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Abstract

1. A fundamental pattern in ecology is that smaller organisms are more abundant
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than larger organisms. This pattern is known as the individual size distribu-

tion (ISD), which is the frequency distribution of all individual body sizes in an
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ecosystem.
2. The ISD is described by a power law and a major goal of size spectra analyses is

“Department of Biological Sciences, to estimate the exponent of the power law, 4. However, while numerous methods
Advanced Environmental Research
Institute, University of North Texas,

Denton, Texas, USA

have been developed to do this, they have focused almost exclusively on estimat-
ing A from single samples.

3. Here, we develop an extension of the truncated Pareto distribution within the
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probabilistic modelling language Stan. We use it to estimate multiple 1s simulta-
neously in a hierarchical modelling approach.
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1 | INTRODUCTION

part because body size distributions reflect fundamental measures of

ecosystem structure and function, such as trophic transfer efficiency

In any ecosystem, large individuals are typically more rare than small
individuals. This fundamental feature of ecosystems leads to a re-
markably common pattern in which relative abundance declines with
individual body size, generating the individual size distribution (ISD),
also called the community size spectrum (Platt & Denman, 1977;
Sprules et al., 1983; White et al., 2008). Understanding how body
sizes are distributed has been a focus in ecology for over half a century
(Kerr, 1974; Peters & Wassenberg, 1983; Sheldon & Parsons, 1967), in

(Kerr & Dickie, 2001; Perkins et al., 2019; White et al., 2007). Individual
size distributions are also predicted as a result of physiological limits
associated with body size, thereby emerging from predictions of met-
abolic theory and energetic equivalence (Brown et al., 2004).

More formally, the ISD can be modelled as a probability density

function with a single free parameter A:

OO = Cx', Xppin <X < Xy 1)
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where x is the body size (e.g. mass or volume) of an individual, x;, is the
smallest possible individual and x,., is the largest possible individual. C

is a constant equal to:

A+1
)(A-¢-1_X/l+1’/1;E -1
C= max min
1 i=-1 @)

IOngax - IOgxmin

This model is also known as the bounded power law or trun-
cated Pareto distribution. The term ‘bounded’ or ‘truncated’ refers
to the minimum x,;, and maximum x,,, possible body sizes (Edwards
et al., 2017; White et al., 2008).

A compelling feature of size spectra is that A may vary little
across ecosystems as a result of physiological constraints that
lead to size-abundance patterns more broadly. Metabolic scaling
theory predicts A+ 1 = :Zzﬁ — 3/4, where ais trophic transfer ef-
ficiency in the food web and g is the mean predator-prey mass
ratio (Reuman et al., 2008). The value of — 3/4 is the scaling co-
efficient of metabolic rate and mass (0.75) (Brown et al., 2004),
and as a result, values of 1 have been used to estimate metabolic
scaling across ecosystems (Perkins et al., 2018, 2019; Reuman
et al., 2008). Values of ~-2 represent a reasonable first guess of
expected ISD exponents, with values of ranging from -1.2 to -2
appearing in the literature (Andersen & Beyer, 2006; Blanchard
et al., 2009; Pomeranz et al., 2022).

Whether 1 represents a fixed or variable value is debated, but
it varies among samples and ecosystems (Blanchard et al., 2009;
Perkins et al., 2018; Pomeranz et al., 2022). It is often described by
its connection with the steepness of log-log plots of size spectra,
with more negative values (i.e. ‘steeper’) indicating lower abundance
of large relative to small individuals, and vice versa. These patterns
of size frequency are an emergent property of demographic pro-
cesses (e.g. age-dependent mortality), ecological interactions (e.g.
size-structured predation, trophic transfer efficiency) and physio-
logical constraints (e.g. size-dependent metabolic rates; Andersen &
Beyer, 2006; Muller-Landau et al., 2006; White et al., 2008). As are-
sult, variation in 4 across ecosystems or across time can indicate fun-
damental shifts in community structure or ecosystem functioning.
For example, overfishing in marine communities has been detected
using the size spectrum in which 1 was steeper than expected, indi-
cating fewer large fish than expected (Jennings & Blanchard, 2004).
Shifts in 1 have also been used to document responses to acid mine
drainage in streams (Pomeranz et al., 2019), land use (Martinez
et al., 2016), resource subsidies (Perkins et al., 2018) and tempera-
ture (O'Gorman et al., 2017).

Given the ecological information it conveys, the data required to
estimate size spectra—a vector of individual body sizes—are decep-
tively simple. As long as the body sizes are collected systematically
and without bias towards certain sizes, there is no need to know
any more ecological information about the data points (e.g. trophic

position, age, abundance). However, the statistical models used
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to estimate A are diverse. Edwards et al. (2017) documented eight
methods. Six involved binning, in which the body sizes are grouped
into size bins (e.g. 2-50mg, 50-150mg, etc.) and then counted, gen-
erating values for abundance within each size bin. Binning and log
transformation allows 1 to be estimated using simple linear regres-
sion. Unfortunately, the binning process also removes most of the
variation in the data, collapsing information from 1000s of individ-
uals into just six or so bins. Doing so can lead to inaccurate values
of 1, sometimes drastically so (Goldstein et al., 2004; Pomeranz
et al., 2024; White et al., 2008).

An improved alternative to binning and linear regression is to fit
the body size data to a power law probability distribution (Edwards
et al.,, 2017, 2020; White et al., 2008). This method uses all raw
data observations directly to estimate A using the maximum likeli-
hood estimation method (Edwards et al., 2017). In addition to es-
timating size spectra of single samples, ecologists have used this
method to examine how A varies across environmental gradients
(Perkins et al., 2019; Pomeranz et al., 2022). However, these analy-
ses typically proceed in two steps. First, 1 is estimated individually
from each collection (e.g. each site or year, etc.). Second, the es-
timates are used as response variables in a linear model to exam-
ine how they relate to corresponding predictor variables (Edwards
et al., 2020). We refer to this as the ‘two-step’ approach. A down-
side to the two-step approach is that it treats body sizes (and
subsequent 1s) as independent samples, even if they come from
the same site or time. It also removes information on sample size
(number of individuals) used to derive 1. As a result, the approach
not only separates the data generation model from the predictor
variables but also it is unable to take advantage of partial pooling, in
which group-level estimates exhibit shrinkage towards each other
(Gelman et al., 2012).

Here, we develop a Bayesian modelling framework that uses
the truncated Pareto distribution to estimate 4 in response to both
fixed and random predictor variables. The primary benefit of this ap-
proach is that it combines the data generation process and the linear
(or non-linear) model into a single generalized linear (or non-linear)
mixed model. The model extends the maximum likelihood approach
developed by Edwards et al. (2020) to allow for a flexible hierarchical
structure, including partial pooling, within the modelling language
Stan (Stan Development Team, 2022).

2 | METHODS
2.1 | Translating to Stan

Stan is a probabilistic modelling language that estimates Bayesian
posteriors using Hamiltonian Monte Carlo (Stan Development
Team, 2022). It does not contain the truncated Pareto described in
Equation 2, so we added it as a user-defined log probability den-

sity function (Ipdf) in rstan (Annis et al., 2017; Stan Development
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Team, 2022) (Supporting Information S1). The Ipdf was slightly modi-
fied as described in S.1.4 of Edwards et al. (2020) to contain a term
for the count of each body size. In data sets with individual body
sizes, counts will be a simple constant with a value of 1. However,
if a sample of body sizes is x={1.2, 1.2, 1.5, 2.8}, then these can
be re-formatted to include a vector for all unique x values {1.2, 1.5,
2.8} and a vector for their counts={2,1,1}, where counts can also be
non-integers. In large data sets (e.g. >500 individuals or so), adding
a vector for counts can greatly improve the model fitting time (war-
mup +sampling, Supporting Information S2).

Additionally, adding counts (whether integer or non-integer) is
useful for combining body size data sets that are collected with differ-
ent methods (Supporting Information S2). For example, in freshwa-
ter streams, macroinvertebrates are often collected using samplers
that cover 0.09m2. Fish in the same streams are often collected
over a much larger area, such as electrofishing a 5-m wide stream
for 100m in length, yielding a sample area of 5x100=500m>. An
individual macroinvertebrate of, say, 0.01 mg and an individual fish
of, say, 1000mg would each get a count of 1 in their respective data
sets. But that would not reflect their density in the food web. On
am? basis, the macroinvertebrate has a density of 1/0.09 = 11m?2,
but the fish's count (or density) should be ﬁ = 0.002m2. The choice
of units for the counts is not trivial. For example, counts per m? will
have different confidence intervals than counts per mm? or per km?
for 1 (see S.1.5 in Edwards et al., 2020). We explore this in more
depth in Supporting Information S2.

When body sizes are collected from the same sampling method
and are not tallied or binned, all counts equal 1. If data are binned,
an alternative approach, such as the MLEbin method, is appropriate
(Edwards et al., 2020).

Converting Equation 2 into Stan allows for Bayesian estimation
of s using generalized (non)-linear mixed models. For example, an

intercept-only model would look like this:

X; ~ F(X; 4, Xeyins Xmaneo COUNLS;) (3)
A=a (4)
a ~ Normal(y, o) (5)

where x; is the ith individual body size, f(X; 4, Xpin: Xmax COUNts) is the

min? Xmax:
truncated Pareto distribution, 4 is the size spectrum parameter (also
referred to as the exponent), X, and X, are as described above and
counts; are the tally or density of the ith body size x in a data set. The
parameter « is the intercept with a prior probability distribution. In this
case, we specified a normal prior since 4 is continuous and can be pos-
itive or negative.

For cases where the goal is to estimate changes in 4 across space
or time, the simple model above can be expanded to include predic-

tors and/or varying intercepts and slopes:

Xij ~ f(x; Aj,xmin‘,,xmaxj, counts;j) (6)

h=a+pz+q (7)
a ~ Normal(u,,0,) (8)
B ~ Normal(us,0,) 9
a; ~ Normal (0, 5}) (10)
o~ Exponential(¢) (11)

where x; is the ith body size from group j. The groups might represent
j sites, j experimental units or j times. The x; body sizes are distributed
as a truncated Pareto with an unknown 4, corresponding to the size
spectrum parameter for each j group, along with group specific Xinin,
and Xiax; The linear model for 4; contains an intercept «, a slope f, a
continuous predictor z;and a varying intercept for each group ;. In this
example, prior distributions are Normal for a, § and a;. Parameters « and
B require priors for their respective means u, and u; and standard devi-
ations o, and 5. The varying intercept a; has a mean=0, and a standard
deviation ¢; with its own Exponential hyperprior with parameter ¢.
The literature on prior choice is broad and active (Banner et al., 2020;
Wesner & Pomeranz, 2021), particularly for priors on hyperparameters
like o; (Aguilar & Burkner, 2023; Gelman, 2006). We specify prior dis-
tributions here for clarity, but users should choose prior distributions
that reflect prior knowledge. An example of checking priors with the
prior predictive distribution and prior sensitivity is in the Supporting

Information S4.

2.2 | Testing the models

2.2.1 | Parameter recovery from simulated data

To ensure the models could recover known parameter values, we set
j=1,2,...,7 equally spaced A values from -2.4 to -1.2. We then simu-

lated K = 1000 data sets for each of the seven s from a bounded
power law using the inverse cumulative density function:

1
+1 A1)\ Tor

X = (“kar(rg: )+(1_“ijk)xr(r:]n+ ))(’ D, a1

ijk =

x4 xi-u A=-1

max”'min ’

(12)

where x; is the ith individual body size from the jth value of 4; for the
kth model run (including new data simulation for each run). The vari-
able uy, is a unique draw from a Uniform(0, 1) distribution, and all other
variables are the same as defined above. We set x;, = 1, X, = 1000
and simulated 300 body sizes (i=1,2,3, ..., 300) for each j and k. To gen-
erate counts, we rounded each simulated value to the nearest 0.001
and tallied them. This generated only a small number of counts >1 (10
out of 300 body sizes). This approach was chosen to demonstrate the
use of counts. For a more detailed discussion of counts, see Supporting

Information S2.
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Individual lambdas

After simulating the data, we estimated the 4 values in three ways.
First, we fit separate intercept-only models (Equation 3) to each sim-
ulated data set. This represents the common procedure of estimat-
ing As independently before using them in later analyses (e.g. Arranz
et al. (2019); Pomeranz et al. (2022)). Second, we fit a single fixed
effects model of the form:

Xijk ~ f("jk? Ajter X » Xma Countsijk) (13)

A =@+ Przyc+ -+ BeZgijk (14)

where «a is the intercept representing the reference value of 4 (in this
case itis -2.4), B, is the coefficient for them = 1,2, ... 6 contrasts be-
tween the reference Aand A, z,_; are the covariates representing the
six groups containing A ={-2.2,-2,-1.8,-1.6,-14,-1.2}. All other
parameters and data are as described above. Third, we fit a varying
intercepts model of the form:

Xijk ~ f(xk; Ajier Xy » Xmma COU”tSiJk) (15)

ﬂjk =a+ ay (16)

where a; are j deviations from the grand intercept « for each k simula-
tion, with priors and hyperpriors as described in Equations 10 and 11.
The procedures above resulted in 9000 total model runs (7000
for the separate 1 estimates plus 1000 each for the fixed and vary-
ing intercept models). Each model run includes newly simulated
data from Equation 12. To assess how well the models captured the
known 1s, we estimated coverage and bias for each A. For coverage,
we generated 95% credible intervals (Crl) across each of the model
runs and calculated the proportion of those Crls that contained the
known 4 value. For bias, we calculated the difference between the

posterior median of 4 and the known 4 across each model run.

Sample size and size range

We examined sensitivity to sample size (humber of individual body
sizes) across two A values (-2, -1.6). For each A, we simulated 30,
100, 300 or 1000 individuals. Each data set was fit using separate
intercept-only models. We then repeated this process (data simula-
tion and model fitting) K=1000 times to estimate bias and coverage
as described above.

In addition to sample size, we examined sensitivity to the size
range, which can affect interpretations of 1 (Sprules & Barth, 2016).
To do this, we again set 1 to -2 or -1.6 and then simulated n=300
individuals, varying X, and x,,, so that they contained 1, 2, 3, 4 or
5 orders of magnitude in range (i.e. Xy, = 1 & X2 = 10/ 100 / 1000,
etc.). For each size range, we repeated the data simulation and model
fitting 1000 times to estimate bias and coverage. We also estimated
precison as the range between the lowest and highest 1 estimates

across each model run.
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Linear variation in A across samples
We simulated a linear regression model with a single continuous pre-

dictor z such that

1= -12-005z (17)

This contains a known intercept a« = -1.2 and a slope g = -0.05.
The predictor z ranged from -1 to 1, with 10 equally spaced inter-
vals. Values for « and  were chosen to keep 4 within typical ranges
of -1 to -2 across the predictors. After obtaining the 10 4 values (one
for each value of z), we simulated 300 individuals from each 1 using
Equation 12 and setting X, = 1 and x,,, = 1000. The regression
was fit using Equations 6-10, but without the varying intercept «;.
We repeated this procedure (data simulation and model fitting) 1000
times (see Section 2.3) and checked for parameter recovery, bias and

coverage as described above.

Benefit of partial pooling and priors

Using hierarchical Bayesian models has the benefit of improv-
ing 1 and regression parameter estimates with partial pooling
and informative priors. These can be especially important when
data from different times or places have different sample sizes.
To demonstrate this, we modified the linear regression described
above to include 12 values of z, one of which was an ‘outlier’ in
which A = -1.1when z = 2.5. According to the regression equation,
A should actually equal -2.5 when z=2.5. After estimating the
s, we again simulated n=300 individuals from each lambda with
Xmin = 1 and X, = 1000. However, for the outlier, we limited the
number of individuals to n=50. This mimics a situation in which an
outlier is potentially due to a low sample size, a scenario for which
partial pooling can be particularly effective (McElreath, 2020, p.
413). The purpose of this exercise is not to reflect any particular
sampling scheme, but to demonstrate the importance of partial
pooling and priors.

We used four techniques to estimate the relationship between z
and /. First, we used the two-step process to (1) individually estimate
each lambda and (2) fit a Gaussian Bayesian linear regression be-
tween the between z and the separately estimated /s. This is akin to
a no-pooling regression, in which no information about sample size
or uncertainty in 1 is accounted for in the 1 estimates. Second, we fit
the same regression but added measurement error for A. This allows
for weighting the response by the standard deviation of As, such that
the linear model has the form:

A ~ Normal(Ayer5d;) (18)

Atrue,i =a+ ﬁZ (19)

where each 4; has mean Ay.e; and standard deviation sd; and Ay is

modelled as a linear function of z with an intercept a and slope §.
Third, we fit a linear mixed model with varying intercepts as de-

scribed above, but with weak priors (@ ~ N( - 1.5,1), g ~ N(0,0.5),

oj~ExponentiaI(1)). This model demonstrates partial pooling, in
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which the individual lambda estimates exhibit shrinkage towards the
mean, particularly for the sample with 50 individuals. Additionally,
the regression parameters (a, ) should be less influenced by
the outlier compared to the first model. Finally, we fit a model
with both varying intercepts and strong priors (« ~ N(— 1.5,0.1),
B ~ N(—-1,0.02), o; ~ Exponential(1)).

2.3 | Modelfitting

Because the truncated Pareto pdf as described here is not
available in rstan, we built an R package, isdbayes (Wesner
& Pomeranz, 2023), to integrate it into rstan using brms in R
(Burkner, 2018; R Core Team, 2020). The main benefit of brms
is that it fits Bayesian models in rstan using common R mod-
elling syntax. For example, this linear regression in R, 1m(y
~ x, data=data) becomes Bayesian using brm(y ~ x,
data=data, ..), where brm will translate the model to rstan
for MCMC sampling. The dots ‘..." indicate additional model speci-
fications for the likelihood, priors, iterations, chains, etc. A short
tutorial on using isdbayes is available at https://github.com/
jswesner/isdbayes.

We specified each of the above models in brms, with the trun-
cated Pareto added from the isdbayes package. Posteriors were
explored in rstan (Stan Development Team, 2022) using four
chains each with 2000 iterations for each model run. Two excep-
tions were the fixed and varying intercept models in Figure 1. For
those, we specified two chains each with 2000 iterations. These
values are lower than the default four chains with 2000 iterations
rstan and brms, but were chosen for computational efficiency.
In a separate experiment (Supporting Information S3), we re-ran a
subset of those models with four chains and 2000 iterations and
found no differences in the outcome. All models converged with
Rhats <1.01. Assessments of prior influence and model checking
are demonstrated in Supporting Information S4. In particular, for
model checking, we use simulations from the posterior predictive
distributions. These simulations can check how well the model re-
sembles the raw data. Strong deviations from raw data may indi-
cate poor model specification or may indicate deviation from the

assumption of the power law.

3 | RESULTS
3.1 | Individual lambdas

The three methods (separate models, fixed effects and varying inter-
cepts) recaptured the true 1 values (Figure 1) with no apparent evi-
dence of bias. For example, mean bias ranged from -0.01 to 0.008,
but all standard deviations included zero (Table 1). Similarly, cover-
age ranged from 0.93 to 0.96 with a grand mean of 0.95, indicating
similarity to the nominal coverage of 0.95 (Table 1).

3.2 | Sample size and size range

Coverage ranged from 0.93 to 0.96 across sample sizes (Figure 2a),
indicating good statistical coverage even at low sample sizes.
However, precision increased with sample size. At n=1000 and
= -1.6, the range of mean 1 estimates (largest minus smallest 1)
was 0.13. By comparison, it was 0.9 at n=30 (Figure 2a). In addition,
at n=30, there was a slight negative bias of 0.03 units compared to
the true 4 (though the standard deviations all covered the true ).
This bias disappeared when n>=100 individuals (Figure 2).
Coverage was also consistent across size ranges, achieving nom-
inal coverage even at size ranges of 1 order of magnitude (Figure 2b).
There was also no indication of bias, with mean 1 estimates ranging
from -0.002 to -0.007 units away from the true 1 and standard de-
viations including 0. However, precision was lower when body sizes
ranged 1 order of magnitude (range of estimates=0.7 and 0.6 units
for A= -2 and -1.6, respectively). Precision declined to ~0.4 and
~0.3 at body size ranges of two or more orders of magnitude and

remained relatively stable (Figure 2b).

3.3 | Regression

Coverage for the intercept (@) and slope () parameters was 95%
(Table 2, Figure 3). Bias was small for both parameters, averaging

-0.0003 for a and -3e-06 for g, indicating good parameter recovery.

3.4 | Benefit of partial pooling and priors

Without partial pooling or informative priors, the two-step method
was heavily influenced by the outlier, yielding a slope of -0.03 (95%
Crl: -0.1 to 0.04; Figure 4a). While the credible interval contains the
true slope (-0.1), there is high uncertainty in both the slope value
and its sign. For example, there was only a 0.77 probability of a nega-
tive slope (and a 0.23 probability of a positive slope). Incorporating
measurement error for A made little difference, with nearly identical
values of the regression parameters (Figure 4b).

Fitting the same data with a single truncated Pareto linear mixed
effects model reduced the influence of the outlier, yielding a slope
of -0.06 (-0.1 to 0), 50% closer to the true slope of -0.1 than the
two-step model (Figure 4c). In addition, this model more reliably
captured the correct sign, with a 0.96 probability of a negative slope.
Adding strong priors on the slope and intercept parameters further
improved the estimate (Figure 4d), with a 0.99 probability of a neg-
ative slope.

In addition to improving parameter estimates, the 1 estimates
themselves are improved in the partially pooled models (Figure 4c,d).
For example, in the two-step method, 4 in the outlier is estimated
-1.1 (Figure 4a), but it is reduced to ~-1.34 with partial pooling
(Figure 4c,d). Partial pooling has a minimal effect on the other s due

to their larger underlying sample size.
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FIGURE 1 Modelled 95% credible intervals (Crl; K=1000) of seven is using (a) separate intercept-only models for each lambda, (b) a
fixed linear predictor with the 1 value as a group and (c) varying intercepts. Vertical black lines show the true 1 with corresponding values to
the right of each row. Intervals either include the true 4 (yellow) or not (black). For plotting, model runs are arranged from lowest to highest

minimum value of each interval.

TABLE 1 Parameter recovery using three modelling approaches with the same data. First, separate models individually recapture known
lambda values. Second, lambdas are estimated using a single fixed effects model. Third, lambdas are estimated hierarchically using a single
varying intercept models. Each model and data simulation procedure is repeated 1000 times. Coverage is estimated for 95% credible
intervals. Bias represents the mean and standard deviation of bias across the 1000 replicates.

True lambda Metric Separate models
-2.4 Coverage 0.95

-2.2 Coverage 0.93

-2.0 Coverage 0.95

-1.8 Coverage 0.95

-1.6 Coverage 0.94

-1.4 Coverage 0.95

-1.2 Coverage 0.94

2.4 Bias -0.006 (0.08)
-2.2 Bias -0.011 (0.07)
-2.0 Bias -0.006 (0.06)
-1.8 Bias -0.004 (0.05)
-1.6 Bias -0.004 (0.04)
-1.4 Bias -0.003 (0.04)
-1.2 Bias -0.001 (0.03)

4 | DISCUSSION

The most important result of this work is the ability to analyse in-
dividual size distributions (ISDs) using fixed and random predictors
in a hierarchical model. Our approach allows ecologists to test hy-
potheses about size spectra while avoiding the pitfalls of a two-step
process in which 4 is estimated individually for each sample and the
results are then used as response variables in linear or non-linear
models. The generalized mixed model with a bounded truncated
Pareto merges these steps, linking the data generation process (e.g.
individual body sizes) with the model predictors. This permits the
use of prior probabilities and hierarchical structure on regressions of
ISDs in a single analytical framework.

The ability to incorporate prior information using Bayesian up-
dating has two practical advantages. First, adding informative prior
distributions can improve model fit by limiting the MCMC sampler to
reasonable sampling space. In other words, it would not be sensible
to estimate the probability that 4 is -1234 or-9. Without informa-
tive priors, those values (and more extreme values) are considered
equally likely and hence waste much of the algorithm's sampling ef-
fort on unlikely values (Wesner & Pomeranz, 2021).

Second, and most importantly, ecologists have much prior in-

formation on the values that 4 can take. For example, global analysis

Fixed predictor Varying intercepts

0.94 0.95

0.96 0.96

0.95 0.95

0.94 0.95

0.95 0.95

0.95 0.94

0.95 0.95

0.001 (0.05) 0.01 (0.08)
-0.002 (0.04) 0.004 (0.07)
0(0.03) 0(0.06)
-0.001 (0.03) -0.004 (0.05)
-0.002 (0.02) -0.003 (0.04)
0(0.02) -0.005 (0.04)
0(0.02) -0.004 (0.03)

of phytoplankton reveals values of -1.75, consistent with predic-
tions based on sublinear scaling of metabolic rate with mass of -3/4
(Perkins et al., 2019). Alternatively, Sheldon's conjecture suggests
that 1 is -2.05 (Andersen & Beyer, 2006), a value reflecting iso-
metric scaling of metabolic rate and mass, with support in pelagic
marine food webs (Andersen & Beyer, 2006). However, benthic
marine systems typically have shallower exponents (e.g. ~ -1.4;
Blanchard et al. (2009)), similar to those in some freshwater stream
ecosystems (~ -1.25, Pomeranz et al. (2022)). While the causes
of these deviations from theoretical predictions are debated, it is
clear that values of 1 are restricted to a relatively narrow range
between about -2.05 and -1.2. But this restriction is not known to
the truncated Pareto, which has no natural lower or upper bounds
on 4 (White et al., 2008). As a result, a prior that places most of its
probability mass on these values (e.g. Normal( — 1.75,0.2)) seems
appropriate. Such a continuous prior does not prevent findings of
larger or smaller 4, but instead places properly weighted scepticism
on such values.

An important assumption when setting priors is that we have a
good understanding of the values that 1 can reasonably take. For
most of the examples here, our priors are weakly informative in the
sense that they rule out clearly unreasonable values (e.g. A = - 25,

etc.), but have weak effects on values within reasonable ranges (e.g.
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FIGURE 2 (a) Changes in parameter

estimation and coverage (numbers next

to densities) as a function of sample size.

Sample size is the number of individual

body sizes used to estimate 4. Estimates of

A were repeated K=1000 times for each ~1.54
sample size and known 1 combination. (b) H
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(a) Sample size

The effect of size range on 4 estimates.
Modelled estimates (K=1000) of two 1s
using separate intercept-only models with

Xmin @nd x, . ranging one to five orders of

20 0.94

0.94 0.93

magnitude. Horizontal black lines show
the true As (-1.6 or -2). Dots in (a and b)
are the posterior median 1 estimates. 95%
credible intervals of those estimates (not
shown for clarity) either include the true 1

(yellow) or not (black). 7251

—3.01

30

100 300 1000

Sample size

(b) Size range

3.16 3.17

3.18 P 317

_] 5 .
313
0 3.15
i
_25 .
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3.17 } 3.17 ’ 3.17 } 3.17 P

TABLE 2 Bias and 95% coverage probabilities for the intercept
and slope parametres of a linear regression. Values are estimated
across 1000 model runs, each of which includes simulation of body
sizes and a model fit using the i sdbayes package.

Parameter Bias (mean, sd) Coverage
Intercept 0(0.01) 0.96
Slope 0(0.01) 0.95

2 3 4 5
Range of body sizes
(orders of magnitude)

A~-3 to 0). Most published values of 1 fall into this range regard-
less of the method used by those studies to estimate 1 (Edwards
et al., 2017; White et al., 2007). However, if more informative priors
are required, such as our example in Figure 4d, then caution should
be used when comparing prior expectations to previously estimated
As. For example, in an analysis of marine fish trawl data, Edwards
et al. (2020) found that binning methods produced 1 estimates of
~=2.2 across 30years of data. Yet reanalysis of the same data using
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FIGURE 3 Modelled 95% credible
intervals of (a) the intercept (a) and (b) the
slope (p) of a generalized linear regression
estimating the change in 1 across a
predictor. Vertical black lines show the
true A. Intervals either include the true 1
(yellow) or not (black). For plotting, model
runs are arranged from lowest to highest
minimum value of each interval.
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0 01
—1.26 —1.23 —1.20 -1.17 —0.12 —0.08 —0.04 0.00
Parameter values

the truncated Pareto found 1 estimates closer to -1.6. If we were
to use these values to guide prior selection, then the choice of rea-
sonable prior would clearly depend on the method used to estimate
A. The simplest approach would be to assume a fixed correction
between the binning methods and the truncated Pareto when set-
ting priors based on binning methods. Unfortunately, such a fixed
correction does not appear to exist (Pomeranz et al., 2024), making
it difficult or impossible to use As from binning methods to guide
informative prior selection.

Similar to priors, partial pooling from varying intercepts pro-
vides additional benefits, allowing for the incorporation of hierar-
chical structure and pulling 1 estimates towards the global mean
(Gelman, 2005; Qian et al., 2010). In the example shown here, pool-
ing was able to downweight the influence of an outlier that had a
relatively small sample size (n=50 individuals compared to n=300).
By contrast, in the two step-method, the same outlier had a large
influence on the regression outcome, because the model had no
information on the number of individuals used to generate each 4.
Another benefit of pooling (both from varying effects and scepti-
cal priors) is in prediction (Gelman, 2005; Hobbs & Hooten, 2015).
This becomes especially important when models are used to fore-
cast future ecosystem conditions. Forecasts are becoming more
common in ecology (Dietze et al., 2018) and are likely to be eas-
ier to test with modern long-term data sets like NEON (National
Ecological Observatory Network) in which body size samples will
be collected at the continental scale over at least the next 20years
(Kuhlman et al., 2016). In addition, because the effects of priors and
pooling increase with smaller sample sizes, varying intercepts are
likely to be particularly helpful for small samples. In other words,
priors and partial pooling contain built-in scepticism of extreme
values, ensuring the maxim that ‘extraordinary claims require ex-
traordinary evidence'.

One major drawback to the Bayesian modelling framework here
is time. Bayesian models of even minimal complexity must be esti-
mated with Markov Chain Monte Carlo techniques. In this study,
we used the No U-Turn sampling (NUTS) algorithm (Hoffman &
Gelman, 2014) via rstan (Stan Development Team, 2022). Stan can
be substantially faster than other commonly used programs such as
JAGS and WinBUGS, which rely on Gibbs sampling. For example,

Stan is 10-1000 times more efficient than JAGS or WinBUGS, with
the differences becoming greater as model complexity increases
(Monnahan et al., 2017). In the current study, intercept-only models
for individual samples with ~300 to 1500 individuals could be fit
quickly (<2s total run time (warm-up +sampling on a Lenovo T490
with 16GB RAM)). However, the hierarchical regression models
took >1h to run. These times include the fact that our models in-
cluded several modifications to improve efficiency, such as weakly
informative priors, standardized predictors and non-centred pa-
rameterization, each of which are known to improve convergence
and reduce sampling time (McElreath, 2020). But if Bayesian infer-
ence is desired, these run times may be worth the wait. In addition,
they are certain to become faster with the refinement of existing
algorithms and the introduction of newer ones like Microcanonical
HMC (Robnik et al., 2022).

Body size distributions in ecosystems have been studied for
decades, yet comprehensive analytical approaches to testing hy-
potheses about them are lacking. We present a single analytical
approach that takes advantage of the underlying data structures
of individual body sizes (truncated Pareto distributions) while
placing them in a generalized (non)-linear hierarchical modelling
framework. In addition to fitting regression models, the results
suggest that sample sizes >100 individuals, but optimally >1000,
are sufficient to accurately estimate 1. We also found good perfor-
mance at size ranges from two to five orders of magnitude, though
it is important to note that this result is based on simulated data
max 1S known (i.e. we ‘know’ it is 10, 100 or 1000 be-

cause we are using simulated data). This is more difficult in a field

in which x

setting. For example, in a community with A= -1.5, x.;, = 1g and
Xmax = 1000g, there is only a 0.00016 probability of sampling an
individual >999 g. In other words, if the choice of x,,,, is based only
on the sample data, it is likely to underestimate the true x.,,, in the

community. One approach is to set x.,, from the largest individ-

max
ual caught under repeated sampling (Gjoni et al., 2024). In a field
sample that ranges, say, three orders of magnitude in body size,
researchers should ensure that this range reflects the likely range
of true sizes in the data set. We hope that ecologists will adopt and
improve on the models here to critically examine hypotheses of

size spectra or other power law distributed data. Moreover, while

A ‘S FTOT *X01T170T

:sdny woiy p

:sdiy) SUONIPUOY) Pue SWIA L, Ay} 23S “[$207/80/91] U0 ATeIqrT dutjuQ A1 “BIONEQ YINOS JO ANSIOAUN AQ ZTERTXOTZ-1H0T/1 T11°01/10p/w0d K[ A

KoM A

ASUOIT SUOWILO) 9ANEAI) d[qedrjdde oY) £q PAUIA0S a1k SI[O1IR V() 2SN JO SI[NI 10§ AIRIqIT AUI[UQ) AI[TAY UO (



WESNERET AL.

865

(a) MLE — two steps
Simple linear regression

—1.0

Slope: -0.03 (0.1 to 0.05)

—1.8

(c) Bayesian — one step
Hierarchical + weak priors

—1.0

_12 -

_1.4_

—1.6

Slope: -0.04 (-0.13 to 0.04)

—1.8
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(b) Two steps
Regression with measurement error

Slope: -0.03 (0.1 to 0.04)

(d) Bayesian — one step
Hierarchical + strong priors

Slope: -0.09 (-0.13 to -0.05)

Predictor

FIGURE 4 Regression results from (a) a two-step process where s are first estimated with separate models and then used as the
response variable in a Gaussian regression. (b) Same as (a), but with measurement error (posterior standard deviation of 1) included on the
response variable. (c) A generalized linear mixed model with a truncated Pareto likelihood and weak priors. (d) A generalized linear mixed
model with a truncated Pareto likelihood and strong priors. The solid black line shows the true regression slope. Dark shading shows the
50% Crl and light shading shows the 95% Crl. All models have the same underlying individual body size data. Points and error bars show the
median and 95% Crl. For (a), only the median is shown, since the model does not include measurement error.

the examples here are for ecological size spectra, the statistical
approach is not limited to ecological data, but can be applied to
analysis of power law distributions that are common in a wide vari-
ety of disciplines (Aban et al., 2006; Clauset et al., 2009).

AUTHOR CONTRIBUTIONS
Jeff S. Wesner conceived the ideas and led the writing of the man-
uscript; Justin P. F. Pomeranz, James R. Junker and Vosjava Gjoni

contributed critically to the drafts and gave final approval for
publication.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science
Foundation under Grant Nos. 2106067 to JSW and 2106068 to
JRJ. We thank Dr. Yuhlong Lio for statistical and mathematical
advice.

A ‘S FTOT *X01T170T

y/:5dny woxy papeoft

:sdiy) SUONIPUOY) Pue SWIA L, Ay} 23S “[$207/80/91] U0 ATeIqrT dutjuQ A1 “BIONEQ YINOS JO ANSIOAUN AQ ZTERTXOTZ-1H0T/1 T11°01/10p/w0d K[ A

KoM A

ASUIOIT SuOWIO)) 2ANeI1) d[qeorjdde oy £q PauIaA0S a1k SA[ONIE Y asn JO SN 10§ AIeIqIT dUIUQ AJ[IAN UO



WESNER ET AL.

Methods in Ecology and Evoluti Egg.';‘lﬂjr!v.m

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

PEER REVIEW

The peer review history for this article is available at https://www.
webofscience.com/api/gateway/wos/peer-review/10.1111/2041-
210X.14312.

DATA AVAILABILITY STATEMENT
All data and code are available https://zenodo.org/records/
10699185 (Wesner, 2024).

ORCID
Jeff S. Wesner
Justin P. F. Pomeranz

https://orcid.org/0000-0001-6058-7972
https://orcid.org/0000-0002-3882-7666

James R. Junker "= https://orcid.org/0000-0001-9713-2330

REFERENCES

Aban, |. B., Meerschaert, M. M., & Panorska, A. K. (2006). Parameter
estimation for the truncated pareto distribution. Journal of the
American Statistical Association, 101, 270-277.

Aguilar, J. E., & Birkner, P.-C. (2023). Intuitive joint priors for bayesian
linear multilevel models: The R2D2M2 prior. Electronic Journal of
Statistics, 17, 1711-1767.

Andersen, K. H., & Beyer, J. E. (2006). Asymptotic size determines species
abundance in the marine size spectrum. The American Naturalist,
168(1), 54-61. https://doi.org/10.1086/504849

Annis, J., Miller, B. J., & Palmeri, T. J. (2017). Bayesian inference with
stan: A tutorial on adding custom distributions. Behavior Research
Methods, 49, 863-886.

Arranz, |., Hsieh, C., Mehner, T., & Brucet, S. (2019). Systematic devi-
ations from linear size spectra of lake fish communities are cor-
related with predator-prey interactions and lake-use intensity.
Oikos, 128, 33-44.

Banner, K. M, Irvine, K. M., & Rodhouse, T. J. (2020). The use of bayesian
priors in ecology: The good, the bad and the not great. Methods in
Ecology and Evolution, 11, 882-889.

Blanchard, J. L., Jennings, S., Law, R., Castle, M. D., McCloghrie, P.,
Rochet, M.-J.,, & Benoit, E. (2009). How does abundance scale with
body size in coupled size-structured food webs? Journal of Animal
Ecology, 78, 270-280.

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004).
Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
Burkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R

package brms. The R Journal, 10, 395-411.

Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law distribu-
tions in empirical data. SIAM Review, 51, 661-703.

Dietze, M. C., Fox, A., Beck-Johnson, L. M., Betancourt, J. L., Hooten,
M. B., Jarnevich, C. S., Keitt, T. H., Kenney, M. A,, Laney, C.
M., Larsen, L. G., Loescher, H. W., Lunch, C. K., Pijanowski, B.
C., Randerson, J. T., Read, E. K., Tredennick, A. T., Vargas, R.,
Weathers, K. C., & White, E. P. (2018). Iterative near-term eco-
logical forecasting: Needs, opportunities, and challenges.
Proceedings of the National Academy of Sciences of the United
States of America, 115, 1424-1432.

Edwards, A. M., Robinson, J. P. W., Blanchard, J. L., Baum, J. K., &
Plank, M. J. (2020). Accounting for the bin structure of data re-
moves bias when fitting size spectra. Marine Ecology Progress
Series, 636, 19-33.

Edwards, A. M., Robinson, J. P. W., Plank, M. J,, Baum, J. K., & Blanchard,
J. L. (2017). Testing and recommending methods for fitting size
spectra to data. Methods in Ecology and Evolution, 8, 57-67. https://
doi.org/10.1111/2041-210X.12641

Gelman, A. (2005). Analysis of variance—Why it is more important than
ever. The Annals of Statistics, 33, 1-53.

Gelman, A. (2006). Prior distributions for variance parameters in hierar-
chical models (comment on article by browne and draper). Bayesian
Analysis, 1, 515-534.

Gelman, A., Hill, J., & Yajima, M. (2012). Why we (usually) don't have
to worry about multiple comparisons. Journal of Research on
Educational Effectiveness, 5, 189-211.

Gjoni, V., Pomeranz, J. P., Junker, J. R., & Wesner, J. S. (2024). Size spec-
tra in freshwater streams are consistent across temperature and
resource supply. bioRxiv, 2024-01.

Goldstein, M. L., Morris, S. A., & Yen, G. G. (2004). Problems with fit-
ting to the power-law distribution. The European Physical Journal B-
Condensed Matter and Complex Systems, 41, 255-258.

Hobbs, N. T., & Hooten, M. B. (2015). Bayesian models: A statistical primer
for ecologists. Princeton University Press.

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively
setting path lengths in hamiltonian monte carlo. Journal of Machine
Learning Research, 15, 1593-1623.

Jennings, S., & Blanchard, J. L. (2004). Fish abundance with no fishing:
Predictions based on macroecological theory. Journal of Animal
Ecology, 73, 632-642.

Kerr, S. (1974). Theory of size distribution in ecological communities.
Journal of the Fisheries Board of Canada, 31, 1859-1862.

Kerr, S. R., & Dickie, L. M. (2001). The biomass spectrum: A predator-prey
theory of aquatic production. Columbia University Press.

Kuhlman, M. R., Loescher, H. W.,, Leonard, R., Farnsworth, R., Dawson, T.
E., & Kelly, E. F. (2016). A new engagement model to complete and
operate the national ecological observatory network. The Bulletin of
the Ecological Society of America, 97, 283-287.

Martinez, A., Larrafiaga, A., Miguélez, A., Yvon-Durocher, G., & Pozo,
J. (2016). Land use change affects macroinvertebrate community
size spectrum in streams: The case of Pinus radiata plantations.
Freshwater Biology, 61, 69-79. http://doi.wiley.com/10.1111/fwb.
12680

McElreath, R. (2020). Statistical rethinking: A Bayesian course with exam-
ples in R and Stan. Hall/CRC.

Monnahan, C. C., Thorson, J. T., & Branch, T. A. (2017). Faster estima-
tion of Bayesian models in ecology using Hamiltonian Monte Carlo.
Methods in Ecology and Evolution, 8, 339-348.

Muller-Landau, H. C., Condit, R. S., Harms, K. E., Marks, C. O., Thomas,
S. C., Bunyavejchewin, S., Chuyong, G., Co, L., Davies, S., Foster,
R., Gunatilleke, S., Gunatilleke, N., Hart, T., Hubbell, S. P., Itoh, A.,
Kassim, A. R., Kenfack, D., LaFrankie, J. V., Lagunzad, D, ... Ashton,
P. (2006). Comparing tropical forest tree size distributions with the
predictions of metabolic ecology and equilibrium models. Ecology
Letters, 9, 589-602.

O'Gorman, E. J,, Zhao, L., Pichler, D. E., Adams, G., Friberg, N., Rall, B.
C., Seeney, A., Zhang, H., Reuman, D. C., & Woodward, G. (2017).
Unexpected changes in community size structure in a natural
warming experiment. Nature Climate Change, 7, 659-663.

Perkins, D. M., Durance, |., Edwards, F. K., Grey, J., Hildrew, A. G., Jackson,
M., Jones, J. |, Lauridsen, R. B., Layer-Dobra, K., Thompson, M. S.
A., & Woodward, G. (2018). Bending the rules: Exploitation of al-
lochthonous resources by a top-predator modifies size-abundance
scaling in stream food webs. Ecology Letters, 21, 1771-1780.

Perkins, D. M., Perna, A., Adrian, R., Cermeio, P., Gaedke, U., Huete-
Ortega, M., White, E. P., & Yvon-Durocher, G. (2019). Energetic
equivalence underpins the size structure of tree and phytoplankton
communities. Nature Communications, 10, 255.

A ‘S FTOT *X01T170T

[eunofsaqy/:sdny woiy

ASUOIT SUOWILO) 9ANEAI) d[qearjdde oY) £q PAUIIA0S a1k SI[O1IR V() SN JO SI[NI 10§ AIRIqIT AUI[UQ AJ[TAY UO (SUONIPUOD-PUE-SULID)/ WO AJ[IM"ATRIqI[OUT[UO//:Sd1Y) SUONIPUO)) Pue SWIS ], Y1 39S “[+702/80/91] U0 A1eIqrT dutuQ AS[IAN “BI0Ne(] INOS JO ANSIOATUN Aq ZTEHT"X01Z-TH0T/1111°01/10p/w0d A[IMA:


https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14312
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14312
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14312
https://zenodo.org/records/10699185
https://zenodo.org/records/10699185
https://orcid.org/0000-0001-6058-7972
https://orcid.org/0000-0001-6058-7972
https://orcid.org/0000-0002-3882-7666
https://orcid.org/0000-0002-3882-7666
https://orcid.org/0000-0001-9713-2330
https://orcid.org/0000-0001-9713-2330
https://doi.org/10.1086/504849
https://doi.org/10.1111/2041-210X.12641
https://doi.org/10.1111/2041-210X.12641
http://doi.wiley.com/10.1111/fwb.12680
http://doi.wiley.com/10.1111/fwb.12680

WESNER ET AL.

Peters, R. H., & Wassenberg, K. (1983). The effect of body size on animal
abundance. Oecologia, 60, 89-96.

Platt, T., & Denman, K. (1977). Organisation in the pelagic ecosys-
tem. Helgoldnder Wissenschaftliche Meeresuntersuchungen, 30,
575-581.

Pomeranz, J., Junker, J. R., Gjoni, V., & Wesner, J. S. (2024). Maximum
likelihood outperforms binning methods for detecting differences
in abundance size spectra across environmental gradients. The
Journal of Animal Ecology, 93, 267-280.

Pomeranz, J. P. F., Junker, J. R., & Wesner, J. S. (2022). Individual size
distributions across north American streams vary with local tem-
perature. Global Change Biology, 28, 848-858.

Pomeranz, J. P.F., Warburton, H. J., & Harding, J. S. (2019). Anthropogenic
mining alters macroinvertebrate size spectra in streams. Freshwater
Biology, 64, 81-92.

Qian, S. S., Cuffney, T. F., Alameddine, |., McMahon, G., & Reckhow, K. H.
(2010). On the application of multilevel modeling in environmental
and ecological studies. Ecology, 91, 355-361.

R Core Team. (2020). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing Retrieved from https://
www.R-project.org/

Reuman, D. C., Mulder, C., Raffaelli, D., & Cohen, J. E. (2008). Three al-
lometric relations of population density to body mass: Theoretical
integration and empirical tests in 149 food webs. Ecology Letters,
11,1216-1228.

Robnik, J., De Luca, G. B., Silverstein, E., & Seljak, U. (2022).
Microcanonical Hamiltonian Monte Carlo. Retrieved from https://
arxiv.org/abs/2212.08549

Sheldon, R., & Parsons, T. (1967). A continuous size spectrum for partic-
ulate matter in the sea. Journal of the Fisheries Board of Canada, 24,
909-915.

Sprules, W. G., & Barth, L. E. (2016). Surfing the biomass size spectrum:
Some remarks on history, theory, and application. Canadian Journal
of Fisheries and Aquatic Sciences, 73, 477-495.

Sprules, W. G., Casselman, J. M., & Shuter, B. J. (1983). Size distribu-
tion of pelagic particles in lakes. Canadian Journal of Fisheries and
Aquatic Sciences, 40, 1761-1769.

Stan Development Team. (2022). RStan: The R interface to Stan.

Wesner, J. (2024). jswesner/stan_isd: Wesner et al. Bayesian hierarchical
modeling of size spectra. Retrieved from https://doi.org/10.5281/
zeno0do.10699185

Wesner, J., & Pomeranz, J. (2023). Isdbayes: Bayesian hierarchical modeling
of power laws using brms.

Wesner, J. S., & Pomeranz, J. P. (2021). Choosing priors in bayesian eco-
logical models by simulating from the prior predictive distribution.
Ecosphere, 12, e03739.

Methods in Ecology and Evolution EESHS!M

SOCIETY

White, E. P., Enquist, B. J., & Green, J. L. (2008). On estimating the expo-
nent of power-law frequency distributions. Ecology, 89, 905-912.

White, E. P, Ernest, S. M., Kerkhoff, A. J., & Enquist, B. J. (2007).
Relationships between body size and abundance in ecology. Trends
in Ecology & Evolution, 22, 323-330.

SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Table S1. Improvements in model run time (warmup+sampling)
between long and aggregated (agg) data sets.

Table S2. First two rows of the simulated macroinvertebrate (inverts)
and fish body size data.

Figure S1. One hundred posterior distributions of A for each of four
data aggregation approaches.

Figure S2. Inferences when correcting counts for sampling area are
sensitive to the size of the sampling area.

Figure S3. Modeled 95% credible intervals (Crl, K=50) of seven
lambdas using (a) fixed effects with 2 chains, (b) fixed effects with 4
chains, (c) varying intercepts with 2 chains, or (d) varying intercepts
with 4 chains.

Figure S4. Gelman-Rubin convergence diagnostics (rhats) for each
parameter of K=50 model runs each for (a) fixed effects with 2 or 4
chains and (b) varying intercepts with 2 or 4 chains.

Figure S5. Priorsensitivity. The dataare simulated fromlambda=-1.6,
shown by the dotted black line.

Figure S6. One hundred simulations from (a) the prior distribution
and (b) the posterior distribution after fitting the model to data.
Figure S7. Posterior predictive checks of models estimating three
ISDs with true lambdas ranging from -2 to -1.3.
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