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Abstract 

The construction industry has long been plagued by low productivity and high injury and fatality 

rates. Robots have been envisioned to automate the construction process, thereby substantially improving 

construction productivity and safety. Despite the enormous potential, teaching robots to perform complex 

construction tasks is challenging. We present a generalizable framework to harness human teleoperation 

data to train construction robots to perform repetitive construction tasks. First, we develop a teleoperation 

method and interface to control robots on construction sites, serving as an intermediate solution toward full 

automation. Teleoperation data from human operators, along with context information from the job site, 

can be collected for robot learning. Second, we propose a new method for extracting keyframes from human 

operation data to reduce noise and redundancy in the training data, thereby improving robot learning 
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efficacy. We propose a hierarchical imitation learning method that incorporates the keyframes to train the 

robot to generate appropriate trajectories for construction tasks. Third, we model the robot’s visual 

observations of the working space in a compact latent space to improve learning performance and reduce 

computational load. To validate the proposed framework, we conduct experiments teaching a robot to 

generate appropriate trajectories for excavation tasks from human operators’ teleoperations. The results 

suggest that the proposed method outperforms state-of-the-art approaches, demonstrating its significant 

potential for application. 
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Introduction 

 The construction industry, valued at $13 trillion in 2021 and growing at a compound annual growth 

rate (CAGR) of 9.8% to reach more than 23 trillion by 2026, is an essential component of the global 

economy (Andrew Reynolds 2022). However, the construction industry faces long-standing issues, 

including an aging workforce, as well as safety and health problems. Construction work, which is dangerous, 

physically demanding, and cognitively challenging, has traditionally been performed by an aging and 

diverse workforce in unstructured and dynamic environments. The low productivity results in 98% of 

projects having cost overruns and 77% suffering from schedule delays (Sriram et al. 2015). The construction 

industry has the highest number of fatalities and the highest rate of work-related musculoskeletal disorders 

(Wang et al. 2017). Out of the 4,779 worker fatalities in private industry in 2018, 1,008 or 21.1% were in 

construction (Occupational Safety and Health Administration 2018). In addition, 44.6% of all construction 

injuries and illnesses were related to musculoskeletal disorders, and the lifetime risk of overexertion injuries 

in construction is 21% (The National Institute for Occupational Safety and Health (NIOSH) 2019). There 

is great but unconsolidated potential for robotic construction to improve work productivity, safety, and 

workers’ occupational health (Saidi et al. 2016).  
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Robots are envisioned for deployment on construction sites to assist with physically demanding 

work, relieve workers from repetitious tasks, and protect them from on-site risks. Despite their great 

potential, the challenge of imbuing robots with the intelligence to navigate the unstructured and dynamic 

environments of construction sites, and execute complex tasks, remains formidable. Teleoperation-based 

methods, while allowing for direct control of robots, introduce significant challenges, including the need 

for extensive training that imposes high costs in both time and resources, compounded by the scarcity of 

skilled workers. Learning-based methods emerge as a solution, enabling robots to learn from data, improve 

over time, and adapt to diverse tasks and environments without heavy reliance on skilled operators. This 

approach not only addresses the limitations of teleoperation but also capitalizes on its immediate benefits, 

offering a balanced path forward in the dynamic construction environment. Developing methods to teaching 

robots without relying on expert intervention stands out as a significant step in advancing their operational 

capabilities within construction environments. At present, robot operations in these environments rely 

heavily on the expertise of skilled professionals, through either manual programming or data-driven 

approaches. Our research aims to democratize this process by enabling workers with varying levels of 

robotics proficiency to transfer their job skills to robots, thus facilitating automated task execution. By 

moving away from exclusive reliance on experts, we aim to foster a more inclusive and accessible approach 

to deploying robots in construction contexts. 

Efficiently teaching robots presents inherent challenges, complicated by the balance between data 

scarcity and the necessity for effective demonstrations. To overcome this hurdle, we propose an integrated 

methodology that merges mimic learning with reinforcement learning. Our approach adeptly handles both 

task acquisition and execution exploration, thus eliminating the need for expert involvement in the teaching 

process. Aligned with human learning principles, our study involves two main components: first, evaluating 

the teacher's experience and extracting key points; and second, learning from these key points and the 

teacher's experience. The first part involves evaluating the teacher's experience and extracting key points 

from trajectory data. We propose a keyframe identification method to reduce data volume and dimensions 
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for training. The second part comprises an imitation learning framework combined with a goal-conditioned 

reinforcement learning model, enabling robots to learn from human demonstrations while maintaining their 

exploration capabilities. Additionally, we transform the data into a low-dimensional latent space 

representation to facilitate learning process. We propose a hierarchical reinforcement learning structure and 

a generative-adversarial-like keyframe classification structure. The hierarchical structure includes a subgoal 

generation network and a primitive motion network. Moreover, we propose a vision-based trajectory 

generation method that leverages latent space exploration to reduce computation load and enhance learning 

performance.  

The rest of the paper is organized as follows. Section 2 reviews relevant literature in construction 

robotics and robot learning methods, Section 3 illustrates the framework and methods, including keyframe 

extraction, robot learning framework and the latent space generation, Section 4 presents the experiment 

results and compares the performance with the state-of-the-art, Section 5 discusses the applicability of the 

proposed method and its limitations, Section 6 concludes the paper with remarks on the contributions to 

knowledge and insights for practical application.   

Literature review 

Pre-programmed and Teleoperated Robotics 

The development of construction robotics is changing the management and execution of 

construction projects. There are three types of construction robots: pre-programmed, teleoperated, and 

learning-based robots (Saidi et al. 2016). Pre-programmed construction robots are highly automated and 

can be used for various construction tasks without human intervention. (Gambao et al. 2000) designed an 

integrated automated robotic system to handle the shuttering and installation of plane-parallel blocks during 

the assembly of building blocks. (Yu et al. 2009) integrated a pattern generation algorithm into an automated 

brick-laying system to perform brick handling on construction sites. (Keating and Oxman 2013) designed 

a multi-functional, pre-programmed robotic arm platform. This platform utilizes major manufacturing 
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technologies including additive, formative and subtractive fabrication. (Lublasser et al. 2018) proposed a 

robot-based method to apply formwork concrete onto the bare walls of existing buildings. This method 

provides a facade finish that is insulating and recyclable, where the motions of the robotic arm are 

programmed. These pre-programmed construction robots have the potential to save both time and money. 

However, they can only carry out the duties for which they were designed and are unable to adapt 

automatically to changes in construction sites. Teleoperated construction robots lower the risk of accidents 

and injuries by enabling human workers to complete tasks from a secure location. Also, they are adaptable 

and capable of doing various tasks, such as demolition, excavation, and material handling. Teleoperated 

humanoid robots have been well-developed to remotely operate various industrial vehicles like lift trucks, 

and backhoes at construction sites (Hasunuma et al. 2002, 2003; Yokoi et al. 2006). (Kim et al. 2009) 

designed a teleoperated excavator system to help avoid workers’ risks while operating the excavator on 

inclined planes. Control data for this system is captured from sensors attached to the operators’ arms and 

then transmitted via Bluetooth. (David et al. 2014) designed a system merging information from real and 

virtual worlds to help workers remotely perform inspection and maintenance of on-site tunnel boring 

machine. (Liu et al. 2021) and (Xia et al. 2023) developed a remote-control system that converts signals 

received from a wearable electroencephalogram device into commands for robots. This innovative approach 

enhances workers' control in environments such as underwater and space construction, where the workers' 

ability to manually steer the robots is constrained. However, the latency between the operator's commands 

and the construction robot's actions has been a common issue (Falanga et al. 2019; Luck et al. 2006). 

Meanwhile, the teleoperated robotics still need human intervention to monitor their status and issue 

commands in real time. To address these issues, researchers have investigated learning-based robotics 

which can automatically complete the job while adapting to changes in construction sites. 

Learning-based Robotics 

Construction robots using reinforcement learning (RL) technology are autonomous machines that 

may gain knowledge from their mistakes and hone their accuracy and productivity over time. Many RL 
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methods have been developed for applying learning-based robotics on construction sites, enhancing 

efficiency and safety. (Apolinarska et al. 2021) applied an adapted Deep Deterministic Policy Gradient 

algorithm (DDPG) (Lillicrap et al. 2016) algorithm to train robots for assembling lap joints in custom timber 

frames as inserting a timber element into its mating counterpart(s). (Belousov et al. 2022) proposed a Twin 

Delayed DDPG (TD3) (Fujimoto et al. 2018) based RL method to train robots to assemble a structure from 

predefined discrete building blocks autonomously, like stacking blocks on placed blocks. (Lee and Kim 

2021) developed an automated construction hoist trained by deep Q-network (DQN) (Mnih et al. 2013) to 

reduce the number of unnecessary trips when performing lift tasks. These studies mainly focus on training 

robots from scratch which could reduce learning efficiency. 

Utilizing expert demonstrations to train RL-based robots has been well investigated to reduce 

unnecessary explorations and improve learning efficiency (Fang et al. 2019; Li and Zou 2023; Pfeiffer et 

al. 2018; Pore et al. 2021; Zhou et al. 2023b; a). (Huang et al. 2023) trained RL-based construction robots 

to learn long-horizon tasks like picking and installing window panels from demonstrations in virtual reality 

(VR). (Duan and Zou 2023) collected intuitive expert demonstration using VR platform where a robot will 

automatically follow the position, rotation, and actions of the expert's hand in real-time, instead of requiring 

an expert to control the robot via controllers. However, controlling real construction robots and their 

perception of the environment are significantly more complex than what is simulated. Many methods have 

been proposed to adapt the trained RL policy directly to real construction robot. (Liu et al. 2018) developed 

a framework for robot learning to imitate behaviors from expert demonstration videos. (Liang et al. 2019, 

2020) proposed a Learning from Demonstration (LfD) method to teach robots to perform quasi-repetitive 

construction tasks like installing ceiling tiles from expert demonstration videos. For this training approach 

to yield strong model performance, a substantial number of high-dimensional videos is typically required. 

As previously indicated, expert demonstrations may contain a significant amount of redundant data. To 

solve this issue, we propose a keyframe-based learning system. Researchers have employed keyframe 

extraction methods to improve computational efficiency for robot learning (Hartmann et al. 2021; Zhao and 
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Cheah 2023). While (Hartmann et al. 2021) enhances task division and automation for scalability in multi-

robot systems, our contribution highlights the importance of teleoperation in bridging human expertise with 

robotic capabilities, particularly in unpredictable or intricate construction environments. Unlike (Zhao and 

Cheah 2023), which relies on an automated BIM-based system using object detection for robot initialization, 

our work extends the capability of robots to learn from their operations and environments over time. 

Reinforcement Learning in Robotics: Developing robots to accomplish tasks has been 

extensively explored, utilizing both model-based and model-free approaches. Model-based methods, 

referenced in (Abdolmaleki et al. 2018; Song et al. 2019; Zakka et al. 2019; Zeng et al. 2020), often 

incorporate human-defined primitives to guide robot actions. Although effective in certain scenarios, these 

methods struggle with generalization across diverse task types due to the vast range of potential primitives. 

Conversely, model-free approaches (Ding et al. 2019; Haarnoja et al. 2018; Ho and Ermon 2016; Nasiriany 

et al. 2019; Zhu et al. 2020) offer flexibility but face challenges such as high variance in pose estimation 

and prolonged training times due to reward sparsity. Both paradigms aim to address the complex 

requirements of long-horizon and temporally extended tasks, with strategies including compositional policy 

structures derived from demonstrations (Abdolmaleki et al. 2018), manually specified primitives (Kabir et 

al. 2020), learned temporal abstractions (Chane-Sane et al. 2021), and direct model-free reinforcement 

learning (Schulman et al. 2017). 

Challenges in Imitation Learning: Within the imitation learning (IL) framework, both behavior 

cloning and inverse reinforcement learning face distinct challenges. Behavior cloning methods are known 

for their substantial data requirements and the propensity to inherit bias from the training dataset. Inverse 

RL, while powerful for deriving reward functions from observed behaviors, often struggles with learning 

comprehensive reward functions that encompass entire trajectories. These methods have yet to overcome 

the limitation of requiring successful examples to facilitate model training effectively. 

Addressing the Limitations: Our method introduces a novel approach to surmounting these 

hurdles. By integrating a new experience relabeling method and an action evaluation network, we directly 
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address the issues of off-trajectory actions and the reward sparsity common in complex visual manipulation 

tasks. This innovation allows for more precise bottleneck estimation and alleviates the high variance issue 

associated with model-free paradigms. Furthermore, our approach mitigates the restrictive assumptions 

classical planning methods make about state space and state connectivity, enhancing applicability to a 

broader range of complex tasks. 

Developing robots to accomplish tasks has been a well-studied problem (Hentout et al. 2019; Jing 

et al. 2018), these methods can be categorized into model-based and model-free approaches. Existing 

model-based methods typically do not perform well for indefinite problems. Behavior cloning methods are 

usually data-ravenous, and the results are biased (Codevilla et al. 2019). Inverse RL methods are hard to 

learn reward function for whole trajectory (Arora and Doshi 2018). Moreover, the model-free paradigm 

such as (Ho and Ermon 2016; Nasiriany et al. 2019) suffers from high variance in pose estimation, resulting 

in a lack of precision in bottleneck estimation. Model-based approaches (Abdolmaleki et al. 2018; Song et 

al. 2019; Zakka et al. 2019; Zeng et al. 2020) usually come with human-introduced primitives and train the 

robot actions based on these primitives. However, in trajectory generation tasks, the primitives vary in an 

enormous range, and they are hard to generalize to other types of tasks. Model-free methods (Ding et al. 

2019; Haarnoja et al. 2018; Ho and Ermon 2016; Nasiriany et al. 2019; Zhu et al. 2020) typically take 

longer training times and suffer from reward sparsity. The long horizon and the temporally extended tasks 

enable the robot to perform a diverse set of tasks (Finn et al. 2015; Jayaraman et al. 2018; Thakar et al. 

2018). These approaches have added compositional structure to policies, either from demonstration 

(Abdolmaleki et al. 2018), with manually specified primitives (Kabir et al. 2020), learned temporal 

abstractions (Chane-Sane et al. 2021), or through model-free RL (Schulman et al. 2017). These works have 

studied such hierarchy in grid worlds and simulated control tasks with known reward functions. Classical 

planning methods have proven effective in performing long-horizon tasks. However, they make restrictive 

assumptions about the state space and the connectivity between states. This limits their applicability to 

complex visual manipulation tasks. In these methods, the problem of the off-trajectory actions and the 
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reward sparsity of complex tasks are not solved. In our method, we propose a novel experience relabeling 

method and an action evaluation network to address these two problems. 

Vision-based Trajectory Generation with Latent Space Exploration 

The feasibility of keyframe-guided trajectory generation in learning-based robotics was discussed 

in the Introduction chapter. However, in practical applications, obtaining accurate object and target 

information is challenging without supplementary algorithms. Utilizing various sensors, such as laser, radar, 

and RGB-D camera, has been well investigated to solve this problem. (Mandlekar et al. 2019) used a crowd-

sourced dataset that has image observations from a front view camera to let robotic arm learn control 

policies. (Praveena et al. 2019) proposed a handheld grabber tool, equipped with force-torque sensor, 

providing accurate measurement of the applied forces and torques when grasping objects. (Zeng et al. 2022) 

developed educational robots sharing certain characteristics including the focus on assistive functions like 

buttons, grayscale sensors, and cameras. However, these methods do not solve two main problems: First, 

the computation load of the reinforcement learning model is massive, resulting in difficulty and latency in 

the training process. To tackle this problem, our method models the vision space into the latent space. 

Second, RL methods typically perform poorly with high dimensional inputs. To tackle this problem, a 

trendy way to deal with image information is to use an encoder-decoder network to reduce the reinforcement 

learning network input dimension. (Abdolmaleki et al. 2018) argued that existing reinforcement learning 

algorithms can be expensive in terms of sample requirements and suffer from high gradient variance, 

resulting in unstable learning and slow convergence. To keep track of reachable latent states, (Bharadhwaj 

et al. 2020) proposed a distance-conditioned reachability network that is trained to infer whether one state 

is reachable from another within the specified latent space distance. A conventional algorithm comprises 

an image depth information encoder and a reinforcement learning framework. In this paper, we also adopt 

this framework approach. 

One limitation of existing vision-based robot manipulation learning methods is the requirement for 

a carefully constructed environment. Repeatedly setting up the environment can introduce configuration 
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errors. In the study by (Luo et al. 2021), the task involves robot manipulation using a monocular vision 

system. The critical aspect of environment setup is the camera's installation position, which affects the 

ability to obtain spatial information about the target from a single camera. Incorrect camera positioning can 

lead to issues with occlusion. In the study by (Zhou et al. 2022), the task involves robotic fruit grasping 

under leaf interference. The positioning of the leaves and fruit is crucial because it affects the robot's ability 

to grasp the fruit. In the study by (Liu et al. 2020), the robot learns policy autonomously by interacting with 

the environment. The setup of the robot and object states is important because it affects learning efficiency. 

Therefore, careful environment setup is critical to ensuring the accuracy and efficiency of robot 

manipulation tasks. To tackle this problem, we propose a robot end-effector position estimation network to 

match the robot encoder position with the estimated position. 

The goal of learning from vision-based demonstrations is to map the image with the target goal 

states (Song et al. 2019; Zeng et al. 2020). A key limitation of many existing methods is their requirement 

for predefined goal states and positions. (Lenz et al. 2013) presented a two-step cascaded system with two 

deep networks for detecting robotic grasps in an RGB-D view of a scene, effectively avoiding the need for 

time-consuming hand-design of features. (Hester et al. 2017a) introduced a novel algorithm that utilizes 

small sets of demonstration data to significantly accelerate the learning process in deep RL, addressing the 

issue of RL algorithms typically requiring large amounts of data before achieving reasonable performance. 

(Zhang et al. 2020) proposed a hierarchical path planning framework, SG-RL, which combines geometric 

path-planning with RL to plan rational paths in continuous and uncertain environments. (Kabir et al. 2019) 

presented a non-linear optimization problem for path-constrained trajectory generation in multi-robot 

systems. (Hester et al. 2017b) presented an algorithm called Deep Q-learning from Demonstrations that 

leverages small sets of demonstration data to significantly accelerate the learning process in RL. (Levine et 

al. 2016) presented a learning-based approach to hand-eye coordination for robotic grasping from 

monocular images. The authors trained a large convolutional neural network to predict the probability of 

successful grasps based on the task-space motion of the gripper, using only monocular camera images. 
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However, this approach assumes that the goal state and position are predefined. To overcome this limitation, 

our method learns the goal state from the collected demonstrations, which differs from approaches that rely 

on predefined goals and positions. 

Methodology  

Figure 1 shows three main modules designed for efficient trajectory generation and state 

transformation. The first module, Keyframe Identification, constructs a training data repository by 

employing dynamic programming to extract keyframes from the input trajectory, capturing essential 

temporal instances. The second module, Goal-Conditioned Keyframes-Guided Trajectory Generation, 

predicts the final state based on initial RGB images and point cloud data using an encoder-decoder structure 

to optimize computational resources. The goal generation network within this module utilizes Kullback-

Leibler Divergence (KLD) to assess predictive accuracy. The third module, a goal-conditioned policy 

learning framework, is bifurcated into an imitation learning component, where a convolutional neural 

network predicts subgoals, and a reinforcement learning component, where a Soft Actor-Critic (SAC) 

algorithm-based policy generates actions for state transformation. Trained on classified keyframes, this 

integrated approach ensures enhanced learning efficiency and trajectory generation.  
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Figure 1. Structure of our method. 

 

The workflow of the algorithm, detailed in Algorithm 1, proceeds as follows: the imitation learning 

approach trains both the keyframe generation policy and the keyframe evaluation system using a collection 

of demonstrations. Following this, the primitive policy is iteratively updated, using the generated keyframes 

as directional objectives for executing basic motion sequences. The agent's generated trajectories are 

evaluated by the keyframe evaluation module. Those evaluated as proficiently executed are added to both 

the experience replay buffer and the imitation episode buffer. Furthermore, the latent space module 

generates latent states relevant to both the imitation and reinforcement learning modules. Subsequent 

subsections will provide a detailed elaboration on each constituent element, exploring the intricacies of 

keyframe generation, evaluation, latent space computation, and algorithmic refinement. 

 

Algorithm 1 Easy Teaching Algorithm 

1:  𝑵 := max episodes, 𝑴 := max steps for each episode 

2:  Load the pretrained encoder and decoder for the latent space network 

3:  Initialize keyframe generation network 𝝅𝒌 

4:  Initialize keyframe classification network 𝑪𝝍 

5:  Initialize primitive motion network 𝝅𝒑 

6:  Initialize Experience Replay Buffer 𝑩𝑬 
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7:  Initialize Imitation Episode Buffer 𝑩𝑰 

8:  for 𝒊 from 1 to 𝑵 do 

9:      Generate the goal state 𝒈 for current state 𝒔 

10:    for 𝒋 from 1 to 𝑴 do 

11:        Generate subgoal 𝒔𝒈 with 𝒔 and 𝒈 utilize 𝝅𝒌 

12:        Generate action 𝒂 with 𝒔 and 𝒔𝒈 utilize 𝝅𝒑 

13:        Collect the state 𝒔′ after execution and reward 𝒓 

14:        Update Primitive policy 𝝅𝒑 

15:        Put the current data to the experience reply buffer 𝑩𝑬 

16:        Add the collected data to current episode trajectory 𝑻𝒊 

17:    end for 

18:    Evaluate trajectory 𝑻𝒊 and identify the keyframes 𝑻𝒊
𝒌 

19:    Generate Imitation learning items from 𝑻𝒊 and 𝑻𝒊
𝒌, add them to Imitation Episode Buffer BI 

20:    Update the parameters in 𝝅𝒌 and 𝑪𝝍 

21: end for 

 

Keyframe Guided Trajectory Generation  

Figure 2 shows our policy learning architecture composed of key components that collaborate 

synergistically: keyframe policy 𝜋𝑘, primitive policy 𝜋𝑝. Latent-Spaced Goal 𝑔 and Latent-Spaced State 𝑠, 

coming from trajectory generation module, are fed into fed into a Convolutional Neural Network (CNN) 

serves as Keyframe Policy 𝜋𝑘, which interprets the information and predicts a subgoal 𝑠𝑔. Latent Vector 𝑧, 

coming from depth and RGB images encoded by the VAE encoder, is fed into the CNN as well. The subgoal, 

together with the current Robot states 𝑅 , are used to train a Soft Actor-Critic Primitive Policy  𝜋𝑝 , 

responsible for robot action prediction. The output of this architecture is a robot Action 𝑎, which is the 

actual command that would be executed by the robot. 

 

 

Figure 2. Policy learning architecture. 
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A significant hurdle in our field is balancing the need for robotic learning against the scarcity of 

experts in robotics algorithms. Our model mitigates this by adopting a novel three-network training 

architecture. This framework consists of a keyframe policy, primitive policy, and keyframe classifier, all 

integrated within a GAN setup. This unique configuration facilitates the transfer of human skills to robots, 

enabling them to generate dynamic subgoals and adapt to the construction environment's complexity and 

unpredictability. Furthermore, our keyframe identification model sharpens the focus on significant task 

moments, optimizing learning efficiency. This approach not only boosts construction robot efficiency and 

autonomy but also adeptly navigates the nuances of safety, environmental variability, and the seamless 

integration into existing construction processes. 

Keyframe Policy: Keyframe Generation 

The keyframe order in the trajectory should be considered when teaching the robot. In 

reinforcement learning tasks, there are many cases with an unknown number of subgoal generations. To 

address this problem, we formulate the trajectory distribution as an MDP function which naturally encodes 

the keyframe order into the trajectory. 

𝑝(𝑠0, 𝑔) =  ∏ 𝑝(𝑠𝑡 , 𝑔, 𝑎𝑡)𝑝(𝑎𝑡|𝑠𝑡, 𝑔)𝑡~𝜏                   (1) 

Then the expected discounted return of the trajectory is 

𝑅 =  𝐸𝑡~𝜏[∑ 𝛾𝑡𝑟(𝑠𝑡 , 𝑔, 𝑎𝑡)𝑎 ]                    (2) 

Where 𝑟(𝑠𝑡 , 𝑔, 𝑎𝑡) = 1[𝑠𝑡+1 == 𝑔]. A randomly initiated policy is not feasible for providing a 

successful trajectory, resulting in consistent negative rewards and no effective training. Expert 

demonstrations are introduced to provide a guideline for the robot to train in the right direction, and the 

trajectory distribution is calculated using the keyframe extraction method. 

Directly generating all keyframes for the trajectory conditions on the initial state 𝑠0 and goal g 

makes it hard to guarantee the success of the task. To mitigate compounding errors, we propose generating 
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the keyframes following an MDP process that conditions the generation on the current state 𝑠𝑡 and goal g. 

Then the policy can be optimized by maximizing the expected discounted reward. 

𝐽(𝜃) =  𝐸𝑔~𝜌𝑔,𝜏~𝜏(.|𝑔)[∑ 𝛾𝑡𝑟(𝑠𝑡 , 𝑠𝑔𝑡
, 𝑎𝑡 , 𝑔)𝑡 ]                  (3) 

The keyframe is a distribution condition on the current state 𝑠𝑡 and goal g, we add a classification 

𝐶𝜓(𝑠𝑡, 𝑠𝑔𝑡
, 𝑎𝑡 , 𝑔) network to distinguish the keyframe and ordinary states. The classification network takes 

the current state, generated subgoal, action, and goal state as input and provides a unique label to indicate 

whether the sampled frame is a keyframe or not. To utilize the keyframe demonstration information in the 

reinforcement learning loop, we add the expected keyframe score as the regularization part of the expected 

discounted return function 𝐽(𝜃). 

𝐽(𝜃) =  𝐸𝑔~𝜌𝑔,𝜏~𝜏(.|𝑔)[∑ 𝛾𝑡𝑟(𝑠𝑡 , 𝑠𝑔𝑡
, 𝑎𝑡 , 𝑔)𝑡 ] + 𝐸𝑠𝑔𝑡

~𝜋𝐾,𝑎~𝜋𝑃[𝐶𝜓(𝑠𝑡, 𝑠𝑔𝑡
, 𝑎𝑡 , 𝑔)]              (4) 

where 𝐸𝑔~𝜌𝑔,𝜏~𝜏(.|𝑔)[∑ 𝛾𝑡𝑟(𝑠𝑡 , 𝑠𝑔𝑡
, 𝑎𝑡 , 𝑔)𝑡 ] is the expectation of the demonstration score, 𝑔~𝜌𝑔 is the goal 

distribution, and 𝜏~𝜏(. |𝑔) is the demonstrated trajectory, 𝐸𝑠𝑔𝑡
~𝜋𝐾,𝑎~𝜋𝑃[𝐶𝜓(𝑠𝑡 , 𝑠𝑔𝑡

, 𝑎𝑡 , 𝑔)] is the expected 

keyframe score parameterized by ψ, 𝜋𝐾 is the keyframe generation policy, 𝜋𝑃 is the primitive policy. 

Different from generative adversarial methods (Ding et al. 2019; Ho and Ermon 2016), our 

classification method assigns scores to sampled frames instead of distinguishing them from those generated 

by experts or policies. In our classification network, we employ a regression-style layer instead of an 

activation layer, assigning positive and negative labels with 1 and -1, respectively. By assigning positive 

and negative labels, we penalize frames that are not keyframes and encourage agents to generate keyframes. 

The regression layer, being the last layer, takes the keyframe distribution into account. The keyframes 

extracted by the keyframe extraction method are within a keyframe distribution, which cannot guarantee 

optimal keyframes but ensures they are not far from being optimal. Therefore, we use the extracted 

keyframe as the label baseline. There could be better keyframes with scores greater than 1, and frames 
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significantly worse with scores less than -1. The loss of the classifier is the regular cross-entropy loss, and 

the loss for the expert keyframe imitation is: 

𝐿𝐶𝜓
=  |𝐸𝑠𝑔~𝐾[𝐶𝜓(𝑠, 𝑠𝑔, 𝑎, 𝑔)] − 𝐸𝑠𝑔~𝜋𝐾[𝐶𝜓(𝑠, 𝑠𝑔, 𝑎, 𝑔)]|                  (5) 

Where K is the demonstrated keyframe set and 𝜋𝐾 is the keyframe generation policy. By taking 

this loss, we connect the demonstrations and the keyframe generation policy. 

Primitive Policy: Goal-Conditioned Soft Actor-Critic 

Since the primitive policy is working on the same agent, it shares the same state space 𝑆, action 

space 𝐴,  and environment dynamics 𝑃 . Then the formulated finite-horizon, goal-conditioned Markov 

decision process can be defined by tuple 𝑀𝑝 = (𝑆, 𝐴, 𝑃, 𝑔𝑝, 𝑟𝑝, 𝛾𝑝), where 𝑆, 𝐴, 𝑃 are the same with 𝑀 and 

the reward function is 𝑟𝑝(𝑠, 𝑎, 𝑔) the discount factor is 𝛾𝑝. The primitive policy is formulated into a regular 

goal-conditioned soft actor-critic reinforcement learning framework. And the primitive policy is fitted by 

maximizing the expected discounted return: 

𝐽𝜉(𝜋𝑝) = 𝐸𝑔𝑝 𝜌𝑔,𝜏𝑝 𝑑𝜋𝑝(.|𝑔)[∑ 𝛾𝑝
𝑡𝑟𝑝(𝑠𝑡, 𝑎𝑡 , 𝑔)𝑡 ]                  (6) 

with the trajectory distribution 

𝑑𝜋𝑝
(𝜏|𝑔) = 𝜌0(𝑠0) ∏ 𝜋𝑝(𝑎𝑡|𝑠𝑡, 𝑔)𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)𝑡                  (7) 

where 𝐽𝜉(𝜋𝑝) is the expected discounted reward of the primitive policy and 𝜉 is to distinguish with the 

keyframe generation reward. And 𝜋(. |s, 𝑔) generates continuous robot action conditioned on state s and 

goal g. The primitive policy is updated standalone and follows the standard off-policy actor-critic paradigm. 

There are two phases of training the primitive policy: pretrain and train along with the whole model. During 

the pretrain phase, we take advantage of the hindsight experience replay technique to accelerate the training 

process. The action works on the transition of tuples (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑔), and the critic evaluates its action-state 

value. The update function is in the following equations concerning Q-function parameters 𝜙𝑘+1 
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𝑄𝜙𝑘+1
= 𝑎𝑟𝑔𝑚𝑖𝑛

1

2
𝐸(𝑠𝑡,𝑎𝑡,𝑠𝑡+1,𝑔)𝐷[𝑟𝑡 − 𝑄𝜙(𝑠𝑡 , 𝑎𝑡 , 𝑔)]

2
                  (8) 

With the target value 

𝑟𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑔) + 𝛾𝐸𝑎𝑡+1 𝜋(.| 𝑠𝑡,𝑔)
𝑄𝜙𝑘

(𝑠𝑡+1, 𝑎𝑡+1, 𝑔)                  (9) 

The policy update by maximizing the discounted reward respect to advantage function 

𝐴𝜋(𝑠, 𝑎, 𝑔) = 𝑄𝜋(𝑠, 𝑎, 𝑔) − 𝑉𝜋(𝑠, 𝑔), where 𝑉𝜋(𝑠, 𝑔) is the value function for current policy. 

𝜋∗ = 𝑎𝑟𝑔 max
𝜋

𝐸(𝑠,𝑔)~𝐷,𝑎~𝜋(.|𝑠,𝑔)[∑ 𝑟(𝑠𝑡 , 𝑔𝑡 , 𝑎𝑡)𝑡 + 𝛼 log 𝜋(∙ |𝑠𝑡)]       (10) 

Keyframe Extraction Method 

The collected trajectories are sampled directly from the robot state broadcasting. As in our case, 

the robot states broadcasting at 200Hz. Therefore, for each trajectory, the collected data is much more 

redundant than necessary. Furthermore, the execution of robot manipulation tasks generates trajectories, 

whether they are derived from human teleoperation or reinforcement learning explorations. However, these 

trajectories, irrespective of their source, do not guarantee optimality. This section aims to tackle the issue 

of noise inherent in trajectories generated by human-operated and the reinforcement learning agent-

operated robotic arms. To mitigate irrelevant movements and emphasize essential information, we 

introduce the concept of keyframes. Keyframes are defined as minimal sampled poses of the robot end-

effector within a trajectory that enable task completion. To eliminate the redundant road points in the 

trajectory of the succeeded task, and avoid computation explosion problem, we extract the keyframe with 

two steps: trajectory down sampling and essential keyframe identification from the down sampled trajectory. 

This method ensures efficient use of data while maintaining trajectory accuracy. 

Frame Sampling 

 The collected states in the demonstration episode are 𝑆 = {𝐼, 𝐷, 𝑝}, 𝐼 is the RGB image, 𝐷 is the 

depth image, and 𝑝 is the robot and the end-effector position. 𝑝 = {𝑗1, 𝑗2, 𝑗3, 𝑗4, 𝑗5, 𝑗6, 𝑒𝑝}, where 𝑗𝑛, 𝑛 =
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1,2,3,4,5,6 is each joint angle of the robot, 𝑒𝑝 is the end-effector states. For each trajectory, the collected 

robot states history can be expressed as  

𝑇 = {𝑝0, 𝑝1, … … , 𝑝𝑛}                         (11) 

where the 𝑝𝑛, n = 1, 2, 3, . . . is the sampled robot states (road points) from task execution trajectory. 

Therefore, we have a collection of line segments. 

𝐿 = {𝑙0, 𝑙1, … … , 𝑙𝑛−1}                   (12) 

We claim that, in straight-line segments, all road points except the endpoints are redundant. We extend this 

assumption to the angle between consecutive trajectory segments, proposing that road points within a 

certain angle threshold are considered redundant. Furthermore, we assess the angle between every two 

consecutive line segments to identify turns. We assume that the turns are more important than other road 

points in the trajectory.  Then  

𝑎 =
𝑙𝑖𝑙𝑖+1

|𝑙𝑖||𝑙𝑖+1|
, 𝜃 = 𝑎𝑟𝑐𝑐𝑜 𝑠(𝑎) , 𝑖 + 1 < 𝑛                 (13) 

Where 𝑙𝑖, 𝑙𝐼+1 are the line segments on the trajectory, a is the cosine value of two vectors, and 𝜃 is 

the angle between 𝑙𝑖 and 𝑙𝑖+1. Then we apply the peak finding method (Kadane 2023) to find the local 

maximum α as the sampled actions from the expert trajectory. We define the sampled trajectory as 

𝑇𝑠 = {𝑝, 𝑝2, 𝑝3, … … , 𝑝𝑚}, 𝑚 ≤ 𝑛                 (14) 

In scenarios where frames exhibit a peak angle and cannot be keyframed, especially when 

incorporating human demonstrations, the influences of operational habits or other noise are common. These 

frames frequently result in longer and less efficient routes for the robot, sometimes introducing setbacks. 

To address this issue, our approach not only extracts these peak angle frames but also uniformly samples 

additional frames from each segment of the trajectory. These extra frames are added to the keyframe 

candidate set, enabling a more thorough and effective keyframe selection that accommodates and reduces 

the impact of such irregularities.  
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We introduced 𝑇𝑠
′ to denote the enhanced set of key states, which includes not only the peak angle 

frames identified through the peak finding method, but also additional frames uniformly sampled from each 

segment of the trajectory. This enrichment of 𝑇𝑠 into 𝑇𝑠
′ aims to mitigate the impact of operational habits or 

noise, further optimizing the trajectory for learning. 

𝑇𝑠
′ = {𝑝1

′ , 𝑝2
′ , 𝑝3

′ , … … , 𝑝𝑚
′ }, 𝑚 ≤ 𝑛                  (15) 

Keyframe Identification  

Our method focuses on identifying keyframes essential for forming the optimal trajectory in the 

robotic trajectory refinement process. Although many points are initially removed, the remaining ones are 

pivotal for the trajectory's progression. To optimize the trajectory, we define keyframes as frames that 

constitute the most efficient path. We employ a reinforcement learning-based approach to identify these 

keyframes from the collected trajectory, aiming to further reduce the number of sampled frames. This 

strategy substantially increases the likelihood of a successful robot operation. The keyframe identification 

process experiments with subsets of the trajectory 𝑇𝑠 to identify the most effective subset as the keyframe. 

This concept is represented in Figure 3, where Fig. 3a shows the trajectory's keyframes and Fig. 3b shows 

a blue line representing the trajectory. Green dots represent human control input samples from a 

demonstration; these are fewer than the trajectory frames and typically deviate from the path. Red dots 

represent extracted keyframes for the robot manipulator, underscoring the crucial points for efficient 

trajectory control. This module is dedicated to the construction of a training data repository, pivotal for the 

subsequent learning processes. It employs dynamic programming to meticulously extract keyframes from 

the input trajectory, thereby encapsulating significant temporal instances that are instrumental in 

characterizing the trajectory. 
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Figure 3. Extracted keyframes. The Fig. a shows an excavation task example, while the Fig. b displays the 

collected trajectory in 3D coordinates. Blue dots represent actual robot states, green dots represent human 

teleoperated control inputs, and red dots signify extracted keyframes. Green dots appear sporadically due 

to the nature of human teleoperation, where new commands are issued before the previous one is completed.  

 

To identify the optimal keyframe from the candidate set, we omit frames from the sampled frames 

𝑇𝑠
′, and execute the remaining frames to observe the task execution outcome. Then we rank all possible 

combinations to identify the best subset as the keyframe set 𝑇𝑘. 

To evaluate the different combinations, we employ the Markov Decision Processes (MDP) (Fang 

et al. 2018) model to formulate the problem into a reinforcement learning context. The goal of this MDP 

model is to collect a minimal subset of 𝑇𝑠
′ capable of completing the task. To reduce the sampled frames, 

we assign a small negative reward for each frame where the task is incomplete, and a positive reward is 

given upon task completion. By using a greedy policy to select the subset with the largest reward as the 

keyframe collection, we can eliminate as many low-weight samples as possible. This is because the negative 

reward decreases the total reward for unnecessary samples. We model the action set as 

𝜋(𝑠) = 𝑎                   (16) 
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where 𝑠 is the current state, a is the action taken at the state 𝑠, and 𝑠′ is the state after 𝑠 takes action a. 

According to the Bellman equation, the value function for each state 𝑉𝜋(𝑠) is shown in Equation 

17. The return 𝐺𝑡 is defined in Equation 18. We assign the uniform distribution for the initial policy. 

                                                  𝑉𝜋(𝑠) =  𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]                                    (17) 

                                                                 𝐺𝑡 = ∑ 𝛾𝑖𝑅𝑡+𝑖+1
∞
{𝑖=0}                                                                 (18) 

𝑉𝜋(𝑠) =  𝐸𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠]                  (19) 

𝑉𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠)𝑎 ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑉𝜋(𝑠′)]𝑠′,𝑟     (20) 

To avoid the waste of unnecessary computation, for each frame, we assume the previous frame is 

succeeded and this results in the backward drop frames, which is the depth-first search problem. The optimal 

keyframe set is selected according to the maximum collected rewards. 

𝑎 = 𝑎𝑟𝑔 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝐴

 ∑ 𝜋(𝑠)𝑎                  (21) 

Latent space exploration and goal generation  

Directly using images as inputs presents challenges. First, integrating image inputs can introduce 

redundancy, potentially leading to slow convergence. We introduce an approach based on latent space 

exploration to reduce dimensionality, providing more precise information, and reducing the unnecessary 

burden on subsequent models, thereby enhancing the efficiency and effectiveness of training.  

Second, insufficient demonstration data can impede the system's ability to learn effective policies 

or induce overfitting. To tackle this, we employ a strategy enabling continuous and effective learning to 

ensure the sustained operation of the system. We propose a goal state generation model that learns from 

demonstrations. In this model, the initial state of each episode is represented by its first frame, and the goal 

state by the last frame, to train the goal generation network in the latent space. Additionally, the goal 

generation network generates the goal latent state based on the initial latent state. The model's architecture, 
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a modified version of the beta-VAE model (Higgins et al. 2016), is illustrated in Figure 4. The latent space 

is crucial for reducing dimensionality and enhancing the model's accuracy and efficiency. However, 

conventional methods such as principal component analysis (PCA), autoencoders, and K-means may 

overlook critical details essential to other models. To address this limitation, we propose a modified beta-

VAE model as depicted in Figure 4. The latent space module is ingeniously designed to predict the final 

state based on the initial state, which encompasses RGB images and point cloud data. It leverages an 

encoder-decoder architecture to efficiently transform the RGB image and point cloud into a compressed 

vector representation, thereby optimizing computational resources. The compressed vector is subsequently 

input into a goal generation network, which endeavors to predict the final state. The fidelity of the prediction 

is quantitatively assessed using the Kullback-Leibler Divergence (KLD), facilitating the evaluation of the 

network’s predictive accuracy. The outputs of this module are the latent-spaced state and the latent-spaced 

goal, which serve as critical inputs for the succeeding module. 

 

 

Figure 4. Latent space goal generation network. 

 

To validate the effectiveness, we conduct an early experiment to show the results of the generation 

tryout in Figure 5. Our network exhibits convergence at approximately 600 steps, with the subsequent error 

remaining stable thereafter. Since this error pertains to the KLD error in the latent space, there is no specific 

unit associated with it. The error evaluates the similarity between two distributions, with lower error 
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indicating greater similarity between the distributions. The parameters for our training process included a 

learning rate of 0.001, a batch size of 64, and we trained our model for 1000 steps. The latent space 

dimension was set to 50, providing a balance between model complexity and computational efficiency. We 

used a β-VAE with β set to 0.5 to encourage disentangled latent representations while still prioritizing 

reconstruction accuracy. Our optimizer of choice was Adam, with a dropout rate applied of 0.5 for 

regularization to mitigate overfitting. 

 

 

Figure 5. The loss of goal generation of excavation tasks. 

 

Experiments and Evaluation 

Implementation details  

Robot Teleoperation Framework Setup 

Given the high cost and operational dangers of a real excavator, we simulate it using a robot 

platform. This approach allowed us to explore advanced control systems and the flexibility necessary for 

precise and controlled research tasks, which are critical for advancing construction robotics. Unlike 

standard excavators, our robot offers enhanced maneuverability and an intuitive control system, enabling 

detailed investigation into automated tasks that are challenging with traditional machinery. This choice not 
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only facilitates research into automation technologies adaptable to various construction equipment, 

potentially lowering costs and improving site efficiency, but also addresses safety concerns by reducing the 

risks associated with direct human interaction with heavy machinery. A bucket is attached to the end 

effector to simulate the excavator's shovel. Sand is placed in a 6-inch-thick box to simulate soft soil. The 

robot is controlled using a VR controller (HTC VIVE). The setup for the teleoperation system is shown in 

Figure 6. 

 

 

Figure 6. Excavation task system setup. 
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This architecture consists of four main components. Initially, the process involves extracting and 

relaying the HTC VIVE controller's position data to the Robot Operating System (ROS) using Steam VR 

Beta and the HTC VIVE SDK. The controller's coordinate origin is shifted from the top to the bottom for 

intuitive operation. Next, the controller's position and movement data are processed using an inverse 

kinematics algorithm to determine each robotic arm joint's target position. This approach, which relies on 

changes in position and rotation rather than absolute positioning, provides the operator with greater 

flexibility regarding their standing location. Meanwhile, joint data can be accessed through ROS. In the 

third stage, ROS Rviz displays the robotic arm's trajectory, following the received joint instructions. This 

setup not only facilitates control execution but also aids users in evaluating their control strategy. Lastly, a 

UDP protocol links the ROS nodes with the actual robotic arm, enabling operators to control a physical 

robot by publishing modified data. The modified data that is published via the UDP protocol to control the 

physical robot refers to the calculated joint angles and positions necessary for the robotic arm to replicate 

the movements dictated by the HTC VIVE controller. This data is essentially what bridges the operator's 

intentions with the robot's physical actions, enabling intuitive control over the robotic arm's movements. 

Experience replay buffer and Imitation Episode Buffer 

We utilize the experience replay buffer technique incorporating specific adaptations tailored to our 

methodology. Each item in the buffer is carefully designed to include the following components: an initial 

state randomly sampled from the trajectory, a subsequent keyframe as the subgoal, a final frame as the goal 

state, and an associated keyframe label as the reward for the primitive policy. During the training process, 

these components serve distinct roles: the subgoal aids in refining the keyframe generation model, while 

the other elements are crucial in sharpening the primitive policy. This strategic approach guarantees a 

cohesive learning process, effectively integrating keyframe generation with primitive policy training. 

Similarly, when constructing the Imitation Episode Buffer, we adopt a process similar to the 

Experience Replay Buffer. Here, we select states from the trajectory, including the nearest keyframe 

adjacent to the selected state and the final goal, integrating them into a single keyframe generation item. 
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For the Experience Replay buffer, we prioritize shuffling the buffer’s order to mitigate inter-item 

dependencies and foster robust learning. 

Gravity axis alignment 

Figure 7 highlights the importance of z-axis alignment, crucial for maintaining consistent 

directionality along the z-axis. This alignment is vital for ensuring that the point cloud from the RealSense 

camera seamlessly matches the robot manipulator's z-axis orientation. This alignment is achieved through 

synchronization with the direction of gravity. The effectiveness of this alignment is demonstrated in Figure 

7. 

 

 

Figure 7. Gravity axis alignment. 

 

Recognizing the critical role of accurate alignment in ensuring the quality of robot learning data, 

our choice of this method was driven by its potential to precisely capture spatial relationships essential for 

robotic perception and action. This method allows for a detailed representation of the environment, 

facilitating more accurate robot interactions with complex and dynamic construction settings. While our 

initial methodology did not explicitly quantify numerical errors associated with this calibration, it was 
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predicated on the adaptability of deep learning models to effectively interpret and utilize imperfect data. 

Deep neural networks, by design, can identify and mitigate the impact of data irregularities, including those 

introduced by calibration discrepancies. This inherent robustness to noise and bias makes the method 

particularly suited for environments where precision and adaptability are paramount. Incorporating this 

calibration approach, coupled with the sophisticated error-correction capabilities of deep learning, ensures 

that our robot learning framework remains resilient against minor misalignments and inaccuracies. This 

synthesis of advanced calibration techniques and neural network processing addresses both the immediate 

needs of robotic learning in construction and the long-term goal of creating autonomous systems capable 

of operating within highly variable and unstructured environments. 

We use Inertial Measurement Units (IMUs) for z-axis alignment, providing a more precise and 

efficient approach for parameter estimation and spatial correlation between the robot and camera. 

Leveraging IMUs simplifies and increases the accuracy of the alignment process, enhancing its efficiency 

and reliability. 

Keyframe-guided Trajectory Generation 

This section presents the results of experiments. We change the input data from engineered features 

to raw, gravity-aligned point clouds. Although organized in image order, pixels in the point cloud exceeding 

a certain depth threshold are set to 0. The experimental procedure unfolded in several systematic phases to 

ensure rigorous testing and accurate results. It commenced with the initialization phase, where the robot 

was set to a standardized starting position and primed to perform the excavation task. In the task execution 

phase, the robot employed each method under scrutiny to complete a pre-defined excavation task within 

the simulation environment, which involved the translocation of materials. During the performance 

measurement phase, we meticulously monitored and logged the robot's precision, efficiency, and adherence 

to safety protocols against our task success criteria. This multi-step process was replicated over 10,000 

trials for each method, providing a robust dataset and allowing for the assessment of performance 

consistency across trials. A trial was deemed successful if the robot accurately accomplished the excavation 
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task according to the predetermined criteria, operating autonomously without human intervention. Finally, 

in the data analysis phase, we computed the success rate for each method by calculating the ratio of 

successful trials to the total number of trials, with these results informing the comparative effectiveness of 

each method tested. The results, shown in Figure 8, demonstrate that our method achieved the highest 

success rate among the compared methods. The left figure shows the method not utilizing latent space, with 

the goal state manually provided. The right figure illustrates our method. Despite yielding a slightly lower 

success rate compared to the method without the latent space, we note that our method operates without 

manually specifying the final goal state. This supports our claim of reducing reliance on robotic or 

algorithmic expert involvement, thus highlighting the autonomy and self-sufficiency of our method. 

 

Figure 8. Task success rate. The figure 8.a illustrates our algorithm without latent space representation, 

where the goal and subgoal states are manually designed and not represented by images. In contrast, the 

figure 8.b depicts the success rate throughout the training process using latent space representation, 

eliminating the need for manual intervention.  In the 8.a, the blue line stands for the behavior cloning 

method minus -0.01 to distinguish it from the Gail method success rate. 
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To validate our proposed model, we conduct an experiment on a simulation platform to estimate 

the robot end-effector's position. We compare our method with several benchmarks, including the vanilla 

network, the spatial SoftMax method proposed by (Levine et al. 2015), and the beta-VAE method. In the 

experiment, we use aligned point cloud data with color as the network input, which then generated the 

output for the robot end-effector's position. The results, presented in Figure 9, show the loss in regular 

Cartesian coordinates at the top, while the bottom figure uses a logarithmic axis to depict the same loss for 

enhanced clarity. Notably, while the training loss for each method remains relatively consistent, the 

validation loss shows significant fluctuations. Using a logarithmic axis in the bottom figure further 

highlights the distinctions between the losses of each method. Our method establishes a stronger correlation 

between the encoded images and robot actions than the other methods evaluated. This demonstrates the 

efficacy of our method in accurately estimating the robot end-effector's position. 

 

Figure 9. Robot end-effector position estimation. 
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Ablation study 

We conduct an experiment to study the influence of latent dimensions, testing sizes of 10, 20, 30, 

40, 50, 60, 70, 80, 90, and 100. In addition, we perform experiments in both simulated and real excavation 

scenarios, with and without our proposed binding model. The results, presented in Figure 10, show that the 

experiment with our proposed binding model outperforms the experiment using the pure auto-encoder 

method. We choose 30 as dimension to compare across dimensions and considering both outliers and the 

success rate. While dimension 80 is also viable, we prefer a smaller dimension for our model. This is 

because a larger dimension introduces more uncertainty, leading to increased estimation variance. (Chen 

and Storey 2015) addresses the problem of extracting low-dimensional structures from high-dimensional 

data and discusses how under certain conditions, it is possible to consistently recover the structure using 

information up to the second moments of these variables. It implies that when attempting to model or 

estimate using higher dimensions, the complexity and uncertainty increase, which can affect the accuracy 

and variance of the estimations. This aligns closely with the concept that larger dimensions introduce more 

uncertainty and increase estimation variance. In Figure 10, the success rates with our proposed binding 

model are nearly 20% higher than those without the binding model. This result demonstrates the significant 

role our proposed binding model plays in the training process, improving the success rate for the excavation 

task. 
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Figure 10. Latent space dimension study for excavation task.  (a/b) Train/Validation of excavation task 

without binding model; (c/d) Train/Validation of excavation task with binding model. 

 

Discussion 

The applicability and scalability of this research are shown in three aspects. First, most of the time 

the construction industry is reluctant to change, posing significant challenges to collect data from expert 

demonstrations in construction sites. Using the proposed teleoperation method as an intermediate solution 

can increase the feasibility, desirability, and viability of the construction industry to use semi-automated 

robots. This method can also help to collect the necessary data to train the robots towards full automation. 
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With the operator involved in the teleoperation process, the knowledge, abilities, and expertise of the 

operator can be used to train construction robots. The use of the operator skills helps in retaining the security 

and efficiency of construction sites. Expert demonstration collected from teleoperation is significantly 

different from simulation and VR demonstration. Unlike simulated data, expert demonstration provides 

more realistic and practical data. This valuable data enables robots to be trained more effectively. In the 

future, such training will prepare construction robots to handle complex tasks in unstructured sites. Second, 

as demonstrated by the keyframe extraction results, the proposed method can eliminate over 80% of the 

redundant frames in the expert demonstration. This achievement can streamline the data required for robot 

training, reducing computational loads and improving efficiency. The well-known “garbage in, garbage out” 

philosophy highlighted that the quality of data greatly influences the quality of the results. To ensure that 

robots can imitate human expert control in complex construction processes, it is essential to remove noise 

and redundant frames from the expert demonstration data. This is particularly important for construction 

robots. In construction, human operators are often disturbed, and the data they generate tends to have more 

substantial noise compared to other operations. The proposed keyframe method employed the RL-based 

method to find the optimal subset as the keyframe set, which was demonstrated in various sampling tasks. 

In addition, the learning results showed that because of the keyframe extraction, robot learning becomes 

very efficient and effective, and is superior to state-of-the-art methods. After acquiring the keyframe, a 

model-free robot training method based on keyframe extraction, and a hierarchical imitation learning 

method were proposed. The stochastic primitive policy is pre-trained with soft actor-critic and with 

hindsight experience replay (HER) method. To demonstrate the applicability and scalability of our method, 

two scenarios were evaluated, where construction robots can be widely used: excavation in both simulation 

and real-world settings using different robotic arms. These demonstrated the generalizability of the 

proposed method concerning robotic trajectory tasks and robotic manipulators. Such generalizability is 

critical for the application of robots for full automation in the construction industry, a fact that is reinforced 

by the superior results obtained compared to the state-of-the-art. Third, to enhance the extensibility to a 

wider range of tasks and reduce the computational loads of RL, an integrated approach that combines 
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vision-based trajectory generation with latent space exploration was proposed. Specifically, the raw states 

were substituted with latent states, and the primitive policy was pre-trained using a latent space variable 

and latent space states were compiled in the trajectory buffer. The obtained result shows that our proposed 

binding model outperforms the pure auto-encoder method. For the excavation task, the binding model plays 

an important role in the training process, boosting the success rate from 40% to over 60%. The result 

demonstrates that latent space exploration facilitates the training process of RL policy and improves robot 

learning performance. 

This research has several limitations that deserve future research. First, a significant limitation of 

imitation learning is that the robot's proficiency can only match the quality of the expert demonstration. 

Specifically in the context of construction sites, many tasks hinge on human operators' subjective 

assessments and experiences, and their execution is not necessarily optimal. Therefore, there can potentially 

be a substantial scope for enhancing the robot's manipulative abilities in complex construction 

environments. In addition, imitation learning trained robots do not always generalize well to scenarios that 

were not included in the training data. The construction site dynamics further pose significant challenges 

for such robots trained by imitation learning. In the future, novel machine learning methods should be 

integrated with sensing and engineering knowledge. This integration will equip robots with robust 

performance in various scenarios. Additionally, it will help optimize robot's trajectory and manipulation, 

allowing them to excel in imitating human operators' demonstrations. The second limitation of this research 

is the persistent scarcity of comprehensive real-world data and demonstrations for robot training. Despite 

the teleoperation modes and acquisition of real-world operation data for robot training, the amount of data 

acquired to achieve robust robot intelligence is very limited. This is particularly caused by privacy concerns 

over data from the construction companies that acquire and use these robots. Future research directions 

include the use of federated learning mechanisms to harness the data from different construction companies 

and aggregate the operators’ demonstrations in a privacy-preserving way to train the robots to automatically 

conduct complex construction tasks. 
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Conclusions 

Responding to the call for transformation in the labor-intensive, low-productive, and dangerous 

construction industry, this research proposed a generalizable framework to accelerate the training of 

construction robots from human supervision and demonstration in teleoperation mode. This approach aims 

to foster the adoption and deployment of robots in real construction sites. To this end, this research 

addressed three technical challenges. First, to address the lack of high-quality training data, a teleoperation 

architecture was developed. This architecture allows users to control robots to complete construction tasks 

as an intermediate solution to full automation, while collecting useful human supervision and demonstration 

data. Teleoperation emerged as a practical means to collect human data for robot training. Second, to reduce 

a large amount of noise in the collected data for efficient robot training, a keyframe identification and 

extraction method was proposed to increase the success probability of sampled trajectories. As the 

importance of each sampled action in the trajectory is not uniformly distributed, a keyframe identification 

method was proposed. This method can further reduce the sampling rate, helping to reduce the stacked 

bottlenecks. This method also improves the quality of the expert demonstration. The keyframes of the expert 

trajectory were found using the proposed RL-based method. The results demonstrated the efficacy of the 

keyframe methods in sampling the expert trajectories, which can reduce 80% of redundant frames, 

providing a solid data basis for robot learning. To enable generalizable robot learning for different 

construction tasks, a hierarchical reinforcement learning structure was proposed. This structure trains 

model-free policies to accomplish the trajectory tasks by incorporating the extracted keyframe methods, as 

the keyframe probability was used as an additional reward and was incorporated in the environmental 

reward feedback. Third, to bring the extensibility to a wider range of tasks and reduce the computational 

burden of reinforcement learning training process, an integrated approach that combines vision-based 

trajectory generation with latent space exploration was proposed. The results illustrate that latent space with 

the robot action binding outperforms the state-of-the-art methods by 20% improvement in success rate for 

excavation tasks. The reason is that our proposed method integrated latent space containing the dimension 
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reduced information which can be more accurate and reduced the load of the consecutive model. The 

proposed robot learning method was demonstrated in excavation experiments for validation. Our method 

has superior performance as compared to the state-of-the-art and has significant potential for application in 

construction robots. 
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