1−τ max
x

PY |X(y′|x)τ (257)

=
1
τ

max
x′

[
log
∑
y′

PY |X(y′|x′)1−τ max
x

PY |X(y′|x)τ

+ inf
QY

log max
y

QY (y)−1

×
PY |X(y|x′)1−τ max

x
PY |X(y|x)τ∑

y′

PY |X(y′|x′)1−τ max
x

PY |X(y′|x)τ

]
. (258)

Now we show that

inf
QY

log max
y

QY (y)−1

Qx′,PX̃
(α, τ) =



1
τ

I(X̃; Y ) +
(

1− 1
τ

)
DKL

(
PY |X(y|x)∥PY |X(y|x′)|PX̃(x)

)
if α = 1, τ ∈ [1,∞]

1
τ

log
∑

y

PY |X(y|x′)1−τ max
x

PY |X(y|x)τ if α = ∞, τ ∈ [1,∞)

1
α− 1

log
∑
x,y

PX̃(x)PY |X(y|x′)1−αPY |X(y|x)α if α ∈ (1,∞), τ = ∞

max
x,y

PY |X(y|x)PY |X(y|x′)−1 if α = ∞, τ = ∞.

(227)
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×
PY |X(y|x′)1−τ max

x
PY |X(y|x)τ∑

y′

PY |X(y′|x′)1−τ max
x

PY |X(y′|x)τ
= 0. (259)

Let gY (y) =
PY |X(y|x′)1−τ max

x
PY |X(y|x)τ∑

y′

PY |X(y′|x′)1−τ max
x

PY |X(y′|x)τ
be a

distribution on Y . If QY (y) = gY (y) for all y ∈ Y , we have
log max

y
QY (y)−1gY (y) = 0. So,

inf
QY

log max
y

QY (y)−1gY (y) ≤ 0. (260)

Moreover, we have

inf
QY

log max
y

gY (y)
QY (y)

= inf
QY

max
y

log
gY (y)
QY (y)

(261)

= inf
QY

∑
y′

gY (y′)
(

max
y

log
gY (y)
QY (y)

)
(262)

≥ inf
QY

∑
y′

gY (y′) log
gY (y′)
QY (y′)

(263)

= inf
QY

DKL (gY ∥QY ) = 0. (264)

Combining (260) and (264), we get inf
QY

log max
y

gY (y)
QY (y)

= 0.

Therefore, (258) collapses to

1
τ

max
x′

log
∑
y′

PY |X(y′|x′)1−τ max
x

PY |X(y′|x)τ

= Lα=∞,τ (X → Y ). (265)

This completes the proof of the validity of (248) for all
(α, τ) ∈ [1,∞]2.

We now investigate the monotonicity of fx′,QY ,x(α, τ)
in α and τ . fx′,QY ,x(α, τ) is non-decreasing in α for a
fixed τ because the quantity inside the logarithm in (246)
represents (α − 1)-norm of a random variable, and (α − 1)-
norm of a random variable is non-decreasing in α. In the
proof of Lemma 1, we show that Qx′,PX̃

(α, τ) defined
in (226) is non-decreasing in τ and so sup

PX̃

Qx′,PX̃
(α, τ) is

non-decreasing in τ . Moreover, equations (242)-(244) show
that inf

QY

max
x

fx′,QY ,x(α, τ) = sup
PX̃

Qx′,PX̃
(α, τ) (note that

the infimum of the objective in (242) over QY is equal to
Qx′,PX̃

(α, τ)). So, inf
QY

max
x

fx′,QY ,x(α, τ) is non-decreasing

in τ .

For (α0, τ0) ∈ [1,∞]2, we have

lim
ϵ→0

sup
α∈[α−ϵ (α0),α

+
ϵ (α0)],

τ∈[τ−ϵ (τ0),τ
+
ϵ (τ0)]

Lα,τ (X → Y ) (266)

= lim
ϵ→0

Lα+
ϵ (α0),τ

+
ϵ (τ0)

(X → Y ) (267)

= lim
ϵ→0

max
x′

inf
QY

max
x

fx′,QY ,x(α+
ϵ (α0), τ+

ϵ (τ0)) (268)

= max
x′

lim
ϵ→0

inf
QY

max
x

fx′,QY ,x(α+
ϵ (α0), τ+

ϵ (τ0)) (269)

= max
x′

inf
ϵ>0

inf
QY

max
x

fx′,QY ,x(α+
ϵ (α0), τ+

ϵ (τ0)) (270)

= max
x′

inf
QY

inf
ϵ>0

max
x

fx′,QY ,x(α+
ϵ (α0), τ+

ϵ (τ0)) (271)

≤ max
x′

inf
QY

lim
ϵ→0

max
x

fx′,QY ,x(α+
ϵ (α0), τ+

ϵ (τ0)) (272)

= max
x′

inf
QY

max
x

lim
ϵ→0

fx′,QY ,x(α+
ϵ (α0), τ+

ϵ (τ0)) (273)

= max
x′

inf
QY

max
x

fx′,QY ,x(α+
0 (α0), τ+

0 (τ0)) (274)

= max
x′

inf
QY

max
x

fx′,QY ,x(α0, τ0) (275)

= Lα0,τ0(X → Y ), (276)

where
• (267) follows because Lα,τ (X → Y ) is non-decreasing

in α and τ .
• (270) follows because fx′,QY ,x(α, τ) is non-decreasing

in α for a fixed τ and inf
QY

max
x

fx′,QY ,x(α, τ) is

non-decreasing in τ for a fixed α. Moreover, α+
ϵ (α0)

and τ+
ϵ (τ0) are non-decreasing in ϵ for a fixed α0 and

τ0, respectively.
• (274) follows because fx′,QY ,x(α+

ϵ (α0), τ+
ϵ (τ0)) is con-

tinuous in ϵ.
For (α0, τ0) ∈ [1,∞]2, combining (241) and (276), we have

Lα0,τ0(X → Y ) = lim
ϵ→0

inf
α∈[α−ϵ (α0),α

+
ϵ (α0)],

τ∈[τ−ϵ (τ0),τ
+
ϵ (τ0)]

Lα,τ (X → Y )

≤ lim
ϵ→0

sup
α∈[α−ϵ (α0),α

+
ϵ (α0)],

τ∈[τ−ϵ (τ0),τ
+
ϵ (τ0)]

Lα,τ (X → Y )

≤ Lα0,τ0(X → Y ). (277)

which implies

lim
ϵ→0

inf
α∈[α−ϵ (α0),α

+
ϵ (α0)],

τ∈[τ−ϵ (τ0),τ
+
ϵ (τ0)]

Lα,τ (X → Y )

= lim
ϵ→0

sup
α∈[α−ϵ (α0),α

+
ϵ (α0)],

τ∈[τ−ϵ (τ0),τ
+
ϵ (τ0)]

Lα,τ (X → Y ) (278)

= Lα0,τ0(X → Y ). (279)

fx′,QY ,x(α, τ) =



∑
y

PY |X(y|x) log
PY |X(y|x)

QY (y)
1
τ PY |X(y|x′)1− 1

τ

if α = 1, τ ∈ [1,∞]

max
y

log PY |X(y|x) QY (y)−
1
τ PY |X(y|x′)−1+ 1

τ if α = ∞, τ ∈ [1,∞)

Dα

(
PY |X(y|x)∥PY |X(y|x′)

)
if α ∈ (1,∞), τ = ∞

max
y

PY |X(y|x)PY |X(y|x′)−1 if α = ∞, τ = ∞.

(247)
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This completes the proof of the continuity of maximal (α, τ)-
leakage.

B. Continuity of Lα,β(X → Y ) at (α, β) ∈ [1,∞]2 \ {(1, 1)}
Let

BXY (α, β) = Lα,β(X → Y )

and
TXY (α, τ) = Lα,τ (X → Y ).

For α > β, we have

TXY (α, τ) = BXY

(
α,

ατ

τ + α− 1

)
(280)

and

BXY (α, β) = TXY

(
α,

β(α− 1)
α− β

)
. (281)

To demonstrate the continuity of MαbeL, we employ the
sequential continuity theorem, that is, a function f is con-
tinuous at a if and only if f(xn) → f(a) for all sequences
xn → a.

Continuity at (α0, β0) with α0 > β0: If lim
n→∞

(αn, βn) =
(α0, β0), then for sufficiently large n, we have αn > βn and
so

lim
n→∞

BXY (αn, βn)

= lim
n→∞

TXY

(
αn,

βn(αn − 1)
αn − βn

)
(282)

= TXY

(
lim

n→∞
αn, lim

n→∞

βn(αn − 1)
αn − βn

)
(283)

= TXY

(
α0,

β0(α0 − 1)
α0 − β0

)
(284)

= BXY (α0, β0), (285)

where (283) and (284) follow from the continuity of maximal

(α, τ)-leakage and the continuity of
β(α− 1)
α− β

for α > β,

respectively.
Continuity at (α0, β0) with 1 ̸= α0 < β0: We first prove

the continuity of LLRDP
β (X → Y ) at β > 1 as follows.

If lim
n→∞

βn = β ̸= 1, then we have

lim
n→∞

LLRDP
βn

(X → Y )

= lim
n→∞

max
x,x′∈X

1
βn − 1

log
∑

y

PY |X(y|x′)1−βn

× PY |X(y|x)βn (286)

= max
x,x′∈X

lim
n→∞

1
βn − 1

log
∑

y

PY |X(y|x′)1−βn

× PY |X(y|x)βn (287)

= max
x,x′∈X

1
β − 1

log
∑

y

PY |X(y|x′)1−βPY |X(y|x)β (288)

= LLRDP
β (X → Y ), (289)

where (288) follows because the objective is continuous at
β > 1. Note that the objective is defined by its continuous

extension, i.e., KL divergence, at β = 1. If lim
n→∞

(αn, βn) =
(α0, β0) with 1 ̸= α0 < β0, then for sufficiently large n,
we have 1 ̸= αn < βn. So,

lim
n→∞

Lαn,βn(X → Y )

= lim
n→∞

αn(βn − 1)
(αn − 1)βn

LLRDP
βn

(X → Y ) (290)

=
α0(β0 − 1)
(α0 − 1)β0

LLRDP
β0

(X → Y ) (291)

= Lα0,β0(X → Y ), (292)

where (291) follows from the continuity of LLRDP
β (X → Y )

and
α(β − 1)
(α− 1)β

for α ̸= 1.

Continuity at (α0, β0) with 1 = α0 < β0:
Let lim

n→∞
(αn, βn) = (1, β0 ̸= 1). If LLRDP

β0
(X → Y ) ̸= 0,

for sufficiently large n, we have

lim
n→∞

Lαn,βn
(X → Y )

= lim
n→∞

αn(βn − 1)
(αn − 1)βn

LLRDP
βn

(X → Y ) (293)

= ∞. (294)

Here, maximal (α, β)-leakage is continuous in the sense that
the limit points of all the sequences {Lαn,βn

(X → Y )}n∈N
are equal to ∞. Moreover, if LLRDP

β0
(X → Y ) = 0, then X

and Y are independent. So, Lα,β(X → Y ) = 0 everywhere
and is continuous.

Continuity at (α0, β0) with α0 = β0 ̸= 1: Let

lim
n→∞

(αn, βn) = (β0, β0) ̸= (1, 1),

and let partition {(αn, βn)}n∈N into two distinct subsequences
{(αnk

, βnk
)}k∈S1 with αnk

≤ βnk
and {(αn̄k

, βn̄k
)}k∈S2

with αn̄k
> βn̄k

, where {nk}k∈S1 ∪ {n̄k}k∈S2 = N and
S1, S2 ⊆ N. If either of the subsequences is finite, then the
sequence {(αn, βn)}n>N with N > min{max

k∈S1
nk, max

k∈S2
n̄k}

consists entirely of elements from the other subsequence. As a
result, this finite subsequence does not impact the convergence
of the original sequence {(αn, βn)}n∈N. Here, we consider
the scenario where S1 = S2 = N. Since every subsequence
of a convergent sequence converges to the same limit as
the original sequence, we have lim

k→∞
(αnk

, βnk
) = (β0, β0)

and lim
k→∞

(αn̄k
, βn̄k

) = (β0, β0). For {(αnk
, βnk

)}k∈N with
αnk

≤ βnk
, we have

lim
k→∞

Lαnk
,βnk

(X → Y )

= lim
k→∞

αnk
(βnk

− 1)
(αnk

− 1)βnk

LLRDP
βnk

(X → Y ) (295)

= LLRDP
β0

(X → Y ). (296)

The last equality follows from the continuity of LLRDP
β (X →

Y ) and
α(β − 1)
(α− 1)β

for α ̸= 1. Furthermore, recalling the

functions BXY (α, β) and TXY (α, τ), for {(αn̄k
, βn̄k

)}k∈N
with αn̄k

> βn̄k
, we have

lim
k→∞

Lαn̄k
,βn̄k

(X → Y )
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= lim
k→∞

BXY (αn̄k
, βn̄k

) (297)

= lim
k→∞

TXY

(
αn̄k

,
βn̄k

(αn̄k
− 1)

αn̄k
− βn̄k

)
(298)

= TXY

(
lim

k→∞
αn̄k

, lim
k→∞

βn̄k
(αn̄k

− 1)
αn̄k

− βn̄k

)
(299)

= TXY (β0,∞) (300)

= LLRDP
β0

(X → Y ) (301)

where (299) follows from the continuity of Lα,τ (X → Y )
and (301) follows because

lim
τ→∞

Lα,τ (X → Y ) = LLRDP
α (X → Y ).

Combining (296) and (301), we get

lim
n→∞

Lαn,βn
(X → Y ) = LLRDP

β0
(X → Y ).

This completes the proof of continuity.

APPENDIX K
PROOF OF THEOREM 7

Here, we extend our results to continuous real random
variables through the Riemann integral. The results can also
be extended to higher dimensions through Lebesgue integral.
We first consider a case in which X still has a finite alphabet
X but Y takes value from a continuous alphabet Y ⊆ R.

Lemma 2: When X has a finite alphabet and Y is contin-
uous, maximal (α, β)-leakage defined in (13) simplifies to

Lα,β(X → Y ) = sup
PX

sup
PX̃

α

(α− 1)β
log
∫
Y

fY (y)1−β

(∑
x

PX̃(x)fY |X(y|x)α

) β
α

dy (302)

where PX̃ is a distribution on the support of PX .
The proof of lemma 2 follows similar steps to the proof of

Theorem 1 along the lines of [16, Proof of Theorem 7]. Using
lemma 2, we prove Theorem 7 as follows.

Upper Bound: Applying similar steps to the proof of upper
bound for Theorem 1, we may get

Lα,β(X → Y ) ≤ sup
fX

sup
fX̃

α

(α− 1)β
log
∫
Y

fY (y)1−β

(∫
X

fX̃(x)fY |X(y|x)αdx

) β
α

dy. (303)

Lower Bound: Fix n1, n2 ∈ N and a, b ∈ R such that a, b > 0.
We partition the intervals [−a, a] and [−b, b] into subintervals

with equal lengths ∆1 =
2a

n1
and ∆2 =

2b

n2
, respectively. Let

X̄ =
n1∑
i=1

x∗i 1{X ∈ [−a + (i− 1)∆1,−a + i∆1]}

for x ∈ [−a, a], and X̄ = x∗0, otherwise. Moreover, let

Ȳ =
n2∑

j=1

y∗j 1{Y ∈ [−b + (j − 1)∆2,−b + j∆2]}

for y ∈ [−b, b], and Ȳ = y∗0 , otherwise. Here, 1{·} is the
indicator function. Furthermore, x∗i ∈ [−a + (i− 1)∆1,−a +
i∆1] for i ∈ {1, · · · , n1} and y∗j ∈ [−b+(j−1)∆2,−b+j∆2]
for j ∈ {1, · · · , n2} are fixed points, and x∗0 and y∗0 are
fixed symbols. For continuous random variables X and Y
and their quantized versions X̄ and Ȳ , we now prove that
since the Markov chain X̄ − X − Y − Ȳ holds, we have
Lα,β(X → Y ) ≥ Lα,β(X̄ → Ȳ ). To do so, we first
prove Lα,β(X → Y ) ≥ Lα,β(X̄ → Y ) and then, we show
Lα,β(X̄ → Y ) ≥ Lα,β(X̄ → Ȳ ). At the end, we bound
Lα,β(X̄ → Ȳ ) from below. Applying similar steps to the
proof of the linkage inequality for random variables with finite
alphabets, i.e., (16b), we may prove the following lemma.

Lemma 3: Let X have a finite alphabet and Y and Z be
continuous random variables. If the Markov chain X−Y −Z
holds then Lα,β(Y → Z) ≥ Lα,β(X → Z), which means

Lα,β(X → Y ) ≥ Lα,β(X̄ → Y ). (304)

Using lemma 2, we prove the following post-processing
inequality.

Lemma 4: Let X and Z have finite alphabets and Y be a
continuous random variable. If the Markov chain X − Y −Z
holds then Lα,β(X → Y ) ≥ Lα,β(X → Z).

Proof: For any y ∈ Y , let

g(y) =

(∑
x

PX̃(x)fY |X(y|x)α

) 1
α

(305)

and

cz(y) =
fY (y) PZ|Y (z|y)

PZ(z)
(306)

such that
∫
Y cz(y) dy = 1. We have

∫
Y

fY (y)1−β

(∑
x

PX̃(x)fY |X(y|x)α

) β
α

dy (307)

=
∫
Y

fY (y)1−βg(y)βdy (308)

=
∫
Y

∑
z

fY (y)PZ|Y (z|y)
(

g(y)
fY (y)

)β

dy (309)

=
∑

z

PZ(z)
∫
Y

cz(y)
(

g(y)
fY (y)

)β

dy (310)

≥
∑

z

PZ(z)
(∫

Y
cz(y)

g(y)
fY (y)

dy

)β

(311)

=
∑

z

PZ(z)1−β

(∫
Y

PZ|Y (z|y)g(y) dy

)β

(312)

where (311) follows from applying Jensen’s inequality to the
convex function f : x → xp (x ≥ 0, p ≥ 1). Recalling the
definition of g(y) from (305), we have∫

Y
PZ|Y (z|y)g(y) dy (313)

=
∫
Y

PZ|Y (z|y)
(∑

x

PX̃(x)fY |X(y|x)α

) 1
α

dy (314)
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=
∫
Y

(∑
x

(
PX̃(x)

1
α PZ|Y (z|y)fY |X(y|x)

)α
) 1

α

dy (315)

≥
(∑

x

(∫
Y

PX̃(x)
1
α PZ|Y (z|y)fY |X(y|x) dy

)α
) 1

α

(316)

=

(∑
x

PX̃(x)PZ|X(z|x)α

) 1
α

(317)

where
• (316) follows from Minkowski’s integral inequality,
• (317) follows because the Markov chain X−Y −Z holds.

Applying (317) to (312), and using the fact that for α ∈ (1,∞)
and β ∈ [1,∞), the function f : t → α

(α−1)β log t is increasing
in t > 0, give

α

(α− 1)β
log
∫
Y

fY (y)1−β

(∑
x

PX̃(x)fY |X(y|x)α

) β
α

dy

≥ α

(α− 1)β
log
∑

z

PZ(z)1−β

(∑
x

PX̃(x)PZ|X(z|x)α

) β
α

.

(318)

Taking suprema over PX and PX̃ completes the proof. □
From lemma 4, we get Lα,β(X̄ → Y ) ≥ Lα,β(X̄ → Ȳ ).

Combining this result with (304), we have Lα,β(X → Y ) ≥
Lα,β(X̄ → Ȳ ). Since Lα,β(X → Y ) ≥ Lα,β(X̄ → Ȳ )
holds for all a, b > 0 and n1, n2 ∈ N, we get Lα,β(X →
Y ) ≥ sup

a,b,n1,n2

Lα,β(X̄ → Ȳ ). Moreover, since X̄ and Ȳ have

finite alphabets, we may use the result of lower bound for
Theorem 1, equation (65), and so we have

Lα,β(X → Y )

≥ sup
a,b,n1,n2

sup
PX̄ ,PX̃

α

(α− 1)β
log

n2∑
j=0

PȲ (y∗j )1−β

(
n1∑
i=0

PX̃(x∗i )PȲ |X̄(y∗j |x∗i )α

) β
α

(319)

≥ sup
PX̄ ,PX̃

α

(α− 1)β
log sup

a,b,n1,n2

n2∑
j=1

PȲ (y∗j )1−β

(
n1∑
i=1

PX̃(x∗i )PȲ |X̄(y∗j |x∗i )α

) β
α

(320)

≥ sup
PX̄ ,PX̃

α

(α− 1)β
log sup

b,n2

n2∑
j=1

PȲ (y∗j )1−β

(
lim

a→∞
lim

n1→∞

n1∑
i=1

PX̃(x∗i )PȲ |X̄(y∗j |x∗i )α

) β
α

(321)

= sup
fX̄ ,fX̃

α

(α− 1)β
log sup

b,n2

n2∑
j=1

PȲ (y∗j )1−β

(∫
X

fX̃(x)PȲ |X(y∗j |x)αdx

) β
α

(322)

≥ sup
fX̄ ,fX̃

α

(α− 1)β
log lim

b→∞
lim

n2→∞

n2∑
j=1:

PȲ (y∗j )>0

PȲ (y∗j )

(∫
X

fX̃(x)

(
PȲ |X(y∗j |x)

PȲ (y∗j )

)α

dx

) β
α

(323)

= sup
fX̄ ,fX̃

α

(α− 1)β
log
∫
Y

fY (y)

(∫
X

fX̃(x)
(

fY |X(y|x)
fY (y)

)α

dx

) β
α

dy (324)

= sup
fX̄ ,fX̃

α

(α− 1)β
log
∫
Y

fY (y)1−β

(∫
X

fX̃(x)fY |X(y|x)αdx

) β
α

dy (325)

where PX̃ is a distribution on the support of X̄ , fX is the
marginal pdf of X and fX̃ is a pdf on the support of X .
Furthermore, (322) and (324) follow from the definition of
the Riemann integral. Combining (303) and (325) gives

Lα,β(X → Y )

= sup
fX

sup
fX̃

α

(α− 1)β
log
∫
Y

fY (y)1−β

(∫
X

fX̃(x)fY |X(y|x)αdx

) β
α

dy (326)

= max
x′:fX(x′)>0

sup
fX̃

α

(α− 1)β
log
∫
Y

fY |X(y|x′)1−β

(∫
X

fX̃(x)fY |X(y|x)αdx

)β/α

dy (327)

where the latter equality follows because the quantity inside
the log is convex in fX . Similarly, we may prove the following
lemma.

Lemma 5: When X is continuous and Y has a finite alpha-
bet, maximal (α, β)-leakage defined in (13) simplifies to

Lα,β(X → Y )

= max
x′:fX(x′)>0

sup
fX̃

α

(α− 1)β
log
∑

y

PY |X(y|x′)1−β

(∫
X

fX̃(x)PY |X(y|x)αdx

)β/α

(328)

where fX̃ is a pdf on X .

APPENDIX L
RESULTS FOR KNOWN MECHANISMS VI-A

Here, we obtain an upper bound on vector maximal Renyi
leakage under a Laplacian mechanism. The proof for a Gaus-
sian mechanism follows similarly.

Let ci,x−i = max
xi

h(x−i, xi), ai,x−i = min
xi

h(x−i, xi), and

Y = M(Xn). Since |h(x−i, xi) − h(x−i, x̃i)| ≤ δ, we have
ci,x−i

− ai,x−i
≤ δ. Moreover, for continuous alphabets we

have

max
i

L∞,β(Xi → Y |X−i)

Authorized licensed use limited to: Arizona State University. Downloaded on August 16,2024 at 15:01:21 UTC from IEEE Xplore.  Restrictions apply. 



GILANI et al.: UNIFYING PRIVACY MEASURES VIA MAXIMAL (α, β)-LEAKAGE (MαbeL) 4393

= max
i

max
x̃i,x−i

1
β

log
∫ ∞

−∞
fY |Xi,X−i

(y|x̃i, x−i)1−β

×max
xi

fY |Xi,X−i
(y|xi, x−i)β dy, (329)

where

fY |Xi,X−i
(y|xi, x−i) = fN (y − h(x−i, xi))

and

fY |Xi,X−i
(y|x̃i, x−i) = fN (y − h(x−i, x̃i)) .

For fixed i, x̃i and x−i, consider the quantity inside the
logarithm:∫ ∞

−∞
fY |Xi,X−i

(y|x̃i, x−i)1−β

×max
xi

fY |Xi,X−i
(y|xi, x−i)β dy (330)

= (
1
2b

)β

∫ ∞

−∞
fY |Xi,X−i

(y|x̃i, x−i)1−β

×max
xi

exp−β|y − h(x−i, xi)|
b

dy (331)

= (
1
2b

)β

[ ∫ ai,x−i

−∞
fY |Xi,X−i

(y|x̃i, x−i)1−β

×max
xi

exp−β|y − h(x−i, xi)|
b

dy

+
∫ ci,x−i

ai,x−i

fY |Xi,X−i
(y|x̃i, x−i)1−β

×max
xi

exp−β|y − h(x−i, xi)|
b

dy

+
∫ ∞

ci,x−i

fY |Xi,X−i
(y|x̃i, x−i)1−β

×max
xi

exp−β|y − h(x−i, xi)|
b

dy

]
(332)

≤ (
1
2b

)β

[ ∫ ai,x−i

−∞
fY |Xi,X−i

(y|x̃i, x−i)1−β

× exp−
β|y − ai,x−i |

b
dy

+
∫ ci,x−i

ai,x−i

fY |Xi,X−i
(y|x̃i, x−i)1−β dy

+
∫ ∞

ci,x−i

fY |Xi,X−i
(y|x̃i, x−i)1−β exp−

β|y − ci,x−i
|

b
dy

]
(333)

=
1
2b

[ ∫ ai,x−i

−∞
exp

(β − 1)|y − h(x−i, x̃i)|
b

× exp−
β|y − ai,x−i

|
b

dy

+
∫ ci,x−i

ai,x−i

exp
(β − 1)|y − h(x−i, x̃i)|

b
dy

+
∫ ∞

ci,x−i

exp
(β − 1)|y − h(x−i, x̃i)|

b

× exp−
β|y − ci,x−i

|
b

dy

]
(334)

=
1
2b

[ ∫ ai,x−i

−∞
exp

(1− β)(y − h(x−i, x̃i))
b

× exp
β(y − ai,x−i

)
b

dy

+
∫ h(x−i,x̃i)

ai,x−i

exp
(1− β)(y − h(x−i, x̃i))

b
dy

+
∫ ci,x−i

h(x−i,x̃i)

exp
(β − 1)(y − h(x−i, x̃i))

b
dy

+
∫ ∞

ci,x−i

exp
(β − 1)(y − h(x−i, x̃i))

b

× exp−
β(y − ci,x−i

)
b

dy

]
(335)

=
1
2

exp
(

(β − 1)(h(x−i, x̃i)− ai,x−i
)

b

)
+

1
2

exp
(

(β − 1)(ci,x−i − h(x−i, x̃i))
b

)
+

1
2(β − 1)

[
exp

(
(β − 1)(h(x−i, x̃i)− ai,x−i)

b

)

+ exp
(

(β − 1)(ci,x−i − h(x−i, x̃i))
b

)
− 2

]
(336)

Thus, we have

max
i

L∞,β(Xi → Y |X−i)

≤ max
i,x̃i,x−i

1
β

log

[
1
2

exp
(

(β − 1)(h(x−i, x̃i)− ai,x−i
)

b

)
+

1
2

exp
(

(β − 1)(ci,x−i − h(x−i, x̃i))
b

)
+

1
2(β − 1)

(
exp

(
(β − 1)(h(x−i, x̃i)− ai,x−i

)
b

)

+ exp
(

(β − 1)(ci,x−i
− h(x−i, x̃i))

b

)
− 2

)]
(337)

= max
i,x−i

max
h(x−i,x̃i)∈[ai,x−i

,ci,x−i
]

1
β

log

[
1
2

exp
(

(β − 1)(h(x−i, x̃i)− ai,x−i)
b

)
+

1
2

exp
(

(β − 1)(ci,x−i
− h(x−i, x̃i))

b

)
+

1
2(β − 1)

(
exp

(
(β − 1)(h(x−i, x̃i)− ai,x−i

)
b

)

+ exp
(

(β − 1)(ci,x−i
− h(x−i, x̃i))

b

)
− 2

)]
(338)

= max
i,x−i

1
β

log

[
1
2
− 1

2(β − 1)
+
(

1
2

+
1

2(β − 1)

)

exp
(

(β − 1)(ci,x−i
− ai,x−i

)
b

)]
(339)

≤ 1
β

log

[
1
2
− 1

2(β − 1)
+
(

1
2

+
1

2(β − 1)

)
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exp
(

(β − 1)δ
b

)]
, (340)

where (339) follows because the quantity inside the logarithm
is convex in h(x−i, x̃i) and so we have h(x−i, x̃i) = a
or h(x−i, x̃i) = c. It is easy to show that both values of
h(x−i, x̃i) give the expression (339). Moreover, (340) follows
because ci,x−i

− ai,x−i
≤ δ. The equality is achieved if there

exist i and x−i such that the function h(x−i, xi) from X to
[ai,x−i , ci,x−i ] is surjective and ci,x−i − ai,x−i = δ.
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