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Abstract

The construction industry has long been plagued by low productivity and high injury and fatality
rates. Robots have been envisioned to automate the construction process, thereby substantially improving
construction productivity and safety. Despite the enormous potential, teaching robots to perform complex
construction tasks is challenging. We present a generalizable framework to harness human teleoperation
data to train construction robots to perform repetitive construction tasks. First, we develop a teleoperation
method and interface to control robots on construction sites, serving as an intermediate solution toward full
automation. Teleoperation data from human operators, along with context information from the job site,
can be collected for robot learning. Second, we propose a new method for extracting keyframes from human

operation data to reduce noise and redundancy in the training data, thereby improving robot learning
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efficacy. We propose a hierarchical imitation learning method that incorporates the keyframes to train the
robot to generate appropriate trajectories for construction tasks. Third, we model the robot’s visual
observations of the working space in a compact latent space to improve learning performance and reduce
computational load. To validate the proposed framework, we conduct experiments teaching a robot to
generate appropriate trajectories for excavation tasks from human operators’ teleoperations. The results
suggest that the proposed method outperforms state-of-the-art approaches, demonstrating its significant

potential for application.
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Introduction

The construction industry, valued at $13 trillion in 2021 and growing at a compound annual growth
rate (CAGR) of 9.8% to reach more than 23 trillion by 2026, is an essential component of the global
economy (Andrew Reynolds 2022). However, the construction industry faces long-standing issues,
including an aging workforce, as well as safety and health problems. Construction work, which is dangerous,
physically demanding, and cognitively challenging, has traditionally been performed by an aging and
diverse workforce in unstructured and dynamic environments. The low productivity results in 98% of
projects having cost overruns and 77% suffering from schedule delays (Sriram et al. 2015). The construction
industry has the highest number of fatalities and the highest rate of work-related musculoskeletal disorders
(Wang et al. 2017). Out of the 4,779 worker fatalities in private industry in 2018, 1,008 or 21.1% were in
construction (Occupational Safety and Health Administration 2018). In addition, 44.6% of all construction
injuries and illnesses were related to musculoskeletal disorders, and the lifetime risk of overexertion injuries
in construction is 21% (The National Institute for Occupational Safety and Health (NIOSH) 2019). There
is great but unconsolidated potential for robotic construction to improve work productivity, safety, and

workers’ occupational health (Saidi et al. 2016).



Robots are envisioned for deployment on construction sites to assist with physically demanding
work, relieve workers from repetitious tasks, and protect them from on-site risks. Despite their great
potential, the challenge of imbuing robots with the intelligence to navigate the unstructured and dynamic
environments of construction sites, and execute complex tasks, remains formidable. Teleoperation-based
methods, while allowing for direct control of robots, introduce significant challenges, including the need
for extensive training that imposes high costs in both time and resources, compounded by the scarcity of
skilled workers. Learning-based methods emerge as a solution, enabling robots to learn from data, improve
over time, and adapt to diverse tasks and environments without heavy reliance on skilled operators. This
approach not only addresses the limitations of teleoperation but also capitalizes on its immediate benefits,
offering a balanced path forward in the dynamic construction environment. Developing methods to teaching
robots without relying on expert intervention stands out as a significant step in advancing their operational
capabilities within construction environments. At present, robot operations in these environments rely
heavily on the expertise of skilled professionals, through either manual programming or data-driven
approaches. Our research aims to democratize this process by enabling workers with varying levels of
robotics proficiency to transfer their job skills to robots, thus facilitating automated task execution. By
moving away from exclusive reliance on experts, we aim to foster a more inclusive and accessible approach

to deploying robots in construction contexts.

Efficiently teaching robots presents inherent challenges, complicated by the balance between data
scarcity and the necessity for effective demonstrations. To overcome this hurdle, we propose an integrated
methodology that merges mimic learning with reinforcement learning. Our approach adeptly handles both
task acquisition and execution exploration, thus eliminating the need for expert involvement in the teaching
process. Aligned with human learning principles, our study involves two main components: first, evaluating
the teacher's experience and extracting key points; and second, learning from these key points and the
teacher's experience. The first part involves evaluating the teacher's experience and extracting key points

from trajectory data. We propose a keyframe identification method to reduce data volume and dimensions



for training. The second part comprises an imitation learning framework combined with a goal-conditioned
reinforcement learning model, enabling robots to learn from human demonstrations while maintaining their
exploration capabilities. Additionally, we transform the data into a low-dimensional latent space
representation to facilitate learning process. We propose a hierarchical reinforcement learning structure and
a generative-adversarial-like keyframe classification structure. The hierarchical structure includes a subgoal
generation network and a primitive motion network. Moreover, we propose a vision-based trajectory
generation method that leverages latent space exploration to reduce computation load and enhance learning

performance.

The rest of the paper is organized as follows. Section 2 reviews relevant literature in construction
robotics and robot learning methods, Section 3 illustrates the framework and methods, including keyframe
extraction, robot learning framework and the latent space generation, Section 4 presents the experiment
results and compares the performance with the state-of-the-art, Section 5 discusses the applicability of the
proposed method and its limitations, Section 6 concludes the paper with remarks on the contributions to

knowledge and insights for practical application.

Literature review

Pre-programmed and Teleoperated Robotics

The development of construction robotics is changing the management and execution of
construction projects. There are three types of construction robots: pre-programmed, teleoperated, and
learning-based robots (Saidi et al. 2016). Pre-programmed construction robots are highly automated and
can be used for various construction tasks without human intervention. (Gambao et al. 2000) designed an
integrated automated robotic system to handle the shuttering and installation of plane-parallel blocks during
the assembly of building blocks. (Yu et al. 2009) integrated a pattern generation algorithm into an automated
brick-laying system to perform brick handling on construction sites. (Keating and Oxman 2013) designed

a multi-functional, pre-programmed robotic arm platform. This platform utilizes major manufacturing



technologies including additive, formative and subtractive fabrication. (Lublasser et al. 2018) proposed a
robot-based method to apply formwork concrete onto the bare walls of existing buildings. This method
provides a facade finish that is insulating and recyclable, where the motions of the robotic arm are
programmed. These pre-programmed construction robots have the potential to save both time and money.
However, they can only carry out the duties for which they were designed and are unable to adapt
automatically to changes in construction sites. Teleoperated construction robots lower the risk of accidents
and injuries by enabling human workers to complete tasks from a secure location. Also, they are adaptable
and capable of doing various tasks, such as demolition, excavation, and material handling. Teleoperated
humanoid robots have been well-developed to remotely operate various industrial vehicles like lift trucks,
and backhoes at construction sites (Hasunuma et al. 2002, 2003; Yokoi et al. 2006). (Kim et al. 2009)
designed a teleoperated excavator system to help avoid workers’ risks while operating the excavator on
inclined planes. Control data for this system is captured from sensors attached to the operators’ arms and
then transmitted via Bluetooth. (David et al. 2014) designed a system merging information from real and
virtual worlds to help workers remotely perform inspection and maintenance of on-site tunnel boring
machine. (Liu et al. 2021) and (Xia et al. 2023) developed a remote-control system that converts signals
received from a wearable electroencephalogram device into commands for robots. This innovative approach
enhances workers' control in environments such as underwater and space construction, where the workers'
ability to manually steer the robots is constrained. However, the latency between the operator's commands
and the construction robot's actions has been a common issue (Falanga et al. 2019; Luck et al. 2006).
Meanwhile, the teleoperated robotics still need human intervention to monitor their status and issue
commands in real time. To address these issues, researchers have investigated learning-based robotics

which can automatically complete the job while adapting to changes in construction sites.

Learning-based Robotics

Construction robots using reinforcement learning (RL) technology are autonomous machines that

may gain knowledge from their mistakes and hone their accuracy and productivity over time. Many RL



methods have been developed for applying learning-based robotics on construction sites, enhancing
efficiency and safety. (Apolinarska et al. 2021) applied an adapted Deep Deterministic Policy Gradient
algorithm (DDPGQ) (Lillicrap et al. 2016) algorithm to train robots for assembling lap joints in custom timber
frames as inserting a timber element into its mating counterpart(s). (Belousov et al. 2022) proposed a Twin
Delayed DDPG (TD3) (Fujimoto et al. 2018) based RL method to train robots to assemble a structure from
predefined discrete building blocks autonomously, like stacking blocks on placed blocks. (Lee and Kim
2021) developed an automated construction hoist trained by deep Q-network (DQN) (Mnih et al. 2013) to
reduce the number of unnecessary trips when performing lift tasks. These studies mainly focus on training

robots from scratch which could reduce learning efficiency.

Utilizing expert demonstrations to train RL-based robots has been well investigated to reduce
unnecessary explorations and improve learning efficiency (Fang et al. 2019; Li and Zou 2023; Pfeiffer et
al. 2018; Pore et al. 2021; Zhou et al. 2023b; a). (Huang et al. 2023) trained RL-based construction robots
to learn long-horizon tasks like picking and installing window panels from demonstrations in virtual reality
(VR). (Duan and Zou 2023) collected intuitive expert demonstration using VR platform where a robot will
automatically follow the position, rotation, and actions of the expert's hand in real-time, instead of requiring
an expert to control the robot via controllers. However, controlling real construction robots and their
perception of the environment are significantly more complex than what is simulated. Many methods have
been proposed to adapt the trained RL policy directly to real construction robot. (Liu et al. 2018) developed
a framework for robot learning to imitate behaviors from expert demonstration videos. (Liang et al. 2019,
2020) proposed a Learning from Demonstration (LfD) method to teach robots to perform quasi-repetitive
construction tasks like installing ceiling tiles from expert demonstration videos. For this training approach
to yield strong model performance, a substantial number of high-dimensional videos is typically required.
As previously indicated, expert demonstrations may contain a significant amount of redundant data. To
solve this issue, we propose a keyframe-based learning system. Researchers have employed keyframe

extraction methods to improve computational efficiency for robot learning (Hartmann et al. 2021; Zhao and



Cheah 2023). While (Hartmann et al. 2021) enhances task division and automation for scalability in multi-
robot systems, our contribution highlights the importance of teleoperation in bridging human expertise with
robotic capabilities, particularly in unpredictable or intricate construction environments. Unlike (Zhao and
Cheah 2023), which relies on an automated BIM-based system using object detection for robot initialization,

our work extends the capability of robots to learn from their operations and environments over time.

Reinforcement Learning in Robetics: Developing robots to accomplish tasks has been
extensively explored, utilizing both model-based and model-free approaches. Model-based methods,
referenced in (Abdolmaleki et al. 2018; Song et al. 2019; Zakka et al. 2019; Zeng et al. 2020), often
incorporate human-defined primitives to guide robot actions. Although effective in certain scenarios, these
methods struggle with generalization across diverse task types due to the vast range of potential primitives.
Conversely, model-free approaches (Ding et al. 2019; Haarnoja et al. 2018; Ho and Ermon 2016; Nasiriany
et al. 2019; Zhu et al. 2020) offer flexibility but face challenges such as high variance in pose estimation
and prolonged training times due to reward sparsity. Both paradigms aim to address the complex
requirements of long-horizon and temporally extended tasks, with strategies including compositional policy
structures derived from demonstrations (Abdolmaleki et al. 2018), manually specified primitives (Kabir et
al. 2020), learned temporal abstractions (Chane-Sane et al. 2021), and direct model-free reinforcement

learning (Schulman et al. 2017).

Challenges in Imitation Learning: Within the imitation learning (IL) framework, both behavior
cloning and inverse reinforcement learning face distinct challenges. Behavior cloning methods are known
for their substantial data requirements and the propensity to inherit bias from the training dataset. Inverse
RL, while powerful for deriving reward functions from observed behaviors, often struggles with learning
comprehensive reward functions that encompass entire trajectories. These methods have yet to overcome

the limitation of requiring successful examples to facilitate model training effectively.

Addressing the Limitations: Our method introduces a novel approach to surmounting these

hurdles. By integrating a new experience relabeling method and an action evaluation network, we directly
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address the issues of off-trajectory actions and the reward sparsity common in complex visual manipulation
tasks. This innovation allows for more precise bottleneck estimation and alleviates the high variance issue
associated with model-free paradigms. Furthermore, our approach mitigates the restrictive assumptions
classical planning methods make about state space and state connectivity, enhancing applicability to a

broader range of complex tasks.

Developing robots to accomplish tasks has been a well-studied problem (Hentout et al. 2019; Jing
et al. 2018), these methods can be categorized into model-based and model-free approaches. Existing
model-based methods typically do not perform well for indefinite problems. Behavior cloning methods are
usually data-ravenous, and the results are biased (Codevilla et al. 2019). Inverse RL methods are hard to
learn reward function for whole trajectory (Arora and Doshi 2018). Moreover, the model-free paradigm
such as (Ho and Ermon 2016; Nasiriany et al. 2019) suffers from high variance in pose estimation, resulting
in a lack of precision in bottleneck estimation. Model-based approaches (Abdolmaleki et al. 2018; Song et
al. 2019; Zakka et al. 2019; Zeng et al. 2020) usually come with human-introduced primitives and train the
robot actions based on these primitives. However, in trajectory generation tasks, the primitives vary in an
enormous range, and they are hard to generalize to other types of tasks. Model-free methods (Ding et al.
2019; Haarnoja et al. 2018; Ho and Ermon 2016; Nasiriany et al. 2019; Zhu et al. 2020) typically take
longer training times and suffer from reward sparsity. The long horizon and the temporally extended tasks
enable the robot to perform a diverse set of tasks (Finn et al. 2015; Jayaraman et al. 2018; Thakar et al.
2018). These approaches have added compositional structure to policies, either from demonstration
(Abdolmaleki et al. 2018), with manually specified primitives (Kabir et al. 2020), learned temporal
abstractions (Chane-Sane et al. 2021), or through model-free RL (Schulman et al. 2017). These works have
studied such hierarchy in grid worlds and simulated control tasks with known reward functions. Classical
planning methods have proven effective in performing long-horizon tasks. However, they make restrictive
assumptions about the state space and the connectivity between states. This limits their applicability to

complex visual manipulation tasks. In these methods, the problem of the off-trajectory actions and the



reward sparsity of complex tasks are not solved. In our method, we propose a novel experience relabeling

method and an action evaluation network to address these two problems.

Vision-based Trajectory Generation with Latent Space Exploration

The feasibility of keyframe-guided trajectory generation in learning-based robotics was discussed
in the Introduction chapter. However, in practical applications, obtaining accurate object and target
information is challenging without supplementary algorithms. Utilizing various sensors, such as laser, radar,
and RGB-D camera, has been well investigated to solve this problem. (Mandlekar et al. 2019) used a crowd-
sourced dataset that has image observations from a front view camera to let robotic arm learn control
policies. (Praveena et al. 2019) proposed a handheld grabber tool, equipped with force-torque sensor,
providing accurate measurement of the applied forces and torques when grasping objects. (Zeng et al. 2022)
developed educational robots sharing certain characteristics including the focus on assistive functions like
buttons, grayscale sensors, and cameras. However, these methods do not solve two main problems: First,
the computation load of the reinforcement learning model is massive, resulting in difficulty and latency in
the training process. To tackle this problem, our method models the vision space into the latent space.
Second, RL methods typically perform poorly with high dimensional inputs. To tackle this problem, a
trendy way to deal with image information is to use an encoder-decoder network to reduce the reinforcement
learning network input dimension. (Abdolmaleki et al. 2018) argued that existing reinforcement learning
algorithms can be expensive in terms of sample requirements and suffer from high gradient variance,
resulting in unstable learning and slow convergence. To keep track of reachable latent states, (Bharadhwaj
et al. 2020) proposed a distance-conditioned reachability network that is trained to infer whether one state
is reachable from another within the specified latent space distance. A conventional algorithm comprises
an image depth information encoder and a reinforcement learning framework. In this paper, we also adopt

this framework approach.

One limitation of existing vision-based robot manipulation learning methods is the requirement for

a carefully constructed environment. Repeatedly setting up the environment can introduce configuration
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errors. In the study by (Luo et al. 2021), the task involves robot manipulation using a monocular vision
system. The critical aspect of environment setup is the camera's installation position, which affects the
ability to obtain spatial information about the target from a single camera. Incorrect camera positioning can
lead to issues with occlusion. In the study by (Zhou et al. 2022), the task involves robotic fruit grasping
under leaf interference. The positioning of the leaves and fruit is crucial because it affects the robot's ability
to grasp the fruit. In the study by (Liu et al. 2020), the robot learns policy autonomously by interacting with
the environment. The setup of the robot and object states is important because it affects learning efficiency.
Therefore, careful environment setup is critical to ensuring the accuracy and efficiency of robot
manipulation tasks. To tackle this problem, we propose a robot end-effector position estimation network to

match the robot encoder position with the estimated position.

The goal of learning from vision-based demonstrations is to map the image with the target goal
states (Song et al. 2019; Zeng et al. 2020). A key limitation of many existing methods is their requirement
for predefined goal states and positions. (Lenz et al. 2013) presented a two-step cascaded system with two
deep networks for detecting robotic grasps in an RGB-D view of a scene, effectively avoiding the need for
time-consuming hand-design of features. (Hester et al. 2017a) introduced a novel algorithm that utilizes
small sets of demonstration data to significantly accelerate the learning process in deep RL, addressing the
issue of RL algorithms typically requiring large amounts of data before achieving reasonable performance.
(Zhang et al. 2020) proposed a hierarchical path planning framework, SG-RL, which combines geometric
path-planning with RL to plan rational paths in continuous and uncertain environments. (Kabir et al. 2019)
presented a non-linear optimization problem for path-constrained trajectory generation in multi-robot
systems. (Hester et al. 2017b) presented an algorithm called Deep Q-learning from Demonstrations that
leverages small sets of demonstration data to significantly accelerate the learning process in RL. (Levine et
al. 2016) presented a learning-based approach to hand-eye coordination for robotic grasping from
monocular images. The authors trained a large convolutional neural network to predict the probability of

successful grasps based on the task-space motion of the gripper, using only monocular camera images.
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However, this approach assumes that the goal state and position are predefined. To overcome this limitation,
our method learns the goal state from the collected demonstrations, which differs from approaches that rely

on predefined goals and positions.
Methodology

Figure 1 shows three main modules designed for efficient trajectory generation and state
transformation. The first module, Keyframe Identification, constructs a training data repository by
employing dynamic programming to extract keyframes from the input trajectory, capturing essential
temporal instances. The second module, Goal-Conditioned Keyframes-Guided Trajectory Generation,
predicts the final state based on initial RGB images and point cloud data using an encoder-decoder structure
to optimize computational resources. The goal generation network within this module utilizes Kullback-
Leibler Divergence (KLD) to assess predictive accuracy. The third module, a goal-conditioned policy
learning framework, is bifurcated into an imitation learning component, where a convolutional neural
network predicts subgoals, and a reinforcement learning component, where a Soft Actor-Critic (SAC)
algorithm-based policy generates actions for state transformation. Trained on classified keyframes, this

integrated approach ensures enhanced learning efficiency and trajectory generation.
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Figure 1. Structure of our method.

The workflow of the algorithm, detailed in Algorithm 1, proceeds as follows: the imitation learning

approach trains both the keyframe generation policy and the keyframe evaluation system using a collection

of demonstrations. Following this, the primitive policy is iteratively updated, using the generated keyframes

as directional objectives for executing basic motion sequences. The agent's generated trajectories are

evaluated by the keyframe evaluation module. Those evaluated as proficiently executed are added to both

the experience replay buffer and the imitation episode buffer. Furthermore, the latent space module

generates latent states relevant to both the imitation and reinforcement learning modules. Subsequent

subsections will provide a detailed elaboration on each constituent element, exploring the intricacies of

keyframe generation, evaluation, latent space computation, and algorithmic refinement.

Algorithm 1 Easy Teaching Algorithm

AN AW~

: N := max episodes, M := max steps for each episode

Load the pretrained encoder and decoder for the latent space network
Initialize keyframe generation network 1y,
Initialize keyframe classification network Cy,

Initialize primitive motion network 7,
Initialize Experience Replay Buffer Bg
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7: Initialize Imitation Episode Buffer B,

8: for i from 1 to N do

9:  Generate the goal state g for current state s
10: for j from 1 to M do

11: Generate subgoal s, with s and g utilize 1y

12: Generate action a with s and s, utilize 1T,

13: Collect the state s’ after execution and reward r

14: Update Primitive policy 7,

15: Put the current data to the experience reply buffer B
16: Add the collected data to current episode trajectory T;
17: end for

18: Evaluate trajectory T; and identify the keyframes Tf‘

19:  Generate Imitation learning items from T; and Tﬁ‘, add them to Imitation Episode Buffer BI
20:  Update the parameters in 1t and Cy,

21: end for

Keyframe Guided Trajectory Generation

Figure 2 shows our policy learning architecture composed of key components that collaborate
synergistically: keyframe policy 7y, primitive policy 7,,. Latent-Spaced Goal g and Latent-Spaced State s,
coming from trajectory generation module, are fed into fed into a Convolutional Neural Network (CNN)
serves as Keyframe Policy 7y, which interprets the information and predicts a subgoal s,. Latent Vector z,
coming from depth and RGB images encoded by the VAE encoder, is fed into the CNN as well. The subgoal,
together with the current Robot states R, are used to train a Soft Actor-Critic Primitive Policy 7,
responsible for robot action prediction. The output of this architecture is a robot Action a, which is the

actual command that would be executed by the robot.

Latent Vector Robot states —
Train e = eu
Policy Learnin
e ) CNN — Soft Actor-Critic y gl
| '
Label Keyframe Palicy |Predict Trai Primitive Policy |Predigt A I
Latent-Spaced Stalea —_— : T —% Subgoal D rain e Action a !

Figure 2. Policy learning architecture.
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A significant hurdle in our field is balancing the need for robotic learning against the scarcity of
experts in robotics algorithms. Our model mitigates this by adopting a novel three-network training
architecture. This framework consists of a keyframe policy, primitive policy, and keyframe classifier, all
integrated within a GAN setup. This unique configuration facilitates the transfer of human skills to robots,
enabling them to generate dynamic subgoals and adapt to the construction environment's complexity and
unpredictability. Furthermore, our keyframe identification model sharpens the focus on significant task
moments, optimizing learning efficiency. This approach not only boosts construction robot efficiency and
autonomy but also adeptly navigates the nuances of safety, environmental variability, and the seamless

integration into existing construction processes.
Keyframe Policy: Keyframe Generation

The keyframe order in the trajectory should be considered when teaching the robot. In
reinforcement learning tasks, there are many cases with an unknown number of subgoal generations. To
address this problem, we formulate the trajectory distribution as an MDP function which naturally encodes

the keyframe order into the trajectory.

p(S0,9) = le~c (56, 9, ar)p(atlse, g) (1)

Then the expected discounted return of the trajectory is

R = Et~r[2aytr(st'g' a)] )

Where r(s¢, g, a;) = 1[S¢41 == g]. A randomly initiated policy is not feasible for providing a
successful trajectory, resulting in consistent negative rewards and no effective training. Expert
demonstrations are introduced to provide a guideline for the robot to train in the right direction, and the

trajectory distribution is calculated using the keyframe extraction method.

Directly generating all keyframes for the trajectory conditions on the initial state s, and goal g

makes it hard to guarantee the success of the task. To mitigate compounding errors, we propose generating
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the keyframes following an MDP process that conditions the generation on the current state s; and goal g.

Then the policy can be optimized by maximizing the expected discounted reward.
](9) = Eg~pg,1~r(.|g) [Zt )/tT'(St, Sgtrat’ g)] (3)

The keyframe is a distribution condition on the current state s; and goal g, we add a classification
Cy (st, Sger Aty g) network to distinguish the keyframe and ordinary states. The classification network takes

the current state, generated subgoal, action, and goal state as input and provides a unique label to indicate
whether the sampled frame is a keyframe or not. To utilize the keyframe demonstration information in the
reinforcement learning loop, we add the expected keyframe score as the regularization part of the expected

discounted return function J(0).

](9) = Eg~pg,r~‘r(.|g) [Zt ]/tT'(St, Sgtl ag, g)] + Es

gt~7TK,a~7TP [CIIJ(St' Sgt' ag, g)] (4)

where Eg.. pgT~T(19) ¢ ytr(st, Sger At g)] is the expectation of the demonstration score, g~p, is the goal

distribution, and t~7(. |g) is the demonstrated trajectory, E K gnP[Cy (st, Sgpr At g)] is the expected

Sg~T,a~T

keyframe score parameterized by y, X is the keyframe generation policy, ¥ is the primitive policy.

Different from generative adversarial methods (Ding et al. 2019; Ho and Ermon 2016), our
classification method assigns scores to sampled frames instead of distinguishing them from those generated
by experts or policies. In our classification network, we employ a regression-style layer instead of an
activation layer, assigning positive and negative labels with 1 and -1, respectively. By assigning positive
and negative labels, we penalize frames that are not keyframes and encourage agents to generate keyframes.
The regression layer, being the last layer, takes the keyframe distribution into account. The keyframes
extracted by the keyframe extraction method are within a keyframe distribution, which cannot guarantee
optimal keyframes but ensures they are not far from being optimal. Therefore, we use the extracted

keyframe as the label baseline. There could be better keyframes with scores greater than 1, and frames
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significantly worse with scores less than -1. The loss of the classifier is the regular cross-entropy loss, and

the loss for the expert keyframe imitation is:
LCw = |Esg~K[C¢(s, Sg» a,g)] — ESQNT[K[CIP(S, Sg» a,g)]l ®)]

Where K is the demonstrated keyframe set and ¥ is the keyframe generation policy. By taking

this loss, we connect the demonstrations and the keyframe generation policy.
Primitive Policy: Goal-Conditioned Soft Actor-Critic

Since the primitive policy is working on the same agent, it shares the same state space S, action
space A, and environment dynamics P. Then the formulated finite-horizon, goal-conditioned Markov
decision process can be defined by tuple M, = (S,AP, Ipr Tp» yp), where S, 4, P are the same with M and
the reward function is 5, (s, a, g) the discount factor is y,,. The primitive policy is formulated into a regular

goal-conditioned soft actor-critic reinforcement learning framework. And the primitive policy is fitted by

maximizing the expected discounted return:
]E (P) = Egp Pg.Tp A™p(|9) [X¢ yggrp (st ae, 9] (6)
with the trajectory distribution

d™’ (t19) = po(so) [1: P (arlse, 90 (Se411Se ar) (7

where J¢(mP) is the expected discounted reward of the primitive policy and ¢ is to distinguish with the
keyframe generation reward. And (. |s, g) generates continuous robot action conditioned on state s and
goal g. The primitive policy is updated standalone and follows the standard off-policy actor-critic paradigm.
There are two phases of training the primitive policy: pretrain and train along with the whole model. During
the pretrain phase, we take advantage of the hindsight experience replay technique to accelerate the training
process. The action works on the transition of tuples (s;, a;, S¢+1, g), and the critic evaluates its action-state

value. The update function is in the following equations concerning Q-function parameters ¢y,
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o1 2
Q¢k+1 =argminz E(StJat'St+1Jg)D [rt - Q¢ (st, ay, g)] ®)
With the target value
e =71(se,a,, g) + yEar+1n(,| st,g)Q‘l’k(st“’ a1, 9) )

The policy update by maximizing the discounted reward respect to advantage function

A"(s,a,g) = Q™(s,a,g9) —V™(s,g), where V™ (s, g) is the value function for current policy.
" = arg max B g)~p.a~n(isg)[Xe (St 9o ar) + alogm (- Isy)] (10)
Keyframe Extraction Method

The collected trajectories are sampled directly from the robot state broadcasting. As in our case,
the robot states broadcasting at 200Hz. Therefore, for each trajectory, the collected data is much more
redundant than necessary. Furthermore, the execution of robot manipulation tasks generates trajectories,
whether they are derived from human teleoperation or reinforcement learning explorations. However, these
trajectories, irrespective of their source, do not guarantee optimality. This section aims to tackle the issue
of noise inherent in trajectories generated by human-operated and the reinforcement learning agent-
operated robotic arms. To mitigate irrelevant movements and emphasize essential information, we
introduce the concept of keyframes. Keyframes are defined as minimal sampled poses of the robot end-
effector within a trajectory that enable task completion. To eliminate the redundant road points in the
trajectory of the succeeded task, and avoid computation explosion problem, we extract the keyframe with
two steps: trajectory down sampling and essential keyframe identification from the down sampled trajectory.

This method ensures efficient use of data while maintaining trajectory accuracy.
Frame Sampling

The collected states in the demonstration episode are S = {I, D, p}, I is the RGB image, D is the

depth image, and p is the robot and the end-effector position. p = {jl, J2.J30JarJ5r Jo» ep}, where j,,n =

17



1,2,3,4,5,6 is each joint angle of the robot, e, is the end-effector states. For each trajectory, the collected

robot states history can be expressed as

T = {po, P - =) Pn} (11)

where the p,, n =1, 2, 3, . . . is the sampled robot states (road points) from task execution trajectory.

Therefore, we have a collection of line segments.

L= {lo,ll, ...... ’l‘l’l—l} (12)

We claim that, in straight-line segments, all road points except the endpoints are redundant. We extend this
assumption to the angle between consecutive trajectory segments, proposing that road points within a
certain angle threshold are considered redundant. Furthermore, we assess the angle between every two
consecutive line segments to identify turns. We assume that the turns are more important than other road

points in the trajectory. Then

_ _liliva
[illli4a]

,0 =arccos(a),i+1<n (13)

Where [;, I;,4 are the line segments on the trajectory, a is the cosine value of two vectors, and 8 is
the angle between [; and [; 1. Then we apply the peak finding method (Kadane 2023) to find the local

maximum o as the sampled actions from the expert trajectory. We define the sampled trajectory as

T, = {p, 02, D3y oo o ,Pmbm<n (14)

In scenarios where frames exhibit a peak angle and cannot be keyframed, especially when
incorporating human demonstrations, the influences of operational habits or other noise are common. These
frames frequently result in longer and less efficient routes for the robot, sometimes introducing setbacks.
To address this issue, our approach not only extracts these peak angle frames but also uniformly samples
additional frames from each segment of the trajectory. These extra frames are added to the keyframe
candidate set, enabling a more thorough and effective keyframe selection that accommodates and reduces

the impact of such irregularities.
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We introduced Ty to denote the enhanced set of key states, which includes not only the peak angle
frames identified through the peak finding method, but also additional frames uniformly sampled from each
segment of the trajectory. This enrichment of Ty into Ty aims to mitigate the impact of operational habits or

noise, further optimizing the trajectory for learning.

T = {(p1, 02, P3) e s Db M <M (15)

Keyframe Identification

Our method focuses on identifying keyframes essential for forming the optimal trajectory in the
robotic trajectory refinement process. Although many points are initially removed, the remaining ones are
pivotal for the trajectory's progression. To optimize the trajectory, we define keyframes as frames that
constitute the most efficient path. We employ a reinforcement learning-based approach to identify these
keyframes from the collected trajectory, aiming to further reduce the number of sampled frames. This
strategy substantially increases the likelihood of a successful robot operation. The keyframe identification
process experiments with subsets of the trajectory T to identify the most effective subset as the keyframe.
This concept is represented in Figure 3, where Fig. 3a shows the trajectory's keyframes and Fig. 3b shows
a blue line representing the trajectory. Green dots represent human control input samples from a
demonstration; these are fewer than the trajectory frames and typically deviate from the path. Red dots
represent extracted keyframes for the robot manipulator, underscoring the crucial points for efficient
trajectory control. This module is dedicated to the construction of a training data repository, pivotal for the
subsequent learning processes. It employs dynamic programming to meticulously extract keyframes from
the input trajectory, thereby encapsulating significant temporal instances that are instrumental in

characterizing the trajectory.
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o

a. Excavation environment b. Extracted keyframes

Figure 3. Extracted keyframes. The Fig. a shows an excavation task example, while the Fig. b displays the
collected trajectory in 3D coordinates. Blue dots represent actual robot states, green dots represent human
teleoperated control inputs, and red dots signify extracted keyframes. Green dots appear sporadically due

to the nature of human teleoperation, where new commands are issued before the previous one is completed.

To identify the optimal keyframe from the candidate set, we omit frames from the sampled frames
Ty, and execute the remaining frames to observe the task execution outcome. Then we rank all possible

combinations to identify the best subset as the keyframe set Ty.

To evaluate the different combinations, we employ the Markov Decision Processes (MDP) (Fang
et al. 2018) model to formulate the problem into a reinforcement learning context. The goal of this MDP
model is to collect a minimal subset of Ty capable of completing the task. To reduce the sampled frames,
we assign a small negative reward for each frame where the task is incomplete, and a positive reward is
given upon task completion. By using a greedy policy to select the subset with the largest reward as the
keyframe collection, we can eliminate as many low-weight samples as possible. This is because the negative

reward decreases the total reward for unnecessary samples. We model the action set as

n(s) =a (16)
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where s is the current state, a is the action taken at the state s, and s’ is the state after s takes action a.

According to the Bellman equation, the value function for each state V™ (s) is shown in Equation

17. The return G, is defined in Equation 18. We assign the uniform distribution for the initial policy.

VE(s) = ExlGelS: = 5] (17)
Ge = X0y Resin (18)
V() = ExlRes1 +¥Gesa|Se = 5] (19)
V™(s) = Tam(als) Sy, p(s', s, @)r + YV (s")] (20)

To avoid the waste of unnecessary computation, for each frame, we assume the previous frame is
succeeded and this results in the backward drop frames, which is the depth-first search problem. The optimal

keyframe set is selected according to the maximum collected rewards.

a =arg argmax Y., 7(s) (21)
a€eA

Latent space exploration and goal generation

Directly using images as inputs presents challenges. First, integrating image inputs can introduce
redundancy, potentially leading to slow convergence. We introduce an approach based on latent space
exploration to reduce dimensionality, providing more precise information, and reducing the unnecessary

burden on subsequent models, thereby enhancing the efficiency and effectiveness of training.

Second, insufficient demonstration data can impede the system's ability to learn effective policies
or induce overfitting. To tackle this, we employ a strategy enabling continuous and effective learning to
ensure the sustained operation of the system. We propose a goal state generation model that learns from
demonstrations. In this model, the initial state of each episode is represented by its first frame, and the goal
state by the last frame, to train the goal generation network in the latent space. Additionally, the goal

generation network generates the goal latent state based on the initial latent state. The model's architecture,
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a modified version of the beta-VAE model (Higgins et al. 2016), is illustrated in Figure 4. The latent space
is crucial for reducing dimensionality and enhancing the model's accuracy and efficiency. However,
conventional methods such as principal component analysis (PCA), autoencoders, and K-means may
overlook critical details essential to other models. To address this limitation, we propose a modified beta-
VAE model as depicted in Figure 4. The latent space module is ingeniously designed to predict the final
state based on the initial state, which encompasses RGB images and point cloud data. It leverages an
encoder-decoder architecture to efficiently transform the RGB image and point cloud into a compressed
vector representation, thereby optimizing computational resources. The compressed vector is subsequently
input into a goal generation network, which endeavors to predict the final state. The fidelity of the prediction
is quantitatively assessed using the Kullback-Leibler Divergence (KLD), facilitating the evaluation of the
network’s predictive accuracy. The outputs of this module are the latent-spaced state and the latent-spaced

goal, which serve as critical inputs for the succeeding module.

Reconstruction

Initial state

VAE
decoder

Figure 4. Latent space goal generation network.

To validate the effectiveness, we conduct an early experiment to show the results of the generation
tryout in Figure 5. Our network exhibits convergence at approximately 600 steps, with the subsequent error
remaining stable thereafter. Since this error pertains to the KLD error in the latent space, there is no specific

unit associated with it. The error evaluates the similarity between two distributions, with lower error
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indicating greater similarity between the distributions. The parameters for our training process included a
learning rate of 0.001, a batch size of 64, and we trained our model for 1000 steps. The latent space
dimension was set to 50, providing a balance between model complexity and computational efficiency. We
used a B-VAE with B set to 0.5 to encourage disentangled latent representations while still prioritizing
reconstruction accuracy. Our optimizer of choice was Adam, with a dropout rate applied of 0.5 for

regularization to mitigate overfitting.
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Figure 5. The loss of goal generation of excavation tasks.

Experiments and Evaluation

Implementation details
Robot Teleoperation Framework Setup

Given the high cost and operational dangers of a real excavator, we simulate it using a robot
platform. This approach allowed us to explore advanced control systems and the flexibility necessary for
precise and controlled research tasks, which are critical for advancing construction robotics. Unlike
standard excavators, our robot offers enhanced maneuverability and an intuitive control system, enabling

detailed investigation into automated tasks that are challenging with traditional machinery. This choice not
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only facilitates research into automation technologies adaptable to various construction equipment,
potentially lowering costs and improving site efficiency, but also addresses safety concerns by reducing the
risks associated with direct human interaction with heavy machinery. A bucket is attached to the end
effector to simulate the excavator's shovel. Sand is placed in a 6-inch-thick box to simulate soft soil. The
robot is controlled using a VR controller (HTC VIVE). The setup for the teleoperation system is shown in

Figure 6.

Robot manipulator

Base station S Realsense D435i Base station

Controller-left 1 ; ' Controller-right

Figure 6. Excavation task system setup.
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This architecture consists of four main components. Initially, the process involves extracting and
relaying the HTC VIVE controller's position data to the Robot Operating System (ROS) using Steam VR
Beta and the HTC VIVE SDK. The controller's coordinate origin is shifted from the top to the bottom for
intuitive operation. Next, the controller's position and movement data are processed using an inverse
kinematics algorithm to determine each robotic arm joint's target position. This approach, which relies on
changes in position and rotation rather than absolute positioning, provides the operator with greater
flexibility regarding their standing location. Meanwhile, joint data can be accessed through ROS. In the
third stage, ROS Rviz displays the robotic arm's trajectory, following the received joint instructions. This
setup not only facilitates control execution but also aids users in evaluating their control strategy. Lastly, a
UDP protocol links the ROS nodes with the actual robotic arm, enabling operators to control a physical
robot by publishing modified data. The modified data that is published via the UDP protocol to control the
physical robot refers to the calculated joint angles and positions necessary for the robotic arm to replicate
the movements dictated by the HTC VIVE controller. This data is essentially what bridges the operator's

intentions with the robot's physical actions, enabling intuitive control over the robotic arm's movements.

Experience replay buffer and Imitation Episode Buffer

We utilize the experience replay buffer technique incorporating specific adaptations tailored to our
methodology. Each item in the buffer is carefully designed to include the following components: an initial
state randomly sampled from the trajectory, a subsequent keyframe as the subgoal, a final frame as the goal
state, and an associated keyframe label as the reward for the primitive policy. During the training process,
these components serve distinct roles: the subgoal aids in refining the keyframe generation model, while
the other elements are crucial in sharpening the primitive policy. This strategic approach guarantees a

cohesive learning process, effectively integrating keyframe generation with primitive policy training.

Similarly, when constructing the Imitation Episode Buffer, we adopt a process similar to the
Experience Replay Buffer. Here, we select states from the trajectory, including the nearest keyframe

adjacent to the selected state and the final goal, integrating them into a single keyframe generation item.
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For the Experience Replay buffer, we prioritize shuffling the buffer’s order to mitigate inter-item

dependencies and foster robust learning.

Gravity axis alignment

Figure 7 highlights the importance of z-axis alignment, crucial for maintaining consistent
directionality along the z-axis. This alignment is vital for ensuring that the point cloud from the RealSense
camera seamlessly matches the robot manipulator's z-axis orientation. This alignment is achieved through
synchronization with the direction of gravity. The effectiveness of this alignment is demonstrated in Figure

7.
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Figure 7. Gravity axis alignment.

Recognizing the critical role of accurate alignment in ensuring the quality of robot learning data,
our choice of this method was driven by its potential to precisely capture spatial relationships essential for
robotic perception and action. This method allows for a detailed representation of the environment,
facilitating more accurate robot interactions with complex and dynamic construction settings. While our
initial methodology did not explicitly quantify numerical errors associated with this calibration, it was
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predicated on the adaptability of deep learning models to effectively interpret and utilize imperfect data.
Deep neural networks, by design, can identify and mitigate the impact of data irregularities, including those
introduced by calibration discrepancies. This inherent robustness to noise and bias makes the method
particularly suited for environments where precision and adaptability are paramount. Incorporating this
calibration approach, coupled with the sophisticated error-correction capabilities of deep learning, ensures
that our robot learning framework remains resilient against minor misalignments and inaccuracies. This
synthesis of advanced calibration techniques and neural network processing addresses both the immediate
needs of robotic learning in construction and the long-term goal of creating autonomous systems capable

of operating within highly variable and unstructured environments.

We use Inertial Measurement Units (IMUs) for z-axis alignment, providing a more precise and
efficient approach for parameter estimation and spatial correlation between the robot and camera.
Leveraging IMUs simplifies and increases the accuracy of the alignment process, enhancing its efficiency

and reliability.

Keyframe-guided Trajectory Generation

This section presents the results of experiments. We change the input data from engineered features
to raw, gravity-aligned point clouds. Although organized in image order, pixels in the point cloud exceeding
a certain depth threshold are set to 0. The experimental procedure unfolded in several systematic phases to
ensure rigorous testing and accurate results. It commenced with the initialization phase, where the robot
was set to a standardized starting position and primed to perform the excavation task. In the task execution
phase, the robot employed each method under scrutiny to complete a pre-defined excavation task within
the simulation environment, which involved the translocation of materials. During the performance
measurement phase, we meticulously monitored and logged the robot's precision, efficiency, and adherence
to safety protocols against our task success criteria. This multi-step process was replicated over 10,000
trials for each method, providing a robust dataset and allowing for the assessment of performance

consistency across trials. A trial was deemed successful if the robot accurately accomplished the excavation

27



task according to the predetermined criteria, operating autonomously without human intervention. Finally,
in the data analysis phase, we computed the success rate for each method by calculating the ratio of
successful trials to the total number of trials, with these results informing the comparative effectiveness of
each method tested. The results, shown in Figure 8, demonstrate that our method achieved the highest
success rate among the compared methods. The left figure shows the method not utilizing latent space, with
the goal state manually provided. The right figure illustrates our method. Despite yielding a slightly lower
success rate compared to the method without the latent space, we note that our method operates without
manually specifying the final goal state. This supports our claim of reducing reliance on robotic or

algorithmic expert involvement, thus highlighting the autonomy and self-sufficiency of our method.
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Figure 8. Task success rate. The figure 8.a illustrates our algorithm without latent space representation,
where the goal and subgoal states are manually designed and not represented by images. In contrast, the
figure 8.b depicts the success rate throughout the training process using latent space representation,
eliminating the need for manual intervention. In the 8.a, the blue line stands for the behavior cloning

method minus -0.01 to distinguish it from the Gail method success rate.
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To validate our proposed model, we conduct an experiment on a simulation platform to estimate
the robot end-effector's position. We compare our method with several benchmarks, including the vanilla
network, the spatial SoftMax method proposed by (Levine et al. 2015), and the beta-VAE method. In the
experiment, we use aligned point cloud data with color as the network input, which then generated the
output for the robot end-effector's position. The results, presented in Figure 9, show the loss in regular
Cartesian coordinates at the top, while the bottom figure uses a logarithmic axis to depict the same loss for
enhanced clarity. Notably, while the training loss for each method remains relatively consistent, the
validation loss shows significant fluctuations. Using a logarithmic axis in the bottom figure further
highlights the distinctions between the losses of each method. Our method establishes a stronger correlation
between the encoded images and robot actions than the other methods evaluated. This demonstrates the

efficacy of our method in accurately estimating the robot end-effector's position.
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Figure 9. Robot end-effector position estimation.
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Ablation study

We conduct an experiment to study the influence of latent dimensions, testing sizes of 10, 20, 30,
40, 50, 60, 70, 80, 90, and 100. In addition, we perform experiments in both simulated and real excavation
scenarios, with and without our proposed binding model. The results, presented in Figure 10, show that the
experiment with our proposed binding model outperforms the experiment using the pure auto-encoder
method. We choose 30 as dimension to compare across dimensions and considering both outliers and the
success rate. While dimension 80 is also viable, we prefer a smaller dimension for our model. This is
because a larger dimension introduces more uncertainty, leading to increased estimation variance. (Chen
and Storey 2015) addresses the problem of extracting low-dimensional structures from high-dimensional
data and discusses how under certain conditions, it is possible to consistently recover the structure using
information up to the second moments of these variables. It implies that when attempting to model or
estimate using higher dimensions, the complexity and uncertainty increase, which can affect the accuracy
and variance of the estimations. This aligns closely with the concept that larger dimensions introduce more
uncertainty and increase estimation variance. In Figure 10, the success rates with our proposed binding
model are nearly 20% higher than those without the binding model. This result demonstrates the significant
role our proposed binding model plays in the training process, improving the success rate for the excavation

task.
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Figure 10. Latent space dimension study for excavation task. (a/b) Train/Validation of excavation task

without binding model; (c/d) Train/Validation of excavation task with binding model.

Discussion

The applicability and scalability of this research are shown in three aspects. First, most of the time
the construction industry is reluctant to change, posing significant challenges to collect data from expert
demonstrations in construction sites. Using the proposed teleoperation method as an intermediate solution
can increase the feasibility, desirability, and viability of the construction industry to use semi-automated

robots. This method can also help to collect the necessary data to train the robots towards full automation.
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With the operator involved in the teleoperation process, the knowledge, abilities, and expertise of the
operator can be used to train construction robots. The use of the operator skills helps in retaining the security
and efficiency of construction sites. Expert demonstration collected from teleoperation is significantly
different from simulation and VR demonstration. Unlike simulated data, expert demonstration provides
more realistic and practical data. This valuable data enables robots to be trained more effectively. In the
future, such training will prepare construction robots to handle complex tasks in unstructured sites. Second,
as demonstrated by the keyframe extraction results, the proposed method can eliminate over 80% of the
redundant frames in the expert demonstration. This achievement can streamline the data required for robot
training, reducing computational loads and improving efficiency. The well-known “garbage in, garbage out”
philosophy highlighted that the quality of data greatly influences the quality of the results. To ensure that
robots can imitate human expert control in complex construction processes, it is essential to remove noise
and redundant frames from the expert demonstration data. This is particularly important for construction
robots. In construction, human operators are often disturbed, and the data they generate tends to have more
substantial noise compared to other operations. The proposed keyframe method employed the RL-based
method to find the optimal subset as the keyframe set, which was demonstrated in various sampling tasks.
In addition, the learning results showed that because of the keyframe extraction, robot learning becomes
very efficient and effective, and is superior to state-of-the-art methods. After acquiring the keyframe, a
model-free robot training method based on keyframe extraction, and a hierarchical imitation learning
method were proposed. The stochastic primitive policy is pre-trained with soft actor-critic and with
hindsight experience replay (HER) method. To demonstrate the applicability and scalability of our method,
two scenarios were evaluated, where construction robots can be widely used: excavation in both simulation
and real-world settings using different robotic arms. These demonstrated the generalizability of the
proposed method concerning robotic trajectory tasks and robotic manipulators. Such generalizability is
critical for the application of robots for full automation in the construction industry, a fact that is reinforced
by the superior results obtained compared to the state-of-the-art. Third, to enhance the extensibility to a
wider range of tasks and reduce the computational loads of RL, an integrated approach that combines
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vision-based trajectory generation with latent space exploration was proposed. Specifically, the raw states
were substituted with latent states, and the primitive policy was pre-trained using a latent space variable
and latent space states were compiled in the trajectory buffer. The obtained result shows that our proposed
binding model outperforms the pure auto-encoder method. For the excavation task, the binding model plays
an important role in the training process, boosting the success rate from 40% to over 60%. The result
demonstrates that latent space exploration facilitates the training process of RL policy and improves robot

learning performance.

This research has several limitations that deserve future research. First, a significant limitation of
imitation learning is that the robot's proficiency can only match the quality of the expert demonstration.
Specifically in the context of construction sites, many tasks hinge on human operators' subjective
assessments and experiences, and their execution is not necessarily optimal. Therefore, there can potentially
be a substantial scope for enhancing the robot's manipulative abilities in complex construction
environments. In addition, imitation learning trained robots do not always generalize well to scenarios that
were not included in the training data. The construction site dynamics further pose significant challenges
for such robots trained by imitation learning. In the future, novel machine learning methods should be
integrated with sensing and engineering knowledge. This integration will equip robots with robust
performance in various scenarios. Additionally, it will help optimize robot's trajectory and manipulation,
allowing them to excel in imitating human operators' demonstrations. The second limitation of this research
is the persistent scarcity of comprehensive real-world data and demonstrations for robot training. Despite
the teleoperation modes and acquisition of real-world operation data for robot training, the amount of data
acquired to achieve robust robot intelligence is very limited. This is particularly caused by privacy concerns
over data from the construction companies that acquire and use these robots. Future research directions
include the use of federated learning mechanisms to harness the data from different construction companies
and aggregate the operators’ demonstrations in a privacy-preserving way to train the robots to automatically

conduct complex construction tasks.
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Conclusions

Responding to the call for transformation in the labor-intensive, low-productive, and dangerous
construction industry, this research proposed a generalizable framework to accelerate the training of
construction robots from human supervision and demonstration in teleoperation mode. This approach aims
to foster the adoption and deployment of robots in real construction sites. To this end, this research
addressed three technical challenges. First, to address the lack of high-quality training data, a teleoperation
architecture was developed. This architecture allows users to control robots to complete construction tasks
as an intermediate solution to full automation, while collecting useful human supervision and demonstration
data. Teleoperation emerged as a practical means to collect human data for robot training. Second, to reduce
a large amount of noise in the collected data for efficient robot training, a keyframe identification and
extraction method was proposed to increase the success probability of sampled trajectories. As the
importance of each sampled action in the trajectory is not uniformly distributed, a keyframe identification
method was proposed. This method can further reduce the sampling rate, helping to reduce the stacked
bottlenecks. This method also improves the quality of the expert demonstration. The keyframes of the expert
trajectory were found using the proposed RL-based method. The results demonstrated the efficacy of the
keyframe methods in sampling the expert trajectories, which can reduce 80% of redundant frames,
providing a solid data basis for robot learning. To enable generalizable robot learning for different
construction tasks, a hierarchical reinforcement learning structure was proposed. This structure trains
model-free policies to accomplish the trajectory tasks by incorporating the extracted keyframe methods, as
the keyframe probability was used as an additional reward and was incorporated in the environmental
reward feedback. Third, to bring the extensibility to a wider range of tasks and reduce the computational
burden of reinforcement learning training process, an integrated approach that combines vision-based
trajectory generation with latent space exploration was proposed. The results illustrate that latent space with
the robot action binding outperforms the state-of-the-art methods by 20% improvement in success rate for

excavation tasks. The reason is that our proposed method integrated latent space containing the dimension
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reduced information which can be more accurate and reduced the load of the consecutive model. The
proposed robot learning method was demonstrated in excavation experiments for validation. Our method
has superior performance as compared to the state-of-the-art and has significant potential for application in

construction robots.
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