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ABSTRACT

The saturniid moth genus Automeris includes 145 described species. Their geographic
distribution ranges from the eastern half of North America to as far south as Peru.
Automeris moths are cryptically colored, with forewings that resemble dead leaves, and
conspicuously colored, elaborate eyespots hidden on their hindwings. Despite their
charismatic nature, the evolutionary history and relationships within Automeris and
between closely related genera, remain poorly understood. In this study, we present
the most comprehensive phylogeny of Automeris to date, including 80 of the 145
described species. We also incorporate two morphologically similar hemileucine genera,
Pseudautomeris and Leucanella, as well as a morphologically distinct genus, Molippa.
We obtained DNA data from both dry-pinned and ethanol-stored museum specimens
and conducted Anchored Hybrid Enrichment (AHE) sequencing to assemble a high-
quality dataset for phylogenetic analysis. The resulting phylogeny supports Automeris
as a paraphyletic genus, with Leucanella and Pseudautomeris nested within, with the
most recent common ancestor dating back to 21 mya. This study lays the foundation
for future research on various aspects of Automeris biology, including geographical
distribution patterns, potential drivers of speciation, and ecological adaptations such
as antipredator defense mechanisms.
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page 9 morphological features, such as large body size, vibrant wing patterns, and distinctive
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3,454 species, divided into eight subfamilies and 180 genera. The subfamily Hemileucinae
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Mollipa, with species containing less complex eyespots or lacking them entirely. The genus
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species can be found across a vast geographic range, from North America to Peru. They
thrive in diverse biotopes, spanning from tropical rainforests to arid habitats, in a wide
range of altitudinal levels, from the sea level up to 4000 m (Decaens ¢» Herbin, 2002).

One distinctive feature of almost all Automeris species, is their recognizable wing
ornamentation on both the fore- and hindwings. Forewings typically exhibit drab coloration
and a cryptic leaf-like pattern. In stark contrast, hindwings have vibrant colors and feature
an eyespot. Eyespots on the hindwings of Automeris moths make up the conspicuous
coloration component of a deimatic display—thought to deter possible predators by
startling, frightening, or confusing them, causing predators to pause or abandon their
pursuit (Umbers ¢» Mappes, 2016; Drinkwater et al., 2022). The presence of eyespots in most
species of Automeris suggests they confer a selective benefit against predation (Olofsson
et al., 2013), although eyespots of a few species are minimized or vestigial, which may be
a secondary evolutionary loss. In Papillionoidea (butterflies), there has been extensive
research on molecular mechanisms of eyespot development (Monteiro et al., 2013; Nijhout,
2017; Matsuoka & Monteiro, 2021) and some studies have examined the evolutionary
origins and genes involved in eyespots in a few representative species of Lepidoptera
(Kodandaramaiah, 2011; Monteiro, 2015; Beldade ¢~ Monteiro, 2021; Sourakov ¢ Shirai,
20205 Skojec, Godfrey ¢ Kawahara, 2024) but research into the evolution of eyespots in
Automeris and relatives has yet to be conducted. The evolution of eyespot size and shape
is believed to be driven by adaptive pressures instead of developmental constraints, thus
they are not likely to constrain adaptive radiation of size, shapes, and patterns of eyespots
(Beldade, Koops ¢ Brakefield, 2002; Evans ¢» Marcus, 2006).

Historically, researchers have relied on wing pattern variation (e.g., venation, shape, size,
color and pattern) to establish systematic hypotheses and determine relationships within
Automeris (Tuskes ¢ McElfresh, 1995; Tuskes, Tuttle ¢~ Collins, 1996). In his extensive
study of the subfamily Hemileucinae, Lemaire (2002) identified 145 species within
Automeris and classified nine species groups based on their physical appearance and
genital morphology. Despite being a charismatic and extremely diverse genus, knowledge
regarding the evolutionary relationships among Automeris species and the timing of the
group’s divergence from other hemileucine lineages remains limited to hypotheses from
morphological characteristics. While some studies have included Automeris and other
hemileucine species in large-scale phylogenetic analyses of Lepidoptera (Kitching et al.,
2018; Kawahara et al., 2019), a comprehensive phylogenetic analysis focused on Automeris
is yet to be conducted.

In this study we present the most comprehensive Automeris phylogeny that includes 80
of the 145 described species and six subspecies (Lemaire, 2002). Additionally, we include
two morphologically similar hemileucine genera—Pseudautomeris (five) and Leucanella
(four), and a morphologically distinct hemileucine genus, Molippa (six), to investigate
relationships of Automeris with these genera. By constructing a well-represented phylogeny,
we aim to uncover the diversification patterns within the genus and shed light on the timing
of its evolutionary divergence from other lineages. Furthermore, a detailed phylogeny will
provide a framework for future studies on various aspects of Automeris biology, including
their anti-predatory defense, ecological adaptations, geographical distribution patterns,
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and potential drivers of speciation. Portions of this text were previously published as part
of a preprint (Skojec, Godfrey ¢ Kawahara, 2024).

MATERIALS AND METHODS

Taxon sampling and extraction

We sampled and extracted 115 species and subspecies of Automeris (98), Leucanella (five),
Pseudautomeris (six), and Molippa (six) available in the McGuire Center for Lepidoptera

and Biodiversity (MGCL), Florida Museum of Natural History (FLMNH). Specimens were
obtained from two collection types: dry, pinned specimens and those stored in ethanol at
—80 °C, which have been wing-vouchered following Cho et al. (2016) and are specifically
stored for use in molecular studies.

One specimen per taxon was selected from the collections. Pinned specimens were
carefully selected based on their condition, focusing on those with intact wings and body
parts. Priority was given to more recently collected specimens during the selection process
to enhance the likelihood of successful DNA extraction. Two legs were pulled from each
sample and placed in a 1.5 mL microcentrifuge tube. Corresponding identification labels for
samples were recorded on the respective tubes, linking them to those collection data present
in the MGCL specimen database. Similarly, molecular cold storage samples were taken
from their respective boxes, and partial thoracic tissue was dissected and placed in a labeled
1.5 mL microcentrifuge tube, and all relevant information was recorded in the collective
database. The extracted thorax tissue was then placed in a labeled 1.5 mL microcentrifuge
tube, and all relevant information was recorded in a collective database. DNA extraction of
legs from the MGCL pinned collection or thorax tissue from the molecular collection was
chosen based on availability of species within the MGCL pinned and molecular collection.
Due to the likelihood of higher DNA yield in thorax tissue, specimens from the molecular
collection were given priority. If specimens were available in both molecular and pinned
collections, specimens were chosen from the molecular collection.

Extractions were completed following the specified protocol of the Qiagen DNeasy
Blood and Tissue kit (Qiagen, Hilden, Germany). For quality control, extracted DNA
was checked for concentration and fragmentation with a Qubit 2.0 fluorometer and
electrophoresis gels (Fisherbrand Electrophoresis Power Supplies, FB200; Thermo Fisher
Scientific, Waltham, MA, USA). After DNA extraction, if the desired concentration of DNA
was not achieved, samples were re-extracted if tissue was still available. Otherwise, species
with multiple samples were re-extracted with a different individual. Once the quantity of
DNA was determined (8 ng/ul. minimum and 100 ng/ul. maximum), extracted samples
were sent for Anchored Hybrid Enrichment (AHE) library preparation at RAPiD Genomics
in Gainesville, Florida, USA. Higher concentration samples were prioritized. Out of the
115 extracted samples, 113 showed DNA concentration of >8 ng/ulL. Library preparation,
hybridization enrichment, and Illumina HiSeq 2500 sequencing (PE100) was carried out
at RAPiD Genomics.
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DNA sequencing and assembly

We used the “BOM1” Anchored Hybrid Enrichment probe set (Hamilton et al., 2019),
which was developed to target 921 loci across Bombycoidea. We used this probe set because
it has been proven effective in capturing sequence data from both dry-pinned and ethanol-
preserved specimens (Hamilton et al., 2019; Dowdy et al., 2020; Li et al., 2022) This probe
kit includes 58 loci across 24 “legacy” Sanger sequencing-based genes (Regier et al., 2008),
eight bombycoid vision-related loci, and 855 loci designated as the Lepidoptera Agilent
Custom SureSelect Target Enrichment “LEP1” probe kit from Breinholt et al. (2018).
Anchored Hybrid Enrichment (AHE) is a sequencing technique specifically developed to
target and capture a large number of orthologous loci from the genome. This method is
well-suited for resolving evolutionary relationships, both at deep and shallow levels. The
probes used in this technique bind to conserved regions flanked by variable regions that
are distributed randomly throughout the genome (Hamilton et al., 2019). This method
generates a varied and informative set of loci, containing exons, introns, intergenic, and
conserved regions of the genome (Lemmion, Emme ¢ Lemmon, 2012).

Raw AHE sequences were assembled following the methods of Breinholt et al. (2018),
which implements an Iterative Baited Assembly (IBA) approach. This involves using the
original sequencing probes to identify matching raw reads, which are then assembled into
novel probes. The newly assembled probes are subsequently used as a query to match
against the remaining raw reads, and the process is repeated iteratively until confident
assemblies can no longer be obtained. The pipeline also checks for quality and cross
contamination due to barcode leakage and removes paralogs. Resultant assemblies extend
beyond the boundaries of the initial sequencing probes, thereby leading to the production
of two distinct datasets—one comprising sequences solely from the probe region of the
assembly (Probe dataset), and the other comprising sequences from the complete assembly,
encompassing both the probe and outer flanking regions (PF dataset).

Because the IBA approach often resulted in multiple assembled sequences for each locus
per specimen, sequences were aligned using MAFFT v7.245 (Katoh & Standley, 2013) and
a 50% consensus generated using FASconCAT-G v1.02 (Kiick ¢ Longo, 2014) with the ‘-c
-c -¢’ command to result in one sequence per locus per specimen. To minimize the extent
of missing data in the final concatenated dataset, loci that were only obtained from three
or fewer species were excluded from the datasets. Loci were concatenated across all species
into one supermatrix using FASconCAT-G with the ‘-s’ command.

A total of 113 specimens were successfully sequenced with AHE. Four outgroup species
were chosen to provide secondary calibrations for the divergence time analysis and to
provide a root for the tree. All outgroups chosen were genera included in the Hamilton et
al. (2019) phylogeny and all had available raw transcriptomes or genomes. We chose two
outgroup taxa in Saturniidae, Attacus atlas and Therinia lactucina, one from Sphingidae,
Manduca sexta, and one from Bombycidae, Bombyx mori (The International Silkworm
Genome Consortium, 2008; Breinholt & Kawahara, 2013; Kawahara ¢ Breinholt, 2014;
Kanost et al., 2016). The two transcriptomes (Saturniidae) and two genomes (Bombyx and
Manduca) that we used for the outgroups were assembled to the BOM1 AHE probe regions
using the methods described above. This enabled us to combine the transcriptome and
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genome datasets with our newly sequenced data that were also assembled to the BOM1
AHE probe regions.

Alistat v1.6 (Wong et al., 2020) was used to evaluate the completeness of the concatenated
alignment for Probe and PF datasets. We created Probe only and PF datasets because PF
datasets can sometimes yield greater robustness to phylogenetic analyses of AHE data
(e.g., Kawahara et al., 2018; Hamilton et al., 2019; Homziak et al., 2019; St Laurent et al.,
2021). Completeness scores (C-scores) were computed for each taxon (Cr), and those taxa
with a C-score <0.15 were removed to avoid specimens with poor capture quality. We also
removed loci that were captured across < 3 taxa to improve dataset quality.

Phylogenetic analysis

Phylogenetic inference was conducted on concatenated supermatrices using a maximum
likelihood analysis with IQTREE v. 1.5 (Nguyen et al., 2015). We constructed two datasets,
one with just the probe region, and another with both probe and PF regions. Both
datasets were analyzed as nucleotides, and we determined the best substitution model
and partitioning scheme using the command -m MFP+MERGE’ using ModelFinder
(Lanfear et al., 2012) as implemented in IQTREE. The command ‘-B 1000 -bnni’ was used
to perform 1000 ultrafast bootstrap (UFBS) replicates, while optimizing each bootstrap
tree using a hill-climbing nearest neighbor interchange (NNI) search to reduce the risk of
overestimating branch supports. All trees were rooted to Bombyx mori. We refer to high
node support as those with UFBS >95.

Divergence time estimation

We performed divergence time estimation in BEAST v2.6.7 (Bouckaert et al., 2019) using
the topology generated by IQTREE from the PF dataset as the starting tree. This specific
topology was used since it yielded higher bootstrap values than those obtained using the
Probe dataset. However, when running BEAST using the PF dataset for dating, the resulting
95% confidence intervals were disproportionately small, indicating the high likelihood that
the large dataset caused the underlying Bayesian analysis to become easily stuck at a local
minima (Kawahara et al., 2019; Rougerie et al., 2022). Due to this, we ultimately chose to
use the Probe dataset for dating.

Loci were partitioned based on the best partitioning scheme as previously identified
by ModelFinder in IQTREE and their corresponding site models (herein all set to the
HKY substitution model) unlinked. For this analysis we opted to link the clock model (a
relaxed clock with a log normal distribution) across all partitions because analyses running
the dataset with unlinked clock models failed to converge particularly with regard to the
resulting estimated divergence times. We applied a mean clock rate of 0.41 substitutions
per site per 100 million years with “Mean In Real Space” checked based on the mutation
rate that was recently estimated for Bombyx mori by Han ef al. (2023) and set the ‘S’
parameter of our clock model prior to 0.1 so that the log normal distribution would closely
match their reported 95% confidence interval of 0.33 x 10—8-0.49 x 10—8 per site per
generation (we treat a generation as one year).

Among insects, there are disproportionately few Lepidoptera fossils (Labandeira
& Sepkoski, 1993). Therefore, our tree was calibrated using ranges of dates obtained
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Table 1 Major clade confidence intervals. Minimum 5% confidence interval (CI), median, and maxi-
mum 95% CI ages of major clades and outgroup taxa in Millions Years Ago (mya). Node numbers corre-
spond to those in Fig. 1.

Clades Node Minimum—>5% Median Maximum—95%
number
Automeris Clade A 1 0.1327 0.1525 0.1717
Pseudautomeris 2 0.0970 0.1186 0.1427
Leucanella 2 0.0970 0.1186 0.1427
io Clade B 3 0.1469 0.1715 0.1916
Molippa 4 0.1830 0.2102 0.2381
Attacus atlas 5 0.3426 0.3994 0.4558
Therinia lactucina 6 0.4426 0.5007 0.5589
Manduca sexta 7 0.5584 0.6188 0.6803
Bombyx mori 8 0.6026 0.6702 0.7370

from Kawahara et al. (2019). We used four secondary calibration points with normal
distributions to constrain the most recent common ancestors (MRCAs) of Bombycidae +
(Sphingidae + Saturniidae) (the root node), Sphingidae + Saturniidae (node 7), Oxyteninae
+ remaining Saturniidae (node 6), and the MRCA of Saturniinae + Hemileucinae (node
5) (see Table 1). We used the Calibrated Yule model of speciation (Yule, 1924) as the tree
prior, and ran two independent MCMC chains for 40 million generations each, sampling
every 1,000 generations. TRACER v1.6.0 (Rambaut ¢ Drummond, 2013s; Rambaut ¢
Drummond, 2013b) was used to assess stationarity of and convergence between runs. Trees
were then combined across runs with LogCombiner v2.6.3 after discarding a conservative
50% burn-in and a maximum clade credibility tree with median heights was recovered with
TreeAnnotator v2.6.3 (Rambaut ¢ Drummond, 2013s; Rambaut ¢ Drummond, 2013b)
from the posterior sampling of trees. All pipeline steps and phylogenomic analyses were
conducted on the University of Florida HiPerGator high-performance computing cluster
(http:/mwww.hpc.ufl.edu/).

RESULTS AND DISCUSSION

We were able to sample 98 species and subspecies of Automeris, six species of Molippa,
five species of Leucanella, and six species of Pseudautomeris, resulting in a total of 115
sampled specimens. Of the 115, 92 were dry-pinned specimens and 23 were ethanol-stored
specimens. The resulting DNA concentration range was 0.158-133 ng/uL. Samples that
passed the DNA concentration cutoff (>8 ng/iL) were included in further analyses and
sequencing.

In total, 113 newly sequenced samples had sufficient data for sequence assembly. We also
supplemented these sequences with 4 outgroup samples, resulting in a total of 117 taxa that
were included in the beginning data matrix. After removing low quality sequences from
each dataset, the Probe dataset contained 589 loci across 150,646 nucleotide sites, covering
105 taxa and the PF dataset contained 906 loci across 106 taxa. The average length of each
locus, as well as the percentage of missing data, were observed to be 256 nucleotides and
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25% for the Probe dataset, and 2,236 nucleotides and 84% for the PF dataset, respectively.
The high missing data percentage of the PF dataset is due to the nature of the flanking
regions. These regions differ vastly among taxa, since their length depends on the coverage
and quality of raw reads across unconserved areas.

Both probe and PF topologies support the monophyly and general placement of
genera Molippa, Leucanella and Pseudautomeris and the paraphyly of Automeris. All taxa
represented by multiple subspecies were recovered as monophyletic with strong support.
Considering the methodology employed and the higher support values, we favor the
phylogeny derived from the PF dataset (Fig. 1). However, it is important to note that both
phylogenies exhibit nearly identical topologies, differing only in a few relationships at the
tips while maintaining the same backbone relationships.

Recently, Rougerie et al. (2022) reconstructed a phylogeny of Saturniidae, which was
the only modern analysis providing a hypothesis of relationships of Automeris, Leucanella,
Pseudautomeris and Molippa. We find general congruence with the relationships uncovered
by Rougerie et al. (2022), although our study contained more species of Automeris. There
was strong support in our study for a monophyletic Leucanella + Pseudautomeris group,
which splits Automeris into two distinct groups—a larger clade (Automeris Clade A)
branching around 15 million years ago (mya) and a smaller clade, including Automeris io
(io Clade B), branching earlier at approximately 17 mya (see Table 2). Notably, none of
the species within the smaller clade were included in the analysis by Rougerie et al. (2022).
However, the relationships between the species included in both studies were found to
be consistent. We also found Molippa to be monophyletic, emerging as the sister group
(UFBS = 100) to the remaining Hemileucines. This placement suggests that the most recent
common ancestor of this clade (Automeris + Leucanella + Molippa + Pseudautomeris)
dates to approximately 21 mya. This timeframe aligns closely with the findings of Rougerie
et al. (2022), who estimated a divergence of approximately 22 mya. It should be noted that
our analyses specifically targeted four genera within a subfamily characterized by significant
diversity, species complexes and apparent paraphyly. However, to gain a comprehensive
understanding of relationships of these genera within and among the rest of the subfamily,
broader sampling would be beneficial.

Eyespots of many Leucanella and Pseudautomeris are elaborate in their shape and color,
and we hypothesized that these two genera are more closely related to Automeris than
Molippa, as the latter have smaller, drab, potentially vestigial eyespots, or lack eyespots
entirely. Our tree revealed that both Leucanella and Pseudautomeris are nested within
Automeris with strong branch support. We postulate that predation pressure in the
Neotropics drove the diversification and complexity of eyespots in species in this clade.
Like many effective anti-predatory traits, eyespots in this group are likely under positive
selection due to a selective benefit for survival. Diversification and complexity of eyespots
may have been driven by predation pressure, given the observed anti-predatory deimatic
display of eyespots in many Automeris species. Previous research suggests that eyespots
may be adaptive in some geographic regions, and maladaptive in others, which may explain
secondary losses of eyespots in Molippa sp. (Kodandaramaiah, 2011). There may be greater
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selective pressure on eyespots in the Neotropics than eyespots in North American species,

driving the elaborate features and colors in these species (Janzen, 1985).

CONCLUSION

Using Anchored Hybrid Enrichment techniques and analyses, we generated a robust

phylogeny encompassing 106 taxa across Automeris and three closely related genera—

Leucanella, Pseudautomeris and Molippa. This analysis reveals that Leucanella and
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Table 2 Normal distribution dating parameters. These values are derived from the most recent com-
mon ancestor node and between each of the species listed and Hemileucinae subfamily from Kawahara et
al. (2019) and are listed in terms of 100 million years. Node numbers correspond to those in Fig. 1.

Node Species 5% Mean Standard 95%
quantile deviation quantile
5 Attacus atlas 0.3520 0.4253 0.0444 0.4980
6 Therinia lactucina 0.4320 0.5114 0.0480 0.5900
7 Manduca sexta 0.5840 0.6614 0.0473 0.7390
8 Bombyx mori 0.6260 0.7053 0.0483 0.7850

Pseudautomeris are nested within Automeris with robust branch support, supporting
the paraphyly of Automeris and suggesting close evolutionary relationships between these
genera. Though this study helps clarify part of the complex Hemileucinae subfamily, a more
complete sampling across species would provide greater understanding of the evolutionary
patterns and processes that led to the larger diversification and evolutionary drivers of
the subfamily. We hope this phylogeny will serve as a foundational framework for future
investigations into the evolutionary dynamics and ecological adaptations of Automeris
and its closely related genera. Future studies should focus on investigating eyespot trait
morphology, to further clarify the diversification across species within the genus and sister
groups.
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The final phylogeny is available on Open Tree of Life: https:/tree.opentreeoflife.org/
curatoristudy~iew/ot_2240.
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