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Post-wildfire neighborhood change: Evidence from the 2018 Camp Fire 
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H I G H L I G H T S  

• Wildfire destruction was predicted by building type, tenure, and value. 
• Building value-destruction association was explained by density and proximity to roads. 
• Post-fire reconstruction was predicted by building type, tenure, and value. 
• Findings suggest housing stock filtering and cost-burden gentrification.  
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A B S T R A C T   

As the number of highly destructive wildfires grows, it is increasingly important to understand the long-term 
changes that occur to fire-affected places. Integrating approaches from social and biophysical science, we 
document two forms of neighborhood change following the 2018 Camp Fire in the United States, examining the 
more than 17,000 residential structures within the burn footprint. We found that mobile or motor homes, lower- 
value residences, and absentee owner residences had a significantly higher probability of being destroyed, 
providing evidence that housing stock filtering facilitated socially stratified patterns of physical damage. While 
the relationship between building value and destruction probability could be explained by measures of building 
density and distance to nearby roads, building type remained an independent predictor of structure loss that we 
could not fully explain by adding environmental covariates to our models. Using a geospatial machine learning 
technique, we then identified buildings that had been reconstructed within the burn footprint 20 months after 
the fire. We found that reconstructed buildings were more likely to have been owner-occupied prior to the fire 
and had higher average pre-fire property value, suggesting an emerging pattern of cost-burden gentrification. 
Our findings illustrate the importance of examining the built environment as a driver of socially uneven disaster 
impacts. Wildfire mitigation strategies are needed for mobile and motor home residents, renters, low-income 
residents, and dense neighborhoods.   

1. Introduction 

The impacts of wildfires on the built environment are growing 
increasingly acute. In the U.S., the number of housing units exposed to 
wildfire grew more than twofold in recent decades (Radeloff et al., 
2023), and wildfire events in the western U.S. had a 160% higher 
structure loss rate between 2010 and 2020 compared to the previous 
decade (Higuera et al., 2023). Concerns over growing wildfire destruc
tion are echoed internationally, with a recent United Nations report 
emphasizing “the rising threat of extraordinary landscape fires” across 
many continents (United Nations Environment Programme, 2022). As 

the number of highly destructive wildfires grows, it is increasingly 
important to understand the long-term changes that occur to fire- 
affected places. 

Existing research on the dynamics of wildfire and the built envi
ronment has documented an extensive set of physical characteristics 
that influence building destruction outcomes (Alexandre et al., 2016; 
Gibbons et al., 2012; Syphard et al., 2012, 2014, 2017). A small but 
growing area of research has further described macro-level trends in 
post-fire building reconstruction (Alexandre et al., 2015; Kramer et al., 
2021; Mockrin et al., 2015). We advance this area of study by inte
grating key concepts from social science research on neighborhood 
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change - shifts in a place’s built environment, population, or economy 
over time - to examine socioeconomic differentiation of building 
destruction and subsequent reconstruction (Zuk et al., 2015). 

Our study examines two forms of physical neighborhood change that 
have not been investigated widely in the context of wildfire: housing 
stock filtering and cost-burden gentrification. We do so in a case study of 
the 2018 Camp Fire, which destroyed nearly 19,000 structures in 
northern California and remains one of the most destructive wildfires in 
U.S. history. In our study, we test whether socioeconomic-related 
characteristics of buildings exposed to the fire - building type, build
ing value, and building tenure - were associated with heightened or 
reduced probability of destruction and subsequent reconstruction. 
Through this fine-grained examination of the built environment imme
diately following the Camp Fire and again, 20 months after the event, we 
illustrate how wildfire can facilitate neighborhood change at different 
periods of time through a restructuring of the physical landscape. 

Social science research on disasters has long emphasized that social, 
political, and economic processes fundamentally shape how environ
mental hazards affect residents, often reinforcing existing social in
equalities (Tierney, 2019; Wisner et al., 2014). Scholarship focused on 
wildfires and social inequality has described the co-occurrence of 
wildfire risk and community demographic characteristics (Davies et al., 
2018; Lambrou et al., 2023; Palaiologou et al., 2019; Wigtil et al., 2016). 
It has further highlighted ways that residents’ capacity to prepare for 
wildfire or to adapt to post-fire conditions differ across demographic 
groups (Méndez et al., 2020; Paveglio et al., 2015). Building on existing 
wildfire social vulnerability scholarship - which has primarily examined 
characteristics of people - we show how the dwellings where people live 
can further drive socially uneven disaster outcomes through physical 
neighborhood change. 

1.1. Neighborhood change and environmental hazards 

Neighborhood change research broadly investigates the ways that 
the population, economy, or built environment of a place change as the 
result of public policies, private capital flows, and residential movement 
(Zuk et al., 2015). Our study follows prior neighborhood change 
research that focuses specifically on the physical environment, using 
tools such as Google Street View imagery (Hwang & Sampson, 2014) 
and video-recording (Raudenbush & Sampson, 1999) to document the 
physical attributes of neighborhoods. We build on this tradition, using a 
combination of property records and aerial imagery to investigate how 
wildfire can influence neighborhood change through impacts to the built 
environment. 

Prior research on environmental hazards and the built environment 
suggests that wildfires may influence two distinct neighborhood change 
processes. First, certain buildings may be more sensitive to being 
destroyed or damaged in a fire as a result of a process known as 
“filtering.” As housing stock ages and physically declines, researchers 
have documented that the residents living in those structures also shift. 
Namely, lower-income and non-White residents are often sorted into 
lower-value housing stock (Baer & Williamson, 1988; Peacock et al., 
2014). In turn, residents living in lower-quality housing can subse
quently face heightened exposure to damage from environmental haz
ards (Chakraborty et al., 2019; Kamel, 2012; Ma & Smith, 2019). The 
filtering of housing stock can thus reflect patterns of socioeconomic and 
racial segregation, which then intersect with specific disaster events 
(Madden, 2021). 

In a changing climate, it is likely that filtering will exacerbate social 
inequalities in the built environment, as older housing stock is less likely 
to be designed to withstand intensifying environmental hazards and 
retrofits can be costly (Fussell & Castro, 2022). In the U.S., wildfire 
mitigation is generally approached as an individual responsibility; as 
such, residents with fewer resources are less likely to have the capacity 
to address fire risk where they live (Wigtil et al., 2016). When consid
ering housing tenure, scholars have suggested that not only do renters 

have little incentive to invest in hazard mitigation on property that they 
do not own, but further, that it may be difficult for owners of rental 
properties to recoup costs of hazard mitigation investments (Burby et al., 
2003). Further, Chase and Hansen (2021) report that renters affected by 
the Camp Fire had lower average income than homeowners, suggesting 
they likely had fewer financial resources to put towards mitigation. As a 
result of these income and housing tenure dynamics, one of few case 
studies on this topic found that low-income and renting households were 
less likely to engage in fire mitigation practices (Collins, 2008). Such 
patterns are in keeping with broader environmental hazard research, 
which finds more generally that lower-income residents and renters 
have less capacity to engage in disaster preparedness and mitigation 
(Fothergill & Peek, 2004; Lee & Van Zandt, 2019). 

The second avenue through which we hypothesize wildfires can in
fluence neighborhood change is in the building reconstruction process 
through a form of post-disaster gentrification. We draw on a typology 
advanced by Keenan et al. (2018), who outline distinct pathways 
through which environmental hazards can influence property markets. 
While these authors emphasize the connection between climate change 
and housing, their proposed gentrification pathways can be applied 
more broadly to environmental hazards such as wildfires, which can 
result from a combination of factors including climate change, land use 
patterns, and, human- or utility-caused ignitions (Balch et al., 2017; 
Goss et al., 2020). In their case study of Miami-Dade County, Florida, 
Keenan et al. (2018) find that residential property values at higher el
evations - where they were better protected from nuisance flooding - 
appreciated at a higher rate. In short, capital moved away from haz
ardous places. However, the authors point out that hazard-driven 
gentrification can also function inversely, wherein more affluent resi
dents are able to afford the costs of remaining in a hazardous place, 
while less affluent residents cannot, and subsequently move away. 

Termed “cost-burden gentrification” (Keenan et al., 2018), this form 
of hazard-related neighborhood change is especially plausible in a U.S. 
wildfire context given the common co-occurrence of desirable landscape 
amenities with heightened wildfire risk (Winkler & Rouleau, 2020). In 
other words, more resourced residents may seek to remain in place and 
adapt to fire risk, rather than moving to a lower-risk area. We also know 
from research across different hazard types that the financial burden of 
post-disaster rebuilding can be high (Fothergill & Peek, 2004). This past 
research led us to hypothesize that cost-burden gentrification is a likely 
post-fire trajectory. Yet, to our knowledge, existing research has not 
investigated such patterns of neighborhood change following fires. 
Further, cost-burden gentrification has received little scholarly attention 
relative to other, more commonly-documented avenues of hazard- 
related gentrification. 

To investigate whether there is evidence of cost-burden gentrifica
tion following the Camp Fire, we examined patterns of building recon
struction. Compared to research on wildfire damage, analyses of post- 
fire building reconstruction are far fewer. The limited research in this 
area tends to describe general trends of whether rebuilding is considered 
“fast” or “slow,” and often reports the overall proportion of burned 
structures that have been rebuilt within a particular timeframe (Alex
andre et al., 2015; Kramer et al., 2021; Mockrin et al., 2015). This line of 
inquiry has yet to deeply investigate post-fire reconstruction through the 
lens of neighborhood change or gentrification. As a result, there is still 
limited understanding of which types of buildings in which neighbor
hoods are reconstructed more quickly, and why reconstruction rates 
vary across different fires. Research on post-fire reconstruction has been 
further limited by its reliance on manual techniques for identifying 
buildings. This time-intensive approach limits researchers’ ability to 
analyze extremely destructive events, such as the Camp Fire, or to 
examine differences in reconstruction across many fire events. Recog
nizing a need for more efficient techniques of identifying reconstructed 
buildings, we developed a methodological strategy that draws on aerial 
imagery and machine learning to semi-automatically detect buildings 
within a landscape. 
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1.2. Research objectives 

Our study investigates the following hypotheses of neighborhood 
change following wildfire: 

Housing stock filtering  

• H1.1: Compared to single-family residences, multi-family residences 
and mobile or motor homes were more likely to be destroyed in the 
fire. Compared to owner-occupied residences, renter-occupied resi
dences were more likely to be destroyed. Lower-value homes were 
more likely to be destroyed than higher value homes.  

• H1.2: Differences in destruction probability observed in H1.1 can be 
explained by examining additional covariates known to be associ
ated with structure loss. 

Cost-burden gentrification  

• H2.1: Compared to single-family residences, multi-family residences 
and mobile or motor homes were less likely to be reconstructed. 
Compared to owner-occupied residences, renter-occupied residences 
were less likely to be reconstructed. Lower-value homes were less 
likely to be reconstructed than higher value homes. 

We conclude by reflecting on how our empirical findings can inform 
future directions for wildfire mitigation planning. Our paper’s primary 
contribution is to document how wildfire can drive neighborhood 
change, showing first how characteristics of the built environment 
facilitate socially stratified hazard impacts, and second, how post- 
disaster reconstruction is similarly uneven. 

2. Methods 

2.1. Study site 

The 2018 Camp Fire occurred in Butte County, California, which is 
situated in the broader Sierra Nevada bioregion (Figs. 1 and 2). This 
region is considered a predominantly Mediterranean climate, with 
substantial precipitation during winters and dry summers, leading to 
flammable fuel loads. Primary vegetation in the affected region include 
a range of conifer species, mixed evergreen, and chaparral. These con
ditions mean that fire has always been a part of the Sierra Nevada 
landscape (Knapp et al., 2021; van Wagtendonk et al., 2018). 

The Camp Fire destroyed nearly 80% of buildings in its path, and, to 
date, is one of the most destructive wildfires in U.S. history. The majority 
of buildings destroyed were located in the Town of Paradise, with sur
rounding communities of Concow, Magalia, Yankee Hill, and Butte 

Creek Canyon all severely affected as well (Chase & Hansen, 2021). This 
area is locally referred to as “the Ridge,” a term that we use to reference 
the communities affected by the fire. 

2.2. Measuring building socioeconomic proxy characteristics 

We tested our hypotheses by integrating building-level data from 
CAL FIRE’s Damage Inspection Data from the Camp Fire (hereafter “CAL 
FIRE Damage Inspection Data”) (California Department of Forestry and 
Fire Protection, 2018) with administrative property records, a suite of 
biophysical characteristics calculated in R computing software, and in
dicators of post-fire building reconstruction derived from aerial imag
ery. We constrained our analysis to exclusively residential structures (N 
= 17,536) in order to focus on residential neighborhood change 
processes. 

Our hypotheses focus on three characteristics of buildings that, while 
not direct measures of buildings’ residents, can be considered proxy 
variables for socioeconomic status and have been used in several pre
vious studies of wildfire and social vulnerability (Lambrou et al., 2023, 
p. 7). Our primary socioeconomic variables included: (1) building type 
(single-family residence, mobile or motor home, or multi-family home), 
(2) building tenure (renter- or owner-occupied), and (3) building value. 
We determined building type from the CAL FIRE Damage Inspection 
Data, and building tenure and value from 2017 Butte County public 
property records obtained from the financial analytics company 
CoreLogic. 

To estimate building value, we used the “total value” measure, which 
combines land value and improvement value (Client Welcome Toolkit: A 
Guide to Better Understand CoreLogic Property Data, 2019, p. 32). To ac
count for the small number of parcels that had a large number of resi
dential structures (<1%) - and which primarily were sites of mobile 
home parks - we adjusted the total value measure by the number of 
residential structures per assessor’s parcel number (APN). 

A structure is considered to have an absentee owner if the owner 
lives at a different location (Client Welcome Toolkit: A Guide to Better 
Understand CoreLogic Property Data, 2019, p. 32). This measure has 
been used to identify rental properties in prior research (Einstein et al., 
2022). While it is possible that the absentee owner variable may have 
captured some second homes or vacation rentals, estimates that 
approximately 30% of Paradise residents rented prior to the fire (Chase 
& Hansen, 2021, p. 1569) were in line with our data’s estimates, sug
gesting that this variable predominantly captured renters living on the 
Ridge. Among residential structures, 90.0% included a designation of 
either “owner” or “absentee owner” status. 

2.3. Measuring additional building covariates 

In addition to our primary socioeconomic variables described above, 
we computed a suite of additional building-level characteristics to 
investigate Hypothesis 1.2 (Table 1). These covariates primarily 
included landscape, terrain, and building arrangement characteristics 
that have been published in past fire science literature (Alexandre et al., 
2016; Gibbons et al., 2012; Syphard et al., 2012), as well as interaction 
terms that could be associated with destruction outcomes (additional 
details in Appendix A). 

Many variables were determined based on buildings’ spatial location 
and without the need for additional data, however landscape-level 
variables were derived using the 2016 National Land Cover Database 
(NLCD) (Dewitz, 2019). We followed Alexandre et al. (2016) in reclas
sifying NLCD raster data into three primary classes: highly flammable, 
flammable, and non-flammable (Appendix A). From these three classes, 
we calculated additional variables within 2500 m of each building point. 
Summary statistics of continuous covariates are reported in Appendix B. 

Fig. 1. Reconstruction on the Ridge in Butte County, California. Photo taken by 
K. McConnell circa spring 2022. 
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2.4. Identifying destroyed buildings 

CAL FIRE Damage Inspection Data were created through in-person 
field inspections and document an ordinal damage measure for each 
structure within the Camp Fire burn footprint. We calculated a binary 
measure of whether a structure was destroyed or not destroyed as the 
primary outcome variable, where all categories with less than 50% 
destruction were classified as “not destroyed.” Out of 17,536 residential 
structures, 13,974 were destroyed (79.7%), 54 experienced 1–50% 
damage (0.003%), and 3,048 experienced no damage (17.4%). Maps of 
all destroyed and surviving structures are shown in Appendix C. 

Our study builds on research conducted by Knapp et al. (2021) and 
Troy et al. (2022), who also utilize CAL FIRE Damage Inspection Data. 
While there is some overlap in variables examined in these studies and 
our research, a fundamental difference between all three is the popu
lation of buildings included in analysis. Knapp et al. randomly sample 
400 structures, selecting only from single-family residences within the 
Town of Paradise (Knapp et al., 2021, p. 4). Troy et al. (2022) conduct 
two sets of analysis, the first of which analyzes all destroyed structures 
within the burn footprint, including both residential and nonresidential 
structures. In addition to analyzing a broader set of structures, the 
comparison group used in this analysis is distinct from ours, and is 
composed exclusively of partially damaged structures, rather than 
structures that survived with no damage (Troy et al., 2022, p. 589). This 
study’s second analysis analyzes a sample of 1,404 properties based 
within the Camp Fire footprint but outside the Town of Paradise (Troy 
et al., 2022, p. 590). Our analysis uses a distinct set of observations, 
which includes the full population of documented residential structures 
within the burn footprint. 

2.5. Identifying reconstructed buildings 

To create the binary outcome indicating whether a building had been 
reconstructed after the fire, we integrated high-resolution imagery from 
the U.S. Department of Agriculture’s National Aerial Imagery Program 
(NAIP) and Microsoft’s open-access database of building footprints in 
the United States (see Appendix D for additional details). NAIP images 
have been previously used to classify land cover types with relatively 
high accuracy (U.S. Department of Agriculture Farm Service Agency, n. 
d.; Maxwell et al., 2017), while Microsoft’s Building Footprints database 
has been used to quantify building counts within hazard-prone areas 
(Huang & Wang, 2020; Microsoft, 2022). We paired these two data 

sources in Google Earth Engine’s (GEE) cloud computing platform 
(Gorelick et al., 2017). 

We first accessed 35 pre-fire NAIP scenes captured on July 18, 2018 
directly from GEE, and upload 48 post-fire NAIP scenes captured on July 
9, 2020, which had not yet been ingested into the GEE platform. We then 
mosaicked each collection of scenes together to create a single pre-fire 
and a single post-fire image covering the entire Camp Fire burn foot
print. Next, to classify the post-fire NAIP image mosaic, we trained a 
support vector machine (SVM) algorithm on pre-fire imagery with 
Microsoft Building Footprints, NAIP’s primary spectral bands (red, 
green, blue, and near infrared), and the Normalized Difference Vegeta
tion Index (NDVI) (a combination of red and near infrared bands). We 
trained the SVM by sampling 1000 random points from each land cover 
class - “building” and “non-building” - which were defined by Microsoft 
Building Footprints on the pre-fire aerial image mosaic. We then 
removed sample points with an NDVI value higher than 0.2 to avoid 
misclassifying occasional overhanging tree pixels as building class. This 
process yielded 812 total sample points for the building class. Non- 
building points were sampled from pixels within the burn footprint 
which had been masked to exclude Microsoft Building Footprint poly
gons and buffered roads. 

After training and testing the classifier on the pre-fire NAIP mosaic, 
we then used the algorithm to classify the post-fire NAIP mosaic (Fig. 3). 
Points of buildings designated by Damage Inspection Data as destroyed 
were then overlaid on the 2020 classified image, and each point was 
determined to be rebuilt or not rebuilt based on the class of the pixel on 
which it was located. See Appendix D for details on SVM models and our 
multi-step validation process. 

2.6. Modeling bivariate destruction and reconstruction outcomes 

To test Hypothesis 1.1 and 2, we utilized a series of linear probability 
models (LPMs) to estimate the probability that a structure was destroyed 
or reconstructed. In these models, we exclusively analyzed socioeco
nomic proxy characteristics of structures - building type, pre-fire 
building value, and building tenure - to evaluate whether certain 
building types were disproportionately impacted by the fire (Hypothesis 
1.1) or disproportionately more likely to have been reconstructed (Hy
pothesis 2), regardless of the cause. LPMs took the form: 

Yi = β0 + β1xi + εi  

Where Yi is the binary outcome variable that indicates whether building 

Fig. 2. Location of the Camp Fire in Butte County, California. Burn footprint from the Monitoring Trends in Burn Severity (MTBS) database (Eidenshink et al., 2007).  
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i was destroyed (1) or survived (0) in the case of Hypothesis 1.1, and 
reconstructed (1) or not reconstructed (0) in the case of Hypothesis 2. β0 
represents the intercept; xi is a vector of observed socioeconomic proxy 
characteristics; and εi represents residual errors. β1 is the coefficient of 
interest, indicating whether a given building characteristic is associated 
with structure loss or reconstruction. Our preferred threshold for sta
tistical significance is p <.01. To address the potential for LPMs’ re
siduals to be heteroscedastic, we computed HC1 robust standard errors. 
We elected to use LPMs rather than non-linear probability models 
(NLPMs), such as logistic regression, because NLPMs do not produce 
comparable coefficients in nested models that use the same outcome 
variable, as our research design does (Breen et al., 2018). However, we 
present alternative model specifications in logistic form in Appendix E to 
ensure the robustness of our findings. 

2.7. Modeling multivariable destruction outcomes 

To test Hypothesis 1.2, we introduced a series of covariates into our 
multivariable model from Hypothesis 1.1 in forward stepwise fashion 
(Table 3, Models 1–7). We incorporated 16 additional covariates 
(Table 1), nearly all of which have been documented in prior fire science 
literature to influence structure loss. At each step, we examined whether 
the coefficient on building type, building value, or building tenure 

changed in magnitude, direction, or significance. Given our focus on 
understanding socioeconomic predictors of structure loss, we placed 
greater emphasis on understanding changes to these coefficients and less 
emphasis on interpreting the added covariates. 

In addition to our stepwise procedure, we asked whether any of our 
socioeconomic predictors were included in a final “best fit” model 
(Table 3, Model 8). If so, this would suggest that socioeconomic char
acteristics of buildings were associated with structure loss indepen
dently from the range of established structure loss predictors included in 
our models, and may be especially important to include in future 
wildfire destruction research. We utilized a LASSO regression on a non- 
spatial, full multivariable model to select covariates for inclusion in our 
“best fit” model, using the glmnet package in R (Friedman et al., 2023). 
The LASSO operates by adding a shrinkage penalty to a least squares 
regression, such that coefficients of covariates with less predictive 
power are “shrunk” to zero, effectively being removed (James et al., 
2013). The LASSO yielded the following covariates in the final model: 
building type, distance to nearest building, count of buildings within 40 
m, distance to nearest road, post-code change, and Contagion Index. We 
removed distance to nearest road, which was non-significant in the final 
spatial error model. The LASSO model should address potential corre
lation between covariates by selecting only one of multiple correlated 
variables. To ensure this was the case, we tested the Variance Inflation 

Table 1 
Covariates used in Hypothesis 1.2.  

Variable Description Measurement Scale Source 

Building type Categorical indicator of single-family residence, multi-family 
residence, or mobile or motor home 

Building level CAL FIRE Damage Inspection Data 

Absentee owner status Binary indicator of whether a building owner lives at a different 
location (absentee owner/renter) or lives in the home (owner- 
occupied) 

Building level Public property records 

Pre-fire building value 
(logged) 

Total dollar value of building adjusted for count of residential 
structures per APN 

Building level Public property records 

Slope Slope in degrees Building level Computed with R statistical software (sf, elevatr, and 
raster packages) 

Aspect Compass direction of slope Building level Computed with R statistical software (sf, elevatr, and 
raster packages) 

Southwestness Derived from aspect, ranges from + 1 (southwest) to −1 
(northeast) 

Building level Computed with R statistical software (sf, elevatr, and 
raster packages) 

Topographic Position 
Index (TPI) 

Topographic position of a given point in relation to its general 
neighborhood (e.g. valleys, slopes, flat areas, ridges) retained in 
continuous form 

Building level Computed with R statistical software (sf, elevatr, and 
raster packages) 

Distance to nearest 
building 

Continuous variable measured in meters and calculated with both 
residential and non-residential structures 

Building level Computed with R statistical software (sf and nngeo 
packages) 

Count of buildings 
within 40 m radius 

Continuous variable based in a 40 m buffer from each building 
point, calculated with both residential and non-residential 
structures 

Building level Computed with R statistical software (sf and nngeo 
packages) 

Distance to any road Continuous variable measured in meters and calculated with 
Census Bureau’s TIGER/Line Shapefile 

Building level Computed with R statistical software (sf, nngeo, and 
tigris packages) 

Distance to major road Continuous variable measured in meters and calculated with state- 
recognized roads in Census Bureau’s TIGER/Line Shapefile 

Building level Computed with R statistical software (sf, nngeo, and 
tigris packages) 

Post code change Binary indicator of whether a structure was built in 2008 or later 
after the adoption of updated California Building Code 

Building level Calculated from year of construction, CAL FIRE Damage 
Inspection Data 

Distance to cluster edge Continuous measure of meters from building point to the edge of 
cluster, where cluster is defined by merging overlapping 100- 
meter buffers from each building point (see Alexandre et al., 
2016) 

Cluster level Computed with R statistical software (sf and nngeo 
packages) 

Contagion Index Measures the “clumpiness” of raster cells in categorical maps, 
including both the extent to which differing patch types are 
intermixed and their spatial distribution (McGarigal, 2015) 

Landscape level 
(within a 2500 m 
radius) 

Land cover map of the National Land Cover Database; 
computed with R statistical software (sf, raster, and 
exactextractr packages) 

Mean canopy cover Measure of the average pixel value, where each cell represents a 
continuous measure of the percent tree canopy (0–100) 

Landscape level 
(within a 2500 m 
radius) 

U.S. Forest Service Science Tree Canopy Cover, National 
Land Cover Database; computed with R statistical 
software (sf, raster, and exactextractr packages) 

Proportion highly 
flammable land 
cover 

Proportion of cells within the radius classified as highly flammable Landscape level 
(within a 2500 m 
radius) 

Land cover map, National Land Cover Database; 
computed with R statistical software (sf, raster, and 
exactextractr packages) 

Count of non- 
flammable, 
flammable, and 
highly-flammable 
patches 

Number of unique patches of each flammability class within the 
radius 

Landscape level 
(within a 2500 m 
radius) 

Land cover map, National Land Cover Database; 
computed with R statistical software (sf, raster, and 
exactextractr packages)  
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Factor (VIF) of the final set of covariates selected by the LASSO, and 
confirmed that all variables had a VIF of 2 or lower. 

Finally, to assess whether our data were spatially autocorrelated, we 
tested the residuals of our full multivariable model. Results of this test 
suggested that there was positive autocorrelation in our data (Moran’s I 
= 0.444). Lagrange Multiplier tests indicated that a spatial error or a 
spatial lag model would be similarly well-suited to address this auto
correlation. We opted to include a spatial error term in our models, given 
that this approach is theoretically better-suited to address cases in which 
known explanatory variables are not included in the models (Chi & Zhu, 
2020, p. 78). 

We fit a series of stepwise spatial error models and a spatial “best fit” 
model which took the form: 

Yi = β0 +
∑p

j=1
βjxij + εi  

εi = λWεi + vi  

Where Yi is the binary outcome variable that indicates whether building 

i was destroyed (1) or survived (0). β0 represents the intercept; and xij is 
the j-th predictor for the i-th observation over p independent variables. 
The error term, εi, includes both an autoregressive spatial error term, 
λWεi, which accounts for spatial autocorrelation in either measurement 
error or unobserved variables as well as a random error term, vi (Anselin 
& Bera, 1988). These models were produced using a three-nearest 
neighbors spatial weights matrix, which we selected after examining 
which of a series of neighbor counts (K = 3, 5, 10, and 15) reflected the 
highest spatial dependence (Chi & Zhu, 2020, pp. 40–41). Additional 
model robustness checks are reported in Appendix F. 

3. Results 

3.1. Disproportionate probability of destruction across building type, 
tenure, and value 

We first posited in Hypothesis 1.1 that certain structures would be 
disproportionately more likely to have been destroyed in the fire, 
namely, multi-family residences, mobile or motor homes, renter- 
occupied residences, and lower-value residences. Our findings support 
most components of this hypothesis. Examining different residential 
building types, we found that mobile or motor homes were significantly 
more likely to have been destroyed than single-family residences, with 
87.1% of mobile or motor homes destroyed compared to 77.5% of 
single-family residences (p <.001) (Table 2, Model 1). However, in 
contrast to our expectation, we found that multi-family residences were 
significantly less likely to have been impacted than single-family resi
dences, with 69.2% having been destroyed (p <.001) (Table 2, Model 1). 
The magnitude of both of these differences was substantial. Examining 
building tenure, we found that renter-occupied residences were signif
icantly more likely to have been destroyed in the fire compared to 
owner-occupied residences (Table 2, Model 2). While the three- 
percentage point difference was smaller in magnitude than differences 
observed for building type, it was significant (p <.001). Examining 
buildings’ pre-fire value, we found a negative relationship with proba
bility of destruction, where the higher value the building the less likely it 
was to be destroyed (p <.001) (Table 2, Model 3). 

Given the likelihood that our three socioeconomic proxy character
istics were collinear, we fit a full multivariable model with building 
type, tenure, and value (Table 2, Model 4). This model indicates whether 
our three variables predict destruction probability independently from 
one another. Here we found that multi-family residences remained 
significantly less likely to have been destroyed compared to single- 
family residences (p <.001), and pre-fire building value continued to 
significantly predict destruction probability (p <.001). However, mobile 
or motor homes and renter-occupied homes were no longer significantly 
more likely to have been destroyed. This was due to collinearity with 
building value, in which mobile or motor homes were substantially 
lower in total value than any other building type, at $65,663 on average 
compared to $185,416 for the average single-family residence. A similar 
pattern occurred among absentee owner structures, in which this vari
able no longer significantly predicted destruction in the multivariable 
model of residential structures. As with mobile or motor homes, this was 
the result of collinearity with building value, in which absentee owner 
residential buildings were, on average, $63,048 less than owner- 
occupied residential buildings. 

3.2. Correlates of differential building destruction 

Hypothesis 1.2 posits that we can explain differences in destruction 
outcomes observed in Hypothesis 1.1 by including additional building 
characteristics in our model. Our aim in this modeling approach was to 
identify which specific physical characteristics may be associated with 
different socioeconomic characteristics of buildings, in turn causing 
them to be more physically sensitive to structure loss. If Hypothesis 1.2 
were correct, building type, building value, and building tenure would 

Fig. 3. Support vector machine classification procedure. Top image shows pre- 
fire NAIP imagery of the Town of Paradise. Middle image shows post-fire NAIP 
imagery of the Town of Paradise. Bottom image shows support vector machine- 
classified grid derived from post-fire NAIP imagery that designates built hard
scape (black) and non-building (white). Red circles illustrate how the algorithm 
was able to successfully detect buildings in NAIP imagery. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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have non-significant coefficients in our multivariable models. If Hy
pothesis 1.2 were incorrect, we would still observe significant co
efficients on these variables, indicating that our models did not fully 
account for the underlying reasons why these structures were more 
susceptible to destruction. To test Hypothesis 1.2, we introduced a 
spatial error term and a range of primarily environmental covariates to 
our socioeconomic proxy models to determine whether we could explain 
the heightened probability of destruction observed among mobile or 
motor homes, renter-occupied residences, and lower-value residences. 

First, we fit the same multivariable socioeconomic model from 
Table 2 (Model 4), but included a spatial error term to address spatial 
autocorrelation (Table 3, Model 1). Here we found similar trends in that 
multi-family residences were significantly less likely to be destroyed 
than single-family residences (p <.01), building value was negatively 
associated with destruction probability (p <.001), and there were no 
significant differences among owner- and renter-occupied residences. 
However, in contrast to our non-spatial models, we found that mobile or 
motor homes were significantly more likely to have been destroyed even 
after accounting for structure value (p <.001). 

In stepwise additions of covariate sets across Models 2 through 7, we 
found strong consistency in the significance and direction of building 
type as a predictor of structure loss. Across all models, multi-family 
residences were significantly less likely to have been destroyed (p 
<.01 for Models 1-2, p <.001 for Models 3-8) and mobile or motor 
homes were significantly more likely to have been destroyed (p <.001) 
compared to single-family residences. Counter to Hypothesis 1.2, we 
were not able to explain the disproportionate impacts across building 
types by accounting for differences in terrain, development density, 
distance to roads, building code standards, building location within a 
cluster, or landscape characteristics. 

We also observed similar consistency in the coefficient on renter- 
occupied structures, which was non-significant across all stepwise 
models. The heightened probability of renter-occupied structures being 
destroyed in the bivariate non-spatial model (Table 3, Model 2) can be 
best accounted for by differences in building value, and subsequent 
consideration of environmental characteristics did not change this 
explanation. 

Pre-fire building value was the only socioeconomic variable that we 
were able to fully explain through the inclusion of additional covariates 
(Fig. 4). The significance and magnitude of the building value coefficient 
remained almost exactly the same after the addition of terrain 

characteristics (p <.001) (Table 3, Model 2), and then shrank in 
magnitude and became significant at a larger p-value threshold (p <.05) 
after adding building density characteristics (Table 3, Model 3). This 
indicates that some of the relationship between building value and 
destruction could be explained by building density, in which buildings 
located in denser developments were both lower value and more likely 
to have been destroyed. These trends held across all three building types 
(Fig. 4). In the next stepwise addition (Table 3, Model 4), the inclusion of 
distance to nearest road and to nearest major road rendered the coeffi
cient on building value non-significant. Higher value single-family res
idences and mobile or motor homes were more likely to be a greater 
distance from roads, and structures farther from roads were less likely to 
have been destroyed (Fig. 4). The coefficient on building value remained 
non-significant in all subsequent stepwise models (Table 3, Models 5–7). 

After examining changes in socioeconomic variable coefficients 
across stepwise regressions, we report a “best fit” model selected 
through LASSO regression (Table 3, Model 8). This model tells us which 
sparse combination of variables best predicts destruction probability. 
Here we found that building type was retained as a key predictor, along 
with building density measures, the building code change indicator, and 
landscape Contagion Index. As with previous stepwise models, mobile or 
motor homes were significantly more likely to have been destroyed (p 
<.001) and multi-family residences were significantly less likely to have 
been destroyed (p <.001) than single-family residences. 

While our primary hypotheses focus on understanding the relation
ships between socioeconomic-related building variables and suscepti
bility to destruction, we briefly comment on the additional covariates in 
the full multivariable model here (Table 3, Model 7). As described 
above, building density and distance to roads significantly predicted 
probability of structure loss (p <.001). Additionally, the building code 
change variable indicates that residences built after the adoption of 
updated building codes in 2008 were significantly less likely to have 
been destroyed (p <.001). Finally, a number of landscape-scale vege
tation metrics (all of which were measured within a 2,500 m radius of 
each structure) all significantly predicted structure loss; mean canopy 
cover, proportion of highly flammable land cover, and count of highly 
flammable patches were all positively and significantly associated with 
structure loss (p <.001). Contagion Index was negatively associated with 
structure loss, indicating that patchier, less-contiguous land cover was 
associated with a higher probability of destruction (p <.001). Finally, 
the significant interaction term between distance to nearest neighboring 

Table 2 
Probability of residential building destruction.   

Dependent variable:  

Destroyed  

(1) (2) (3) (4) 

Intercept 0.775*** 0.799*** 1.524*** 1.488***  
(0.004) (0.004) (0.042) (0.065) 

Multi-Family Residence (reference = Single-Family) −0.083***   −0.124***  
(0.023)   (0.027) 

Mobile or Motor Home (reference = Single-Family) 0.096***   −0.004  
(0.006)   (0.009) 

Absentee Owner (reference = Owner-Occupied)  0.035***  0.010   
(0.007)  (0.007) 

Pre-Fire Building Value (log scale)   −0.061*** −0.058***    
(0.004) (0.005) 

Observations 17,536 15,704 16,881 15,704 
Log Likelihood −8,810 −7,616 −7,943 −7,496 
Akaike Inf. Crit. 17,626 15,235 15,889 15,002 

Note: *p < 0.05; **p < 0.01; ***p < 0.001. 
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structure and proportion of highly flammable vegetation at the land
scape scale (p <.001) indicated that, as buildings became more distant 
from each other, the influence of landscape-level flammable vegetation 
on destruction probability was stronger. 

3.3. Disproportionate probability of building reconstruction across 
building type, tenure, and value 

Finally, we tested Hypothesis 2.1 for evidence of cost-burden 
gentrification, positing that multi-family residences, mobile or motor 
homes, renter-occupied residences, and lower-value residences would 
be less likely to have been reconstructed within the 20-month study 

period. We found mixed evidence in support of this hypothesis. 
First examining building type, results did not support our hypothesis; 

we found instead that there was no difference in reconstruction proba
bility between multi-family and single-family residences. While mobile 
or motor homes were slightly less likely to have been replaced than 
single-family residences in the bivariate model (p <.05) (Table 4, Model 
1), the difference was very small in magnitude and did not meet our 
preferred p-value threshold of 0.01. Further, after controlling for 
building value in the full multivariable model (Table 4, Model 4), mobile 
or motor homes were more likely to have been rebuilt (p <.01), which 
may speak to mobile or motor homes being faster to place back on a lot, 
as opposed to the lengthier process of constructing a new building. 

Table 3 
Correlates of differential building destruction.   

Dependent variable:  

Destroyed  

(1) (2) (3) (4) (5) (6) (7) (8) 

Intercept 1.051*** 
(0.055) 

1.069*** 
(0.058) 

0.894*** 
(0.060) 

0.940*** 
(0.060) 

0.889*** 
(0.061) 

0.786*** 
(0.062) 

−0.807*** 
(0.189) 

1.069*** 
(0.016) 

Multi-Family Residence (reference = Single- 
Family) 

−0.074** 
(0.024) 

−0.076** 
(0.024) 

−0.084*** 
(0.024) 

−0.093*** 
(0.024) 

−0.087*** 
(0.024) 

−0.082*** 
(0.024) 

−0.111*** 
(0.023) 

−0.087*** 
(0.021) 

Mobile or Motor Home (reference = Single- 
Family) 

0.041*** 
(0.008) 

0.042*** 
(0.008) 

0.034*** 
(0.008) 

0.039*** 
(0.008) 

0.034*** 
(0.008) 

0.036*** 
(0.008) 

0.045*** 
(0.008) 

0.060*** 
(0.007) 

Absentee Owner (reference = Owner-Occupied) 0.004 
(0.006) 

0.004 
(0.006) 

0.004 
(0.006) 

0.004 
(0.006) 

0.003 
(0.006) 

0.003 
(0.006) 

0.005 
(0.006)  

Pre-Fire Building Value (log scale) −0.022*** 
(0.005) 

−0.021*** 
(0.005) 

−0.009* 
(0.005) 

−0.007 
(0.005) 

−0.002 
(0.005) 

−0.002 
(0.005) 

−0.003 
(0.005)  

Slope  −0.005* 
(0.002) 

−0.002 
(0.002) 

−0.002 
(0.002) 

−0.002 
(0.002) 

−0.001 
(0.002) 

0.001 
(0.002)  

Aspect  −0.0001 
(0.0001) 

−0.0001 
(0.0001) 

−0.0001 
(0.0001) 

−0.0001 
(0.0001) 

−0.0001 
(0.0001) 

−0.0001 
(0.0001)  

Topographic Position Index (TPI)  0.016 
(0.105) 

0.040 
(0.105) 

0.064 
(0.105) 

0.019 
(0.106) 

0.051 
(0.106) 

0.143 
(0.106)  

Southwestness  0.014 
(0.008) 

0.010 
(0.008) 

0.009 
(0.008) 

0.007 
(0.008) 

0.005 
(0.008) 

0.003 
(0.008)  

Meters to Building   −0.001*** 
(0.0001) 

−0.001*** 
(0.0001) 

−0.001*** 
(0.0001) 

−0.001*** 
(0.0001) 

−0.005*** 
(0.001) 

−0.0003*** 
(0.0001) 

Building Count within 40 m   0.017*** 
(0.002) 

0.016*** 
(0.002) 

0.017*** 
(0.002) 

0.015*** 
(0.002) 

0.011*** 
(0.002) 

0.016*** 
(0.002) 

Meters to Major Road    −0.00002*** 
(0.00000) 

−0.00002*** 
(0.00000) 

−0.00001*** 
(0.00000) 

−0.00004*** 
(0.00001)  

Meters to Any Road    −0.001*** 
(0.0001) 

−0.001*** 
(0.0001) 

−0.001*** 
(0.0001) 

−0.0001 
(0.0001)  

Post-Code Change     −0.101*** 
(0.018) 

−0.097*** 
(0.018) 

−0.083*** 
(0.018) 

−0.113*** 
(0.016) 

Meters to Cluster Edge      0.0002*** 
(0.00002) 

0.00000 
(0.00003)  

Contagion Index       −0.020*** 
(0.002) 

−0.009*** 
(0.0004) 

Mean Canopy Cover       0.006*** 
(0.001)  

Proportion Highly Flammable Landcover       2.765*** 
(0.289)  

Count of Non-Flammable Patches       0.0003 
(0.001)  

Count of Flammable Patches       0.0002 
(0.0004)  

Count of Highly Flammable Patches       0.003*** 
(0.0003)  

Slope*Aspect  0.00001 
(0.00001) 

0.00001 
(0.00001) 

0.00001 
(0.00001) 

0.00001 
(0.00001) 

0.00001 
(0.00001) 

0.00000 
(0.00001)  

Meters to Building*Proportion Highly Flammable       0.005*** 
(0.001)  

Spatial Error 0.588*** 
(0.006) 

0.586*** 
(0.006) 

0.570*** 
(0.007) 

0.562*** 
(0.007) 

0.562*** 
(0.007) 

0.556*** 
(0.007) 

0.516*** 
(0.007) 

0.551*** 
(0.007) 

Observations 15,704 15,704 15,704 15,704 15,426 15,426 15,221 17,176 
Log Likelihood −4,4331 −4,425 −4,309 −4,270 −4,187 −4,147 −3,749 −4,588 
σ2 0.091 0.091 0.091 0.090 0.090 0.090 0.088 0.090 
Akaike Inf. Crit. 8,880 8,874 8,6465 8,572 8,407 8,330 7,549 9,194 

Note: *p < 0.05; **p < 0.01; ***p < 0.001. 
Models present results of linear probability models with spatial error term. 
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However, when we examined residence tenure and building value, 
findings provided evidence of an emerging trend of cost-burden 
gentrification. Renter-occupied dwellings were three percentage points 
less likely to have been reconstructed than owner-occupied dwellings (p 
< .001) (Table 4, Model 2), a trend that remains similar in the multi
variable model (Table 4, Model 4). Pre-fire building value was positively 
and significantly associated with reconstruction probability in both 
bivariate and multivariable models (p <.001) (Table 4, Models 3 and 4), 
indicating that higher value residences were more likely to have been 
reconstructed in the study period. 

An important caveat to these findings is that we only documented 
reconstruction patterns within the first 20 months after the fire. While 
analyzing a relatively short timeframe is common in disaster scholar
ship, further work is needed to determine whether the patterns observed 
here will persist into the future. 

4. Discussion 

4.1. Wildfires and neighborhood change 

The scale of wildfire impacts to the built environment is growing, 

raising the question of how places and communities change following 
highly destructive fires (Higuera et al., 2023; Radeloff et al., 2023; 
United Nations Environment Programme, 2022). Through a close ex
amination of the 2018 Camp Fire, we showed how wildfire can facilitate 
physical neighborhood change, first at the stage of building destruction 
and again through the process of building reconstruction. 

We found evidence supporting our first hypothesis of physical 
neighborhood change, that the filtering of housing stock prior to a 
disaster event contributed to uneven physical hazard impacts; mobile or 
motor homes, renter-occupied residences, and lower-value residences 
were significantly more likely to have been destroyed in the Camp Fire 
compared to single-family residences, owner-occupied residences, and 
higher-value residences. These findings on the sensitivity of specific 
building types and building value are in keeping with Troy et al.’s 
(2022) analysis of non-residential and residential structures within the 
burn footprint. Our residential-specific models show that the negative 
association between building value and destruction probability is not 
driven by high-value non-residential structures, but is consistent among 
residential structures as well. 

Our findings on housing stock filtering are in keeping with prior 
research documenting the link between housing stock quality and 

Fig. 4. Correlations between total pre-fire building value (log scale) and (A) building count within a 40 m radius, (B) meters to the nearest building (log scale), and 
(C) meters to the nearest major road (log scale). 

Table 4 
Probability of post-fire residential building reconstruction.   

Dependent variable:  

Rebuilt  

(1) (2) (3) (4) 

Intercept 0.039*** 
(0.002) 

0.046*** 
(0.002) 

−0.089*** 
(0.018) 

−0.076* 
(0.031) 

Multi-Family Residence (reference = Single-Family) −0.010 
(0.010)   

0.012 
(0.013) 

Mobile or Motor Home (reference = Single-Family) −0.007* 
(0.003)   

0.013** 
(0.005) 

Absentee Owner (reference = Owner-Occupied)  −0.028*** 
(0.003)  

−0.026*** 
(0.003) 

Pre-Fire Building Value (log scale)   0.011*** 
(0.002) 

0.010*** 
(0.003) 

Observations 13,972 12,699 13,704 12,699 
Log Likelihood 3,562 2,988 3,590 2,996 
Akaike Inf. Crit. −7,118 −5,971 −7,176 −5,981 

Note: *p < 0.05; **p < 0.01; ***p < 0.001. 
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environmental hazard damage (Chakraborty et al., 2019; Kamel, 2012; 
Ma & Smith, 2019). But beyond identifying disproportionate impacts, 
we were able to identify built environment characteristics that in part 
explain observed disparities in Hypothesis 1.1. We found evidence that 
the physical sensitivity of lower-value buildings can be explained by 
their density and proximity to roads, in which lower-value residences 
were more likely to be closer to other buildings and closer to roads, 
which in turn were characteristics associated with a higher probability 
of destruction. Our findings on density build on Knapp et al.’s analysis of 
a sample of single-family residences in the burn footprint (Knapp et al., 
2021); we show that building density was associated with structure loss 
across all residential structure types and for the full population of resi
dential structures affected by the Camp Fire. 

In contrast to our findings on building value, we were not able to 
explain the heightened susceptibility of mobile or motor homes to 
destruction by accounting for their spatial location within the burn 
footprint or by proximate environmental characteristics. This indicates 
that there were some characteristics of mobile or motor homes or their 
surrounding environment that made them uniquely susceptible to 
wildfire destruction. Understanding this sensitivity is a critical area for 
future study. 

These observed differences in residential building sensitivity illus
trate one avenue through which wildfire can facilitate neighborhood 
change. Existing physical differences among residential structures 
meant that certain structure types were more likely to be destroyed 
when exposed to wildfire than others. Further, the structure types we 
observed to be more sensitive to wildfire exposure were also those that 
are more likely to house residents with less adaptive capacity in a 
disaster context - those who rent, reside in mobile homes, and those who 
have less household wealth (Lambrou et al., 2023). As a result, neigh
borhood change occurred through disproportionately high loss of 
structure types that likely housed more socially vulnerable residents. 

Finally, we showed how building reconstruction further facilitated 
neighborhood change through cost-burden gentrification in the first 
years following the fire. Compared to all buildings that were destroyed 
during the Camp Fire, the estimated 643 buildings that had been 
reconstructed by July of 2020 were more likely to have been owner- 
occupied before the fire and were, on average, higher in pre-fire 
value. While further research is needed to track how reconstruction 
dynamics will play out over a much longer timeframe, the observed 
slower rate of building reconstruction among lower-value and renter- 
occupied residences suggests that cost-burden gentrification is a 
possible trajectory of neighborhood change following wildfires. This is a 
distinct pathway of gentrification, wherein capital does not leave high 
hazard areas, as has been shown in the case of chronic flooding (Keenan 
et al., 2018), but instead, the costs of adapting in place mean that less 
affluent residents cannot afford to do so. This less-documented form of 
gentrification suggests that different hazards can trigger diverging 
pathways of neighborhood change, requiring attention to specific haz
ard contexts in future research. 

Our case study answers a broad but underexplored question: how 
does a place change after it experiences a highly destructive wildfire? 
While scholars have investigated physical predictors of wildfire struc
ture loss (Alexandre et al., 2016; Gibbons et al., 2012; Syphard et al., 
2012, 2014, 2017) and broad trends in post-fire building reconstruction 
(Alexandre et al., 2015; Kramer et al., 2021; Mockrin et al., 2015), few 
have systematically examined finer-grained processes of neighborhood 
change following wildfire events. While wildfire science on whole has 
predominantly emphasized biophysical dynamics of wildfire impacts 
(Lambrou et al., 2023), social scientists have tended to emphasize resi
dents’ demographic characteristics and adaptive capacity, attending far 
less to how the physical sensitivity of residential buildings can shape 
overall vulnerability to wildfire and socially uneven post-disaster tra
jectories. We showed that dwellings which we would expect to house 
more socially vulnerable residents were also more physically susceptible 
to being destroyed in the fire and less likely to have been reconstructed 

after the fire. By integrating biophysical and social scientific approaches, 
we demonstrate the importance of considering the built environment at 
the individual structure level in developing a more comprehensive un
derstanding of wildfire vulnerability. 

4.2. Limitations and future research directions 

There are several limitations to our study which we anticipate can be 
addressed in future research. First, there are limits to which our findings 
on the physical mechanisms of building destruction (Hypothesis 1.2) can 
be considered causally identified, given our descriptive research design. 
However, this limitation is not unique to our study; most research we 
reviewed on the determinants of wildfire-related building loss were, like 
ours, descriptive analyses. Such research designs are always susceptible 
to the effects of omitted variables. Like most existing research in this 
area, we examined a subset of relevant and available structure loss 
predictors, however we did not capture all known factors associated 
with wildfire-related building destruction. Due to data limitations, we 
did not include known predictors of structure loss such as defensible 
space (Syphard et al., 2014). Our relatively coarse vegetation mea
surements from the NLCD (which are observed at 30 m pixel resolution) 
only capture landscape-level trends, and do not capture finer-scale 
patches of vegetation within a near radius from a structure. Addition
ally, we did not include data on direction of fire approach, weather 
conditions (Gibbons et al., 2012), dwelling construction materials 
(Syphard et al., 2017), or protective responses taken by residents or 
firefighters. Given the exceptional detail of the CAL FIRE Damage In
spection Data, we anticipate that much can still be learned from further 
investigation of these data paired with different sets of loss predictors, 
much as our research builds on existing examinations of Camp Fire 
structure loss (Knapp et al., 2021; Troy et al., 2022). 

A second limitation of our work is its exclusive analysis of dwellings 
rather than the residents who live within them. This focus on officially- 
documented residential properties means that we do not capture wild
fire impacts among unhoused residents or those who lived in informal 
dwellings - populations that tend to be overlooked in studies of wildfire 
(Chase & Hansen, 2021). Our use of buildings further limited our ability 
to investigate whether destruction or reconstruction outcomes differed 
across demographic groups. Much prior research on neighborhood 
change emphasizes racial segregation (Zuk et al., 2015), documenting 
the ways that racial discrimination is embedded in different stages of 
property ownership (Korver-Glenn, 2018). Given findings from this 
body of work, we would expect similar racial disparities to exist in the 
context of post-wildfire changes to the built environment. Further 
research is needed to investigate whether this is the case. 

Examining longer-term neighborhood change - on the scale of years 
and decades - following wildfires is one of the most important directions 
for future research following our study. Our research documents 
reconstruction in a relatively short period of time (20 months) after the 
Camp Fire. While it is possible that the trajectory of stratified recon
struction patterns we observed may continue into the future, it is also 
possible that this trend could change. Efforts such as the local not-for- 
profit Rebuild Paradise Foundation’s work to support low- and 
middle-income residents in rebuilding (Rebuild Paradise Foundation, n. 
d.) and government-funded affordable housing projects (Weber, 2023) 
could change who is able to return and live on the Ridge and the types of 
buildings that are constructed there. Longer-term examinations of 
neighborhood change should account for post-fire changes in property 
ownership, in which new building construction may not reflect the 
previous resident rebuilding, but rather construction undertaken by a 
new property owner. 

In addition to substantive findings, our study presented a method for 
semi-automatically detecting reconstructed buildings within high- 
resolution aerial imagery, which allowed us to evaluate building 
reconstruction more efficiently and in a much higher volume than prior 
research has done using manual techniques. This algorithm may 
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continue to be honed in the future to enhance its precision at the 
building level, for instance through the inclusion of LiDAR data that 
measure building heights. Looking forward, our building detection 
technique could be scaled up to evaluate post-fire neighborhood change 
across multiple disaster sites to investigate comparative research ques
tions. Are some places rebuilt more quickly after a disaster than others? 
If so, what does this suggest about the allocation of capital into the built 
environment following major disasters? Answering questions about the 
long-term trajectories of disaster-affected regions will become increas
ingly important as the scale of destruction - from wildfires and from 
many other environmental hazards - continues to increase under climate 
change. 

4.3. Policy and planning implications 

Findings from our study point to several areas where wildfire plan
ning and policies could be adapted to serve a broader range of fire- 
affected communities. The disproportionate destruction outcomes we 
observed among certain types of residential buildings suggest that 
wildfire mitigation guidance could be better tailored to address the 
specific needs of low-income residents, renters, and mobile or motor 
home residents. As prior researchers have pointed out, the financial 
costs of wildfire mitigation mean that more socially vulnerable residents 
may be less able to reduce physical risk where they live (Collins, 2008; 
Wigtil et al., 2016). Strategies such as installing fire-resistant roofs and 
residential sprinklers, upgrading windows to be dual-paned, planting 
firewise landscaping, and keeping vegetation well-maintained can all 
incur financial costs that may not be manageable for many residents. In 
geographic regions that are both at high fire-risk and home to substan
tial populations of low-income residents, costly wildfire mitigation 
strategies are unlikely to be widely adopted without subsidization. 
Further, wildfire mitigation efforts that broadly target homeowners may 
be less successful in communities with a large share of renters, given that 
these residents and even rental property owners do not have the same 
capacity or incentive structure to invest in hazard mitigation (Burby 
et al., 2003; Lee & Van Zandt, 2019). 

Mobile or motor homes stand out in our analysis as uniquely sensi
tive to being destroyed compared to single-family or multi-family resi
dences. Part of this susceptibility can be explained by the density of 
mobile home parks, as the Camp Fire spread through structure-to- 
structure burning, in which radiant heat exposure from an already 
burning structure ignited neighboring structures (Keeley & Syphard, 
2019; Knapp et al., 2021). This positive association between building 
density and probability of destruction poses a challenge for defensible 
space guidelines, which advise that flammable materials be removed 
from close proximity (e.g. 30–40 m) of structures (Gibbons et al., 2012). 
Most often, the flammable materials emphasized are vegetation or 
movable objects such as wood piles or propane tanks. However, in 
structure-to-structure burning, buildings themselves act as fuels. In the 
case of the Camp Fire, it was not possible for many of the densely co- 
located buildings on the Ridge to meet defensible space guidelines 
given their close proximity to neighboring buildings. Planning and 
design innovations are badly needed for dense developments, such as 
mobile home parks, in which residences do not have large lots that can 
be defensibly cleared of all possible fuel sources. However, density could 
not fully explain mobile or motor homes’ heightened sensitivity to 
destruction in our analysis. While further research is needed to deter
mine the specific mechanisms of this susceptibility, planners should be 
aware of this heightened risk and place greater emphasis on mitigation 
planning for mobile or motor home residents and mobile home parks in 
particular. 

In addition to preemptive wildfire mitigation planning, our analysis 
also has implications for post-wildfire policy and planning. The slower 
reconstruction of lower-value and renter-occupied residences suggests 
that, as researchers have documented in studies of other environmental 
hazards, the costs of post-disaster rebuilding can be a major obstacle for 

lower-income residents seeking to return to their communities 
(Fothergill & Peek, 2004; Lee & Van Zandt, 2019). As such, housing 
affordability and access should be a major focus for planners who seek to 
support equitable post-disaster recovery. 

5. Conclusions 

While wildfires have always been an important part of the landscape, 
the number of buildings exposed to and destroyed by fires is growing 
(Higuera et al., 2023; Radeloff et al., 2023). As wildfire impacts to the 
built environment become more common, it is important to understand 
their long-term effects on places and the people who live there. We in
tegrated social and biophysical science approaches to examine physical 
neighborhood change following the 2018 Camp Fire, finding evidence 
that housing stock filtering led to uneven patterns of wildfire destruction 
and that near-term housing reconstruction was on an early trajectory of 
cost-burden gentrification. These findings demonstrate the importance 
of examining the built environment as a driver of socially uneven 
disaster impacts. 

Our findings further highlight key wildfire policy and planning ap
proaches in need of innovation. Wildfire mitigation plans that rely pri
marily on individual residents making changes to their dwellings are 
likely to be less successful in communities where many residents rent or 
have less household wealth. Additionally, dense neighborhoods and 
mobile home parks need mitigation planning and design strategies that 
account for the close proximity of buildings and subsequent potential for 
structure-to-structure burning. Finally - and as we have seen emerging in 
initiatives on the Ridge in the wake of the Camp Fire - post-fire recovery 
resources should address obstacles for return and rebuilding among 
residents who rent and those with fewer financial resources. 
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