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As the number of highly destructive wildfires grows, it is increasingly important to understand the long-term
changes that occur to fire-affected places. Integrating approaches from social and biophysical science, we
document two forms of neighborhood change following the 2018 Camp Fire in the United States, examining the
more than 17,000 residential structures within the burn footprint. We found that mobile or motor homes, lower-

Gentrification . . s . o1 .
Built environment value residences, and absentee owner residences had a significantly higher probability of being destroyed,
Disaster providing evidence that housing stock filtering facilitated socially stratified patterns of physical damage. While

the relationship between building value and destruction probability could be explained by measures of building
density and distance to nearby roads, building type remained an independent predictor of structure loss that we
could not fully explain by adding environmental covariates to our models. Using a geospatial machine learning
technique, we then identified buildings that had been reconstructed within the burn footprint 20 months after
the fire. We found that reconstructed buildings were more likely to have been owner-occupied prior to the fire
and had higher average pre-fire property value, suggesting an emerging pattern of cost-burden gentrification.
Our findings illustrate the importance of examining the built environment as a driver of socially uneven disaster
impacts. Wildfire mitigation strategies are needed for mobile and motor home residents, renters, low-income
residents, and dense neighborhoods.

1. Introduction the number of highly destructive wildfires grows, it is increasingly

important to understand the long-term changes that occur to fire-

The impacts of wildfires on the built environment are growing
increasingly acute. In the U.S., the number of housing units exposed to
wildfire grew more than twofold in recent decades (Radeloff et al.,
2023), and wildfire events in the western U.S. had a 160% higher
structure loss rate between 2010 and 2020 compared to the previous
decade (Higuera et al., 2023). Concerns over growing wildfire destruc-
tion are echoed internationally, with a recent United Nations report
emphasizing “the rising threat of extraordinary landscape fires” across
many continents (United Nations Environment Programme, 2022). As
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affected places.

Existing research on the dynamics of wildfire and the built envi-
ronment has documented an extensive set of physical characteristics
that influence building destruction outcomes (Alexandre et al., 2016;
Gibbons et al., 2012; Syphard et al., 2012, 2014, 2017). A small but
growing area of research has further described macro-level trends in
post-fire building reconstruction (Alexandre et al., 2015; Kramer et al.,
2021; Mockrin et al., 2015). We advance this area of study by inte-
grating key concepts from social science research on neighborhood
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change - shifts in a place’s built environment, population, or economy
over time - to examine socioeconomic differentiation of building
destruction and subsequent reconstruction (Zuk et al., 2015).

Our study examines two forms of physical neighborhood change that
have not been investigated widely in the context of wildfire: housing
stock filtering and cost-burden gentrification. We do so in a case study of
the 2018 Camp Fire, which destroyed nearly 19,000 structures in
northern California and remains one of the most destructive wildfires in
U.S. history. In our study, we test whether socioeconomic-related
characteristics of buildings exposed to the fire - building type, build-
ing value, and building tenure - were associated with heightened or
reduced probability of destruction and subsequent reconstruction.
Through this fine-grained examination of the built environment imme-
diately following the Camp Fire and again, 20 months after the event, we
illustrate how wildfire can facilitate neighborhood change at different
periods of time through a restructuring of the physical landscape.

Social science research on disasters has long emphasized that social,
political, and economic processes fundamentally shape how environ-
mental hazards affect residents, often reinforcing existing social in-
equalities (Tierney, 2019; Wisner et al., 2014). Scholarship focused on
wildfires and social inequality has described the co-occurrence of
wildfire risk and community demographic characteristics (Davies et al.,
2018; Lambrou et al., 2023; Palaiologou et al., 2019; Wigtil et al., 2016).
It has further highlighted ways that residents’ capacity to prepare for
wildfire or to adapt to post-fire conditions differ across demographic
groups (Méndez et al., 2020; Paveglio et al., 2015). Building on existing
wildfire social vulnerability scholarship - which has primarily examined
characteristics of people - we show how the dwellings where people live
can further drive socially uneven disaster outcomes through physical
neighborhood change.

1.1. Neighborhood change and environmental hazards

Neighborhood change research broadly investigates the ways that
the population, economy, or built environment of a place change as the
result of public policies, private capital flows, and residential movement
(Zuk et al., 2015). Our study follows prior neighborhood change
research that focuses specifically on the physical environment, using
tools such as Google Street View imagery (Hwang & Sampson, 2014)
and video-recording (Raudenbush & Sampson, 1999) to document the
physical attributes of neighborhoods. We build on this tradition, using a
combination of property records and aerial imagery to investigate how
wildfire can influence neighborhood change through impacts to the built
environment.

Prior research on environmental hazards and the built environment
suggests that wildfires may influence two distinct neighborhood change
processes. First, certain buildings may be more sensitive to being
destroyed or damaged in a fire as a result of a process known as
“filtering.” As housing stock ages and physically declines, researchers
have documented that the residents living in those structures also shift.
Namely, lower-income and non-White residents are often sorted into
lower-value housing stock (Baer & Williamson, 1988; Peacock et al.,
2014). In turn, residents living in lower-quality housing can subse-
quently face heightened exposure to damage from environmental haz-
ards (Chakraborty et al., 2019; Kamel, 2012; Ma & Smith, 2019). The
filtering of housing stock can thus reflect patterns of socioeconomic and
racial segregation, which then intersect with specific disaster events
(Madden, 2021).

In a changing climate, it is likely that filtering will exacerbate social
inequalities in the built environment, as older housing stock is less likely
to be designed to withstand intensifying environmental hazards and
retrofits can be costly (Fussell & Castro, 2022). In the U.S., wildfire
mitigation is generally approached as an individual responsibility; as
such, residents with fewer resources are less likely to have the capacity
to address fire risk where they live (Wigtil et al., 2016). When consid-
ering housing tenure, scholars have suggested that not only do renters
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have little incentive to invest in hazard mitigation on property that they
do not own, but further, that it may be difficult for owners of rental
properties to recoup costs of hazard mitigation investments (Burby et al.,
2003). Further, Chase and Hansen (2021) report that renters affected by
the Camp Fire had lower average income than homeowners, suggesting
they likely had fewer financial resources to put towards mitigation. As a
result of these income and housing tenure dynamics, one of few case
studies on this topic found that low-income and renting households were
less likely to engage in fire mitigation practices (Collins, 2008). Such
patterns are in keeping with broader environmental hazard research,
which finds more generally that lower-income residents and renters
have less capacity to engage in disaster preparedness and mitigation
(Fothergill & Peek, 2004; Lee & Van Zandt, 2019).

The second avenue through which we hypothesize wildfires can in-
fluence neighborhood change is in the building reconstruction process
through a form of post-disaster gentrification. We draw on a typology
advanced by Keenan et al. (2018), who outline distinct pathways
through which environmental hazards can influence property markets.
While these authors emphasize the connection between climate change
and housing, their proposed gentrification pathways can be applied
more broadly to environmental hazards such as wildfires, which can
result from a combination of factors including climate change, land use
patterns, and, human- or utility-caused ignitions (Balch et al., 2017;
Goss et al., 2020). In their case study of Miami-Dade County, Florida,
Keenan et al. (2018) find that residential property values at higher el-
evations - where they were better protected from nuisance flooding -
appreciated at a higher rate. In short, capital moved away from haz-
ardous places. However, the authors point out that hazard-driven
gentrification can also function inversely, wherein more affluent resi-
dents are able to afford the costs of remaining in a hazardous place,
while less affluent residents cannot, and subsequently move away.

Termed “cost-burden gentrification” (Keenan et al., 2018), this form
of hazard-related neighborhood change is especially plausible in a U.S.
wildfire context given the common co-occurrence of desirable landscape
amenities with heightened wildfire risk (Winkler & Rouleau, 2020). In
other words, more resourced residents may seek to remain in place and
adapt to fire risk, rather than moving to a lower-risk area. We also know
from research across different hazard types that the financial burden of
post-disaster rebuilding can be high (Fothergill & Peek, 2004). This past
research led us to hypothesize that cost-burden gentrification is a likely
post-fire trajectory. Yet, to our knowledge, existing research has not
investigated such patterns of neighborhood change following fires.
Further, cost-burden gentrification has received little scholarly attention
relative to other, more commonly-documented avenues of hazard-
related gentrification.

To investigate whether there is evidence of cost-burden gentrifica-
tion following the Camp Fire, we examined patterns of building recon-
struction. Compared to research on wildfire damage, analyses of post-
fire building reconstruction are far fewer. The limited research in this
area tends to describe general trends of whether rebuilding is considered
“fast” or “slow,” and often reports the overall proportion of burned
structures that have been rebuilt within a particular timeframe (Alex-
andre et al., 2015; Kramer et al., 2021; Mockrin et al., 2015). This line of
inquiry has yet to deeply investigate post-fire reconstruction through the
lens of neighborhood change or gentrification. As a result, there is still
limited understanding of which types of buildings in which neighbor-
hoods are reconstructed more quickly, and why reconstruction rates
vary across different fires. Research on post-fire reconstruction has been
further limited by its reliance on manual techniques for identifying
buildings. This time-intensive approach limits researchers’ ability to
analyze extremely destructive events, such as the Camp Fire, or to
examine differences in reconstruction across many fire events. Recog-
nizing a need for more efficient techniques of identifying reconstructed
buildings, we developed a methodological strategy that draws on aerial
imagery and machine learning to semi-automatically detect buildings
within a landscape.
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1.2. Research objectives

Our study investigates the following hypotheses of neighborhood
change following wildfire:
Housing stock filtering

e H1.1: Compared to single-family residences, multi-family residences
and mobile or motor homes were more likely to be destroyed in the
fire. Compared to owner-occupied residences, renter-occupied resi-
dences were more likely to be destroyed. Lower-value homes were
more likely to be destroyed than higher value homes.

H1.2: Differences in destruction probability observed in H1.1 can be
explained by examining additional covariates known to be associ-
ated with structure loss.

Cost-burden gentrification

H2.1: Compared to single-family residences, multi-family residences
and mobile or motor homes were less likely to be reconstructed.
Compared to owner-occupied residences, renter-occupied residences
were less likely to be reconstructed. Lower-value homes were less
likely to be reconstructed than higher value homes.

We conclude by reflecting on how our empirical findings can inform
future directions for wildfire mitigation planning. Our paper’s primary
contribution is to document how wildfire can drive neighborhood
change, showing first how characteristics of the built environment
facilitate socially stratified hazard impacts, and second, how post-
disaster reconstruction is similarly uneven.

2. Methods
2.1. Study site

The 2018 Camp Fire occurred in Butte County, California, which is
situated in the broader Sierra Nevada bioregion (Figs. 1 and 2). This
region is considered a predominantly Mediterranean climate, with
substantial precipitation during winters and dry summers, leading to
flammable fuel loads. Primary vegetation in the affected region include
a range of conifer species, mixed evergreen, and chaparral. These con-
ditions mean that fire has always been a part of the Sierra Nevada
landscape (Knapp et al., 2021; van Wagtendonk et al., 2018).

The Camp Fire destroyed nearly 80% of buildings in its path, and, to
date, is one of the most destructive wildfires in U.S. history. The majority
of buildings destroyed were located in the Town of Paradise, with sur-
rounding communities of Concow, Magalia, Yankee Hill, and Butte
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Fig. 1. Reconstruction on the Ridge in Butte County, California. Photo taken by
K. McConnell circa spring 2022.
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Creek Canyon all severely affected as well (Chase & Hansen, 2021). This
area is locally referred to as “the Ridge,” a term that we use to reference
the communities affected by the fire.

2.2. Measuring building socioeconomic proxy characteristics

We tested our hypotheses by integrating building-level data from
CAL FIRE’s Damage Inspection Data from the Camp Fire (hereafter “CAL
FIRE Damage Inspection Data”) (California Department of Forestry and
Fire Protection, 2018) with administrative property records, a suite of
biophysical characteristics calculated in R computing software, and in-
dicators of post-fire building reconstruction derived from aerial imag-
ery. We constrained our analysis to exclusively residential structures (N
= 17,536) in order to focus on residential neighborhood change
processes.

Our hypotheses focus on three characteristics of buildings that, while
not direct measures of buildings’ residents, can be considered proxy
variables for socioeconomic status and have been used in several pre-
vious studies of wildfire and social vulnerability (Lambrou et al., 2023,
p. 7). Our primary socioeconomic variables included: (1) building type
(single-family residence, mobile or motor home, or multi-family home),
(2) building tenure (renter- or owner-occupied), and (3) building value.
We determined building type from the CAL FIRE Damage Inspection
Data, and building tenure and value from 2017 Butte County public
property records obtained from the financial analytics company
CoreLogic.

To estimate building value, we used the “total value” measure, which
combines land value and improvement value (Client Welcome Toolkit: A
Guide to Better Understand CoreLogic Property Data, 2019, p. 32). To ac-
count for the small number of parcels that had a large number of resi-
dential structures (<1%) - and which primarily were sites of mobile
home parks - we adjusted the total value measure by the number of
residential structures per assessor’s parcel number (APN).

A structure is considered to have an absentee owner if the owner
lives at a different location (Client Welcome Toolkit: A Guide to Better
Understand CoreLogic Property Data, 2019, p. 32). This measure has
been used to identify rental properties in prior research (Einstein et al.,
2022). While it is possible that the absentee owner variable may have
captured some second homes or vacation rentals, estimates that
approximately 30% of Paradise residents rented prior to the fire (Chase
& Hansen, 2021, p. 1569) were in line with our data’s estimates, sug-
gesting that this variable predominantly captured renters living on the
Ridge. Among residential structures, 90.0% included a designation of
either “owner” or “absentee owner” status.

2.3. Measuring additional building covariates

In addition to our primary socioeconomic variables described above,
we computed a suite of additional building-level characteristics to
investigate Hypothesis 1.2 (Table 1). These covariates primarily
included landscape, terrain, and building arrangement characteristics
that have been published in past fire science literature (Alexandre et al.,
2016; Gibbons et al., 2012; Syphard et al., 2012), as well as interaction
terms that could be associated with destruction outcomes (additional
details in Appendix A).

Many variables were determined based on buildings’ spatial location
and without the need for additional data, however landscape-level
variables were derived using the 2016 National Land Cover Database
(NLCD) (Dewitz, 2019). We followed Alexandre et al. (2016) in reclas-
sifying NLCD raster data into three primary classes: highly flammable,
flammable, and non-flammable (Appendix A). From these three classes,
we calculated additional variables within 2500 m of each building point.
Summary statistics of continuous covariates are reported in Appendix B.
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Fig. 2. Location of the Camp Fire in Butte County, California. Burn footprint from the Monitoring Trends in Burn Severity (MTBS) database (Eidenshink et al., 2007).

2.4. Identifying destroyed buildings

CAL FIRE Damage Inspection Data were created through in-person
field inspections and document an ordinal damage measure for each
structure within the Camp Fire burn footprint. We calculated a binary
measure of whether a structure was destroyed or not destroyed as the
primary outcome variable, where all categories with less than 50%
destruction were classified as “not destroyed.” Out of 17,536 residential
structures, 13,974 were destroyed (79.7%), 54 experienced 1-50%
damage (0.003%), and 3,048 experienced no damage (17.4%). Maps of
all destroyed and surviving structures are shown in Appendix C.

Our study builds on research conducted by Knapp et al. (2021) and
Troy et al. (2022), who also utilize CAL FIRE Damage Inspection Data.
While there is some overlap in variables examined in these studies and
our research, a fundamental difference between all three is the popu-
lation of buildings included in analysis. Knapp et al. randomly sample
400 structures, selecting only from single-family residences within the
Town of Paradise (Knapp et al., 2021, p. 4). Troy et al. (2022) conduct
two sets of analysis, the first of which analyzes all destroyed structures
within the burn footprint, including both residential and nonresidential
structures. In addition to analyzing a broader set of structures, the
comparison group used in this analysis is distinct from ours, and is
composed exclusively of partially damaged structures, rather than
structures that survived with no damage (Troy et al., 2022, p. 589). This
study’s second analysis analyzes a sample of 1,404 properties based
within the Camp Fire footprint but outside the Town of Paradise (Troy
et al.,, 2022, p. 590). Our analysis uses a distinct set of observations,
which includes the full population of documented residential structures
within the burn footprint.

2.5. Identifying reconstructed buildings

To create the binary outcome indicating whether a building had been
reconstructed after the fire, we integrated high-resolution imagery from
the U.S. Department of Agriculture’s National Aerial Imagery Program
(NAIP) and Microsoft’s open-access database of building footprints in
the United States (see Appendix D for additional details). NAIP images
have been previously used to classify land cover types with relatively
high accuracy (U.S. Department of Agriculture Farm Service Agency, n.
d.; Maxwell et al., 2017), while Microsoft’s Building Footprints database
has been used to quantify building counts within hazard-prone areas
(Huang & Wang, 2020; Microsoft, 2022). We paired these two data

sources in Google Earth Engine’s (GEE) cloud computing platform
(Gorelick et al., 2017).

We first accessed 35 pre-fire NAIP scenes captured on July 18, 2018
directly from GEE, and upload 48 post-fire NAIP scenes captured on July
9, 2020, which had not yet been ingested into the GEE platform. We then
mosaicked each collection of scenes together to create a single pre-fire
and a single post-fire image covering the entire Camp Fire burn foot-
print. Next, to classify the post-fire NAIP image mosaic, we trained a
support vector machine (SVM) algorithm on pre-fire imagery with
Microsoft Building Footprints, NAIP’s primary spectral bands (red,
green, blue, and near infrared), and the Normalized Difference Vegeta-
tion Index (NDVI) (a combination of red and near infrared bands). We
trained the SVM by sampling 1000 random points from each land cover
class - “building” and “non-building” - which were defined by Microsoft
Building Footprints on the pre-fire aerial image mosaic. We then
removed sample points with an NDVI value higher than 0.2 to avoid
misclassifying occasional overhanging tree pixels as building class. This
process yielded 812 total sample points for the building class. Non-
building points were sampled from pixels within the burn footprint
which had been masked to exclude Microsoft Building Footprint poly-
gons and buffered roads.

After training and testing the classifier on the pre-fire NAIP mosaic,
we then used the algorithm to classify the post-fire NAIP mosaic (Fig. 3).
Points of buildings designated by Damage Inspection Data as destroyed
were then overlaid on the 2020 classified image, and each point was
determined to be rebuilt or not rebuilt based on the class of the pixel on
which it was located. See Appendix D for details on SVM models and our
multi-step validation process.

2.6. Modeling bivariate destruction and reconstruction outcomes

To test Hypothesis 1.1 and 2, we utilized a series of linear probability
models (LPMs) to estimate the probability that a structure was destroyed
or reconstructed. In these models, we exclusively analyzed socioeco-
nomic proxy characteristics of structures - building type, pre-fire
building value, and building tenure - to evaluate whether certain
building types were disproportionately impacted by the fire (Hypothesis
1.1) or disproportionately more likely to have been reconstructed (Hy-
pothesis 2), regardless of the cause. LPMs took the form:

Y; :ﬁ0+ﬁIXi+€i

Where Y; is the binary outcome variable that indicates whether building
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Table 1
Covariates used in Hypothesis 1.2.
Variable Description Measurement Scale Source
Building type Categorical indicator of single-family residence, multi-family Building level CAL FIRE Damage Inspection Data

Absentee owner status

Pre-fire building value
(logged)

Slope

Aspect

Southwestness

Topographic Position
Index (TPI)

Distance to nearest
building

Count of buildings
within 40 m radius

Distance to any road

Distance to major road

Post code change

Distance to cluster edge

residence, or mobile or motor home

Binary indicator of whether a building owner lives at a different
location (absentee owner/renter) or lives in the home (owner-
occupied)

Total dollar value of building adjusted for count of residential
structures per APN

Slope in degrees

Compass direction of slope

Derived from aspect, ranges from + 1 (southwest) to —1
(northeast)

Topographic position of a given point in relation to its general
neighborhood (e.g. valleys, slopes, flat areas, ridges) retained in
continuous form

Continuous variable measured in meters and calculated with both
residential and non-residential structures

Continuous variable based in a 40 m buffer from each building
point, calculated with both residential and non-residential
structures

Continuous variable measured in meters and calculated with
Census Bureau’s TIGER/Line Shapefile

Continuous variable measured in meters and calculated with state-
recognized roads in Census Bureau’s TIGER/Line Shapefile
Binary indicator of whether a structure was built in 2008 or later
after the adoption of updated California Building Code
Continuous measure of meters from building point to the edge of

Building level

Building level
Building level
Building level
Building level

Building level

Building level

Building level

Building level
Building level
Building level

Cluster level

Public property records

Public property records

Computed with R statistical software (sf, elevatr, and
raster packages)
Computed with R statistical software (sf, elevatr, and
raster packages)
Computed with R statistical software (sf, elevatr, and
raster packages)
Computed with R statistical software (sf, elevatr, and
raster packages)

Computed with R statistical software (sf and nngeo
packages)
Computed with R statistical software (sf and nngeo
packages)

Computed with R statistical software (sf, nngeo, and
tigris packages)

Computed with R statistical software (sf, nngeo, and
tigris packages)

Calculated from year of construction, CAL FIRE Damage
Inspection Data

Computed with R statistical software (sf and nngeo

cluster, where cluster is defined by merging overlapping 100-
meter buffers from each building point (see Alexandre et al.,
2016)

Measures the “clumpiness” of raster cells in categorical maps,
including both the extent to which differing patch types are
intermixed and their spatial distribution (McGarigal, 2015)

Contagion Index

Mean canopy cover
continuous measure of the percent tree canopy (0-100)

Proportion highly Proportion of cells within the radius classified as highly flammable
flammable land
cover

Count of non- Number of unique patches of each flammability class within the
flammable, radius

flammable, and
highly-flammable
patches

Measure of the average pixel value, where each cell represents a

packages)

Landscape level
(within a 2500 m
radius)
Landscape level
(within a 2500 m
radius)
Landscape level
(within a 2500 m
radius)
Landscape level
(within a 2500 m
radius)

Land cover map of the National Land Cover Database;
computed with R statistical software (sf, raster, and
exactextractr packages)

U.S. Forest Service Science Tree Canopy Cover, National
Land Cover Database; computed with R statistical
software (sf, raster, and exactextractr packages)

Land cover map, National Land Cover Database;
computed with R statistical software (sf, raster, and
exactextractr packages)

Land cover map, National Land Cover Database;
computed with R statistical software (sf, raster, and
exactextractr packages)

i was destroyed (1) or survived (0) in the case of Hypothesis 1.1, and
reconstructed (1) or not reconstructed (0) in the case of Hypothesis 2. 5,
represents the intercept; x; is a vector of observed socioeconomic proxy
characteristics; and ¢; represents residual errors. f; is the coefficient of
interest, indicating whether a given building characteristic is associated
with structure loss or reconstruction. Our preferred threshold for sta-
tistical significance is p <.01. To address the potential for LPMs’ re-
siduals to be heteroscedastic, we computed HC1 robust standard errors.
We elected to use LPMs rather than non-linear probability models
(NLPMs), such as logistic regression, because NLPMs do not produce
comparable coefficients in nested models that use the same outcome
variable, as our research design does (Breen et al., 2018). However, we
present alternative model specifications in logistic form in Appendix E to
ensure the robustness of our findings.

2.7. Modeling multivariable destruction outcomes

To test Hypothesis 1.2, we introduced a series of covariates into our
multivariable model from Hypothesis 1.1 in forward stepwise fashion
(Table 3, Models 1-7). We incorporated 16 additional covariates
(Table 1), nearly all of which have been documented in prior fire science
literature to influence structure loss. At each step, we examined whether
the coefficient on building type, building value, or building tenure

changed in magnitude, direction, or significance. Given our focus on
understanding socioeconomic predictors of structure loss, we placed
greater emphasis on understanding changes to these coefficients and less
emphasis on interpreting the added covariates.

In addition to our stepwise procedure, we asked whether any of our
socioeconomic predictors were included in a final “best fit” model
(Table 3, Model 8). If so, this would suggest that socioeconomic char-
acteristics of buildings were associated with structure loss indepen-
dently from the range of established structure loss predictors included in
our models, and may be especially important to include in future
wildfire destruction research. We utilized a LASSO regression on a non-
spatial, full multivariable model to select covariates for inclusion in our
“best fit” model, using the glmnet package in R (Friedman et al., 2023).
The LASSO operates by adding a shrinkage penalty to a least squares
regression, such that coefficients of covariates with less predictive
power are “shrunk” to zero, effectively being removed (James et al.,
2013). The LASSO yielded the following covariates in the final model:
building type, distance to nearest building, count of buildings within 40
m, distance to nearest road, post-code change, and Contagion Index. We
removed distance to nearest road, which was non-significant in the final
spatial error model. The LASSO model should address potential corre-
lation between covariates by selecting only one of multiple correlated
variables. To ensure this was the case, we tested the Variance Inflation
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Fig. 3. Support vector machine classification procedure. Top image shows pre-
fire NAIP imagery of the Town of Paradise. Middle image shows post-fire NAIP
imagery of the Town of Paradise. Bottom image shows support vector machine-
classified grid derived from post-fire NAIP imagery that designates built hard-
scape (black) and non-building (white). Red circles illustrate how the algorithm
was able to successfully detect buildings in NAIP imagery. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Factor (VIF) of the final set of covariates selected by the LASSO, and
confirmed that all variables had a VIF of 2 or lower.

Finally, to assess whether our data were spatially autocorrelated, we
tested the residuals of our full multivariable model. Results of this test
suggested that there was positive autocorrelation in our data (Moran’s I
= 0.444). Lagrange Multiplier tests indicated that a spatial error or a
spatial lag model would be similarly well-suited to address this auto-
correlation. We opted to include a spatial error term in our models, given
that this approach is theoretically better-suited to address cases in which
known explanatory variables are not included in the models (Chi & Zhu,
2020, p. 78).

We fit a series of stepwise spatial error models and a spatial “best fit”
model which took the form:

P
Yi=Py+ Y Brite
j=1

& = AWe +v;

Where Y; is the binary outcome variable that indicates whether building
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i was destroyed (1) or survived (0). , represents the intercept; and x; is
the j-th predictor for the i-th observation over p independent variables.
The error term, ¢;, includes both an autoregressive spatial error term,
AWEe;, which accounts for spatial autocorrelation in either measurement
error or unobserved variables as well as a random error term, v; (Anselin
& Bera, 1988). These models were produced using a three-nearest
neighbors spatial weights matrix, which we selected after examining
which of a series of neighbor counts (K = 3, 5, 10, and 15) reflected the
highest spatial dependence (Chi & Zhu, 2020, pp. 40-41). Additional
model robustness checks are reported in Appendix F.

3. Results

3.1. Disproportionate probability of destruction across building type,
tenure, and value

We first posited in Hypothesis 1.1 that certain structures would be
disproportionately more likely to have been destroyed in the fire,
namely, multi-family residences, mobile or motor homes, renter-
occupied residences, and lower-value residences. Our findings support
most components of this hypothesis. Examining different residential
building types, we found that mobile or motor homes were significantly
more likely to have been destroyed than single-family residences, with
87.1% of mobile or motor homes destroyed compared to 77.5% of
single-family residences (p <.001) (Table 2, Model 1). However, in
contrast to our expectation, we found that multi-family residences were
significantly less likely to have been impacted than single-family resi-
dences, with 69.2% having been destroyed (p <.001) (Table 2, Model 1).
The magnitude of both of these differences was substantial. Examining
building tenure, we found that renter-occupied residences were signif-
icantly more likely to have been destroyed in the fire compared to
owner-occupied residences (Table 2, Model 2). While the three-
percentage point difference was smaller in magnitude than differences
observed for building type, it was significant (p <.001). Examining
buildings’ pre-fire value, we found a negative relationship with proba-
bility of destruction, where the higher value the building the less likely it
was to be destroyed (p <.001) (Table 2, Model 3).

Given the likelihood that our three socioeconomic proxy character-
istics were collinear, we fit a full multivariable model with building
type, tenure, and value (Table 2, Model 4). This model indicates whether
our three variables predict destruction probability independently from
one another. Here we found that multi-family residences remained
significantly less likely to have been destroyed compared to single-
family residences (p <.001), and pre-fire building value continued to
significantly predict destruction probability (p <.001). However, mobile
or motor homes and renter-occupied homes were no longer significantly
more likely to have been destroyed. This was due to collinearity with
building value, in which mobile or motor homes were substantially
lower in total value than any other building type, at $65,663 on average
compared to $185,416 for the average single-family residence. A similar
pattern occurred among absentee owner structures, in which this vari-
able no longer significantly predicted destruction in the multivariable
model of residential structures. As with mobile or motor homes, this was
the result of collinearity with building value, in which absentee owner
residential buildings were, on average, $63,048 less than owner-
occupied residential buildings.

3.2. Correlates of differential building destruction

Hypothesis 1.2 posits that we can explain differences in destruction
outcomes observed in Hypothesis 1.1 by including additional building
characteristics in our model. Our aim in this modeling approach was to
identify which specific physical characteristics may be associated with
different socioeconomic characteristics of buildings, in turn causing
them to be more physically sensitive to structure loss. If Hypothesis 1.2
were correct, building type, building value, and building tenure would
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Table 2
Probability of residential building destruction.
Dependent variable:
Destroyed
@™ ) ®3) @
Intercept 0.775%** 0.799%** 1.524%** 1.488%**
(0.004) (0.004) (0.042) (0.065)
Multi-Family Residence (reference = Single-Family) —0.083*** —0.124%**
(0.023) (0.027)
Mobile or Motor Home (reference = Single-Family) 0.096%** —0.004
(0.006) (0.009)
Absentee Owner (reference = Owner-Occupied) 0.035%** 0.010
(0.007) (0.007)
Pre-Fire Building Value (log scale) —0.061%*** —0.058%**
(0.004) (0.005)
Observations 17,536 15,704 16,881 15,704
Log Likelihood —-8,810 —7,616 —7,943 —7,496
Akaike Inf. Crit. 17,626 15,235 15,889 15,002

Note: *p < 0.05; **p < 0.01; ***p < 0.001.

have non-significant coefficients in our multivariable models. If Hy-
pothesis 1.2 were incorrect, we would still observe significant co-
efficients on these variables, indicating that our models did not fully
account for the underlying reasons why these structures were more
susceptible to destruction. To test Hypothesis 1.2, we introduced a
spatial error term and a range of primarily environmental covariates to
our socioeconomic proxy models to determine whether we could explain
the heightened probability of destruction observed among mobile or
motor homes, renter-occupied residences, and lower-value residences.

First, we fit the same multivariable socioeconomic model from
Table 2 (Model 4), but included a spatial error term to address spatial
autocorrelation (Table 3, Model 1). Here we found similar trends in that
multi-family residences were significantly less likely to be destroyed
than single-family residences (p <.01), building value was negatively
associated with destruction probability (p <.001), and there were no
significant differences among owner- and renter-occupied residences.
However, in contrast to our non-spatial models, we found that mobile or
motor homes were significantly more likely to have been destroyed even
after accounting for structure value (p <.001).

In stepwise additions of covariate sets across Models 2 through 7, we
found strong consistency in the significance and direction of building
type as a predictor of structure loss. Across all models, multi-family
residences were significantly less likely to have been destroyed (p
<.01 for Models 1-2, p <.001 for Models 3-8) and mobile or motor
homes were significantly more likely to have been destroyed (p <.001)
compared to single-family residences. Counter to Hypothesis 1.2, we
were not able to explain the disproportionate impacts across building
types by accounting for differences in terrain, development density,
distance to roads, building code standards, building location within a
cluster, or landscape characteristics.

We also observed similar consistency in the coefficient on renter-
occupied structures, which was non-significant across all stepwise
models. The heightened probability of renter-occupied structures being
destroyed in the bivariate non-spatial model (Table 3, Model 2) can be
best accounted for by differences in building value, and subsequent
consideration of environmental characteristics did not change this
explanation.

Pre-fire building value was the only socioeconomic variable that we
were able to fully explain through the inclusion of additional covariates
(Fig. 4). The significance and magnitude of the building value coefficient
remained almost exactly the same after the addition of terrain

characteristics (p <.001) (Table 3, Model 2), and then shrank in
magnitude and became significant at a larger p-value threshold (p <.05)
after adding building density characteristics (Table 3, Model 3). This
indicates that some of the relationship between building value and
destruction could be explained by building density, in which buildings
located in denser developments were both lower value and more likely
to have been destroyed. These trends held across all three building types
(Fig. 4). In the next stepwise addition (Table 3, Model 4), the inclusion of
distance to nearest road and to nearest major road rendered the coeffi-
cient on building value non-significant. Higher value single-family res-
idences and mobile or motor homes were more likely to be a greater
distance from roads, and structures farther from roads were less likely to
have been destroyed (Fig. 4). The coefficient on building value remained
non-significant in all subsequent stepwise models (Table 3, Models 5-7).

After examining changes in socioeconomic variable coefficients
across stepwise regressions, we report a “best fit” model selected
through LASSO regression (Table 3, Model 8). This model tells us which
sparse combination of variables best predicts destruction probability.
Here we found that building type was retained as a key predictor, along
with building density measures, the building code change indicator, and
landscape Contagion Index. As with previous stepwise models, mobile or
motor homes were significantly more likely to have been destroyed (p
<.001) and multi-family residences were significantly less likely to have
been destroyed (p <.001) than single-family residences.

While our primary hypotheses focus on understanding the relation-
ships between socioeconomic-related building variables and suscepti-
bility to destruction, we briefly comment on the additional covariates in
the full multivariable model here (Table 3, Model 7). As described
above, building density and distance to roads significantly predicted
probability of structure loss (p <.001). Additionally, the building code
change variable indicates that residences built after the adoption of
updated building codes in 2008 were significantly less likely to have
been destroyed (p <.001). Finally, a number of landscape-scale vege-
tation metrics (all of which were measured within a 2,500 m radius of
each structure) all significantly predicted structure loss; mean canopy
cover, proportion of highly flammable land cover, and count of highly
flammable patches were all positively and significantly associated with
structure loss (p <.001). Contagion Index was negatively associated with
structure loss, indicating that patchier, less-contiguous land cover was
associated with a higher probability of destruction (p <.001). Finally,
the significant interaction term between distance to nearest neighboring



K. McConnell and C.V. Braneon

Table 3
Correlates of differential building destruction.
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Dependent variable:

Destroyed
@™ 2) 3 (€] ) (6) @ ®
Intercept 1.069*** 0.894+** 0.940* 0.889*** 0.786*** —0.807*** 1.069%***
(0.058) (0.060) (0.060) (0.061) (0.062) (0.189) (0.016)
Multi-Family Residence (reference = Single- —0.076** —0.084***  —0.093*** —0.087%** —0.082%** —0.111%** —0.087***
Family) B (0.024) (0.024) (0.024) (0.024) (0.024) (0.023) (0.021)
Mobile or Motor Home (reference = Single- 0.041*** 0.042%** 0.034%** 0.039%** 0.034** 0.036*** 0.045%** 0.060%***
Family) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.007)
Absentee Owner (reference = Owner-Occupied) 0.004 0.004 0.004 0.004 0.003 0.003 0.005
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Pre-Fire Building Value (log scale) —0.022%**  —0.021***  —0.009* —0.007 —0.002 —0.002 —0.003
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
Slope —0.005* —0.002 —0.002 —0.002 —0.001 0.001
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Aspect —0.0001 —0.0001 —0.0001 —0.0001 —0.0001 —0.0001
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Topographic Position Index (TPI) 0.016 0.040 0.064 0.019 0.051 0.143
(0.105) (0.105) (0.105) (0.106) (0.106) (0.106)
Southwestness 0.014 0.010 0.009 0.007 0.005 0.003
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
Meters to Building —0.001%**  —0.001*** —0.001%** —0.001%*** —0.005%** —0.0003***
(0.0001) (0.0001) (0.0001) (0.0001) (0.001) (0.0001)
Building Count within 40 m 0.017*** 0.016%** 0.017%** 0.015%** 0.011%** 0.016%***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Meters to Major Road —0.00002***  —0.00002***  —0.00001***  —0.00004%**
(0.00000) (0.00000) (0.00000) (0.00001)
Meters to Any Road —0.001%** —0.001*** —0.001*** —0.0001
(0.0001) (0.0001) (0.0001) (0.0001)
Post-Code Change —0.101%** —0.097%** —0.083%*x —0.113%**
(0.018) (0.018) (0.018) (0.016)
Meters to Cluster Edge 0.0002*** 0.00000
(0.00002) (0.00003)
Contagion Index —0.020%** —0.009%**
(0.002) (0.0004)
Mean Canopy Cover 0.006***
(0.001)
Proportion Highly Flammable Landcover 2.765%**
(0.289)
Count of Non-Flammable Patches 0.0003
(0.001)
Count of Flammable Patches 0.0002
(0.0004)
Count of Highly Flammable Patches 0.003***
(0.0003)
Slope*Aspect 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000
(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001)
Meters to Building*Proportion Highly Flammable 0.005%**
(0.001)
Spatial Error 0.588%** 0.586%** 0.570%%* 0.562%** 0.562%** 0.556%** 0.516*** 0.551%**
(0.006) (0.006) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
Observations 15,704 15,704 15,704 15,704 15,426 15,426 15,221 17,176
Log Likelihood —4,4331 —4,425 —4,309 —4,270 —4,187 —4,147 —3,749 —4,588
o2 0.091 0.091 0.091 0.090 0.090 0.090 0.088 0.090
Akaike Inf. Crit. 8,880 8,874 8,6465 8,572 8,407 8,330 7,549 9,194

Note: *p < 0.05; **p < 0.01; ***p < 0.001.

Models present results of linear probability models with spatial error term.

structure and proportion of highly flammable vegetation at the land-
scape scale (p <.001) indicated that, as buildings became more distant
from each other, the influence of landscape-level flammable vegetation
on destruction probability was stronger.

3.3. Disproportionate probability of building reconstruction across
building type, tenure, and value

Finally, we tested Hypothesis 2.1 for evidence of cost-burden
gentrification, positing that multi-family residences, mobile or motor
homes, renter-occupied residences, and lower-value residences would
be less likely to have been reconstructed within the 20-month study

period. We found mixed evidence in support of this hypothesis.

First examining building type, results did not support our hypothesis;
we found instead that there was no difference in reconstruction proba-
bility between multi-family and single-family residences. While mobile
or motor homes were slightly less likely to have been replaced than
single-family residences in the bivariate model (p <.05) (Table 4, Model
1), the difference was very small in magnitude and did not meet our
preferred p-value threshold of 0.01. Further, after controlling for
building value in the full multivariable model (Table 4, Model 4), mobile
or motor homes were more likely to have been rebuilt (p <.01), which
may speak to mobile or motor homes being faster to place back on a lot,
as opposed to the lengthier process of constructing a new building.
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Fig. 4. Correlations between total pre-fire building value (log scale) and (A) building count within a 40 m radius, (B) meters to the nearest building (log scale), and

(C) meters to the nearest major road (log scale).

Table 4
Probability of post-fire residential building reconstruction.
Dependent variable:
Rebuilt
(@) 2) ®3) @
Intercept 0.039%** 0.046%** —0.089%** —0.076*
(0.002) (0.002) (0.018) (0.031)
Multi-Family Residence (reference = Single-Family) —0.010 0.012
(0.010) (0.013)
Mobile or Motor Home (reference = Single-Family) —0.007* 0.013**
(0.003) (0.005)
Absentee Owner (reference = Owner-Occupied) —0.028%** —0.026%**
(0.003) (0.003)
Pre-Fire Building Value (log scale) 0.011%*** 0.010%**
(0.002) (0.003)
Observations 13,972 12,699 13,704 12,699
Log Likelihood 3,562 2,988 3,590 2,996
Akaike Inf. Crit. -7,118 —5,971 -7,176 —5,981

Note: *p < 0.05; **p < 0.01; ***p < 0.001.

However, when we examined residence tenure and building value,
findings provided evidence of an emerging trend of cost-burden
gentrification. Renter-occupied dwellings were three percentage points
less likely to have been reconstructed than owner-occupied dwellings (p
< .001) (Table 4, Model 2), a trend that remains similar in the multi-
variable model (Table 4, Model 4). Pre-fire building value was positively
and significantly associated with reconstruction probability in both
bivariate and multivariable models (p <.001) (Table 4, Models 3 and 4),
indicating that higher value residences were more likely to have been
reconstructed in the study period.

An important caveat to these findings is that we only documented
reconstruction patterns within the first 20 months after the fire. While
analyzing a relatively short timeframe is common in disaster scholar-
ship, further work is needed to determine whether the patterns observed
here will persist into the future.

4. Discussion
4.1. Wildfires and neighborhood change

The scale of wildfire impacts to the built environment is growing,

raising the question of how places and communities change following
highly destructive fires (Higuera et al., 2023; Radeloff et al., 2023;
United Nations Environment Programme, 2022). Through a close ex-
amination of the 2018 Camp Fire, we showed how wildfire can facilitate
physical neighborhood change, first at the stage of building destruction
and again through the process of building reconstruction.

We found evidence supporting our first hypothesis of physical
neighborhood change, that the filtering of housing stock prior to a
disaster event contributed to uneven physical hazard impacts; mobile or
motor homes, renter-occupied residences, and lower-value residences
were significantly more likely to have been destroyed in the Camp Fire
compared to single-family residences, owner-occupied residences, and
higher-value residences. These findings on the sensitivity of specific
building types and building value are in keeping with Troy et al.’s
(2022) analysis of non-residential and residential structures within the
burn footprint. Our residential-specific models show that the negative
association between building value and destruction probability is not
driven by high-value non-residential structures, but is consistent among
residential structures as well.

Our findings on housing stock filtering are in keeping with prior
research documenting the link between housing stock quality and
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environmental hazard damage (Chakraborty et al., 2019; Kamel, 2012;
Ma & Smith, 2019). But beyond identifying disproportionate impacts,
we were able to identify built environment characteristics that in part
explain observed disparities in Hypothesis 1.1. We found evidence that
the physical sensitivity of lower-value buildings can be explained by
their density and proximity to roads, in which lower-value residences
were more likely to be closer to other buildings and closer to roads,
which in turn were characteristics associated with a higher probability
of destruction. Our findings on density build on Knapp et al.’s analysis of
a sample of single-family residences in the burn footprint (Knapp et al.,
2021); we show that building density was associated with structure loss
across all residential structure types and for the full population of resi-
dential structures affected by the Camp Fire.

In contrast to our findings on building value, we were not able to
explain the heightened susceptibility of mobile or motor homes to
destruction by accounting for their spatial location within the burn
footprint or by proximate environmental characteristics. This indicates
that there were some characteristics of mobile or motor homes or their
surrounding environment that made them uniquely susceptible to
wildfire destruction. Understanding this sensitivity is a critical area for
future study.

These observed differences in residential building sensitivity illus-
trate one avenue through which wildfire can facilitate neighborhood
change. Existing physical differences among residential structures
meant that certain structure types were more likely to be destroyed
when exposed to wildfire than others. Further, the structure types we
observed to be more sensitive to wildfire exposure were also those that
are more likely to house residents with less adaptive capacity in a
disaster context - those who rent, reside in mobile homes, and those who
have less household wealth (Lambrou et al., 2023). As a result, neigh-
borhood change occurred through disproportionately high loss of
structure types that likely housed more socially vulnerable residents.

Finally, we showed how building reconstruction further facilitated
neighborhood change through cost-burden gentrification in the first
years following the fire. Compared to all buildings that were destroyed
during the Camp Fire, the estimated 643 buildings that had been
reconstructed by July of 2020 were more likely to have been owner-
occupied before the fire and were, on average, higher in pre-fire
value. While further research is needed to track how reconstruction
dynamics will play out over a much longer timeframe, the observed
slower rate of building reconstruction among lower-value and renter-
occupied residences suggests that cost-burden gentrification is a
possible trajectory of neighborhood change following wildfires. This is a
distinct pathway of gentrification, wherein capital does not leave high
hazard areas, as has been shown in the case of chronic flooding (Keenan
et al., 2018), but instead, the costs of adapting in place mean that less
affluent residents cannot afford to do so. This less-documented form of
gentrification suggests that different hazards can trigger diverging
pathways of neighborhood change, requiring attention to specific haz-
ard contexts in future research.

Our case study answers a broad but underexplored question: how
does a place change after it experiences a highly destructive wildfire?
While scholars have investigated physical predictors of wildfire struc-
ture loss (Alexandre et al., 2016; Gibbons et al., 2012; Syphard et al.,
2012, 2014, 2017) and broad trends in post-fire building reconstruction
(Alexandre et al., 2015; Kramer et al., 2021; Mockrin et al., 2015), few
have systematically examined finer-grained processes of neighborhood
change following wildfire events. While wildfire science on whole has
predominantly emphasized biophysical dynamics of wildfire impacts
(Lambrou et al., 2023), social scientists have tended to emphasize resi-
dents’ demographic characteristics and adaptive capacity, attending far
less to how the physical sensitivity of residential buildings can shape
overall vulnerability to wildfire and socially uneven post-disaster tra-
jectories. We showed that dwellings which we would expect to house
more socially vulnerable residents were also more physically susceptible
to being destroyed in the fire and less likely to have been reconstructed
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after the fire. By integrating biophysical and social scientific approaches,
we demonstrate the importance of considering the built environment at
the individual structure level in developing a more comprehensive un-
derstanding of wildfire vulnerability.

4.2. Limitations and future research directions

There are several limitations to our study which we anticipate can be
addressed in future research. First, there are limits to which our findings
on the physical mechanisms of building destruction (Hypothesis 1.2) can
be considered causally identified, given our descriptive research design.
However, this limitation is not unique to our study; most research we
reviewed on the determinants of wildfire-related building loss were, like
ours, descriptive analyses. Such research designs are always susceptible
to the effects of omitted variables. Like most existing research in this
area, we examined a subset of relevant and available structure loss
predictors, however we did not capture all known factors associated
with wildfire-related building destruction. Due to data limitations, we
did not include known predictors of structure loss such as defensible
space (Syphard et al., 2014). Our relatively coarse vegetation mea-
surements from the NLCD (which are observed at 30 m pixel resolution)
only capture landscape-level trends, and do not capture finer-scale
patches of vegetation within a near radius from a structure. Addition-
ally, we did not include data on direction of fire approach, weather
conditions (Gibbons et al., 2012), dwelling construction materials
(Syphard et al., 2017), or protective responses taken by residents or
firefighters. Given the exceptional detail of the CAL FIRE Damage In-
spection Data, we anticipate that much can still be learned from further
investigation of these data paired with different sets of loss predictors,
much as our research builds on existing examinations of Camp Fire
structure loss (Knapp et al., 2021; Troy et al., 2022).

A second limitation of our work is its exclusive analysis of dwellings
rather than the residents who live within them. This focus on officially-
documented residential properties means that we do not capture wild-
fire impacts among unhoused residents or those who lived in informal
dwellings - populations that tend to be overlooked in studies of wildfire
(Chase & Hansen, 2021). Our use of buildings further limited our ability
to investigate whether destruction or reconstruction outcomes differed
across demographic groups. Much prior research on neighborhood
change emphasizes racial segregation (Zuk et al., 2015), documenting
the ways that racial discrimination is embedded in different stages of
property ownership (Korver-Glenn, 2018). Given findings from this
body of work, we would expect similar racial disparities to exist in the
context of post-wildfire changes to the built environment. Further
research is needed to investigate whether this is the case.

Examining longer-term neighborhood change - on the scale of years
and decades - following wildfires is one of the most important directions
for future research following our study. Our research documents
reconstruction in a relatively short period of time (20 months) after the
Camp Fire. While it is possible that the trajectory of stratified recon-
struction patterns we observed may continue into the future, it is also
possible that this trend could change. Efforts such as the local not-for-
profit Rebuild Paradise Foundation’s work to support low- and
middle-income residents in rebuilding (Rebuild Paradise Foundation, n.
d.) and government-funded affordable housing projects (Weber, 2023)
could change who is able to return and live on the Ridge and the types of
buildings that are constructed there. Longer-term examinations of
neighborhood change should account for post-fire changes in property
ownership, in which new building construction may not reflect the
previous resident rebuilding, but rather construction undertaken by a
new property owner.

In addition to substantive findings, our study presented a method for
semi-automatically detecting reconstructed buildings within high-
resolution aerial imagery, which allowed us to evaluate building
reconstruction more efficiently and in a much higher volume than prior
research has done using manual techniques. This algorithm may
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continue to be honed in the future to enhance its precision at the
building level, for instance through the inclusion of LiDAR data that
measure building heights. Looking forward, our building detection
technique could be scaled up to evaluate post-fire neighborhood change
across multiple disaster sites to investigate comparative research ques-
tions. Are some places rebuilt more quickly after a disaster than others?
If so, what does this suggest about the allocation of capital into the built
environment following major disasters? Answering questions about the
long-term trajectories of disaster-affected regions will become increas-
ingly important as the scale of destruction - from wildfires and from
many other environmental hazards - continues to increase under climate
change.

4.3. Policy and planning implications

Findings from our study point to several areas where wildfire plan-
ning and policies could be adapted to serve a broader range of fire-
affected communities. The disproportionate destruction outcomes we
observed among certain types of residential buildings suggest that
wildfire mitigation guidance could be better tailored to address the
specific needs of low-income residents, renters, and mobile or motor
home residents. As prior researchers have pointed out, the financial
costs of wildfire mitigation mean that more socially vulnerable residents
may be less able to reduce physical risk where they live (Collins, 2008;
Wigtil et al., 2016). Strategies such as installing fire-resistant roofs and
residential sprinklers, upgrading windows to be dual-paned, planting
firewise landscaping, and keeping vegetation well-maintained can all
incur financial costs that may not be manageable for many residents. In
geographic regions that are both at high fire-risk and home to substan-
tial populations of low-income residents, costly wildfire mitigation
strategies are unlikely to be widely adopted without subsidization.
Further, wildfire mitigation efforts that broadly target homeowners may
be less successful in communities with a large share of renters, given that
these residents and even rental property owners do not have the same
capacity or incentive structure to invest in hazard mitigation (Burby
et al., 2003; Lee & Van Zandt, 2019).

Mobile or motor homes stand out in our analysis as uniquely sensi-
tive to being destroyed compared to single-family or multi-family resi-
dences. Part of this susceptibility can be explained by the density of
mobile home parks, as the Camp Fire spread through structure-to-
structure burning, in which radiant heat exposure from an already
burning structure ignited neighboring structures (Keeley & Syphard,
2019; Knapp et al., 2021). This positive association between building
density and probability of destruction poses a challenge for defensible
space guidelines, which advise that flammable materials be removed
from close proximity (e.g. 30-40 m) of structures (Gibbons et al., 2012).
Most often, the flammable materials emphasized are vegetation or
movable objects such as wood piles or propane tanks. However, in
structure-to-structure burning, buildings themselves act as fuels. In the
case of the Camp Fire, it was not possible for many of the densely co-
located buildings on the Ridge to meet defensible space guidelines
given their close proximity to neighboring buildings. Planning and
design innovations are badly needed for dense developments, such as
mobile home parks, in which residences do not have large lots that can
be defensibly cleared of all possible fuel sources. However, density could
not fully explain mobile or motor homes’ heightened sensitivity to
destruction in our analysis. While further research is needed to deter-
mine the specific mechanisms of this susceptibility, planners should be
aware of this heightened risk and place greater emphasis on mitigation
planning for mobile or motor home residents and mobile home parks in
particular.

In addition to preemptive wildfire mitigation planning, our analysis
also has implications for post-wildfire policy and planning. The slower
reconstruction of lower-value and renter-occupied residences suggests
that, as researchers have documented in studies of other environmental
hazards, the costs of post-disaster rebuilding can be a major obstacle for
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lower-income residents seeking to return to their communities
(Fothergill & Peek, 2004; Lee & Van Zandt, 2019). As such, housing
affordability and access should be a major focus for planners who seek to
support equitable post-disaster recovery.

5. Conclusions

While wildfires have always been an important part of the landscape,
the number of buildings exposed to and destroyed by fires is growing
(Higuera et al., 2023; Radeloff et al., 2023). As wildfire impacts to the
built environment become more common, it is important to understand
their long-term effects on places and the people who live there. We in-
tegrated social and biophysical science approaches to examine physical
neighborhood change following the 2018 Camp Fire, finding evidence
that housing stock filtering led to uneven patterns of wildfire destruction
and that near-term housing reconstruction was on an early trajectory of
cost-burden gentrification. These findings demonstrate the importance
of examining the built environment as a driver of socially uneven
disaster impacts.

Our findings further highlight key wildfire policy and planning ap-
proaches in need of innovation. Wildfire mitigation plans that rely pri-
marily on individual residents making changes to their dwellings are
likely to be less successful in communities where many residents rent or
have less household wealth. Additionally, dense neighborhoods and
mobile home parks need mitigation planning and design strategies that
account for the close proximity of buildings and subsequent potential for
structure-to-structure burning. Finally - and as we have seen emerging in
initiatives on the Ridge in the wake of the Camp Fire - post-fire recovery
resources should address obstacles for return and rebuilding among
residents who rent and those with fewer financial resources.
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