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Abstract—We consider the problem of designing optimal dif-

ferential privacy mechanisms with a favorable privacy-utility

tradeoff in the limit of a large number n of compositions (i.e.,

sequential queries). Here, utility is measured by the average

distance between the mechanism’s input and output, evaluated

by a cost function c. We show that if n is sufficiently large and

the sensitivities of all queries are small, then the optimal additive

noise mechanism has probability density function fully charac-

terized by the ground-state eigenfunction of the Schrödinger

operator with potential c. This leads to a family of optimal

mechanisms, dubbed the Schrödinger mechanisms, depending

on the choice of the cost function. Instantiating this result, we

demonstrate that for c(x) = x2
the Gaussian mechanism is

optimal, and for c(x) = |x|, the optimal mechanism is obtained

by the Airy function, thereby leading to the Airy mechanism.

The full proofs can be found in the extended version at [1].

I. INTRODUCTION

Differential privacy (DP) [2] provides provable privacy
guarantees for queries computed over sensitive data. Currently,
DP is the standard definition used in privacy-preserving ma-
chine learning (ML) deployed in practice by, for example,
Google [3], Apple [4], and Facebook [5]. The parameters
of these mechanisms are determined by the desired level
of privacy and the query’s sensitivity, denoted by s. When
incorporating DP into ML algorithms, one fundamental chal-
lenge is to accurately characterize the privacy loss in iterative
algorithms. To address this challenge, numerous composition
results have been proved in the literature, e.g., [6]–[16].

In this paper, we view composition problems from a
different angle: Instead of assuming access to constituent
mechanisms, we seek to construct a DP mechanism whose
n-fold composition has the optimal privacy guarantee among
all possible mechanisms. We investigate this problem under
two assumptions: (1) large number of compositions n, and
(2) small values of the query sensitivity s. The first assumption
is inspired by iterative training procedures for ML models
such as stochastic gradient descent, where a dataset is queried
many times (often in the thousands) in order to update model
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parameters (e.g., weights of a neural network). Thus, it is
a natural assumption for the privacy analysis of private ML
algorithms (see, e.g., [12], [16], [17]). The second assumption
holds, for example, when we are interested in counting queries
over large datasets, because in this case the sensitivity is
inversely proportional to the size of the dataset.

Optimal DP mechanisms under the first assumption (i.e., in
the large composition regime) have been recently characterized
in [17]. The main technical result validating the approach
of [17] is that the privacy guarantee of the n-fold composition
of a mechanism PY |X scales as [16]

n · sup
|x�x0|s

D(PY |X=x kPY |X=x0), (1)

where D( · k · ) denotes the KL-divergence. It follows from
this observation that the optimal mechanism is the one that
solves the following optimization problem:

inf
E[c(Y�x)|X=x]C, 8x2R

sup
|x�x0|s

D(PY |X=x kPY |X=x0),

(2)
where the outer infimum is taken over all mechanisms PY |X
that satisfy the prescribed cost constraint dictated by a cost
function c and a cost bound C (e.g., a bounded variance). Not
surprisingly, the optimal mechanism is additive and continuous
(see [17, Theorem 1]), thus (2) reduces to the following
optimization over probability density functions (PDFs) p:

inf
p: Ep[c]C

sup
|a|s

D(p kTap), (3)

where (Tap)(x) := p(x�a) denotes the shift operator. The so-
called cactus mechanisms, were shown by [17] to achieve the
optimal value in (3) to arbitrary accuracy and for fixed sensi-
tivity s > 0. In this paper, we seek to solve (3) with vanishing
sensitivity, i.e., s ! 0+. We achieve this goal by a sequence
of reductions: from KL-divergence to Fisher information and
then to the Schrödinger equation. Thus, we name the ensuing
family of optimal mechanisms the Schrödinger mechanisms.

We use the folklore expansion [18, Section 2.6]

D(p kTap) =
a2

2
I(p) + o(a2) as a ! 0, (4)

where I(p) is the Fisher information. Consequently, the min-
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imax optimization of KL-divergence in (3) reduces to finding
the unique minimizer of I(p) over all PDFs p satisfying
the utility constraint. This reduced formulation reveals a
remarkable characterization of the optimizer p?: it is the
square of the ground-state eigenfunction of a Schrödinger
operator (Theorem 3). This general characterization provides a
powerful tool to identify closed-form DP mechanisms with the
optimal privacy-utility trade-off where the utility is measured
via the cost function c. In particular, we show that p? is the
Gaussian PDF for the L2 cost function (Proposition 3), thereby
proving that the Gaussian mechanism is optimal in this sense
in the small-sensitivity regime. Our results also show that p?
for the L1 cost is given by the Airy function, leading to the
introduction of a new optimal DP mechanism, which we call
the Airy mechanism (see Definition 4).

A. Related Work and Contributions
Several optimal mechanisms in DP settings are known, e.g.,

stair-case mechanism [19]–[21], geometric mechanism [22],
discrete Laplace mechanism [23], truncated Laplace mech-
anism [24], and uniform mechanism [25], to name a few.
All these works assume a query with a given sensitivity in a
single-shot setting (i.e., no compositions). Unlike these works,
we focus on characterizing optimal mechanisms under large
composition when the query’s sensitivity is rather small. Al-
though optimal mechanisms for the large-composition regime
are treated in [17], the work therein considers fixed sensitivity.

Compared to existing literature on the problem of minimiz-
ing the Fisher information, we:

1) work with a larger class of cost functions,
2) do not restrict the support of the PDFs we optimize over,
3) do not require any regularity assumptions whatsoever on

the PDFs we optimize over.
We go beyond existing literature by introducing a novel proof
technique that does not depend on the calculus of variation,
and also by deriving an estimate of the logarithmic derivative
of the ground-state eigenfunction of the Schrödinger operator.

The statistics literature is rife with results on Fisher-
information-minimizing distributions. The Cramér-Rao bound
implies that Gaussian measures are optimal for a given vari-
ance. The minimizer over compactly-supported distributions
or over those supported on R+ were characterized in [26]
and [27], respectively. Kagan [28] studied the same problem
for densities on R with fixed first and second moments,
which was later extended to other moments by Ernst [29].
A connection between minimizing Fisher information and the
Schrödinger equation has been established in [30, Example
5.1]. Formulating a privacy problem in terms of minimizing
Fisher information has appeared in [31], [32], but not in a DP
sense; rather, the analyses therein pertain to privacy-preserving
battery charging methods to obfuscate household information,
and the Fisher information itself is proposed as a privacy
metric. Fisher information minimization in [31] is done for
PDFs of compact support, and that is extended to unbounded
support in [32] but for only a quadratic cost. Further, the
PDFs considered in [31], [32] are assumed a priori to be

twice continuously differentiable. Therefore, none of these
previous works has a setup encompassing ours, namely, they
minimize Fisher information: over PDFs supported over a
compact set [26], [31] or over R+ [27]; assuming regularity
of the PDFs [30]–[32]; or under a strictly smaller or different
class of constraint functions [28], [29], [32].

We discuss in more detail how our work differs from the
existing literature [29]–[32] in [1, Appendix A].

B. Notation and Assumptions
We let � denote the Lebesgue measure on R. The set of all

probability density functions (PDFs) on R is denoted by P(R).
For p 2 P(R) and c : R ! R, the expectation is denoted by
Ep[c] :=

R
R c(x)p(x) dx. The shift operator is denoted by Tx,

i.e., (Txr)(A) := r(A� x).
The Fisher information of p 2 P(R) is denoted by I(p),

i.e., if p is absolutely continuous then

I(p) :=

Z

{x2R ; p(x)>0}

p0(x)2

p(x)
dx, (5)

and I(p) = 1 otherwise. The KL-divergence is denoted by
D(p k q) if p, q 2 P(R). The variance of the information
density is denoted by (for p, q 2 P(R))

V(p k q) := Ep

"✓
log

p

q
�D(pkq)

◆2
#
. (6)

It is well-known (see, e.g., [18, Section 2.6]) that, under mild
regularity conditions on a PDF p, one has the expansion in (4).
Define the subset of PDFs F ⇢ P(R) by

F :=

(
p 2 P(R) : (4) holds, sup

|a|s
D(pkTap) < 1 and

sup
|a|s

V(pkTap) < 1 for some s > 0

)
.

(7)

The minimization problem we solve for Fisher information is
global, i.e., over all of P(R), while the DP optimization we
solve will be over the set F defined in (7).

The results of this paper hold for the following class of cost
functions c. We note that this class includes functions such as
c(x) = �|x|↵ and c(x) = � log(|x|+ 1)↵ for any ↵,� > 0.

Assumption 1. The cost function c : R ! R satisfies:
1) Positivity: c(x) � 0 for all x 2 R, and c(0) = 0.
2) Symmetry: c(x) = c(�x) for all x 2 R.
3) Monotonicity: c(x1)  c(x2) if |x1|  |x2|.
4) Continuity: c is continuous over R.
5) Unbounded: c(x) ! 1 as x ! 1,
6) Controlled derivative: c0(x) = o

�
c(x)3/2

�
as x ! 1,

7) Tail regularity:
R1
x0

|c0|2/|c|5/2,
R1
x0

|c00|/|c|3/2 < 1 for
some x0 2 R,

8) Moderate growth: x 7!

p
c(x)/exp(�

R |x|
0

p
c(t) dt) is

integrable for all � > 0,
9) Additive/Multiplicative regularity: there is a locally

bounded strictly positive function ⇢ on R such that
c(x� t), c(tx)  ⇢(t)(c(x) + 1) for all x, t 2 R.
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In the assumptions involving c0 or c00, it is to be understood
that c is required to be differentiable (or twice differentiable)
only at large enough values.

II. FROM DP TO KL-DIVERGENCE TO FISHER
INFORMATION

Let D be the collection of datasets, each of which contains
sensitive data of several individuals, and f : D ! R be a
query function. The quantity of interest is x = f(d), which is
the outcome of the query f on the dataset d 2 D (e.g., f(d)
could be the percentage of individuals in d falling inside a
certain income bracket). To protect the privacy of individuals
against membership and inference attacks, a typical approach
is to perturb f(d) using a channel (or mechanism) PY |X=f(d)

so that Y cannot be used to distinguish d from a neighboring
dataset d0 that differs from d in one entry. This approach,
known as differential privacy [2], is formalized as follows.
Given " � 0 and � 2 [0, 1], a mechanism PY |X is said to be
(", �)-differentially private (or (", �)-DP for short) if

sup
d⇠d0

sup
A⇢Y

⇥
PY |X=f(d)(A)� e"PY |X=f(d0)(A)

⇤
 �, (8)

where the outer supremum is taken over all pairs of neigh-
boring datasets d and d0, denoted by d ⇠ d0, and the inner
supremum is taken over all measurable subsets A of the sup-
port Y of Y . If a mechanism PY |X is (", �)-DP for sufficiently
small " and �, then an adversary observing Y cannot accurately
distinguish d from an arbitrary neighboring d0, thus providing
a tunable privacy guarantee for each individual in d. A popular
family of such DP mechanisms includes additive ones, that is,
Y = f(d) + Z where Z ⇠ P is a noise variable drawn from
a distribution P .1

We note that the DP definition in (8) can be more compactly
expressed using the E�-divergence [33] defined for � � 0 as

E�(P kQ) := sup
A Borel

P (A)� �Q(A). (9)

With this definition at hand, we can say PY |X is (", �)-DP if

sup
|x�x0|s

Ee"(PY |X=x k PY |X=x0)  �, (10)

where s denote the sensitivity of the query f , defined as s :=
supd⇠d0 |f(d)� f(d0)|.

Next, consider a typical composition setting where a dataset
d is queried n times sequentially with query functions fj , 1 

j  n, and a mechanism PY |X is used n times to generate the
n-tuple Y n = (Y1, . . . , Yn) as a private version of the n-tuple
(f1(d), · · · , fn(d)). For simplicity, we assume that each fj
has the same sensitivity s. Therefore, this n-fold composition

1Alternatively, one can express additive mechanisms by PY |X=x = TxP ,
where Tx denotes the shift operator defined as (TxP )(A) := P (A� x).

P �n
Y |X is (", �P�n

Y |X ,s("))-DP for any " � 0, where2

�P�n
Y |X ,s(") := sup

|uj�vj |s
1jn

Ee"

0

@
nY

j=1

PY |X=uj

���
nY

j=1

PY |X=vj

1

A.

(11)
Equivalently, P �n

Y |X is ("P�n
Y |X ,s(�), �)-DP for � 2 [0, 1], where

"P�n
Y |X ,s(�) := inf

n
" � 0 : �P�n

Y |X ,s(")  �
o
. (12)

Since additive continuous channels were shown to be optimal
in [17], we henceforth consider only channels of the form
PY |X=x = TxP with P being absolutely continuous with
respect to the Lebesgue measure �, for which we use the
simplified notation "p�n,s(�) where p = dP/d� is the PDF.
We derive the following asymptotic formula for "P�n

Y |X ,s(�).3

Theorem 1. For any PDF p 2 P(R) and s > 0 satisfying
sup|a|s V(pkTap) < 1, and for any � 2 (0, 1/2), we have

lim
n!1

"p�n,s(�)

n
= sup

|a|s
D(pkTap). (13)

According to this theorem, characterizing "p�n,s(�) for
sufficiently large n boils down to computing the maximum
of D(p k Tap) over all |a|  s.

Analogous to [17], we address the utility of the mechanism
PY |X by imposing the bound E[c(Y � x) | X = x]  C
for all x 2 R and a given C � 0, where c : R ! R+ is a
measurable cost function. Notice that for additive mechanisms
PY |X=x = TxP , this utility constraint reduces to EP [c]  C.
Motivated by the asymptotic given in Theorem 1, we consider
the following optimality in the small sensitivity regime.

Definition 1. Let F ⇢ P(R) be as defined in (7).4 We say
that a PDF p 2 F is optimal in the small-sensitivity regime for
the cost function c and the cost bound C if Ep[c]  C, and
for every other PDF q 2 F (i.e., �({p = q}) = 0) satisfying
Eq[c]  C there is a constant s(q) > 0 such that 0 < s < s(q)
implies

sup
0<�< 1

2

lim
n!1

"p�n,s(�)

"q�n,s(�)
< 1. (14)

An immediate corollary of Theorem 1 is that the unique
minimizer of the Fisher information is automatically the
optimal PDF in the small-sensitivity regime.

Corollary 1. If p 2 F is the unique minimizer

p = argmin
q2F

Eq [c]C

I(q), (15)

2While the sensitivity s is usually suppressed from the notation of � and
" in the literature, we include it here since we consider a variable sensitivity.

3A similar result appears in [16] under additional third-moment constraints,
and also under the assumption of existence of “worst-case shifts.” Thus, our
result can be seen as a generalization of the asymptotic formula in [16].

4For the Gaussian density '� , we have D('�
kTa'�) = a2/(2�2). Thus,

if one insists that the PDF p satisfy D(pkTap)  D('�
kTa'�) for all small

a, then the mapping a 7! D(pkTap) is necessarily differentiable at a = 0
with vanishing derivative. In particular, one reasonably expects that desirable
PDFs for the small-sensitivity regime to belong to F .
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then p is the optimal PDF in the small-sensitivity regime for
the cost function c and the cost bound C.

We derive in the next section minimizers of Fisher infor-
mation over all PDFs P(R), then we also show that such
minimizers in fact fall within the set F .

III. FROM FISHER INFORMATION TO THE SCHRÖDINGER
EQUATION

Solving the Fisher information minimization problem re-
veals a bridge between DP and the Schrödinger operator. This
connection enables us to show that the global minimizers of
Fisher information are fully characterized by the minimal-
eigenvalue eigenfunctions of the Schrödinger operator (see
Theorem 2) with the potential given by the cost function c.

A. The Schrödinger Equation

We begin by recalling the setup of the Schrödinger operator
eigen-problem and some of its known properties.

Definition 2 ( [34, Section 2.4]). For a measurable v : R ! R,
the Schrödinger operator Hv on L2(R) with potential v is
defined as5

Hv(y) := �y00 + vy. (16)

We say that y 2 L2(R) is an eigenfunction of Hv if y is
differentiable, y0 is absolutely continuous, and there exists a
constant E such that Hv(y) = Ey holds a.e.

The spectrum of Hv is discrete: if v is locally bounded
and lim|x|!1 v(x) = 1 then L2(R) has an orthonormal
complete set consisting of eigenfunctions of Hv with eigen-
values {Ek}k2N such that Ek ! 1 (see [34, Chapter
2, Theorem 3.1]). Moreover, one may order the Ek in an
increasing fashion, and then the eigenfunction associated to
Ek has exactly k zeros (see [34, Chapter 2, Theorem 3.5]).
We are interested in the smallest eigenvalue E0 and the
associated eigenfunction, i.e., the ground-state eigenfunction.
An easy consequence of known properties of the ground-state
eigenfunction is as follows.

Lemma 1. For any ✓ > 0, there exists a unique unit-L2-
norm eigenfunction y✓,c of H✓c satisfying y✓,c(x) > 0 for all
x 2 R. Further, y✓,c is even, and its eigenvalue is the smallest
eigenvalue of H✓c.

The notation y✓,c as given by Lemma 1 will be used in the
remainder of the paper.

B. Global Minimization of Fisher Information

Recall the recipe we provide in Section II for finding
optimal DP mechanisms in the small-sensitivity regime:

1) globally minimize Fisher information (i.e., over P(R)),
2) show that the solution in fact falls within F ,

5One may define Hv initially on compactly-supported C
1 functions, then

show that its closure is self-adjoint if v satisfies mild conditions (see [34,
Chapter 2, Theorem 1.1]). In particular, this extension goes through if v is
nonnegative (and measurable).

3) use Theorem 1 to conclude that the Fisher information
global minimizer is the optimal DP mechanism.

We carry out step 1 in Theorem 2 below, where we show that
y2✓,c is the unique global minimizer of the Fisher information.
After that, we complete our general derivations in Proposi-
tion 2 by showing that step 2 holds, i.e., y2✓,c 2 F .

Theorem 2. Suppose c satisfies Assumption 1, fix ✓ > 0,
consider the PDF p = y2✓,c, and set C = Ep[c]. Then, the
PDF p uniquely minimizes the Fisher information among all
PDFs q 2 P(R) that satisfy Eq[c]  C, i.e.,

p = argmin
q2P(R)
Eq [c]C

I(q). (17)

Since Theorem 2 gives a general unconditional result, our
work can be seen as a way to fill the gaps in [29]–[32]. In
the next section, we also provide a new explicit solution for
the absolute-value cost case. Our method of proof deviates
from those in [29]–[32], where we borrow results from the
quantum mechanics literature (such as [34]) to show that the
needed properties for p can be derived instead of assumed.
For instance, we show that the unique eigenfunction y✓,c as
given by Lemma 1 satisfies the following bound.

Proposition 1. For c satisfying Assumption 1 and any ✓ > 0,
we have the bound

lim sup
|x|!1

�����
y0✓,c(x)

y✓,c(x)
p
c(x)

����� 
p

✓. (18)

Finally, we show in the following result that the PDF y2✓,c
falls within the set F defined in (7).

Proposition 2. For any c satisfying Assumption 1 and any
✓ > 0, we have that y2✓,c 2 F .

Next, we combine Theorems 1–2 and Proposition 2 to show
in Theorem 3 that the PDF y2✓,c is the optimal DP mechanism
in the sense of Definition 1.

C. The Schrödinger Mechanism
Since y✓,c is a Borel function satisfying ky✓,ck2 = 1, we get

that y2✓,c is a PDF. We call y2✓,c the Schrödinger mechanism.

Definition 3. The Schrödinger mechanism given the cost
function c and parameter ✓ > 0 is defined by Y = X +Z for
Z having the PDF y2✓,c where y = y✓,c is the unique unit-L2-
norm and strictly positive solution to the Schrödinger equation

y00 = (✓c� E)y, (19)

with E an arbitrary constant.6

Combining our results, we get that the Schrödinger mecha-
nism is optimal in the small-sensitivity regime.

Theorem 3. If a cost satisfies Assumption 1, the Schrödinger
mechanism is optimal in the small-sensitivity regime in the
sense of Definition 1.

6By Lemma 1, there is a unique E for which the ODE (19) is solvable with
the prescribed properties for the solution y, and the solution then is y = y✓,c.
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Remark 1. For the two examples we discuss in the next
section, we give a reversing procedure producing ✓ given C
that takes the form ✓ = aC�b for absolute constants a and b.

IV. FROM THE SCHRÖDINGER EQUATION TO THE
GAUSSIAN AND AIRY MECHANISMS

Next, we instantiate Theorem 3 for two different cost func-
tions, namely the quadratic and absolute-value cost functions.

A. Quadratic cost: optimality of Gaussian

Consider first the quadratic cost function c(x) = x2. By
particularizing Theorem 3 to this case, we show that the
Gaussian distribution is optimal in the small-sensitivity regime
in the sense of Definition 1. This is a direct consequence of
the Cramér-Rao bound, but we derive it here using Theorem 3.
The Schrödinger equation to be solved becomes

y00(x) =
�
✓x2

� E
�
y(x). (20)

Proposition 3. For a quadratic cost c(x) = x2, the Gaussian
mechanism is optimal in the small-sensitivity regime.

B. Absolute value cost: optimality of Airy

We next consider the absolute-value cost c(x) = |x|. In this
case, the eigenvalue problem H✓c(y) = Ey becomes

y00(x) = (✓|x|� E)y(x), (21)

for some ✓ > 0. It will be useful to recall the definition of the
Airy functions. The differential equation

y00(x) = xy(x) (22)

has two linearly independent solutions, called the Airy func-
tions [35, Chapter 9]. They are denoted by Ai and Bi, where Ai
is the solution such that Ai(x) ! 0 as x ! 1. This function
can be expressed by the improper Riemann integral

Ai(x) =
1

⇡
lim

N!1

Z N

0
cos

✓
t3

3
+ xt

◆
dt. (23)

This function is analytic, and there are countably many zeros
of Ai and Ai0 all falling on the negative half-line. As is custom-
ary, the zeros of Ai and Ai0 are denoted by a1 > a2 > · · · and
a01 > a02 > · · · , respectively. It is known that approximately

a1 = �2.33810, a01 = �1.01879, and Ai(a01) = 0.53565.

In particular, the function Ai is strictly positive and strictly
decreasing over [a01,1). We use the Airy function to construct
the following density, which we show afterwards to be optimal.

Definition 4. For C > 0, we define the Airy distribution with
first absolute moment C as the probability measure whose
PDF pAi,C is given by

pAi,C(x) :=
1

3CAi(a01)
2
Ai

✓
�2a01
3C

|x|+ a01

◆2

. (24)

Remark 2. It can be verified with some algebra that pAi,C is
a valid PDF and that its first absolute moment is indeed C.

Fig. 1: The densities of the Laplace and Airy distributions
(pAi,C(x), introduced in Definition 4), with C = E[|X|] = 1.

Fig. 2: The privacy budget " versus the number of the com-
positions n, for the constraint C = E[|X|] = 2, s = 1, fixed
privacy parameter � = 10�8, and subsampling rate q = 0.01.

Proposition 4. For an absolute-value cost c(x) = |x|, the Airy
mechanism is optimal in the small-sensitivity regime.

In Figure 1, we illustrate the Airy distribution and compare
it with the Laplace distribution. We note that the Airy distri-
bution has a lighter tail than that of the Laplace distribution,
where the exponential decay of the former is e�2x3/2/3 and
that of the latter is e�x.

Experiments: Finally, we demonstrate that the Airy
mechanism can achieve better DP parameters than the Laplace
mechanism for the same fixed absolute-value cost. In par-
ticular, we subsample both mechanisms, following standard
practice in the DP machine learning community for amplifying
privacy [8], [36], [37]. We also use the arbitrary-accuracy FFT-
based numerical accountant introduced in [14] to compute
tight privacy bounds for finite compositions. In Figure 2,
we fix � = 10�8 and estimate " under a varying number
of compositions. Under this construction, the accountant in
[14] computes both upper and lower bounds on ". We choose
"error = 0.002 and �error = 10�10, effectively making the upper
and lower bounds indistinguishable (they are both plotted in
Figure 2). The Airy mechanism provides stronger privacy
guarantees for all values of compositions (1  n  2000),
and the gap increases with composition.
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