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Abstract—We construct vector differentially-private (DP)
mechanisms that are asymptotically optimal in the limit of
the number of compositions growing without bound. First, we
derive via the central limit theorem a reduction from DP to
a KL-divergence minimization problem. Second, we formulate
the general theory of spherically-symmetric DP mechanisms in
the large-composition regime. Specifically, we show that additive,
continuous, spherically-symmetric DP mechanisms are optimal if
one considers a spherically-symmetric cost (e.g., bounded noise
variance) and an `2 sensitivity metric. We then formulate a finite-
dimensional problem that produces noise distributions that can
get arbitrarily close to optimal among monotone mechanisms.
Finally, we demonstrate numerically that our proposed mecha-
nism achieves better DP parameters than the vector Gaussian
mechanism for the same variance constraint.
The full proofs can be found in the extended version at [1].

I. INTRODUCTION

Differential privacy (DP) has emerged as the predominant
measure for data privacy. DP is achieved by applying a
randomized mechanism to functional queries from a dataset,
in such a way so that any given element of the underlying
dataset cannot be confirmed with certainty [2]. Any random
mechanism will therefore introduce distortion on the query
output, reducing utility. Thus, it is natural to ask how to
design mechanisms that achieve the optimal trade-off between
privacy and utility. A number of works [3]–[10] have sought
optimal DP mechanisms in a variety of settings. However,
these works all focus on the single-shot setting, in which a
single mechanism is applied to a single query.

In contrast, many applications requiring data privacy involve
processing data over a large number of steps. For example,
when training a machine learning (ML) model with DP, one
typically uses stochastic gradient descent with hundreds or
thousands of iterations, where the DP mechanism is applied to
each iteration [11]. In the DP literature, each iteration involv-
ing a mechanism is a composition, so an application involving
many iterations is in the large-composition regime. Thus,
the law of large numbers applies to the statistical analysis,
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which means that summary statistics can be used to accurately
approximate the achieved DP. This view was taken in [12],
which studied optimal scalar-valued DP mechanisms in the
large-composition regime. It was shown that if the mechanism
is designed by minimizing a Kullback-Leibler (KL) divergence
subject to an expected cost constraint, then this mechanism
will be optimal in the sense that any other mechanism will
achieve worse DP for sufficiently many compositions.

However, many applications involve vector queries, not
scalar queries. In the ML training example, the query is
typically the gradient of the underlying model, which is a
vector with length equal to the number of model parameters.
In this paper, we study optimal mechanisms in the large-
composition regime for vector queries. Our contributions are:

• As in [12], we find that the problem can be posed as a KL-
divergence minimization problem, wherein the mechanism
that minimizes this problem will outperform any other,
given sufficiently many compositions.

• We show that a vector query is in general different from
multiple scalar queries, and that the optimal mechanisms
do not typically involve adding independent noise to each
element of the vector.

• We show that for a spherically-symmetric cost function
(e.g., `2 constraint) and an `

2 sensitivity, the optimal mech-
anism is additive, continuous, and spherically-symmetric.

• We show that for any monotone spherically-symmetric
noise mechanism, the worst-case shift is the maximum
shift, where by “worst-case” we mean that it gives the
maximum value for any f -divergence [13]. This means that
minimizing the worst-case DP requires only focusing on
the maximum shift. This result is crucial to accounting for
multidimensional mechanisms, as it reduces the expectation
to a 2-dimensional integral. This result also motivates our
focus on monotone mechanisms, as they are dramatically
simpler to analyze, despite not necessarily being optimal.

• While the optimal monotone mechanism has no closed-form
expression, we formulate a finite-dimensional convex opti-
mization problem (using the 2-dimensional integral form)
that can be solved efficiently to find mechanisms arbitrarily
close to optimal among monotone mechanisms.

2023 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-7554-9/23/$31.00 ©2023 IEEE 2195

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 | 

97
8-

1-
66

54
-7

55
4-

9/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IS

IT
54

71
3.

20
23

.1
02

06
65

8

Authorized licensed use limited to: Arizona State University. Downloaded on August 16,2024 at 17:41:14 UTC from IEEE Xplore.  Restrictions apply. 



• We numerically demonstrate the performance of the mech-
anism found via the finite-dimensional problem, where we
show that it performs better than the vector Gaussian mecha-
nism, which is typically used in state-of-the-art applications.
The paper is organized as follows. Sec. II gives the def-

initions for DP, the large-composition regime, and poses
the KL-divergence optimization problem. Sec. III proves the
optimality of additive, continuous, and spherically symmetric
mechanisms under certain conditions. Sec. IV describes how
to compute privacy statistics for these symmetric mechanisms.
Sec. V gives the finite-dimensional optimization problem,
and proves that these mechanisms come arbitrarily close to
optimal. Sec. VI illustrates some experimental results.

A. Notation and Assumptions

We fix a Euclidean space Rm throughout, and an m-
dimensional random vector X . Denote by � and k · k the
Lebesgue measure and `

2 norm, respectively, on Rm. For
a probability measure P on Rm and c : Rm ! R, the
expectation is denoted by EP [c] :=

R
Rm c(x) dP (x). The shift

operator is denoted by (Txr)(A) := r(A�x). For probability
measures P,Q over Rm, the KL-divergence is denoted by
D(P kQ), the variance of the information density by

V(P kQ) := EP

"✓
log

dP

dQ
�D(P kQ)

◆2
#
, (1)

and the E�-divergence is defined for � � 0 as

E�(P kQ) := sup
A Borel

P (A)� �Q(A) = EQ

⇣
dP

dQ
� �

⌘+
�
,

where a
+ := max(0, a). A probability measure P over Rm is

spherically-symmetric if P ({Ux : x 2 B}) = P (B) for any
Borel B ⇢ Rm and every orthogonal matrix U 2 Rm⇥m.

In the DP problem we consider, we restrict the sensitivity to
be `

2 sensitivity. The cost functions c we consider will satisfy
mild assumptions that will be explicitly invoked when used.

II. DIFFERENTIAL PRIVACY AND THE
LARGE-COMPOSITION REGIME

Let d be a dataset containing private information of several
individuals and f(d) 2 Rm be the response to a query
f about this dataset (e.g., f(d) could be the proportion of
individuals in d having a particular property). To maintain the
privacy of individuals, a typical approach is to pass x = f(d)
through a privacy-preserving mechanism PY |X and release
Y ⇠ PY |X=x. The de-facto standard definition for privacy
is differential privacy (DP) [2]: PY |X is said to be (", �)-DP
for " � 0 and � 2 [0, 1] if

sup
x,x02Rm

kx�x0ks

Ee"(PY |X=x k PY |X=x0)  �, (2)

where k · k is a norm and s is the sensitivity of the query f

defined as the maximum of kf(d) � f(d0)k over all pairs of
datasets d and d

0 that differ in one entry.

In some applications (e.g., training deep models), a dataset
d might receive k sequential queries f1, . . . , fk. As before,
the privacy of individuals in d can be maintained by using a
mechanism PY |X for k times to generate the k-tuple Y

k =
(Y1, . . . , Yk) from the k-tuple (f1(d), · · · , fk(d)). Let P

�k
Y |X

denote the resulting k-fold mechanism obtained by PY |X . In
information-theoretic parlance, P �k

Y |X is a memoryless channel
with (f1(d), · · · , fk(d)) as the input and Y

k as the output.

It can be verified that P
�k
Y |X is (", �P�k

Y |X
("))-DP for any

" � 0, where

�P�k
Y |X

(") := sup
kui�viks

1ik

Ee"

 
kY

i=1

PY |X=ui

���
kY

i=1

PY |X=vi

!
,

(3)
or equivalently, ("P�k

Y |X
(�), �)-DP for any � 2 (0, 1), where

"P�k
Y |X

(�) := inf
n
" � 0 : �P�k

Y |X
(")  �

o
. (4)

Computing the quantities �P�k
Y |X

(") or "P�k
Y |X

(�) in closed-form
expressions is intractable. Nevertheless, when k is sufficiently
large (as in almost all deep learning applications), we can
derive an asymptotic formula for "P�k

Y |X
(�) in terms of the

KL-divergence, as shown in the following theorem.

Theorem 1. Fix a sensitivity s > 0 and a Markov kernel PY |X
on Rm

satisfying supkx�x0ks V(PY |X=x kPY |X=x0) < 1.

Then, for any � 2 (0, 1/2), we have

lim
k!1

"P�k
Y |X

(�)

k
= sup

kx�x0ks
D(PY |X=x kPY |X=x0). (5)

According to this theorem, the characterization of
the privacy guarantee of P

�k
Y |X in the large-composition

regime reduces to computing the maximum KL-divergence
D(PY |X=skPY |X=x0) over all possible choices of x and x

0

such that kx � x
0k  s. Given this asymptotic result, our

goal is to design the “optimal” mechanism PY |X , that is,
the mechanism with the best privacy guarantee (i.e., smallest
"P�k

Y |X
(�)) while maintaining a desired level of “utility”. To

formalize the utility requirement, we consider the bound
E[c(Y �x) | X = x]  C for all x 2 Rm and a given C � 0,
where c : Rm ! R+ is a measurable cost function. This
constraint ensures that mechanism’s output Yi is reasonably
close to its input fj(d).

Given the asymptotic result in Theorem 1 and the utility
constraint, we can now formulate the asymptotically optimal
DP mechanism with a given utility constraint as the solution
of the following optimization problem:

inf
PY |X2R

sup
kx�x0ks

D(PY |X=x k PY |X=x0)

subject to sup
x2Rm

E[c(Y � x) | X = x]  C,
(6)

where R denotes the set of all Markov kernels on Rm.
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III. OPTIMALITY OF ADDITIVE, CONTINUOUS,
SPHERICALLY SYMMETRIC MECHANISMS

We prove in this section that there is an additive mechanism
PY |X=x = TxP , x 2 Rm, (i.e., PY |X=x(B) = P (B � x)
for a measure P on Rm and every Borel set B ⇢ Rm) that
solves our main problem (6), and for which P is spherically
symmetric and absolutely continuous with respect to the
Lebesgue measure. We prove this result under the following
assumption on the cost function c.

Assumption 1. The cost function c : Rm ! R satisfies:

• Spherical symmetry: there is a function ec : R+ ! R such

that c(x) = ec(kxk) for all x 2 Rm
.

• Positivity: c(x) � 0 for all x 2 Rm
, and c(0) = 0.

• Monotonicity: c(x)  c(x0) if kxk  kx0k.

• Unboundedness: c(x) ! 1 as kxk ! 1.

• Lower-semicontinuity: c is lower semicontinuous.

A natural choice of cost function is positive powers of the
the quadratic cost c(x) = kxk↵, ↵ > 0, but we allow c(x) to
be any function that satisfies the above assumptions.

Let the subset P ⇢ R consist of all Markov kernels PY |X
on Rm that satisfy the cost constraint in (6), i.e., for which

sup
x2Rm

E[c(Y � x) | X = x]  C. (7)

Then, we denote the result of the optimization (6) by

KL? := inf
PY |X2P

sup
x,x02Rm:kx�x0ks

D(PY |X=xkPY |X=x0).

(8)
We consider the subset of P consisting of those mechanisms
PY |X that are additive, i.e., Y = X+Z for a noise Z indepen-
dent of X . For such an additive mechanism PY |X=x = TxP

(so Z ⇠ P ), the KL-divergence can be rewritten as

D(PY |X=x k PY |X=x0) = D(P k Tx0�xP ). (9)

Therefore, we consider the set Padd consisting of Borel
probability measures P on Rm that satisfy the cost constraint

EP [c]  C, (10)

and denote the optimal value they can achieve in (6) by

KL?
add := inf

P2Padd
sup

a2Rm:kaks
D(P k TaP ). (11)

As additive mechanisms are a subset of all mechanisms,
we trivially have KL?  KL?

add. Conversely, we show in
Theorem 2 below that when equality holds, the optimal value
KL? is achievable by an additive mechanism that has a PDF.

Theorem 2. If the cost function c satisfies Assumption 1,

then additive mechanisms are optimal for the KL-divergence

optimization (6), i.e.,

KL? = KL?
add. (12)

Further, there exists at least one probability measure P
? 2

Padd achieving the optimal value KL?
, which is necessarily

absolutely continuous with respect to the Lebesgue measure.

Remark 1. This theorem is proved using the same proof for
its 1-dimensional instantiation in [12, Theorem 1], mutatis

mutandis.

In addition to optimality of additive continuous mechanisms
for (6) shown in Theorem 2, we show in Theorem 3 below that
it also suffices to consider spherically-symmetric mechanisms.
In other words, we may assume that the noise Z has a PDF
pZ that is spherically symmetric.

Theorem 3. We may choose the optimal mechanism P
?

in

Theorem 2 to be spherically symmetric, i.e., with p denoting

its PDF, we have that p(z) = ep(kzk) for some function ep.

Remark 2. The 1-dimensional version of this result follows
from joint convexity of the KL-divergence, since the perfor-
mance of a given mechanism p can only be improved by the
even mechanism (p(x) + p(�x))/2. In the multi-dimensional
setting, a more delicate argument using the Haar measure is
necessary.

IV. ISOTROPIC AND MONOTONE DP MECHANISMS

We lay the groundwork for a special class of isotropic
DP mechanisms along with a provable method for computing
their associated privacy parameters (", �). Consider a DP
mechanism that, given X , releases Y = X +Z for a noise Z

that is independent of X . We have shown in Section III that it
suffices to consider continuous and spherically symmetric Z.
It is not hard to see that any spherically symmetric random
vector Z can be written in the form

Z = R · U (13)

where U is a uniformly distributed random vector over the unit
(m� 1)-sphere in Rm, and R is a nonnegative scalar random
variable (not necessarily independent of U ). In fact, we may
set R = kZk and U = Z/kZk.

In the remainder of the paper, we will only consider
“monotone” mechanisms, defined as follows.

Definition 1. We say that a random vector Z is monotone if
it has a PDF p(z) such that for every z 2 Rm and t 2 [0, 1),
we have p(tz) � p(z).

Remark 3. Note that a random vector is monotone and

spherically-symmetric if its PDF can be written p(z) = ep(kzk)
such that ep : R+ ! R+ is non-increasing. One example
is the Gaussian mechanism Z ⇠ N (0,�2

Im). We focus
on monotone mechanisms since, for such mechanisms, it is
tractable to both do DP accounting (see Lemma 1) as well as
solve the KL-divergence optimization (6) (see Proposition 1).

The following lemma shows that accounting for monotone
spherically-symmetric DP mechanisms reduces to computing
the E� divergence at the maximal shift. This property is known
to hold for the Gaussian mechanism [11].

Lemma 1. If Z ⇠ p is a monotone spherically-symmetric

random vector, and � � 1, then a 7! E�(pkTap) is spherically
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symmetric and increasing in the norm of kak. In particular,

for any s > 0 we have

max
kaks

E�(p kTap) = E�(p kTse1p). (14)

We generalize Lemma 1 in another dimension, namely, we
show next that the same result holds for any f -divergence.
Specializing this result to the KL-divergence will help sim-
plify the numerical implementation of the DP mechanism we
introduce in the next section.

Proposition 1. Let f : (0,1) ! R be a convex function

satisfying f(1) = 0. For any monotone spherically-symmetric

random vector Z ⇠ p, the mapping a 7! Df (pkTap) is

spherically symmetric and increasing in the norm of kak. In

particular, for any s > 0 we have

max
kaks

Df (p kTap) = Df (p kTse1p). (15)

Remark 4. The above results show that monotonicity facili-
tates DP accounting—indeed, accounting for multidimensional
non-monotonic mechanisms presents a significant challenge,
since, as suggested by (3), one must maximize over all possible
ui � vi for 1  i  k. Thus, in the next section we restrict
attention to the subclass of monotone mechanisms. Recall
that Theorem 3 shows that, among all additive mechanisms,
the optimal one is spherically-symmetric. It can be seen
that spherically-symmetric mechanisms would still be optimal
among all monotone mechanisms for the KL-divergence prob-
lem (6). Indeed, as in the proof of Theorem 3, if p is the PDF
of an optimal mechanism that is monotone but not necessarily
spherically-symmetric, then constructing the PDF

q(z) :=

Z

O(m)
p(Uz) dµ(z) (16)

(where µ the Haar measure over the orthogonal group O(m))
we see that q is the PDF of a monotone spherically-symmetric
mechanism that performs at least as well as p for the prob-
lem (6) (hence, optimally among monotone mechanisms). In
the sequel, we will denote the optimal value achievable by a
monotone mechanism for the problem (6) by KL?

monotone.

V. PROPOSED OPTIMAL MECHANISMS

We construct in this section a family of monotone and
spherically-symmetric mechanisms that are optimal among
all monotone mechanisms for the KL-divergence optimization
in (11), i.e., they achieve KL?

monotone (see Remark 4). In view
of Lemma 1, DP accounting is possible for the family of
mechanisms we construct. In addition, we use Proposition 1 to
show that our proposed construction is numerically tractable.
We also demonstrate in the next section via numerical exper-
iments that our proposed mechanism achieves improved DP
parameters in comparison to the Gaussian mechanism that has
the same variance (i.e., with c(x) = kxk2).1

1Without loss of generality, we fix the sensitivity s = 1, which is allowed
as we may simply replace the cost c(x) with c(sx).

As the search space for the KL-divergence optimization (11)
is infinite-dimensional, we resort to a quantization approach.
Our construction can be seen as a generalization of the 1-
dimensional approach in [12]. We fix a large enough ball,
which we divide into spherical shells of fixed small enough
width. We require that the mechanism be constant over the
individual spherical shells. Then, we impose geometric tails
outside the fixed large ball. Formally, we introduce the fol-
lowing construction.

Definition 2. Fix two positive integers n and N , a constant
r 2 (0, 1), and a vector p = (p0, p1, . . . , pN ) 2 [0,1)N+1

with p0 � · · · � pN . Consider the partition of R by intervals
{Ji,n :=

⇥
i
n ,

i+1
n

�
}i2N. We define the piecewise-constant

function

efn,r,p(⇢) :=
(
pi, if ⇢ 2 Ji,n,with i < N,

pNr
i�N

, if ⇢ 2 Ji,n,with i � N.
(17)

We also define the density fn,r,p : Rm ! [0,1) by

fn,r,p(x) := efn,r,p(kxk), (18)

and associate with fn,r,p the Borel measure Pn,r,p given by

Pn,r,p(B) :=

Z

B
fn,r,p(x) dx. (19)

We show next that the optimal distribution among the
family introduced in Definition 2 can be found via a sim-
ple finite-dimensional convex optimization problem. For each
(n,N, r) 2 N2 ⇥ (0, 1), let Fn,N,r denote the family of
mechanisms

Fn,N,r :=
�
Pn,r,p ; p 2 [0,1)N+1

, Pn,r,p(Rm) = 1
 
.

(20)
Denote also the optimal value

KL?
n,N,r(C) := inf

P2Fn,N,r

EP [c]C

sup
kak1

D(P kTaP ). (21)

To state our next result more compactly, we introduce the
following shorthands. For each s, ⇢, ✓ � 0, let H(s, ⇢, ✓)
denote the area of the triangle with side lengths s, ⇢, and ✓, i.e.,
H(s, ⇢, ✓) = 0 if there is no triangle with such side lengths,
and otherwise
H(s, ⇢, ✓)

:=
1

4

p
(s+ ⇢+ ✓)(s+ ⇢� ✓)(s� ⇢+ ✓)(�s+ ⇢+ ✓).

(22)

For each i, j, n 2 N, denote the constant

�i,j,n :=

Z

Ji,n

Z

Jj,n

✓⇢ ·H(1, ⇢, ✓)m�3
d✓ d⇢. (23)

Also, denote the constants

ci,n :=

Z

kxk2Ji,n

c(x) dx. (24)

2023 IEEE International Symposium on Information Theory (ISIT)

2198Authorized licensed use limited to: Arizona State University. Downloaded on August 16,2024 at 17:41:14 UTC from IEEE Xplore.  Restrictions apply. 



Denote the open balls

B(⇢) := {x 2 Rm : kxk < ⇢}. (25)

For integers i � 0 and n � 1, denote the volume of the
spherical shell

vi,n = �

✓
B
✓
i+ 1

n

◆
\ B

✓
i

n

◆◆
. (26)

Denote also the volume of the unit ball

Vm := �(B(1)) = ⇡
m/2

�
�
m
2 + 1

� . (27)

The following result shows that the optimization (21) re-
quired to numerically construct our proposed mechanism (i.e.,
finding the vector p 2 RN+1

+ for a fixed choice of (n,N, r))
can be carried out as a finite-dimensional convex optimization
problem.

Theorem 4. The optimization (21) can be rewritten as

minimize
p2(0,1)N+1

Am

X

i,j�0

�i,j,n pi log
pi

pj
(28)

subject to
X

i�0

pivi,n = 1 (29)

X

i�0

pici,n  C, (30)

where Am = 2m�3(m�1)Vm�1 and pi = pNr
i�N

for i > N .

See Figure 1 for the result of numerically solving the
optimization problem in Theorem 4 in m = 10 dimensions.
Since this mechanism is spherically-symmetric, we plot its
radius’ density (i.e., with the decomposition Z = R · U as
in (13), we plot the PDF of R) and compare to the multivariate
Gaussian radial distribution.2

Finally, we prove optimality of our proposed mechanisms
introduced in Definition 2 for the optimization problem (11)
among monotone mechanisms (see Remark 4).

Theorem 5. Suppose c : Rm ! R satisfies Assumption 1,

and suppose c is also continuous and that, for some ↵,� > 0,

c(x) ⇠ �kxk↵ as kxk ! 1. With the optimal value

obtainable by the families Fn,N,r denoted by

cKL(C) := lim
✓!0+

inf
(n,N,r)2N2⇥(0,1)

KL?
n,N,r(C + ✓), (31)

we have the equality KL?
monotone = cKL.

VI. NUMERICAL EXPERIMENTS

We apply state-of-the-art accounting methods and privacy-
amplification techniques to simulate a real-world application
for the proposed mechanism in Definition 2. In particular,
we subsample our mechanism, following standard practice
in the DP machine learning literature for amplifying privacy

2Note that both mechanisms in Figure 1 are monotone according to
Definition 1, but this generally does not imply monotonicity of the PDF of
the radial part of the random vectors.

Fig. 1. The proposed mechanism and Gaussian mechanism, both in m =
10 dimensions and with a quadratic cost E[kZk2] = 2.5. The construction
parameters for the proposed mechanism are n = 400, N = 1200, and r =
0.9, and p 2 (0,1)N+1 is found via Theorem 4 (see Definition 2).

Fig. 2. Privacy budget " versus number of the compositions, for E[kZk2] =
2.5 (corresponding to � = 0.5 for N (0,�2I10)), � = 10�8, and
subsampling rate q = 0.001. The proposed mechanism has 10 dimensions,
and its construction parameters are (n,N, r) = (400, 1200, 0.9), whereas its
vector p 2 (0,1)N+1 is computed numerically with the aid of Theorem 4.

guarantees [11], [14], [15]. Moreover, we use the arbitrary-
accuracy FFT-based numerical accountant introduced in [16]
to compute tight privacy bounds for finite compositions.

In Figure 2, we fix � = 10�8 and compute " under a
varying number of compositions. Under this construction, the
accountant in [16] computes both upper and lower bounds on
". This accountant allows one to set the additive error in " and
� via the parameters "error, �error. We choose "error = 0.002 and
�error = 10�10, effectively making the upper and lower bounds
indistinguishable (they are both plotted in Figure 2). We com-
pare the resulting privacy curve for the proposed mechanism
with that of the subsampled Gaussian mechanism, for the same
dimension m = 10 and variance cost E[kZk2] = 2.5. Our
proposed mechanism provides stronger privacy guarantees3 for
all values of compositions 1  k  2000.

3Although our proposed mechanism is not optimized for subsampling, our
numerical results imply that it still outperforms the subsampled Gaussian.
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