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Abstract— We introduce a family of information leakage mea-
sures called maximal (e, 3)-leakage (MabeL), parameterized by
real numbers o and 3 greater than or equal to 1. The measure
is formalized via an operational definition involving an adversary
guessing an unknown (randomized) function of the data given the
released data. We obtain a simplified computable expression for
the measure and show that it satisfies several basic properties
such as monotonicity in 3 for a fixed «, non-negativity, data
processing inequalities, and additivity over independent releases.
We highlight the relevance of this family by showing that it
bridges several known leakage measures, including maximal
a-leakage (3 = 1), maximal leakage (¢ = oo0,8 = 1),
local differential privacy (LDP) (o = 00,3 = o0), and local
Rényi differential privacy (LRDP) (o = (3), thereby giving
an operational interpretation to local Rényi differential privacy.
We also study a conditional version of MabeL on leveraging
which we recover differential privacy and Rényi differential
privacy. A new variant of LRDP, which we call maximal Rényi
leakage, appears as a special case of MabeL for a« = oo that
smoothly tunes between maximal leakage (3 = 1) and LDP
(B = oo). Finally, we show that a vector form of the maximal
Rényi leakage relaxes differential privacy under Gaussian and
Laplacian mechanisms.

Index Terms— Maximal leakage, maximal «-leakage, (local)
differential privacy, (local) Rényi differential privacy, Shannon
channel capacity.

I. INTRODUCTION

OW much information does an observation released to
an adversary reveal/leak about correlated sensitive data?
This fundamental question arises in many privacy problems
whenever data about users is stored (e.g., social networks and
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cloud-based services) and a certain level of information leak-
age is unavoidable in exchange for certain services. Limiting
such an information leakage is desirable. Quantifying such
leakage is the first step towards limiting it. In an effort to
quantify this leakage precisely, a variety of privacy measures
have been proposed in computer science [2], [3], [4], [5], [6],
[7], [8] and in information theory [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20].

For any leakage measure, one of the key challenges is
to associate an operational interpretation to it, so that a
certain amount of leakage corresponds to a particular privacy
guarantee. Only a few leakage measures possess such an
operational meaning. For example, the works in [16] and [17],
which pertain to the release of observation due to a side
channel, measure privacy in terms of an adversary’s gain in
guessing the sensitive data after observing the released data.
In particular, Issa et al. [16] consider an adversary interested
in guessing a possibly randomized function of X. They study
the logarithm of the multiplicative increase, upon observing Y,
of the probability of correctly guessing a randomized function
of X, say U, maximized over all the random variables U such
that U — X — Y forms a Markov chain. This maximization
captures the scenario that the function of interest U is unknown
to the system designer. The resulting quantity is referred to as
maximal leakage (MaxL). Liao et al. [17] later generalized
maximal leakage to a family of leakages, maximal a-leakage
(Max-aL) that consider a family of losses, namely a-loss,
to quantify the adversarial gain. Thus, similar to MaxL, Max-
aL quantifies the maximal logarithmic gain in a monotonically
increasing power function (dependent on «) applied to the
probability of correctly guessing. By doing so, [17] presents
an operational interpretation of leakage measures using adver-
sarial loss functions.

Among leakage measures motivated by worst-case adver-
saries, differential privacy (DP) [2] has emerged as the
gold standard. Relegating precise definitions to the sequel,
we state that a differentially private algorithm guarantees that
its outputs restrict the adversary from distinguishing between
neighboring datasets (i.e., the datasets that differ only in a
single data entry), where each dataset can be viewed as n
instantiations of X. An operational interpretation of DP in the
framework of hypothesis testing is given by Kairouz et al. [21],
where they show that it determines the trade-off between prob-
abilities of false alarm and missed detection. When privacy
guarantees have to be provided in a distributed setting, local
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differential privacy (LDP) [5], [6] provides strong privacy
guarantees between any two realizations of X. Issa et al. [16]
extended their definition of maximal leakage to introduce a
worst-case measure via maximal realizable leakage (MaxRL)
by taking a maximum over all realizations of Y. They show
that maximizing MaxRL over all the distributions Px yields
LDP, thereby providing an operational interpretation to the lat-
ter. In the context of composing DP outputs sequentially, Rényi
differential privacy (RDP) [15] has emerged as a better variant
to compute tight DP guarantees over multiple compositions
of differentially private algorithms. Specifically, RDP relaxes
DP based on the Rényi divergence [22]. One can define local
Rényi differential privacy (LRDP) as a generalization of LDP
based on the Rényi divergence. All the aforementioned leakage
measures find applications in many areas such as privacy
utility trade-offs [17], [23], [24], hypothesis testing [25],
source coding [26], Census data [27], anomaly detec-
tion [28], age of information [29], membership inference [19],
deep learning [30], posterior sampling [31], and mechanism
design [32].

No single measure of privacy/information leakage suits
all the scenarios in practice. In spite of the existence of
a large number of privacy measures in the literature, it is
often challenging to make an informed choice of a measure
for a particular application in view of the diversity and
complexity of various privacy measures. This compels a need
for a unification of privacy leakage measures, in general,
via a principled approach. In this paper, motivated by [16]
and [17], we propose a family of information leakage mea-
sures, called maximal («, 3)-leakage (MabeL), unifying all
the aforementioned leakage measures into a structured land-
scape of leakage measures in an operationally motivated
manner.

A. Main Contributions
The main contributions of this paper are as follows.

o We introduce MabeL in the framework of a guessing
adversary, which is parameterized by two real num-
bers a@ € [1,00] and B € [1,00](Definition 9), and
obtain a simplified computable expression for it (The-
orem 1) [1]. We prove that it satisfies all the axiomatic
properties of a measure of information leakage, including
non-negativity, monotonicity in ( for a fixed «, data-
processing inequalities, and additivity over independent
releases (Theorem 2) [1]. We also show that it is contin-
uous at (a, 3) € [1,00] x [1,00], with the exception of
« = (3 =1 (Theorem 6).

e« We show that this family of measures encompasses a
host of existing leakage measures: in particular, Max-aLL
(B =1), MaxL (¢ — 00,8 = 1), LDP (@ — 00,8 —
00), LRDP (o = ) (Proposition 1 and Figure la) [1].
Theorem 2 gives another proof that LDP satisfies both
the post-processing and linkage inequalities' unlike DP
which does not satisfy the linkage inequality [33].
Interestingly, MabeL is defined apparently in terms of

UIn the context of privacy, ‘linkage inequality’ is often used interchangeably
with ‘preprocessing inequality.”
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average-case analysis (in the spirit of MaxL and Max-
al), and yet, it recovers the worst-case LDP and LRDP
by exploiting the interplay between the parameters «
and (3.

¢ We propose conditional MabeL which takes into account
the side-information an adversary may have and obtain
a simplified computable expression for it (Theorem 3).
We prove that MabeL upper bounds conditional MabeL
if the side-information is conditionally independent of
the released data given the original data (Theorem 4).
That is, minimizing MabeL is still a reasonable objective
for a situation in which an adversary has access to side
information which is unknown to the system designer.
We also show that conditional MabeL is subadditive over
multiple releases (Theorem 5).

« We generalize the conditional MabeL to a vector form
which allows us to quantify the leakage associated with
a change in only one entry of dataset with an assumption
that an adversary has the knowledge of all the remain-
ing entries (Definition 11). We show that this naturally
recovers DP and RDP (Proposition 3). An important
consequence of our results is an operational interpretation
to RDP and LRDP. We note that this subsumes an
operational meaning of LDP given by Issa et al. [16]
via maximal realizable leakage.

o« We introduce a reparameterization of MabeL, called
maximal («, 7)-leakage, in terms of « and 7 with o >
1l and 8 = 7 _f‘:_l, where 7 > 1. We show that this
new measure, in contrast to MabeL, is monotonic in both
orders (Lemma 1) and maintains continuity at all points
(a, 7) € [1,00] x[1, 00] (Theorem 6). A new information-
theoretic quantity arises as a special case of this leakage
measure when o — 1. We call this measure 7-Shannon
leakage and show that it recovers KL-divergence and
Shannon channel capacity when 7 = oo and 7 = 1,
respectively (Proposition 4 and Figure 2b).

¢ A new variant of LRDP, which we call maximal Rényi
leakage, appears as a special case of Mabel. when
a = o0 (Definition 8) that smoothly tunes between
maximal leakage (3 = 1) and LDP (6 = oo). Finally,
we show that a vector form of maximal Rényi leakage
relaxes differential privacy under Laplacian and Gaussian
mechanisms (Proposition 5).

B. Related Work

There are different approaches to quantifying information
leakage. The works [3], [4], and [7] quantify leakage similar
to maximal leakage with an adversary interested in guessing
X itself rather than its randomized functions. A variant of
maximal leakage capturing the amount of information leaked
about X due to disclosing a single outcome Y = y rather
than focusing on the average outcome as in maximal leakage
has been studied in [20] and [34]. Several measures have
been proposed to quantify information leakage, e.g., maximal
correlation [35], [36], probability of correctly guessing [14],
total variation distance [18], mutual information [10], [13],
[371, [38], [39], [40], [41], [42].

Authorized licensed use limited to: Arizona State University. Downloaded on August 16,2024 at 15:01:21 UTC from IEEE Xplore. Restrictions apply.



4370

The notion of DP is known to be very strict and has limited
applicability [43], [44]. Approximate differential privacy is
proposed as a relaxation of DP to allow data releases with
higher utility [45]. Resorting to the fact that composition with
RDP has a simple linear form compared to DP, the authors
of [30] developed a method called Moments Accountant (MA)
where the privacy guarantees are obtained first in terms of RDP
before translating them to those of DP. The shuffle model for
differential privacy, where a shuffler randomly permutes the
(randomized) data of all the users before forwarding them to
the (untrusted) server, is introduced in [46] and [47]. The
authors of [48] and [49] obtained privacy gurantees with
local randomized mechanisms for approximate DP and RDP,
respectively. The role of interactivity in LDP is studied by
Joseph et al. [50]. Though there has been a lot of work building
up on (L)DP and (L)RDP in the literature, an operational inter-
pretation to (L)RDP remained open so far which we settled by
introducing MabeL that subsumes (L)RDP as a special case
for « = (. For an extensive list of leakage measures see the
surveys by Wagner and Eckhoff [51], Bloch et al. [52], and
Hsu et al. [53].

C. Organization of the Paper

The remainder of this paper is organized as follows.
We review various relevant information leakage measures in
Section II. We introduce (conditional) MabeL in Section III
and prove that it satisfies the axiomatic properties of a leakage
measure. In Section IV, we show that MabeL recovers sev-
eral existing information leakage measures as special cases.
We present our results on reparameterization of MabeL in
Section V. We extend the notion of the leakage to contin-
uous alphabets in Section VI and discuss its applications in
Section VI-A.

Notation. We use capital letters to denote random vari-
ables, e.g., X, and capital calligraphic letters to denote their
corresponding alphabet, e.g., X. We write U — X — Y to
denote that the random variables form a Markov chain. We use
supp(X) := {x : Px(z) > 0} to denote the support set
of a discrete random variable X. We use H(X), I(X;Y),
and D(Px||@Qx) to denote entropy, mutual information, and
relative entropy, respectively. Given two probability distribu-
tions Py and (Qx over an alphabet X, we write Py < Qx
to denote that Px is absolutely continuous with respect to
@ x. We also consider continuous random variables and use
fx to denote the probability density function of X. We use
log to denote the natural logarithm. Throughout the sequel,
we use the terms privacy mechanisms and conditional distri-
butions interchangeably. Finally, in our analyses, we employ
the extended real number line, extending the real numbers to
include positive and negative infinity.

II. OVERVIEW OF EXISTING INFORMATION
LEAKAGE MEASURES

We review the definitions of some existing information
leakage measures.

Definition 1 (Maximal leakage [16]): Let Pxy be a joint
distribution on finite alphabet X' x ), where X and Y represent

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 6, JUNE 2024

the original data and the released data, respectively. The
maximal leakage from X to Y is defined as

max ., , Puy (u,y) Py (uly)
Uy
n})aUX 2w Pu(u) Py (u) 7
)

where U represents any randomized function of X that an
adversary is interested in guessing and takes values in an
arbitrary finite alphabet. Moreover, U is an estimator of U
with the same support as U.

Liao et al. [17] generalized maximal leakage by introducing
a tunable leakage measure known as maximal a-leakage.

Definition 2 (Maximal o-leakage [17]): Given a joint dis-
tribution Pxy on finite alphabet X x ), the maximal a-leakage
from X to Y is defined as

LET(X —=Y)

sup
U-X-Y

log

LX —-Y):=

a—1
max Dy PUY(%Z/)PUW(U\’U) B
o Uy
= sup log
a—1ly_x_vy

a—1 I

max ), Pu(w) Py (u) =
2)

for a € (1,00) and by continuous extension of (2) for o =
1 and o = oo, where U represents any randomized function
of X with an arbitrary finite alphabet, and U is an estimator
of U with the same support as U.

Liao et al. [17] showed that

L0%(X = Y) =sup IS(X;Y), 3)
Py
where the supremum is over all the probability distributions
Py on the support of Px and I3(-;-) is the Sibson mutual
information of order o [54]. Maximal «-leakage recovers
Shannon channel capacity (and mutual information) and max-
imal leakage for o = 1 and a = oo, respectively.

Conditional versions of maximal leakage and maximal a-
leakage are also defined to quantify the leakage when the
adversary has access to side-information [16, Definition 6],
[55, Definition 3].

Definition 3 (Local differential privacy [5], [6]): Given a
conditional distribution Py-|x with X and Y taking values in
finite sets X and ), respectively, the local differential privacy
(LDP) is defined as

Py x(y|z)
LPPP(X - Y) := max log ———~. 4)
( ) veY, Py x (y|«')
z,x'eX
Let 2™ = (x1,®9,...,x,) denote a dataset comprising n

points from X. We say z" = (z1,22,...,2,) and " =
(Z1,Z2,...,Z,) are neighbouring datasets, denoted z" ~ ",
if the Hamming distance between them is 1, i.e., Y ., 1{x; #
Z;} =1, or in other words if there exists a unique 7 € [1 : n]
such that z; # Z,. The following notion of differential privacy
captures the privacy incurred of a user in participating in a
dataset.

Definition 4 (Differential privacy [2]): Given a conditional
distribution Py-x~» with X™ and Y taking values in finite sets
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X" and ), respectively, the differential privacy (DP) is defined
as

PY|X" (ylz™)

LPP(X YY) := —.
( ) Py xn (ylz™)

max log
N~

" ~T

®)

Definition 5 (Maximal realizable leakage [16]): Given a
joint distribution Pxy on finite alphabets X and ), the
maximal realizable leakage from X to Y is defined as

max max Pyy (uly)
Yy u

L'(X —=Y)= su lo 6)
( ) vy o max Py (u) (
where U takes values in an arbitrary finite alphabet.
In [16], it has been shown that
LPP(X - Y)=sup LT(X —Y), (7
Px

where the supremum is over all probability distribution Px.
A natural relaxation of DP is introduced by Mironov [15]
based on the Rényi divergence to allow stronger results for
composition.

Definition 6 (Rényi differential privacy [15]): Given a
conditional distribution Py |y~ with X™ and Y taking values
in finite sets A and ), respectively, the Rényi differential
privacy (RDP) of order « is defined as

LEPP(X - Y)

= o g}lae)g(" Da (Py‘Xn:wn
, :
:ETLN‘;I}??,

Py xn_gn) (3)

= max
2" EheX™ o — 1
m"lN:’i'Vl

log Z Py xn (y]&™)' ™ Py xn (yl2")*.
y

9

We may define local Rényi differential privacy as a gen-
eralization of local differential privacy based on the Rényi
divergence [22].

Definition 7 (Local Rényi differential privacy): Given  a
conditional distribution Py-|x with X and Y taking values in
finite sets X and ), respectively, the local Rényi differential
privacy (LRDP) of order « is defined as

L‘,I(;RDP(X N Y)

= Ifil,aggc Do (Py|x=z||Py|x=a')

1
= max
za'eX o — 1

(10)

IOgZPY|X(ZJ|$I)170‘PY|X(ZJ|$)&- (11)
y

As o — 00, it can be verified using L’Hopital’s rule that
LRDP and RDP simplify to LDP and DP, respectively.

III. A UNIFIED MEASURE OF INFORMATION LEAKAGE

In this section, we introduce a unified leakage measure,
called maximal (o, 3)-leakage (MabeL). The new leakage
measure includes maximal leakage, maximal a-leakage, local
Rényi differential privacy and local differential privacy as its
special cases. As our unified measure includes these leakage
measures, its definition naturally inherits some complexity,
mirroring that of the definitions of these existing measures.
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However, in Theorem 1, we shed light on its inherent com-
plexity and significantly simplify it, thereby allowing us to
relate to a large class of privacy measures. Furthermore,
to recover Rényi differential privacy and differential privacy,
we introduce conditional MabeL, and provide a simplified
form for it in Theorem 3.

A. MabeL

Before introducing our most general unified leakage mea-
sure, we start with a measure which smoothly transitions
between maximal leakage and LDP. The following definition
makes use of the similarity between the definitions of maximal
leakage and maximal realizable leakage, and the fact that the
latter is related to LDP via (7).

Definition 8 (Maximal Rényi leakage of order 3): Given a
conditional distribution Py | x (or fy|x) on alphabets X" and )/,
maximal Rényi leakage of order § from X to Y for 5 € [1, c0)
is defined as

L3(X —-Y):=sup sup
Px U—X-—>Y

B8
(Z PUy<u|Y>PUY<u|Y>>

max > Py(u)Py(u)

/8

max |Ey
Uy

log

12)

where U represents an estimator taking values from the same
arbitrary finite alphabet as U. It is defined by continuous
extension for 8 — oc.

There are two important aspects to this definition. First,
we introduce a parameter (3 in the numerator in (12) thereby
allowing a continuous transition from a simple average over y
(at 8 = 1) to a maximum over y (at § — o0). Thus, ignoring
for the moment the supremum over Px, when § — oo we
recover maximal realizable leakage, and at 3 = 1 we recover
maximal leakage. Secondly, by introducing the supremum over
Pyx, we do not change the value at § = 1, since maximal
leakage depends on the distribution of X only through its
support, and at § — oo we recover LDP due to (7).

As a next step, we combine the definition of maximal
Rényi leakage with that of maximal «-leakage, keeping both
as special cases, and including both « and (3 as independent
parameters. Remarkably, this yields our most general unified
measure which also recovers LDP and LRDP.

Definition 9 (Maximal (o, 8)-leakage (MabeL)): Given a
conditional distribution Pyx (or fy|x) on supports X and
Y, the maximal (o, 3)-leakage from X to Y for (o, () €
(1,00) X [1,00) is defined as

(0%

Lop(X —=Y):=sup sup
Px U—x—y a—1

B
(Z PU|y(UIY)P0|y(U|Y)a”1)

a—1

n}lgagx Z Py (u) Py (u) =

1/8

max |Ey

Pzif\y

log

(13)
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where U represents an estimator taking values from the
same arbitrary finite alphabet as U. MabeL is defined by
its continuous extension for (o, () € {l,00} X [1,00) \
{(1,1)} and (o, B) € (1,00) x {oo}. It is also defined by
lim hm Eaﬁ(X —Y) and hm hm Ea@(X —Y) for

fl oo) and (00, 00), respectlvely

We remark that the definition of MabeL in (13) recovers the
definition of maximal a-leakage from (2) when g = 1. While
at the outset this simplification does not appear to be the same
as that of maximal «-leakage in (2) (i.e., the latter does not
include a supremum over Py ), maximal a-leakage depends on
the distribution of X only through its support (see (3)), and
therefore, including the supremum over Px does not change
its value.

We also observe that the definition of MabeL specializes
to the definition of maximal Rényi leakage of order g in (12)
for a = 0.

In the following theorem, we present a simplification of
the expression of MabeL in (13). As a special case of @ —
00, it also includes a simplified form for the maximal Rényi
leakage of order 3 introduced in Definition 8.

Theorem 1: Let X and Y take values from finite supports
X and Y, respectively. For («, 8) € (1,00) x [1,00), MabeL
defined in (13) simplifies to

a
B/
log Y Pyix(ylz') " (Z Pg(z) Py x (y|z)* ) ;
yey TEX

(14)

where Py is a probability distribution on the support of Px.
For o — o0, since Definition 9 simplifies to the definition
of maximal Rényi leakage of order 3 in (12), (14) simplifies
maximal Rényi leakage of order 3 to

c (X—>Y)

= log Z Py x (yla")'~

(15)
w’eX ﬂ ==y

maXpy\x(Mx)

A detailed proof for Theorem 1 is given in Appendix A.

For 8 < «, the quantity inside the log in (14) is concave
in Pg; thus the supremum over Pg can be efficiently solved
using convex optimization techniques. As we will show in
Section IV, for 3 > «, the supremum over Py can be replaced
by a maximum over x € X. Thus, in either case the quantity
in (14) can be efficiently computed for finite alphabets.

Remark 1: To achieve a finite value for MabeL, it is
necessary that Py < Py|x—, for each 7' € X. Failure to
satisfy this condition leads to infinite leakage when § > 1.

Like other leakage measures, MabeL satisfies several basic
properties such as non-negativity, data processing inequalities
and additivity, as shown in the following theorem.

Theorem 2: Let X and Y take values from finite alphabets
X and Y, respectively. For a € (1,00) and 8 € [1,00),
MabeL.

1) is monotonically non-decreasing in § for a fixed «;

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 6, JUNE 2024

2) satisfies data processing inequalities, i.e., for the Markov
chain X - Y — Z:

Lap(X = Z)<Lopg(X —Y) (16a)
Lop(X = Z)<LopgY — 2) (16b)

3) is non-negative, i.e.,
Lop(X—=Y)>0 (17)

with equality if and only if X and Y are independent.
4) satisfies additivity: i.e., if (X;,Y;) for i = 1,2,...,n
are independent, then

= Lap(X; —Yi).

Ea’ﬁ(Xh...,Xn — Yl,...,Y
i=1
(18)
A detailed proof of Theorem 2 is in Appendix B.
Remark 2: MabeL is continuous at («,3) [1,00] x
[1, 00|, with the exception of the point («, 3) = (1,1). The

proof of this property relies on a reparameterization of MabeL
and is covered in detail in Section V.

B. Conditional MabeL

Analogously to the connection between Mabel. and
maximal leakage, we define conditional MabeL based on
conditional maximal leakage as follows.

Definition 10 (Conditional MabeL): Let Z be the knowl-
edge of an adversary or third-party about (X,Y). Given a
conditional distribution Py |x 7 (or fr|x,z) and a marginal
distribution Pz (or fz) on supports X,) and Z, the condi-
tional MabeL from X to Y given Z for («a, ) € (1,00) X
[1,00) is defined as

Q
— = D
LaplX =Y|2) IEEE U—>§<u—p>y\z (a—1)B

B
max E <ZPU|ZY ulZ,Y )Py 5y (ulZ,Y) 5 >

U2,y

log

B
max E (ZPUZ (u|2) Py 4 (u|Z) "= >

PU|Z

19)

Here U represents an estimator taking values from the same
arbitrary finite alphabet as U, and the expression U — X —Y'|Z
represents the conditional Markov chain constraint where

Pyxy)z(u, z,y|2)
= PX|Z(:L'|Z) Plez(U|(L',Z) Py|Xz(y|ZC,Z).

Thus, the conditional Markov chain U — X — Y'|Z is equiv-
alent to the Markov chain U — (X, Z) — Y. The continuous
extensions can be defined analogously to Definition 9.

For a similar reason to that stated below Definition 9, the
definition of conditional MabeL in (19) recovers the defini-
tion of conditional maximal a-leakage (and thus conditional
maximal leakage) for § = 1. The following theorem simplifies
the expression of conditional MabeL.
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Theorem 3: Let X, Y, and Z take values from finite sup-
ports X, ), and Z, respectively. For («, 8) € (1,00) X [1, 00),
conditional MabeL defined in (19) simplifies to

Lap(X —Y]|2)

(8%
=max max sup ——— log P y$/7z 1-8
2 wex po, (a—1)f yie; vix,z(yle', )
B
x (Z PY|x,z<y|w7z>an|Z<m|z>) (20)
reX

where Pf(l z is a distribution on the support of Px|z.

A detailed proof of Theorem 3 is in Appendix C.

Remark 3: Interestingly, despite the fact that there is an
expectation over z in the definition of conditional MabeL,
the simplified form has a maximum over z. This is in contrast
to some other conditional measures in [56], [57], and [58].

Under a specific Markov chain, the following theorem
shows the effect of the side information Z on leakage about
any function U of X through Y.

Theorem 4: Let X, Y, and Z take values from finite
alphabets X, ), and Z, respectively. If Z — X — Y holds,
for (o, 8) € (1,00) x [1,00), we have

Lop(X = Y|2) < Lap(X =Y), 1)

with equality if for some z € supp(Z),
supp(X) = supp(X|Z = 2).

A detailed proof of Theorem 4 is in Appendix D. Therefore,
minimizing L, 3(X — YY) is still a reasonable objective
for a situation in which an adversary has access to side
information Z which is unknown to the system designer. The
following theorem shows that successive releases increase the
total leakage.

Theorem 5 (Sub-Additivity/Composition): Let Z represent
the side information of an adversary and X, Y7, Y5, and Z take
values from finite supports X', V1, Vs, and Z, respectively. For
(o, B) € (1,00) x [1,00), we have

Lop(X —Y1,Y2|Z)

<Lapg(X = V|2) + Lo g(X — Y2|Y1, Z). (22)

A detailed proof of Theorem 5 is in Appendix E.

Remark 4: In the scenario where no side information is
available to an adversary, applying Theorem 5, we can show
that

Lop(X —=Y1,Y2) < Lyp(X - Y1)+ Lo p(X — Ya|Y7).
(23)
Combining this result with Theorem 4, we can conclude that
if Y1 — X — Y5 holds, then
‘Ca,,@(X - Y17YV2) S £aﬁ(X - le) + Ea,B(X - sz)
(24)
Equation (24) recovers Liao et al.’s result [17] on the

sub-additivity of maximal «-leakage, and equation (23)
generalizes it.
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Remark 5: Repeated use of privacy mechanisms on the
outcome of previous private releases requires computing the
overall privacy guarantees, a problem known as composition.
A related useful property of any privacy measure, namely,
composability, identifies the ease of computing this overall
privacy. Let X be a sensitive random variable, M; and My
be privacy mechanisms,> and M be their composition. M
is called adaptive if M(X) = (M1(X), Ma(X, M1(X))),
that is, the output of My depends on both X and
M;i(X). In contrast, M is called non-adaptive if M(X) =
(M1(X), M2(X)), that is, the output of My depends on
M;(X) only through the random variable X. In (22),
let Py, |x,7z, Py, x,z,y,» and Py, v, x,z be privacy mecha-
nisms associated with privacy measures L, g(X — Yi|Z),
Lop(X — Y2|Y1,2), and L, g(X — Y1,Y3|Z), respectively.
Random variables Y; and Y2 can be viewed as M;(X)
and My (X, My (X)), respectively. Thus, this implies that
MabeL satisfies adaptive composition. In (24), random vari-
ables Y7 and Y2 can be viewed as M;(X) and M2(X),
respectively, leading to a non-adaptive composition result for
MabeL. It is known that DP and Rényi DP mechanisms
also satisfy composability. In Section IV, we show that DP
and Rényi DP can be recovered through conditional MabeL.
Consequently, we can employ (22) to establish bounds for the
adaptive composition of Rényi DP and DP mechanisms.

IV. RELATIONSHIPS OF OTHER LEAKAGE MEASURES
WITH (CONDITIONAL) MaBEL

As mentioned earlier, (conditional) MabeL recovers (con-
ditional) maximal a-leakage for 3 = 1 which simplifies to
(conditional) maximal leakage for § = 1 and o — oc.
Moreover, in this section we show that MabeL includes
various other leakage measures, particularly, different notions
of DP (see Fig. 1a).

Proposition 1: MabeL can be simplified as follows:

o If a < 3, then

a(f—=1)
(a—-1)p

o Lop(X =Y)=LFPP(X —Y).

o LoooX—Y)= ﬂler;o aler;o Lopg(X —=Y)

=LPP(X —>Y).

A detailed proof of Proposition 1 is in Appendix F. The
key result of Proposition 1 is captured in Fig. 1a which shows
that LDP (top right corner point in Fig. la) is the limiting
point of MabeL as (o — oo, 8 — 00). In particular, MabeL
reduces to maximal Rényi leakage of order 3 (defined in (12))
for @ = oo (illustrated by the gold vertical line in Fig. 1a).

Proposition 2: Conditional Mabel. can be simplified as
follows:

o If a < 3, then

Lopg(X —Y)= LEP(X —Y).

(0%

Ea,ﬁ(X — Y‘Z) = max m

’
z,x!x

2 As previously mentioned, we employ the terms privacy mechanisms and
conditional distributions interchangeably.
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1OgZPY|X,Z(y|$/a 2) PPy x 7 (ylz, 2)P.
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o If = [, then

Lgp(X —Y|Z) = max 71
lOgZPY|X,Z(y|1'/aZ)liﬁPY|X,Z(y|zvz)’6-
Yy

o Looo(X —YI|Z)= ﬂlim lim L, (X —Y|2)

Pyx,z(ylz, 2)
Py x,z(ylo', Zl)
o Loop(X —Y|Z) =max 3
IOgZPY|X,Z(y|$/7 2)' 7 max Pyx z(ylz, 2)°.
y
The proof of Proposition 2 follows from Theorem 3 and

similar steps as those in the proofs of Proposition 1 and
equation (15).

= max log
2,2y,

A. Vector MabelL

In this section, we show that conditional MabeL. can be
used to derive a general version of DP and RDP rather than
their local versions (see Fig. 1b). Specifically, given a dataset
with n entries, we define a vector form of MabelL as when
the adversary has access to all but one of the entries.

Definition 11 (Vector MabeL): Let X" =
(X1,Xs,...,X,,) and X_; represent a dataset with n
entries and all entries except the ith, respectively. Vector
MabeL is defined as

SHX" = Y)i=max Lop(X; —Y([X). (25)
Proposition 3: For finite alphabets, vector MabeL defined
in (25) simplifies to
«

V(X" —Y)= ma sup ————
aﬁ( - ) ivx*:;:' P)"(,.DI?; (Oé - 1)ﬁ

log | Y Pyix,.x_, (ylaf,w i)'~
v
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Subplots 1a and 1b show the relationships between existing leakage measures with MabeL and vector MabeL, respectively.

R

, (26)

(Z PY|X¢,X_i(y|$i>xi)aP)}Z|X_i(xi|wi))
X4

where Py . is a distribution on the support of Px,x_,.
Moreover, it recovers
e vector maximal a-leakage (and thus vector maximal
leakage) when (8 = 1, that is,
o
a—1

—1

ni(X" —Y) =max sup
LP—i Py x

a

log Z
Yy

Z PY‘XMX—:' (y|‘ria x_i)aPXi\X,i ($i|$_i)]

(27)
o a scaled RDP of order 5 when a < (3, that is,
v «
LE(X" —Y) = _max a=13

log Y Pyixn (ylz"™) ™" Py xn (yl2"™)";
y
o RDP of order o = 3 when o = (3, that is,
. 1
amp(X" = V) = max o
log ZPY\X” (ylz"™) =" Py xn (yla™);

Yy

(28)

(29)

e DP when a, 8 — oo;
« a variant of RDP of order § for & — oo and an arbitrary
3, which we call vector maximal Rényi leakage. That is,

Eéi“,g(X" —Y)

Z PY‘Xi,Xfi (y“rfu ‘T—i)liﬂ

1
= max — log
b y

N 7
6T,

x max Py x, x_, (ylzi, xz)ﬁl . (30)

We remark that vector maximal Rényi leakage defined
in (30) differs from RDP of order  mainly in that the max
over x; is inside the summation over y rather than outside.
A detailed proof of Proposition 3 can be found in Appendix G.

Authorized licensed use limited to: Arizona State University. Downloaded on August 16,2024 at 15:01:21 UTC from IEEE Xplore. Restrictions apply.



GILANI et al.: UNIFYING PRIVACY MEASURES VIA MAXIMAL («, 3)-LEAKAGE (MabeL)

V. MAXIMAL (v, 7)-LEAKAGE: A REPARAMETERIZATION

OF MaBEL

Maximal («, 3)-leakage is not uniquely defined at « = 8 =
1. As @« =  — 1, it can be verified using L’Hopital’s rule
that maximal (« = f3)-leakage, i.e., local Rényi DP, simplifies
to
max Dgr, (Pyix (y]) | Py x (y]2))

whereas the limit of maximal («, § = 1)-leakage, i.e., maxi-
mal a-leakage, gives Shannon channel capacity as o — 1 [17].
In this section, we consider a reparameterization which leads
to a new measure. The new measure is uniquely defined in
all its endpoints and it is monotonic in both orders (unlike
maximal («, 3)-leakage which is monotonic in only one of its
orders). Let 7 € [1,00) and 8 = 57—, where a € (1,00).
We may re-write the expression of maximal («, [3)-leakage
in (14) in terms of « and 7, as follows.

Lor(X—Y)

1 1 (r=D(1=)
= 3 =1 P N TrFa—T
n;z}x b;ljf) <a— 1 + 7_> og Xy: YlX(y‘x)
TFo1
<ZP ) Py x (y|z) ) 1 31

This measure is defined by its continuous extension for
(a,7) € {l,00} x [1,00) and (a,7) € (1,00) x {o0}.
It is also defined by hm lim L(”(X — YY) and

— 00 x— 00

lim hmEaT(X —-Y) for (¢ = 00,7 = ) and (a0 =
T—00 x—

1, 7= ) respectively. We call the quantity in (31) maximal
(a, 7)-leakage. It is important to note that 3 is non-decreasing
in 7 for a fixed o and so o > (8 (if 7 — o0, then 8 — a, see
Fig. 2a).

Lemma 1: For (a,7T) € (1,00) %
leakage can be represented by

[1,00), maximal («,T)-

Lor(X—-Y)
= max su inf 10 Py x)P T
1a Pf g Z vix (ylz)®
1 N1 j et
x (Qy(y)Tme(ny) SR (32)

and it is non-decreasing in 7 and « for a fixed « and T,
respectively.

A detailed proof is in Appendix H.

Remark 6: Some of the relationships to other measures
become clear from this lemma. Namely, if 7 = 1, then we
see the expression of maximal a-leakage in terms of Sibson
mutual information, that is,

sup inf Do(Pg x Py x||Pg x Qy) =sup I3 (X;Y). (33)
Qy Py

Py

If 7 — oo, then we see the definition of LRDP as

r?%;(DOt(PY\szHPY\X:x’)' (34

Note that —7— < 1 for 7 € [1,00) and a € (1,00),

and so the quantity inside the logarithm in (31) is concave
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in Pg. Now we consider some endpoints of o and 7 values
(see Fig. 2b). If 7 = 1, then we recover maximal a-leakage
which reduces to maximal leakage when o = oco.

If 7 = oo, then we recover local Rényi differential privacy
of order o which simplifies to local differential privacy for
a = oo. If a = oo, then we recover maximal Rényi leakage
of order 7, that is,

Lo=cor(X —Y)

1
= ~1 P ni=r P . (35
max — ogg yix (y]2')' 7T max Pyjx (ylz)".  (35)

Following similar steps as those in the proof of Proposition 1,
we can also show that

lim lim L, ,.(X —Y)

£(x:oo,7:oo(X - Y) =

=LPP(X - Y). (36)

Proposition 4: For a — 1, maximal («, 7)-leakage simpli-
fies to
1 ~
Lo=1-(X —=Y)=max sup |-I(X;Y)
' T

+ (1 - i) Dkr (Pyix (yl) | Py x (ylz")| P () 1 (37)

We call the quantity in (37) the 7-Shannon leakage.
A detailed proof of Proposition 4 is in Appendix I.
Remark 7: For T — oo, T-Shannon leakage simplifies to

Ea—l T—OO(X - Y)

= lim hm Lor(X—-Y) (38)
T—00 a—1

= max sup D1 (Py x(yl2)|| Py x (y|z')| Pg (z))  (39)

x’ %
= max Dgp (Pyix (y|2)[[ Py x(y]2)) - (40)
(40) follows because Dk, (Py|x (y|z)||Pyix (y|2')|Pg(z))
is linear in Py and so the supremum is attained at an extreme
point. This quantity is KL divergence. Also, for 7 = 1, 7-
Shannon leakage is given by

»Cazl,T:l(X - Y) — sup I()Z.P7 Y)
Px

(41)

which is Shannon channel capacity. So 7-Shannon leakage
smoothly tunes between KL divergence (7 = co) and Shannon
channel capacity (7 = 1).

Theorem 6: Let Py < Py|x—, for each 2’ € X. Maximal
(cr, 7)-leakage is continuous in («, 7) for all («, 7) € [1, 00| X
[1,00], and MabeL is continuous in («, 3) for all («,3) €
[1,00] x [1, 00 \ {(1,1)}.

The proof of Theorem 6 can be found in Appendix J. Similar
to the definition of vector MabeL, maximal («, 7)-leakage can
be generalized to a vector form.

VI. CONTINUOUS ALPHABETS

In this section, we generalize Theorem 1 and Theorem 3 to
continuous alphabets.
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Fig. 2. Subplot 2a shows 3 vs « curves across different 7 values. Subplot 2b shows relationship between maximal («, 7)-leakage and other leakage measures

as a function of « and 7.

Theorem 7: Let X and Y be continuous random variables
having a continuous joint pdf fxy. MabeL defined in (13)
simplifies to

Q@
Log(X —-Y)= max sup ————
ﬁ( ) a':fx (z')>0 f_p (04—1)6
B/
log/ fyix(ylz")! (/ Iz (@) fyx (ylz)* dx) dy,

(42)

where f¢ is a pdf on X.

The proof of Theorem 7 and expressions similar to (42) for
the other cases, i.e., for discrete X and continuous Y, and
continuous X and discrete Y can be found in Appendix K.

Theorem 8: Let X, Y, and Z be continuous random vari-
ables having a continuous joint pdf fxyz. The conditional
MabeL defined in (19) simplifies to

Ea,g(X —Y|Z)

= max max
z x’

sup _Ll)ﬁlog [/yfwx,z(yﬂl,z)lﬁ

Frize. (@
X </X fyix,z(le, 2)* fg 7. (2) dx) dy]

where leZ:Z is a pdf on the support of fx|—. for any z
that fz(z) > 0.

The proof of Theorem 8 follows a similar approach to the
proof of Theorem 7, and expressions similar to (43) for the
other cases, i.e., for discrete X and continuous Y, and contin-
uous X and discrete Y, can be derived similarly. Moreover,
by applying similar steps to the proof of Proposition 1, we can
recover RDP, DP, and vector maximal Rényi leakage as special
cases of vector MabeL for continuous alphabets.

el

(43)

A. Results for Known Mechanisms

In this section, we show how vector MabeL relaxes dif-
ferential privacy through vector maximal Rényi leakage under

Gaussian and Laplacian mechanisms (see Fig. 3). The proofs
for this section can be found in Appendix L.

Proposition 5: Let h : X™ — R be a real-valued func-
tion such that for all i,x_;,x;,&; we have |h(z_;,z;) —
h(z_;, ;)| <8, where 2™ = {x_;,2;} and 2" = {x_;,Z;}
are neighboring datasets, and ¢ is a sensitivity parameter. For
B € (1,00),

o if M(2™) = h(2™)+ N where N ~ Lap (0,b), then

£235(X" = M(X") < 3
el o) (452

(44)
o if M(z") = h(z") + N where N ~ N(0,0?), then
p-15
2\/ 202

+; e (ﬂ@;ﬁ?) ( (“22)) |
(45)

LVCC (Xn N M(X’n))

1
log

where erf indicates the error function, that is, erf(z) =
2 . . . .
% Jo et dt, and erfi 1nd1cates the 1mag1nary error

function, that is, erfi(z f

Both upper bounds are achleved with equahty if there exist
1 and x_; such that the function h(x_;,x;) is surjective in x;
and max|h(x iy @) — h(z_;,Z;)| = 0.
For n = 1, the upper bounds on vector maximal Rényi
leakage in (44) and (45) collapse to upper bounds on maximal
Rényi leakage under Laplacian and Gaussian mechanisms,

respectively.

Authorized licensed use limited to: Arizona State University. Downloaded on August 16,2024 at 15:01:21 UTC from IEEE Xplore. Restrictions apply.



GILANI et al.: UNIFYING PRIVACY MEASURES VIA MAXIMAL («, 3)-LEAKAGE (MabeL)

Laplacian Mechanism
T T

—Vector Maximal Renyi Leakage|
—RDP

Leakage

05 \ . . .
0 20 40 60 80 100
I¢]
()
25 Gaussian Mechanism
20 — Vector Maximal Renyi Leakage
—RDP
8151
©
£ 4
3
=101
51
0 . \ L \
0 5 10 15 20 25 30
I}
©

Fig. 3.

Laplacian Mechanism

—Vector Maximal Renyi Leakage|
—RDP

0 20 40 60 80
&)

(b)

100

Gaussian Mechanism
0.06 T T T T

— Vector Maximal Renyi Leakage
—RDP

0.02f
0.01f
0 . . . .
0 5 10 15 20 25
B
(@

30

4377

Subplots 3a and 3b compare vector maximal Renyi leakage and Renyi differential privacy under Laplacian mechanisms with b = 1 and b = 30,

respectively. Subplots 3¢ and 3d compare vector maximal Renyi leakage and Renyi differential privacy under Gaussian mechanisms with ¢ = 1 and ¢ = 20,
respectively. In all subplots, we consider a situation in which the upper bounds (44) and (45) are achieved with equality, and the sensitivity parameter is 1.

VII. CONCLUSION

In this paper, we have introduced a new measure of infor-
mation leakage called maximal («,(3)-leakage that bridges
several existing leakage measures, including maximal «-
leakage (5 1), maximal leakage (« 00,0 = 1),
(local) differential privacy (o = 00,8 = o0), (local) Rényi
differential privacy (a« = (), and a variant of RDP, which
we call vector maximal Rényi leakage (o« = o). This pro-
vides a much-needed operational interpretation to (local) RDP.
We believe that our work has taken a step towards identifying
the common characteristics of various information leakage
measures despite their diversity. For example, our formulation
allows us to smoothly transition from average-case leakage
measures to worst-case leakage measures by exploiting the
interplay between the parameters « and (3. Finally, we posit
that the unification provided by our guessing framework
allows us to tailor the proposed leakage measure to study
privacy-utility tradeoffs under different settings depending on
the context.

APPENDIX A
PROOF OF THEOREM 1

For a € (1,00) and 3 € [1, 00), we first bound L, g(X —
Y') from above and then, give an achievable scheme.

Upper Bound: Consider the optimization in the denominator
of (13):

1

H}%X Z Py (u)PU(u)% (46)

This is solved by
Py (u)Py(u) ™ =v

for some constant v. So we have
_ Py(w)

S Py(u)e
Thus the denominator becomes

Py (u)

T RTE

Similarly, the numerator becomes

B/ 1/8

S Pyr(y) | D Py (uly)®
Yy u
Thus, the logarithmic term in (13) reduces to

{Zy PY(?J) (Zu PU|Y(U|y)°‘)B/O‘} 1/8
(Zu PU(u)a)l/a
|:Zy Py (y)' =P (32, Puy (u, y)a)ﬁ/a]

log

1/8

= log

(32, Pu(u))®

1

o

2w Pu(u)®

~ Slos Ay (Zu Po () Prio (y]u)®
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8
Using Jensen’s inequality and the Markov chain U — X — Y, > U Px (@) Py x (ylz) ™ = (64)
we have Z;E U, ['=o Px ()
[} (6]
=sup sup———— 1o P 1-8
Py (y[u)® <Z Pxu xu)PYX(y|x)> (54) P)P P)-P (a—1)p gg v (y)
8
< P z|u) P )<, 55 °
< 3 P elo) P ol (59) (ZP )Py (yle)° ) ©5)
So MabeL. may be bounded from above by
where
Log(X =Y 2|1~ Px (2)°

e e L U X, L= Py (@)
Px U=x= and we have used the fact that any distribution Pg () can be

Z Py (u)* Py (x]u) Py x (y]2)° 2 reached with appropriate choice of |l |, assuming Px (z) >
o (W) Pxiu Yix 0 for all z; this condition can be assumed because any Px
X S Py(u)” (56) is arbitrarily close to a distribution with full support. Thus,

v combining (57) and (65), we have
o
< sup su lo Py ( Lop(X —=Y)=sup sup ————
P)P ij) gz Y Px Py (a — 1)ﬁ

B8
B o
a

(ZP z) Py | x (y|z)” ) (57) logZPY( )7 (ZP z) Py x (y|z)” ) . (67)

where Note that the choice of Px only impacts Py, and the quantity
o inside the log is convex in Py . Since the supremum of a
> Pu(u)* Pxju(x|u) function i i -
Pg(z) = ) (58) convex function is attained at an extreme point, we may
> Pu(u) simplify (67) as follows.
Lower Bound: The proof is based on the expression in (53)
. . . Lopg(X —=Y)= SUp —————
as well as “shattering” method. Consider a random variable U HX=Y) e 5135 (= 1)
such that U — X — Y form a Markov chain and H(X|U) = B/a
0. For each z, let U, be a finite set such that U = u € U, lo P ) Py )P .
if and only if X = x and U = |J,, U,. Moreover, given gzy: Yix (e’ Z vix(yle)® ’

X =z let U be uniformly distributed on I/,.. That is,

(63)
Py (ul) = 3 U] for all u € U (59) We now obtain the expression of maximal Rényi leakage.
Ulx\ur) = z . We first bound maximal Rényi leakage from above as follows.
0 otherwise,
and so LopX =) Z
= max sup log Y Pyix(ylz)'=?
P, for all . O -1
Py (ylu) = § Pix(vle) forallu €tz Cone em s
0 otherwise. B/
Therefore, we have (ZP Pylx (yla)® ) 69
2w Pu(u)® Py (ylu)® « N1-8
u 61 <max sup ———— log » Py|x(ylz')
S Py(u)e ©0 ¥ py (a—1)F zy: |
PX(x)PU|X(U|$)) Bl
- “ P yiu « «
_ 2isex 2ouet, ( Px v (z|u) vio () ©2) X (ZPX(m) max Py x (ylz) > (70)
S Px (z) Py x (ulz) \ ’ o 1
zeX 2aucld, Py (afu) = max s}g};) -1 1OgZPY\X(y\33) 0
X
2, U Py (2) Py x (y]@)® ! B/a
T L Px(a) ©
o ] = Px x [ max Py (ula)* 3 Py (a) )
So we may bound MabeL from below by z
___a N1—g
> sup sup ———— 1OgZPY x max Py (y|z)”. (72)
Px U, (@ @
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So
lim L,3(X —Y)
1
< 7 max log »  Pyix(yla’)' ™" m3XPY|X(y|$)B- (73)
y
We now provide an achievable scheme. We have
Lopg(X —Y)
a
= max sup ——— lo P, D R
1a Pf (a—1)8 gzy: vix (ylz')
B/
(ZP ) Pyix(ylz) ) (74)
a
> max sup ——— lo P, )1 =h
= ma P; (@-1)8 g%: vix (ylz')
x (Pg(a}) Pyix(yle;)*)* (75)
a
> 1 P N8
“la-13 max Og; vix (ylz')
_8 N
x |X|7% Pyix(ylz})” (76)
a
= ———— max |log|X| «
(Oé — 1)6 ' [ | ‘
+1og Y Pyix(yl2')' ™" Pyx(ylx;;)ﬂ (77)
y
1 «
—_— log | X] + —2
a—1 og ||+ (a—1)p
max log Y Py(x(yl2')' ™" Pyix(ylz;)” (78)
y
1 «
= log|X| 4+ ——
a1 o8 l¥+ T
max log ) Pyix(yla’)' ™" max Pyix(yl)” (79
y
where z; = arg max Py |x (y|z) for y € Y. So
lim Lo35(X —Y)
1
> 3 max logZPy|X yla )t maXPY|X(y|x) (80)
y
Combining (73) and (80), we get
Jim Lo (X =)
1
= 3 max logZPy|X (y|z")' maxPy|X(y|x) (81)
y
APPENDIX B
PROOF OF THEOREM 2
Monotonicity in 3: For a € (1,00), 81,82 € [1,00) and

B2 > 31, consider the argument of the logarithm in (14):
B1

ZPY|X yla')— o <ZP z) Py |x (y|lz)® ) (82)

= ZPY\X(QW) <PY|X(y|xl>_a

4379

B2B1

afy
< (ZPY|X(y|$/)<PYX(y$/)_a
Y 62 ;;
DIACLINUES ) ) (84)
81
7\
ZPY\X (y|2")" (ZP x) Py x (y|z)” )
(85)

where the inequality results from applying Jensen’s inequality
to the concave function f : « — 2P (x > 0, p < 1). For
a € (1,00) and 3 € [1,00), the function f : ¢t — a-myp logt
is increasing in ¢ > 0. Therefore, we have

IOgZPY|X (yla")' =

(a - 1)ﬂ
%
(ZP ) Py x (y|z)* ) (86)
«
—1 P NP
S(a— 15 ngy: vix (ylz')
B2
(ZP ) Py x (yla)” ) : (87)

Taking the maximum over 2’ and supremum over Py com-
pletes the proof. Another way to prove this property is to
consider the numerator in (13) as the 3-norm of a random vari-
able. Since the #-norm of a random variable is non-decreasing
in 8, maximal («, 3)-leakage is non-decreasing in 3.

Data processing inequalities: Let random variables X,Y, 7
form a Markov chain, i.e., X —Y — Z. Based on the expression
of maximal (a,3)-leakage in (67) we first prove the post-
processing inequality, that is

Lop(X = Z)<Lyp(X —=Y). (88)
For any y € ), let
<ZP o) Py x (ylz)” ) (89)
and
B Py (y) PZ\Y(Z|y)
c:(y) = T P (90)
such that ° c.(y) = 1. We have
8
ZPY (ZP ) Py x (y|z)* ) 1)
= ZPY g(y)? (92)
B
— Z Py (y)Papy (1) ( ];"f(’;)) (93)
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5
= Pz(2)> ey) ( ]ff(’;)) (94)
9(y) ’
2> Pra) (D) o 95)
( B
=Y Pz(x)'’ <Z sz(ZIy)g(y)> (96)

where (95) follows from applying Jensen’s inequality to the
convex function f: = — zP (x > 0, p > 1). Recalling the
definition of g(y) from (89), we have

> Pry(2ly)a(y) 97)
*ZPZ\Y 2ly) (Z < (2) Py x (y]2)° >i (98)
o> (Z (Px@)* Pay Gl Priclolo) ) i
2 (Z (;Px(w)isz(zly)Pyx(y:v))a); (100)

(ZP z) Pz x (2 Iff)“)é (101

where

e (100) follows because p-norm satisfies the triangle
inequality for p € (1, 00),

e (101) follows because the Markov chain X —Y — Z holds.
Applying (101) to (96), and using the fact that for a € (1, 00)
and 8 € [1, 00), the function f : ¢ — (a%)ﬂ log t is increasing
int > 0, gives

(@—1)p IOgZPY ) B(ZP z) Py x (y|x)® >
(ZP r) Py x (2]x)* )

B

a

a

> ﬁlOgZZ:PZcZ

(102)
Taking suprema over Px and Py completes the proof.
We now prove the linkage inequality, that is
Lop(X = 2Z)< LoypY — 2), (103)

using the definition of maximal («, 3)-leakage in (13). Let

f(Puz) = %
g1 1/8
max ZPZ <ZPUZ(U|Z)PU|Z(uz)aw>
Py w
log a1
nlljagx Z Py (u) Py (u) =
(104)
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For the Markov chain X — Y — Z, we have
f(Puz)
= sup sup

f(Puz)
Px U—=X—->Y—Z

<sup sup f(Puz)
Px U—=Y—Z

<sup sup f(Puz)
Py U—=Y—Z

=LypgY — 2)

Lopg(X — Z)=sup sup
Px U—X—Z

(105)
(106)
(107)

(108)

where (106) follows because Py are the same under the
Markov chains U — X — Z and U — X — Y — Z, and (108)
follows from the fact that a subset of all distributions Py is
reachable from the distribution Px.

Non-negativity: Consider the logarithmic term in (14):

1OgZPY|X yla')t =7 (ZP z) Py x (y|z) )

B
2 IOgZPY|X yla')! (ZP z) Py x( ylm)> (110)

Y

T xr s
_ IOgZPmX(y\x') (Zx Pz (x) Py x (y| )

” Py x (y|z')

> log (Z Py x(yla’)

Y

B
= log (ZP ) Py|x y|:c)> =1logl=0

o

(109)

(111)

B
Zz PX(x)PY|X(y\I)
Py (o) ) e

(113)

where both inequalities follow from applying Jensen’s inequal-
ity to the convex function f : z — zP (z > 0, p > 1) and the
fact that logarithmic functions are increasing. Equality holds
in the first inequality if and only if for any y € ), Py |x (y|r)
are the same for all x € X. Thus, we have

Py (y)

which means X and Y are independent. This condition is also
sufficient for equality in the second inequality.

Additivity: We first prove additivity for n = 2. We have
1:))(13/1)(2}/2 = PX1Y1 . PX2y2. To prove the additivity in (18),
using Theorem 1 it suffices to show that

Py x(ylz) = reX,ye) (114)

sup Y Pyyvaix,x, (U, ol @) F

X1,X2 y1,y2

!

B/a
X <Z P)"(h)"(,z(xl»$2)PY1Y2|X1X2(y1ay2|x1>332)a>

T1,T2

(115)

= SUP H (ZPY|X yila)!

Xz i=1 Yi
1€1,2

B/a
<ZP PY\X (yilzi)® ) >7

(116)
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for every x,z}. We simplify LHS in (115) as
Ty Ty, o plity (115) —SHPH<ZPY\xyzlx
S > Privaixix, (v, y2lzy, ab) ° 16)1(121 o
X1.%2 y1,Y2 B/
\Ble ZP ;) Py, x, (yil2:)®) ) (123)
X ( Z Py %, (@1, 22) Py, vy x, x, (Y1, y2|@1, @2) )
r1,%2 This proves (115) as the lower bound part of (115) is trivial.
:Psup Z Py, |x, (y1|33'1)1_5Py2‘X2 (y2|2h)t =" Thus we have
X1, %2 y1,y2
Lap(X1, Xo—Y1,Y2)=Lap(X1 — Y1)+ Lag(Xz — Y2).

B/
(3 Py (1,220 Py (o) Prax, (ssl2)) (124)

T1,Tr2
(117) Using (124) twice, we have
Lop(X® —Y?)

Let k(y1) = >, Px, (x1) Py x, (y1]z1)®, for all y1, so that
we can define a set of probability distributions over X as =Lapg(X? =Y + Lo (X3 — V3) (125)
= Lap(X1 = Y1) + Lap(X2 = V2) + La,p(X3 — Va).

Pg (1) Py, |x, (y1]z1)*
Py, (ealy) = = LA (126)

Thus, (117) is equal to Similarly, by repeated application of (124) (n — 1) times,
we get (18).

sup Y Py, (u1]74)" 7 Py x, (golay) 7

Pﬁlv’?2 Y1,Y2

[ > k) Pg, v, (01191 P, 5, (2l)

APPENDIX C
PROOF OF THEOREM 3

For a € (1,00) and 3 € [1,00), we first bound £, g(X —
Y'|Z) from above and then, present an achievable scheme.

T1,2T2

B/a
Py, (2]22)°] (119)
1-4 Upper Bound: Similarly to (49), the numerator and denom-
< Py Sgp Z Py, x, (y1|z1) inator of (19) become
X2|X1 Y1
B/a
8 —
ZP~ «771)133’1|X1(y1|$1)a‘)Cx H};?XZPYQ\Xz(QQWIQ)l ? Zszy(z,y) <ZPU|Z7y(U|Z,y)a> (127)
Y2 z u
B/a
( > Pgo (@1101) Pg, %, (@2]21) Py x, (y2|72) ) and
x1,To B/
(120) > Py(2) (Z PU|Z(u|z)°‘> , (128)
= sup ZPYI|X1 (y1|z1)t™ z u
respectively. Thus, the logarithmic term in (19) reduces to

X2|X1 Y1

Q@

(129)

B/ox
(ZPXl 1 PYl‘Xl y1|$1 ) ZPYﬂXz y2|l‘2 ZPZ’Y(Z’y) ZPU‘Z,Y(U|Z,y)a
Y2 2,y W
< log 5la
ZPZ(Z) (Z PUZ(U|Z)Q>

B/
> Pg vy @1ly1) Py, %, (22]21) Pry x, (y2]w2)” )

T1,T2
(121) o
We now define > Py(z ZPY|Z (y]2) <Z PUZ,Y(uzvy)a>
Z % vs (@11Y1) P, x, (2] 21), = log B/a
ZPZ(Z) (Z PU|Z(U|Z)Q>
which is a probability distribution over X5. Then, (121) is z u
equal to (130)
/\1 £ ole
sup Y Py x, (1)) 7 (D Py, (1) Py x, (wa 1)) @ > Priz(l2) [ Y Pujzy (ulz,m)”
P)}l’ Y1 T u
%o < log max 5la
B z
XY Py, (y2l25) 7 (D Py, (#2) Py x, (4] 22)%) (Z PUZ(“|Z)Q>
Y2 x2 u
(122) (131)
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> Pyiz(yl2)'”

Y

B/
(ZPYU|Z y,ulz)® )
B/
(ZPUZ(U|Z)Q>

where (131) follows from the fact that for any non-negative

a; and b;, we have E’ b1
3 bi

Py 12y, u|z)® = Py z(u|2)® Py u,z (y|u, 2)*

= max log

(132)

< max; b—l Moreover, we have

(133)

and

Pyu,z(ylu, 2) <ZPXUZ($|U 2) Py x,z (y|z, Z))

(134)
< ZPX|U,Z($|ua 2)Pyx,z(ylz, 2)"

(135)

where the equality follows because U — X — Y| Z holds, and
the inequality follows from applying Jensen’s inequality to the
convex function f: z — aP (x >0, p > 1). Applying (135)
to (132), we may bound £, g(X — Y|Z) from above by

Eaﬁ(X —Y|Z)

< sup sup max
PX\Z U—-X—-Y|Z z

ZPY\XZ ylz, 2) ZPU\Z (ul2)® Px |y, z(x|u, 2)

ZPU\Z ’LL|Z

o
= log Y Pyiz(yl)'”
RS

(136)
log Z Py z(yl2)' ™7
y

< max sup
z

sup
Px1z=: Px|z-.
KLPx|z==»

(a—-1)B

(Zan,z(ylx,Z)“PmZZ(a:)) (137)
where
ZPU|Z(U|Z)QP)(|U72(£C"LL,Z)
Pg i, (x)= v (138)
X|z ZPUlz(U|Z)

Lower Bound: For this proof, we use the expression in (129) as
well as shattering method. For a given conditional distribution
P Y|X,Z» let

sup ZPY\Z(Z/|Z)17B

Zz* = argmax sup

& Px|z=- P)“qz:z y
KL Px|z=z
(ZPXZ (@) Pyx,z(y |$72)a> (139)
and
Xy ={x €X: Pxz(zx,2) >0} (140)
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Consider a random variable U whose alphabet consists

of several disjoint subsets. For all z € X, let U, .«
be disjoint, finite sets. Moreover, let U, be a finite
set (disjoint from those above) such that U = U, U

Uzex,. Uz,+. We now define the conditional distribution
PU|X,Z as
1
W, Z:Z*,UEZ/[I72*
PU|X7Z(U|1‘7 Z) = ﬁ; z 7& 5, u € Uy (141)

0, otherwise.

So the numerator of (129) reduces to
B/

> Pay(zy) (Z PUz,y<uz7y)a> (142)
z,Yy u

B/
Z Pz y(z,y) (Z PUZ,Y(U|Zay)a>
zF#z* Yy u

B/
+ Pz(2 ZPYlZ ylz*)* (ZPUYZ u, ylz")" > :
(143)

where

B/ ex
(ZPUZ,Y(UZJ/)Q>
ay\ B/«
( <ZPXZ v (z|2,9) Py 1z x (ul2, 5”)) )

(144)

(145)
1 ay\ B/a
(U (ZP;qzy(wlz Y T |> ) (146)
( |1 a B/a (147)
an
B/
(Z PU,Y|Z(u7y|Z*)a> (148)
- (Z [ZPXZ(QT’ :
Y B/
><PUx,z<ux@z*)PYX,Z(mx’,z*)} ) (149)
x Ueuw’z* x’!
B/
XPUX,Z(Uilvz*)PYx,Z(yW’Z*)} ) (150)
<Z|ux2 PX\Z (E|Z)
o B
1 A%
X 7] Pyx,z(ylx, 2 )] ) (151)
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- <Z |u:1;,z* =

B/
“Px|z(x]z")” PYX,Z(y$»Z*)a> -

(152)

Here (145) and (149) follow because U — X — Y'|Z holds.
Applying (147) and (152) to (143), the numerator of (129)
becomes

1— Py(z*
|| (18

(Zw

—|—PZ

Z Pyz(ylz")!

B/
TPy g (x]27)” PYX,Z(y|$»Z*)a> '

(153)

Similarly, the denominator of (129) becomes

Py B/e
% + Py(z Z Uy, o+ |~ Px |7 (2]27)* .
[Uo|¢

(154)
1 —Pz(2*>
Note that for o € (1,00) and § € [1, c0), W —

as |Up] — oo. So we may bound the conditional maximal
(a, B)-leakage from below by

ﬁaﬂ(X — Y‘Z)

[e%
> sup sup m

log > Pyiz(ylz*)' "
Px|z—2x Uz o= ( "

a |umz PX\Z(xlz )
Z Py x z(ylz, 2"
= Z\U “*Pxz(x]|2")"
(155)
= sup sup _*
Px|z=z* Pglz—.»<<Px|z=z* (O‘_l)ﬁ
10gZPYZ(y|2*)1_ﬁ(ZPYIX,Z(ZA%Z*)Q
Y x
8
XP)”qz:z*(x)) ) (156)
where here
U .« 1—04P *\ o
Pg e (z) = e, xjz(el7) (157)

> Moo | Py (2]27)°

and we have used the fact that any distribution Py ,_ . ()
can be reached with appropriate choice of |U, .+|. Recalling
the definition of z* from (139), we may re-write (156) as

log > Pyiz(ylz)' ™"
Yy

max sup sup
? Pxiz=: Px|z_.
LPx|z==:

<Z Py|x,z(yle, 2)* PX|Z_Z($)>

(a=1)p

o

(158)

4383

Therefore, combining (137) and (158), we have
£a75(X —Y|Z)

= Imax
z

sup
Px|z=2

sup
P)?\Z:z<<
Px\z==

(Z Pyix,z(ylz, z>QPX|Z_z(fU>>

Since the choice of Px|z—. only impacts Py |z, and the
supremum of a convex function is attained at an extreme point,
we may simplify (159) as follows.

o
= log ) Pyiz(yl2)' ™"
RS

o

(159)

«
max max sup ——— log Py X,Z(y|$l,2)1_6
z T Pgige.< (a—1)p zy: !
Px|z=2
(Z Pyx,z(ym,Z)“P;zz_Z(w)> (160)

APPENDIX D
PROOF OF THEOREM 4

From (20), we have

«
= Imax max su D ——————— 10 P $/7Z 1-p8
o S oy o i)
Px|z==
<Z Py x,z(ylz, 2)* Px (x)> (161)
o
= max max sup _— ]-Og P y fL'l 1-8
z x’ Py < (04_1)6 ; Y‘X( | )
Px|z==
<Z PY|x(y|$)"Px(w)> (162)
<max sup log Y P yla')1 =P
o pegpx (@—1)8 zy: vix (i)
B
(Z Ple(y|x)“Px(fv)> (163)

=Lop(X —=Y),

where (162) follows because the Markov chain Z — X — Y
holds, and (163) follows from the fact that for any z, the
support of Px|z—. is a subset of the support of Px. The
equality is achieved if for some z € supp(Z), supp(X) =
supp(X1|Z = 2).
APPENDIX E
PROOF OF THEOREM 5
We have

ﬁaﬁ(X — Yl,Y2|Z)

(6% 1—
= r?z;;( gup m log Z PYl,YQ\X,Z(y17y2|xlvz) h
X|z Y1,Y2

B/
(prqz(xz)PYl,YgX,Z(y1a92|$7z)a> : (164)
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We reduce the argument of the logarithm in (164) as follows. Applying (171) to (164), we have

> Pyyaxz(ynyelad, 2) 0 Lop(X —Y1,Y2|2)

Y1,Y2
B/a < max sup W{logzpyl|x z(yila’,2)' 7
z,x’  p_ o — ’
(ZPXZ($|Z) PY17Y2X7Z(y1a92lwvz)a> (165) e " 8
(X Prizlal P 2tk 2)7)”
=Y Prxznle’ ) " Py x a2 (yelyn, 2/, 2) 0 1
Yy +rr;ax logZPyz,‘y1 x.z(yelyh, ' 2) P
1
(ZPXZ 2) Py, x,z(y1]w, 2)® Y B
e (3= Pawi.z(@lyts 2) Progya .2 (welyt 2, 2)°) ] (172)
X P, x .z (ely, @, 2) > ' (166) < max sup 7logzpyl|x 2(pla’,2) 7
z,T P)'(\Z (a - ) o
Let K(y1,2) = ZPXlZ(m|z)Py1‘X7Z(y1|x,z)a, for all y; € (ZP (z]2) P (w1 )a> . "
v T\2)Fy | x,z\Y1|T, = max sup
Yiand z € Z. Sogf we can construct a set of distributions over = X\2 1l Y152 Pgly, 7
X as o] _
@ WlogzPY2|Y17X,Z(y2|y/17x/’Z)1 g
P37 (2|2) Py, x,2 (1|2, 2) @ v
Pxyv, z(zly1, 2) = K(y1,2) (167) s
’ P P 13, 2)® 173
Thus, we may rewrite the expression in (166) as (Z vz (2l 2) P x 2 (02001, 2,2) ) (173)
S Prpcz s 2) Py, x. 2 (elyr, @', 27 = Lop(X = ViD) + Lap(X = Va1, 2). (74)
Y1,Y2
APPENDIX F
(ZPXYI (o1, 2) Ky, 2) PROOF OF PROPOSITION 1
8 For o < 3, maximal («, 3)-leakage simplifies to
P, « 1
X Y2|Y1,X,Z(y2|y1,l',z) ) (168) »Ca,ﬁ(X N Y)
Q
B - = max sup ——— log Py x(yla’)'~?
= Z Pyl\x,z(yl\l‘/az)l ﬂpyz\yl,x,z(yﬂylyx/’z)l 7 @ pg (a=1)8 Xy:
Y1,Y2 ﬂ/a
B
o) P (x) Py x (y|x)” (175)
x (ZPXZ(I|Z)Pyllx,z(y1|9372) > (Z !
x (0% 1—
X 2 = Mmax max m logz Pyyx (y|z") 5PY|X(Z’/|$)5»
(ZPXYl (#[y1, 2) Prypvi,x,z(y2ly1, 7, 2) ) v 176)
(169)

where (176) follows because the argument of the logarithm
in (175) is convex in Py and so the supremum is attained at
an extreme point. This quantity represents a scaled version of
LRDP of order 3 which is exactly equal to LRDP for a = (5.
We now take the limits of maximal «, 3-leakage in (14) as
a — oo and § — oo. We have

Py, 1x,z(y1]2’, 2) (ZPXIZ x|z)

R

XPY1|XZ(y1|x z ) ZPY2|Y1,XZ(y2‘y17x Z)l d
Y2

B
<ZPXY1,Z(xy172) PY2|Y1,X7Z(y2y1,:L’,Z)a) ] (170)

(ZPX|Z z[2)

ol

lim lim L,3(X —Y)= hm Ls(X —=Y), (177)

B—o00 a—00

We first bound ma Lz(X —Y) from above as follows.

[ZPY1|X z(nl2', 2)

c (XHY)
B
Pylx,z@lx,z>a)“][;ng§ZPy2|ylXz<y2|yl,x 977 = max BlogZPm yla')' " max Py x (y]2)°  (178)
Y
s 8
a 1 max Py |x (y|)
> Pxpy, z(@lyl, 2) Py, |Y,X,z(yz|yi,w7z)a> } A7) — max ~log S P Al =" ") (179
<3: o o f3 gzy: vix(le) Py x (ylz’)
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1
< max —lo P 2') ma
S max gz vix (ylz') X

(mgxPY|X<y|x>>ﬁ

B ” Py x (y|z")
(180)
1 max Py x (y|z)
= —1 x— P
max — log mgX( Py x (0]7) Z vix (ylz')
(181)
| mg?XPY|X(y|$) (152)
= Imax 10 —_—
22\ Prix(le!)
P
— max log <YLX(yLE)> (183)
@’y Py x (ylz')

As the next step, we provide an achievable scheme. Let

Py x(y|x)
s We have

* * Ik
x*, y*, ¢ = argmax
Py x (ylz')

z,y,z’

z(X_nq

= max 3 logZPyp( yla )t
y

? max Py x (ylz)”  (184)

1
> max — log max [PY‘X(y|x’)1*ﬁ maXPy‘X(y|a:)B}
x’! Yy T

B
(185)
1 PY|X(y|x) ) ’
= —1lo max | ——————- P T (186)
e s (7 len) P
1 PY|X(Z/*|$*) )5
> Zlog (XX ) p *|o/* (187)
B & (PY|X(Z/*33'*) vix (W le")
Pyix(y*lz®) 1
log ———"—= + = log Py x(y*|z""), (188)
Pyl T 58 i)
So
. Py x (y*|z*)
lim Lg(X —-Y)>log ————=
B—o0 ﬁ( )_ S Py‘X(y*l"E/*)
Py x (y|r)
= max log ————~ (189)
Ty, Py x (ylz')
Combining (183) and (189) gives
Y\X(y|$)
hm Lsg(X —=Y)= max log —————=¢, (190)
s )= z.y,z’ Py x (y|z')

which is LDP.

APPENDIX G
PROOF OF PROPOSITION 3
Applying Theorem 3, for finite alphabets, vector maximal
(a, B)-leakage defined in (25) simplifies to
o
(X" —-Y)= max sup ——
B zz_,z pX X %(Ol—l)ﬂ
IOg Z PY‘Xthi (y|$;, ‘r—i)17,8
Y

(Z Pyix, x_; (ylws, x—

X4

e

i)ap)zixi(xﬂx—i)) , (19D

4385

where Py . is a distribution on the support of Px,x_,.
The expression of vector maximal a-leakage in (27) can be
readily obtained by setting (3 equal to 1. For o < 3, applying
Proposition 2, we can simplify the above expression to

(6
vec (xmn Y) = T 1\n
log Z PY‘Xi,X—i (y\x;, m_i)176PY|Xi,X7i (y|x2’ x_i)ﬁ'

Y
(192)

Note that (zf,z_;) and (x;,2_;) can be considered as two
datasets which differ only in the ith entries. So, the maximums
over z;,x;, and x_; explore neighboring datasets differing
in ¢th entries, and the maximum across all i ensures the
consideration of all possible neighboring datasets. Thus, the
above expression may be rewritten to the following form:

«
—1 Py xn "MI=BPy )3
oo (o — 1)8 ngy: vixn (ylz™) vix» (ylz")”7,

(193)

which is a scaled RDP of order 3 with the scaling factor
a(f-1)
of ———
a—1
equal to RDP of order o = 3 which in turn recovers DP as o =
[ — oo. For @ — oo and an arbitrary /3, applying Proposi-
tion 2, we get the expression of vector maximal Rényi leakage.

. Moreover, when a = f3, this quantity is exactly

APPENDIX H
PROOF OF LEMMA 1

We first prove the expression (32) which provides a still
other representation of the leakage measure.

Consider any v € (—o0, 0]U[1, 00), and any constants C(y)
for y € Y. Furthermore, consider the optimization problem

inf > Cy)Qy (v)". (194)
Yy

~ is in the range where (194) is convex in Qy, so it is solved
by setting the derivative of @y (y) to a constant:

0 _
=20y () Y CW)Qy () =Cly) v Qv(y) . (195)
y
We can see that the optimal choice is therefore
C(y)Y/ =)
Qv (y) = —- (196)
5, )T
Thus (194) becomes
C(NC () A=) 1=y
2, CwCw (Z C(y)l/u_v)) (197)
(2, cmo—)" \5
In our case, we have v = I*TO‘ < 0, and
ZP ) Py | x (ylz)® Py x (y|z’ )& —-a),
(198)
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Applying the result in (197) to our case, we find that (32) is
equal to

Lo |3 (Srs

max sup
e}
x Py " -

() Py x (y|=)"

T+a—1

N(1-1)(1 o1 "
« Py (yle) 03 -a>) }

1 (=Da-a)
+ 7_) IOgZPY|X(y|x,) Tt
Yy

(199)

:maxsup<
a—1

x’ -
Pz

TFa—1
(ZP ) Py x (y|z)® ) (200)
which is precisely (31).

Moreover, we claim that maximal (a,7)-leakage is
non-decreasing in 7 and « for a fixed « and 7, respectively.
Since [ is increasing in 7, the first claim, that the measure is
non-decreasing in 7, is equivalent to it being non-decreasing
in 3, which we have already proved in Appendix B. Given
the expression (32), we prove that L,,.(X — YY) is
non-decreasing in « for a fixed 7 as follows. We may write
the objective function in (32) as

logZP

) ( Pyix(yla) )
QY(y)%PY\X(y‘m/)l_%

This expression is non-decreasing in « due to the fact that,
for any distribution P, and any constants C'(z),

il loggPZ(z)C(z) -

is non-decreasing in o for o > 1.

x) Py x (y|z)

(201)

202)

APPENDIX I
PROOF OF PROPOSITION 4

For a fixed 7, we have

lim1 Lo (X—=Y)

logZP
1 N1l 11—«
x (Qy<y>rPY\X<y|x> )
logZP
1 N1 -«
x (Qy<y>fPY\X<y|x> )
= max 1gf S;lp glf - logZP
1 1 -«
X (QY(Z/)TPY\X(ZJW)l ’)
= max 1gf 51yf S}Ep log Z Pg

X (QY(y)%PY\X(y|I/)17%>1 :

= lim max sup 1nf
a—1 x’ p}_{

x) Py x (y|z)”
(203)

= max lim sup mf
z a—l Py

x) Py x (y|z)®

(204)

x) Py x (y|z)”

(205)

(7) Py x (y|=)”

(206)
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= f inf 1 Py x) P
n;a}x gly in bup og Z Y|X (y|z)*
11—«
X (QY(Z/)%PY\X(QW)P%) (207)
= f i 1 Py x) P,
=g A s og ; vix (ylz)®
1 Nl -«
X (QY(y)TPY\X(y|$) T) (208)
e 1 @
= e gl liy = log 3, Prx()
11—«
% (@ ()7 Prix(yla)'7) (209)
1 o
= el s iy =5 log ) Prix(vla)
1 n1—1 1=a
% (@ ()7 Prix(yla)7) 210)
Py x (y|z)
= max inf max Py x (y|z) log
g fpf max 3 Py, Q> () P olo)
@11)
= max inf su Py x)P; T
o P}}')rzy: Y|X(y| )
P
% log lY\X(y|x) — (212)
Qy(y )"PY|X(y‘xl) o
= f Py P
max sup 151 Z Y|X(y|33)
P
XlOg 1y\X(y|$) — (213)
Qv (y )7PY|X(Z/W) o
= max sup inf Pg(x)P T
Pf Z Y|X(y| )
1
P, T [ P T
« log (Yx(y“f)> <YX<W>> (214)
Py x(ylz') Qy (v)
= max sup 1nf 1—— ZP z) Py x (y|x)
.y
Py\x(y\x) >
x log (
Py\x( |z')
Pyx(yﬂf))
LS P @) P () To ( 215)
Z Y|X y‘ ) g QY(y)

= max sup
' P

[(1 ~ 2D, (P )| Py (') P (2)

T

+ 2 il Dics(Pe (&) Py x (010)]| Py (@ >Qy<y>>] e16)

= max sup (1 — l)DKL (Pyx (yl2)|| Py x (y]2")| Pg (2))

x/ P
+ = I(X; Y), (217)
T
where

e (205) and (208) follow because the objective function is
non-decreasing in «,

e (206) follows because the quantity inside the log is linear
(and thus concave) in P; and convex in Qy,
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o (209) follows because the quantity inside the log is linear
in Py and so supremum is attained at a corner point,

e (211) follows from L’Hopital’s rule,

e (212) follows because the objective function in (212) is
linear in Pg and so the sup is attained at a corner point,

e (213) follows because the objective is linear (thus
concave) in P; and convex in Qy.

APPENDIX J
PROOF OF THEOREM 6

We first prove the continuity of maximal («,7)-leakage,
and following that, we demonstrate the continuity of MabeL.
In our analysis, we employ the extended real number line.

A. Continuity of Maximal («, T)-Leakage

Let
70 —€ if 19 € (1,00)
T (10) =4 = if 79 = 00 (218)
16 if =1,
7 (7o) = {TO e ifmoelleo) (219)
00 if 79 = o0,
ag—e€ if ap € (1,00)
() =41 ifag=oo (220)
16 if ag =1,
and
af (ag) = {ao e ifag €l 00) 221)
00 if ag = oo.

To prove the continuity of maximal («,7)-leakage at
(o, 70) € [1,00] X [1,00], we define a rectangular
region characterized by its corners at (a;(ao) 7.7 (70)),
(g (a0), 7 (70)), (o (@), 77 (70)), and (aF (a0), 72" (70)),
with the point («, 7o) lying inside or on the borders of this
region, and we show that

lim inf Lo(X—=Y)
=0 aefa; (ao),af (ao)],
T€lr; (ro),t (0)]
= lim sup Lo (X —Y) (222)
0 aclas ().l (ao)l,
€[ (10),7F (70)]
= Logry(X = Y). (223)

Note that the rectangular region converges to the point (ayg, 7o)
as € — 0. We recall that

Lo=1+(X —Y)) = 7-Shannon leakage
Lo—oor(X —Y)

Lor=co(X —=Y)
Lo=co,r=c0(X = Y)

= Maximal Rényi leakage of order 7
= LLROPP(X . Y)
=LPP(X —Y).
(224)
Lower bound: For (o, T) €

Lo(X—=Y)

(1,00) X [1,00), we have

—max sup Qupy (1), (225)
! P

X
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where
1 G-DO—w
Qx/va( (o, 7) = (041 + > logZPypg y‘x ) TFa-1
TFa-1
(ZP x) Py x (y|o)” ) . (226)
Qq, P, (v, 7) is continuous in (a, 7), for all (a, ) € (1,00) X

[1,00), and it may be defined by its continuous extension at
a=o00, T=o00,0r =1, (227), as shown at the bottom of
the next page. We know that (225) holds for (a, 7) € (1, 00) X
[1,00). Now we show that it also holds for (o, 7) € [1,00]%\

(1,00) x [1,00). Employing (224) and (227), for (a,7) €
{1,000} x [1,00], we can see that
max sup Qm’,P;( (avT) = Ea,'r(X - Y) (228)
¥ %
For a € (1,00) and T = 0o, we also have
max sup Qw/’p)} (o, 7 = 00)
x’ Py
—maXbuP logZP ) Py x (y|z") '~ Py x (ylz)*
(229)
1 — [e3
= max max a—1 logz PY|X(?/W)1 Py x (y|z)
y
(230)
= La;r:oo(X - Y)7 (231)

where (230) follows because the quantity inside the logarithm
is linear in Pg and so the supremum is achieved at an
endpoint.

For (ag,70) € [1,00] X [1,00], we have
lim inf Lor(X —Y) (232)
e=0qacfa (ap),at (ao)l,
Telr. (10),7 (70)]
=lm Lo o)r () (X = Y) (233)
= lim max sup Qur,p (ac (a0), 7 (10)) (234)
%
= max lim sup Qur,py (ag (o), 72 (70)) (235)
%
=max sup sup Qu, pg (o (ao), 7o (70)) (236)
z e>0 Py
=max sup sup Qu, pg (o (ao), 70 (70)) (237)
& P; >0
= max sup lim Qur,py (e (a0), 7 (10)) (238)
%
= max s;lp Qa,p. (g (), 75 (70)) (239)
%
=max sup Qu,pg (a0, 70) (240)
¢ b
= Loy (X —=Y) (241)

where (233) follows because L, (X — Y') is non-decreasing
in @ and 7. (236) and (238) follow because Q. p.(a,T) is
non-decreasing in « and 7 for a fixed 7 and «, respectively.
Moreover, o (og) and 7. (79) are non-increasing in e for
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a fixed agp and 79, respectively. The equality (239) follows
because Q. p, (o (), 7. (70)) is continuous in e.

Upper Bound: For (a,7) € (1,00) X [1,00), consider the
expression of L, (X — Y) in (32):

Lor(X—=Y)
= max su 1nf 10 Pg(x)P x
Pf gz vix (ylz)®
1 N1—L 1 «
x (QY(Z/)*PY\X(ZIW) ) 42)
= f 1 Py (x)P:
= gl e S los ) Pr(@)Px(uie)®
1 a
x (Qy(y)%PY\X(ylx’V*%) 43)

— o8 3 Prx(ofe)”
x (@v ) Prixtule) %)

where (243) follows because the quantity inside the logarithm
is convex in @y and linear (so concave) in Py, and (244)
follows because the quantity inside the logarithm is linear in

= max inf max
' Qy x 07

(244)
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— [ROP(X Y (249)
=Lor=0(X =Y. (250)
Similarly, for « = 7 = oo, we have
max inf max fp g, (@ =o00,7 = 00)
x’! Qy x ’
=[PP (X S Y) (251)
= Lo=co,r=0(X = Y). (252)

Applying similar steps to equations (211)-(217), for « = 1 and
€ [1, 00|, we have

max inf max for @y z(a=1,7)
x x

Qv
=Lo=1-(X—-Y) (253)
= 7-Shannon leakage. (254)

For & = o0 and 7 € [1,00), we have

max inf max for 0y z(00 =00,T)
z v

= max glf mzzx log Py x (ylz) Qy (y)~ %Py|x(y\x')*1+%
z Yy <,

Py and so the supremum is achieved at an endpoint. Consider (255)
the objective in (244): 1 )
= —max inf max lo 1P )T
fw’,QY,z(avT) T ' Qy ¥ gQY(y) YlX(y| )
1 o 1 _1\17« x max P )" 256
= 108" Prix(l)® (Qv (1)* Prix(yla’) ) " vix (v]z) (236)
y . -1
= — max inf max lo
(245) 7 e inf meaox log Qy (y)
Z . Py x(yla")'™" max Py |x (y|z)"
= log Py x(ylz) | Pyix(ylz) Qy(y)™~ X —
” > Pyix (|27 max Py x (y'|z)”
a—171/a-1 Y’
x Py|X<y|x’>‘1+i> (246) % Y Pyix(y/|a)'"7 maxPyix(y'|z)7 (257)
y/
for.Qy 2 (0, T) may be defined by its continuous extension at 1 . .
=00, T =00, Or a = 1, (247), as shown at the bottom of = max IOgZPY\X@//‘x/)l m;JLXPYIX(Z//W?)
the next page. v
Looking at (244), for (a,7) € (1,00) x [1,00), it is clear ~ + glf log max Qy (y) "
that . ! N1—1 T
. Py x (y|z") max Py | x (y|z)
Lor(X—Y)= max inf max for.Qy a(a, 7). (248) X z (258)
T Qv ZPY|X(y/|z/)17T maxPy|X(y’|x)T
We now show that the above equality also holds for (o, 7) € o ’
[1,00]2 \ (1,00) x [1,00). Employing (247), for o € (1, 00)
and 7 = 0o, we have Now we show that
max inf max fp g, .(a,7=00) inf log max Qy (y)~!
z Qy = Qy Y
1 5 1 , .
;I(X;Y)—&— 1—; Dk (Pyix(y|2)||Pyx (y|2')|Pg(z)) ifa=1,7 € [1,00]
1
- logZPy‘X (ylz)t=" maxPy‘X(y|z)T if @ =o00,7 €[1,00)
o
Qw’,P;( (Oé, T) = (227)
logZP z) Py x (y|2’ ) Py x (ylr)* ifae (l,00),7 =00

Hxla;/X Py|X(y|$)PY|X(y|x ) !

if @ = 00, 7 = 00.
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Py x (ylz")* =T max Py x (y|z)” 0. (@59 For (v, 7o) € [1,00]%, we have
X =0.
Y Prix(/1e)' T max Pyix (y']2)” lim sup Lor(X —Y) (266)
v 0 aelag (@) (o)),
TE[T, (To)‘r (10)]
Pyix (yla")' ™7 max Py x(y|z)” _
Let gY(y) — T / - be a = IH% £ +(a0) T+(To)(X — Y) (267)
ZPY\X y'l2") mBXPY\X(y ) = hr% max glf max fo .oy (@l (o), 77 (70))  (268)
€— x/ Y
distribution on Y If Qv(y) = gy (y) for all y € YV, we have — max hm inf max fu o, «(af (a0), 7 (7)) (269)
log max Qy (y) 'gy (y) = 0. S @ 0 Qy =
Y = max 1r>1f glf max fo.0y (@l (an), 7 (70))  (270)
. 1 z € y
<0.
515 log Hlan QY(y) gY(y) <0 (260) — max glf lgg max fz Q. z( +(0‘0)»7':(70)) 271)
x’ y € x
Moreover, we have < max it lim max furq, (0 (00), 7 () @272
x! vy €—
o s G et e i S 00,7 0) @79
_ ; , + +
= inf max log 9v(y) (261) = max glf max for Qv 2 (ag (o), 75 (10)) (274)
Qy ¥ Qy (y) .
=max inf max fu g, (a0, 70) (275)
=inf > gv () <max log gY(y)) (262) vy '
Qv 7 v Qv (y) = Lag,r (X = Y), (276)
/
here
> inf " Jog 2 W) 063 v
Zgy(y ) log Qv () o (267) follows because L, (X — Y) is non-decreasing
—inf D -0 264 in o and 7.
gly ke (gv[Qy) =0 (264) e (270) follows because fy/ g, (o, T) is non-decreasing
o () in o for a fixed 7 and glf max fz/.Qy = (0, T) 1is
.. . _ y
Combining (260) and (264), we get 1515 log max Qv(y) 0. non-decreasing in 7 for a fixed a. Moreover, af (ag)
Therefore, (258) collapses to and Tj (10) are non-decreasing in € for a fixed ag and
1 Tp, respectively.
T e log Y Py (y/|a)' ™" max Py(x (y']0)" o (274) follows because f.r gy o (f (o), 7.7 (70)) is con-
y tinuous in e.
= Lo—oo,r(X —=Y). (265)  For (ag,70) € [1,0]?, combining (241) and (276), we have
This completes the proof of the validity of (248) for all Loy (X —Y) =lim inf Lor(X—-Y)
(o, 7) € [1, 002 70 aclo (@0).ad (ao)],
We now investigate the monotonicity of fi g, .(a,T) ) el (o) (ro)]
in @ and 7. fu @y (e, 7) is non-decreasing in « for a <lm  sup N Lar(X =)
fixed 7 because the quantity inside the logarithm in (246) afee[?r’((arz))iQf;))]]
represents (o — 1)-norm of a random variable, and (o — 1)- : .
norm of a random variable is non-decreasing in «. In the < Lagm(X = Y). 277)
proof of Lemma 1, we show that Q. p (a,7) defined which implies
in (226) is non-decreasing in 7 and so s . P (Q,T) 18
(226) gin 7 up Qa.py (2, 7) Jim inf Lo (X —Y)
non-decreasing in 7. Moreover, equations (242)-(244) show <=0 aGg[t{lZ_((ao)),a{an))]],
that 1nf max forQy (@, T) = supQu p (note that TSLTe 1T0NTe AT0
@ralonT) = s (e7) = lim sup Lo (X —Y)  (@78)
the 1nﬁmum of the objective in (242) over (Qy is equal to =0 hefas (ao),ar (ao)],
QP (o, 7)). So, glfmaxfz '.Qy,«(a, T) is non-decreasing T€[r (0),7 (70)]
0 Y — Loy (X = ). (279)
Py x (y|z) .
Py x(y|x) log ifa=1,7¢€[l,00]
; Qv (y)* Py x (ylz/)' =
_1 — 1 .
For @y wla,7) = { Max log Pyix (y]z) Qy (y) " Pyix(yla’) 7T if a =0, 7 € [1,00) (247)

Do (Py|x (ylz)[| Py x (y]2"))
m;ix Py|x(y\$)PY\X(y‘$l)_l

if a € (1,

if = 00, 7 = o0.

00), T = 00
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This completes the proof of the continuity of maximal («, 7)-
leakage.

B. Continuity of Lo (X — Y) at (a, 8) € [1,00]? \ {(1,1)}
Let
Bxy(Chﬁ) = ,Ca’g(X — Y)

and
Txy(o,7) = Lo (X —Y).

For o« > 3, we have

Txy(a,7) = Bxy (a, TJFO;T_J (280)
and
_ Bla—1)
BXY(OZ75) = TXY (OZ, O{—B) . (281)

To demonstrate the continuity of MabelL, we employ the
sequential continuity theorem, that is, a function f is con-
tinuous at a if and only if f(z,) — f(a) for all sequences
T, — Q.

Continuity at («g, Bo) with ag > Bo: If lim (o, Bn) =
(v, Bo), then for sufficiently large n, we have «,, > (3, and
)

lim Bxy (on, Bn)

n—oo

n n - 1
— lim Txy (an, B(a)) (282)
n—00 oy — By
n n - 1
= Txy ( lm o, lim W) (283)
n—oo n—oo  Opn — ﬂn
—1
= Tyy (ao, Polao —1) ) (284)
apg — Bo
= Bxy (a0, o), (285)
where (283) and (284) follow from the continuity of maximal
-1
(, 7)-leakage and the continuity of ojlﬂ) for « > f,

respectively.

Continuity at (a, Bo) with 1 # oy < [p: We first prove
the continuity of [,IERDP(X — Y) at 8 > 1 as follows.
If 7}1_)120 Bn = B # 1, then we have

lim LPP(X —Y)

n—00

= lim max
n—oo x,r’€X 671 -1

log >~ Pyx (yla') P
Y

x Py|x (y|z)" (286)
= i, gl 2 Prixlale)

x Py |x (y|z)~ (287)
= Jnax, ﬁi T log; Py x (ylz') " Py x (ylz)®  (288)

= LFP(X —Y), (289)

where (288) follows because the objective is continuous at
B > 1. Note that the objective is defined by its continuous
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extension, i.e., KL divergence, at 8 = 1. If lim (ay,, 8,) =
n—oo

(o, Bp) with 1 # gy < o, then for sufficiently large n,
we have 1 # a,, < . So,

lim Ean;ﬁn (X - Y)
n—oo
O‘n(ﬁn - 1)

o LRDP

= n]gz;o (an —1)5n Ls, (X —-Y) (290)
ao(Bo—1) irop

=——>- L X-Y 291
(o —1)Bo ™ ( ) 29

=Loayp, (X = Y), (292)

where (291) follows from the continuity of LF*°*(X — Y)

a(f—1)
and m for (0% # 1.

Continuity at (ap, Bo) with 1 = ag < [o:

Let lim (v, 8,) = (1, 60 # 1). If LEFPP(X —Y) #0,

n— 00
for sufficiently large n, we have

lim £,, 3, (X =Y)

. an(Bn—1) irpp
= nh_)rrolo (an —1)5, LN (X —=Y) (293)
= 0. (294)

Here, maximal («, 3)-leakage is continuous in the sense that
the limit points of all the sequences {L,, g, (X — Y)}nen
are equal to co. Moreover, if E%};DP(X —Y) =0, then X
and Y are independent. So, L, 3(X — Y) = 0 everywhere
and is continuous.

Continuity at («g, o) with ag = o # 1: Let

nli_{rolo(anaﬂn) = (60750) 7& (1’ 1)’

and let partition {(c,, B,) }nen into two distinct subsequences
{(ank7ﬁnk)}kesl Wlth a’nk g 57’% and {(aﬁkaﬁ’ﬁk)}k)ESZ
with az, > [n,, where {ni}res, U {r}res, = N and
S1,S52 C N. If either of the subsequences is finite, then the

sequence {(ay, On)}tnsn with N > min{ixé%)fnk,gé%)sﬁk}

consists entirely of elements from the other subsequence. As a

result, this finite subsequence does not impact the convergence

of the original sequence {(a,5n)}nen. Here, we consider

the scenario where S; = Sy = N. Since every subsequence

of a convergent sequence converges to the same limit as

the original sequence, we have lim (au,,,0Bn,) = (6o, 00)
o0

and kh_,ngo(aﬁk’ﬂm@) = (ﬂo’ﬁo)' For {(ankaﬂnk)}kel\l with
oy, < B, wWe have

kli_{lolo Lank aﬂnk (X - Y)
Ay, (ﬂnk - 1)

=1l FOPX —Y 2
e — Y Ls,. ( ) (295)
=LFP(X —Y). (296)

The last equality follows from the continuity of L*P*(X —
-1
Y) and af-1)
. (a—-Dp
functions Byy (o, 3) and Txy(«,7), for {(an,, Ba,)}ken
with ap, > (5, ., we have

kll;rgo ﬁaﬁkaﬁﬁk (X - Y)

for a # 1. Furthermore, recalling the
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= lim Bxy(aa,,Ba,) (297)
k—oo
= leH;O Txy <Oénk7 o, — IB’FLk (298)
. . e (Qmy, — 1
=Txy (klggo Qg s kh_>m M) @)
= Txy (B0, 0) (300)
= LSO (X ) (301)

where (299) follows from the continuity of £, (X — Y)
and (301) follows because

lm Lo (X —Y)

T—00

Combining (296) and (301), we get

=LP(X —Y).

lim Lq,5,(X -Y)=L5""(X -Y).

This completes the proof of continuity.

APPENDIX K
PROOF OF THEOREM 7

Here, we extend our results to continuous real random
variables through the Riemann integral. The results can also
be extended to higher dimensions through Lebesgue integral.
We first consider a case in which X still has a finite alphabet
X but Y takes value from a continuous alphabet ) C R.

Lemma 2: When X has a finite alphabet and Y is contin-
uous, maximal («, 3)-leakage defined in (13) simplifies to

Lop(X —Y)=sup sup

o 1
P Sl (a—l)ﬁlOg/ny(y)

(ZP z) fy|x ylx)) dy  (302)

where Py is a distribution on the support of Py.

The proof of lemma 2 follows similar steps to the proof of
Theorem 1 along the lines of [16, Proof of Theorem 7]. Using
lemma 2, we prove Theorem 7 as follows.

Upper Bound: Applying similar steps to the proof of upper
bound for Theorem 1, we may get

- Db S @ / 1
Lap(X —Y) < SIS log yfy(y)

( / f;z(x)fnx(ylx)adx) “dy. (03)

Lower Bound: Fix n1,ne € N and a,b € R such that a,b > 0.
We partition the intervals [—a, a] and [—b, b] into subintervals

2
=z and Ay =
n

with equal lengths A —, respectively. Let
N2

X =Y a; X €[-a+(i—-1)A,—a+iA]}

=1

for z € [~a, a], and X = z), otherwise. Moreover, let

Y = Zyj Y € [-b+ (j — 1)Ag, —b + jA]}
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for y € [~b,b], and Y = g, otherwise. Here, 1{-} is the
indicator function. Furthermore, =} € [—a+ (i — 1)A1, —a +
iAq] fori € {1,--- ,ni}and y; € [~b+(j—1)Ag, —b+jAs]
for j € {1,---,no} are fixed points, and x and yj are
fixed symbols. For continuous random variables X and Y
and their quantized versions X and YV, we now prove that
since the Markov chain X — X — Y — Y holds, we have
Log(X — Y) > Lop(X — Y). To do so, we first
prove Lo 5(X — Y) > L4 (X — Y) and then, we show
Lop(X — Y) > Lop(X — Y). At the end, we bound
Lo3(X — Y) from below. Applying similar steps to the
proof of the linkage inequality for random variables with finite
alphabets, i.e., (16b), we may prove the following lemma.
Lemma 3: Let X have a finite alphabet and Y and Z be
continuous random variables. If the Markov chain X - Y — 7
holds then L, 3(Y — Z) > L, 3(X — Z), which means

Lop(X =Y)> Los(X —Y). (304)

Using lemma 2, we prove the following post-processing
inequality.

Lemma 4: Let X and Z have finite alphabets and Y be a
continuous random variable. If the Markov chain X —Y — Z
holds then £, g(X —Y) > L, 3(X — Z).

Proof: For any y € ), let

ES
o

(ZP ) fyx (yl2)® > (305)
and

e.(y) = fy(y)PIZ’st)f(ZIy) (306)

such that [}, c.(y) dy = 1. We have
[ st (ZPXu)fm(yx)a)“dy (307)
/ Fr()'Pyly)’dy (308)
/ ny )Pz (2]y) (fgy(?;) (309)
e e ()0 o
> 3Pt ( [ w2 dy)ﬁ @1

B

=P ([ pavtelinaw o) G

where (311) follows from applying Jensen’s inequality to the
convex function f: x — zP (r > 0, p > 1). Recalling the
definition of g(y) from (305), we have

/ Pzy (zly)g(y) d
N

/PZ|Y z|y) <ZP z) fyx (ylz)® ) dy

(313)

Q=

(314)
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- /y (%: (P)?(CC)‘IIPZY(Z|y)fY|X(y|$)>a>idy (315)
> (Z

T

/3}P~($)<1’PZY(Z|y)fY|X(y|x> dy>a>;

(316)

/N

(ZP 2) Py x (2 |x)a> (317)
where

e (316) follows from Minkowski’s integral inequality,
e (317) follows because the Markov chain X —Y — Z holds.

Applying (317) to (312), and using the fact that for o € (1, c0)
and § € [1, 00), the function f : ¢t — W log t is increasing
int > 0, give

log/ Fr(m)t 5(213 2) fyix (o) ) dy
> ﬁloggPZ(z (ZP r) Py x (2]2)" )

(318)

o

Taking suprema over Px and Py completes the proof. (|
From lemma 4, we get L, 3(X — Y) > L, 3(X — Y).
Combining this result with (304), we have L, (X — Y) >
ﬁag(X — Y) Since ,Caﬁ(X —-Y) > ﬁag(X — Y)
holds for all a,b > 0 and ni,ny € N, we get Eaﬂ(X —
Y)> sup La5(X — Y). Moreover, since X and Y have

a,b,ny,mo
finite alphabets, we may use the result of lower bound for

Theorem 1, equation (65), and so we have

Lop(X —=Y)
no
> sup sup logy Py (y:)t="
a,b,ni,n2 Px,Pg (af B Z Y( j)

8
a

(319)

no
o B

a,b,n1,n2 j=1

(Z Px(x?)Pyx(y}fle)“>
>

_*
CED

ny

( Py (x?)Pyx(y}‘lxi‘)“>
i=1

>

log sup ZPY yj -8

bn2] 1

B
a

(320)

o
a—1)8

(JLH;O Jim ZP

8

yjlfv)>

log sup ZPY y] -8

b’I’Lz‘7 1

(321)

= sup

o«
fx:.fx (a—-1)p

([ s Prixtujiorar)”

(322)
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na

S oo Jim lim Z Py (y7)
?(y1)>o
wila\* \*
Py x(yjlx “
d 323
</ Ixte ( Py (y;) ) “T) (323)
[0
= 2
s e [
B8
(/ fele (fy|x(y|:c)) dx) dy (324)
[0
= g 1
s s [
(/Xfx(fr)fyx(ylx)o‘dz>ady (325)

where Py is a distribution on the support of X, fx is the
marginal pdf of X and f; is a pdf on the support of X.
Furthermore, (322) and (324) follow from the definition of
the Riemann integral. Combining (303) and (325) gives

Lopg(X —=Y)
«a
= sup sup 7log/f y)*
fx fx (O‘_l)ﬁ A% Y()

(326)

(/X fX(a:)fY|X(y|x)adx) : dy

(67
= max su — 1o J]/ 1-8
vifx@)>0 gy (a—1)B g/yfyx(:yl )

( /X fx(x)fY|X(y|x)ad$)ﬁ/a dy

where the latter equality follows because the quantity inside
the log is convex in fx. Similarly, we may prove the following
lemma.

Lemma 5: When X is continuous and Y has a finite alpha-
bet, maximal («, 3)-leakage defined in (13) simplifies to

(327)

Lop(X —=Y)

«
= max sup ——lo P 2158
z':fx (a')>0 fo P (a—1)p g; YIX(y| )

(f fﬂx)Py.X(mx)adas)m

where fg is a pdf on X.

(328)

APPENDIX L
RESULTS FOR KNOWN MECHANISMS VI-A

Here, we obtain an upper bound on vector maximal Renyi
leakage under a Laplacian mechanism. The proof for a Gaus-
sian mechanism follows similarly.

Letc,, , = = max hx_i, ), G0, = mln h(x_;,x;), and
Y = M(X™). Smce |h(z_sz;) — h(z— Z,x1)| < 4, we have
Ciz_, — @iy, < 0. Moreover, for continuous alphabets we
have
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— e max Slog [y (o) < ep AU tird) g
X HlmaX fY‘XhX—i( "r’ia —'L') dy7 (329) + /h(m_iﬁfi) exp (1 — ﬁ)(y B h(‘r—’w‘fl)) dy
: 5 b
where i _
+ G ox (B=D(y — h(z—, 7)) d
frixox o (Ylei, x—i) = v (y — h(z—i, 23)) oy T b Y
and +/ exp (B-D(y —bh(ﬂ?—i, 7))
Tyixox_, WlTs,x—s) = fv (y — h(x s, 73)) . Cia_
For fixed i,2; and x_;, consider the quantity inside the X exp—M dy} (335)
logarithm: b
00 . _ lexp (6 - 1)(h(x_z,a?,) ai,xﬂ:)
/ leXi;X—i(y|:i;i7x—i) -8 2 b
1 6—1 CLa,i_h-r—ia-fi
X max fY\X“X (y|$za Z)B dy (330) + EQXP <( )( b ( ))>
= (%)5 /_OC fy‘Xin_i(y‘fi,l‘,i)l_ﬁ + 1 exp ((6 B 1)(h(xfz7x~z) - ai,xi))
Bly — ha—s,1) 2 b
X H;a'x €xXp _% dy (33]) (/6 - 1)(61',171' - h(x*h‘fl))
L win, + exp ; —2 (336)
= (%)6[/_00 Frixox_, |,z i)'
X max exp _w dy Thus, we have
+/ h fY‘Xin_i, (y|x~i7x7i)l_ﬂ max ['oo,ﬁ(Xz — Y|X_Z)
- — iy T —1)(h(x—i, T) — aia_,
s ey = bzl < e Liog [Lexp (B DG ) ~ais )
T b 1,T4,% —4 ﬁ 2 b
+ /C N Frixox_,(ylds )0 n %exp <(5 - 1)(Ci,x7ib— h(z—i, fz’)))
X max exp —w dy (332) + 1 exp (B=D((z—,Ti) — aiw_,;)
R 20— 1) b
<(5)° [/ Frixox_ (i, i)' P Ve — B E
20" | ) w +exp ((ﬁ )(C“”*ib (f“m)> - 2)] (337)
ﬁ‘y - ai,z,i
X exp — 5 dy 1
Cio_ =max _ max |3
# [ P ol dy e
e 5 | log [1% = (oosi) - o))
- _ Y—Ciax_;
+/ Frixox_, (W&, e i)' =0 exXp — dy] 2 b
Ci,z_; 1 (/8 - 1)(Ci,z,i - h(xflwfl))
1 [/axb exp (B =Dy — h(x—;i, ;)| . 1 (B = V)(h(a—i, &) — aip_,)
2 = | b 3G\ P ;
Y—Qix_;
X eXp = / dy — D (Ciz_, — Ma—i, 2
ot (9 ly— haos ) o (e x)))‘zﬂ o
—|—/ exp Y 5 Toi B dy
@iz, N 1 o 1 1 n 1 n 1
00 ~ = max — e e
+/ exp P Dly = h(@—i, 3)| e B %2 T 2oy T\2 T2
b
Gl —1)(¢ z_; — Qix_;
Bly — ciw_s exp ((ﬂ e, ’ ')> (339)
X exp — 5 : dy (334) b
L[ [ (1= B)y— i) LS S (1 . 1)
_21)[/_00 P b ﬁ *12728-0 " 27251
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exp <(5b”5> , (340)

where (339) follows because the quantity inside the logarithm
is convex in h(x_;,%;) and so we have h(z_;,%;) = a
or h(x_;,z;) = c. It is easy to show that both values of
h(x_;, ;) give the expression (339). Moreover, (340) follows
because ¢; , , — a;,_, < 6. The equality is achieved if there
exist ¢ and z_; such that the function h(z_;, z;) from X to
(@i ;s Ciq_,] is surjective and ¢; 5, — a;p , = 0.
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