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Abstract. We compute the v1-periodic R-motivic stable homotopy groups.
The main tool is the effective slice spectral sequence. Along the way, we
also analyze C-motivic and η-periodic v1-periodic homotopy from the same
perspective.

1. Introduction3

The computation of the stable homotopy groups of spheres is a difficult but4

central problem of stable homotopy theory. There is much that we do not know5

about stable homotopy. However, the v1-periodic stable homotopy groups (also6

known as the homotopy groups of the spectrum J) are completely understood,7

and they have interesting number-theoretic properties.8

The goal of this article is to explore v1-periodic stable homotopy in the R-9

motivic context. This choice of ground field represents a middle ground between10

the well-understood C-motivic situation and the much more difficult situation of11

an arbitrary field, in which arithmetic necessarily enters into the picture.12

From our perspective, the field R introduces just one piece of arithmetic: the13

failure of −1 to have a square root. This leads to complications in R-motivic14

homotopical computations, but they can be managed with care and attention to15

detail.16

Classically, v1-periodic homotopy is detected by the connective spectrum jtop,17

which is defined to be the fiber of a map kotop
ψ3−1−→ Σ4ksptop, where kotop is the18

connective real K-theory spectrum, ksptop is the connective symplectic K-theory19

spectrum, and ψ3 is an Adams operation. (The “top” superscripts indicate that20

we are discussing the classical context here, rather than the motivic context.)21

In fact, kotop itself is the more natural target for the map ψ3 − 1. However,22

the fiber of kotop
ψ3−1−→ kotop has a minor defect. It has some additional homotopy23

classes in stems −1, 0, and 1 that do not correspond to homotopy classes for the24
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sphere spectrum. In other words, the map from S0 to this fiber is not surjective in1

homotopy. If we change the target of ψ3 − 1 from kotop to its 3-connective cover2

Σ4ksptop, then this problem disappears, and the map from S0 to the fiber is onto3

in homotopy.4

It is possible to mimic these constructions in motivic stable homotopy theory5

[BH20]. At the prime 2, one can define the motivic connective spectrum j to6

be the fiber of a map ko
ψ3−1−→ Σ4,2ksp, where ko is the very effective connective7

Hermitian K-theory spectrum, ksp is defined in terms of very effective covers of8

ko, and ψ3 is a motivic lift of an Adams operation.9

However, from a computational perspective, this definition of j introduces10

apparently unnecessary complications. It is possible to compute the homotopy of11

R-motivic j using the techniques that appear later in this manuscript. However,12

the computation is slightly messy, involving some exceptional differentials and13

exceptional hidden extensions in low dimensions. In any case, the homotopy of14

the R-motivic sphere does not surject onto the homotopy of R-motivic j. In other15

words, the main rationale for using ksp in the first place does not apply in the16

motivic situation.17

On the other hand, the computation of the homotopy of the R-motivic fiber of18

ko
ψ3−1−→ ko is much cleaner. Moreover, it tells us just as much about v1-periodic R-19

motivic homotopy as j. In other words, it has all of the computational advantages20

of j, while avoiding some unfortunate complications.21

Consequently, in this manuscript, we will be solely concerned with the fiber of22

ko
ψ3−1−→ ko. We use the notation L for this fiber in order to avoid confusion with23

the traditional meaning of j. The symbol L is meant to draw a connection to the24

classical K(1)-local sphere LK(1)S
0, which is the fiber of KOtop ψ3−1−→ KOtop. Our25

main result is a computation of the homotopy of L.26

Theorem 1.1. The homotopy of the R-motivic spectrum L is depicted in Figures27

13–19 via the E∞-page of the effective spectral sequence, including all hidden28

extensions by ρ, h, and η.29

The proof of Theorem 1.1 appears in Section 5. See especially Theorem 5.1230

and Proposition 5.13.31

Beware that the homotopy of the R-motivic spheres does not surject onto the32

homotopy of R-motivic L. It is possible that we may have not yet constructed33

the “correct” motivic version of the classical connective spectrum jtop. These34

considerations raise questions about vector bundles and the motivic Adams35

conjecture. We make no attempt to study these more geometric issues. 1
36

We claim to compute the v1-periodic R-motivic stable homotopy groups, but37

this claim deserves some clarification. We do not use an intrinsic definition of38

v1-periodic R-motivic homotopy, although such a definition could probably be39

1After the first version of this manuscript appeared, some of these issues have been addressed in
[AERY23].
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formulated in terms of the motivic K(1)-local sphere. See [BOQ23] for some1

progress on motivic K(1)-localization.2

Rather, we merely compute the homotopy of L, and we observe that it detects3

large-scale structure in the stable homotopy of the R-motivic sphere, which was4

described in a range in [BI22]. In other words, we have a practical description of5

R-motivic v1-periodic homotopy, not a theoretical one.6

The careful reader may object that our approach with effective spectral sequences7

is long-winded and unnecessarily complicated. In fact, the homotopy of L could8

be determined by direct analysis of the long exact sequence associated to the9

defining fiber sequence for L. However, there is a disadvantage in this direct10

approach. We find that the effective filtration is useful additional information11

about the homotopy of L that helps us understand the computation. The effective12

filtration is part of the “higher structure” of the homotopy of L. For example,13

some subtle phenomena, such as hidden multiplicative extensions, can only shift14

into higher effective filtration, so detailed knowledge of effective filtrations of15

homotopy classes can rule out possibilities that may otherwise be difficult to16

analyze. Another example occurs with Toda brackets, which may be computable17

using effective differentials. While we have no immediate uses for this higher18

structure, we know from experience that it inevitably becomes important in deeper19

homotopical analyses.20

1.1. Charts. We provide a series of charts that display the effective spectral21

sequences for ko and L, as well as their C-motivic counterparts. We consider these22

charts to be the central achievement of this manuscript. We encourage the reader23

to rely heavily on the charts. In a sense, they provide an illustrated guide to our24

computations.25

Caution must be exercised in the comparison to [BI22] since the Adams fil-26

trations and effective filtrations are different. As in [BI22], our charts consider27

each coweight separately; we have found that this is a practical way of studying28

R-motivic homotopy groups. Periodicity by τ 4 (which is not a permanent cycle,29

but should be thought of as a periodicity operator in coweight 4) allows us to give30

a fairly compact depiction of the homotopy of L in coweights congruent to 0, 1,31

and 2 modulo 4; see Figures 13, 14, and 15.32

The homotopy of L in coweights congruent to 3 modulo 4 is much more33

interesting but harder to describe. See Figures 17 and 18.34

1.2. Completions. We are computing exclusively in the 2-complete context. This35

simplifies all questions surrounding convergence of spectral sequences. Also, the36

final computational 2-complete answers are easier to state than their 2-localized37

or integral counterparts.38

We generally omit completions from our notation for brevity. For example, we39

write Z for the 2-adic integers, and we write KO for the 2-completed R-motivic40

Hermitian K-theory spectrum.41

Section 2.3 discusses these topics in slightly more detail.42
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1.3. Regarding the element 2. When passing from the effective E∞-page to1

stable homotopy groups, one must choose homotopy elements that are represented2

by each element of the E∞-page. For the element 2 in the E∞-page, there is more3

than one choice in π0,0 because of the presence of elements in the E∞-page in4

higher effective filtration.5

From the perspective of abelian groups, the element 2 = 1 + 1 is the obvious6

choice of homotopy element. However, there is another element h, also detected by7

2 in the effective spectral sequence, that turns out to be a much more convenient8

choice. The difference between h and 2 in homotopy is detected by the element9

ρh1 in higher filtration (to be discussed later). Experience has shown that the10

motivic stable homotopy groups are easier to describe in terms of h than in terms11

of 2. For example, we have the relations hρ = 0 and hη = 0, where ρ and η are12

homotopy elements detected by ρ and h1 respectively. However, neither 2ρ nor 2η13

are zero. Because of the presence of elements in higher filtration, the homotopy14

elements ρ and η are not uniquely defined by the effective E∞-page elements15

that detect them. However, the mentioned relations hold for all choices. In this16

discussion, the exact definitions of ρ and η are less important than the observation17

that they satisfy nicer relations with respect to h than with respect to 2.18

There are two additional reasons why the element h plays a central role. First,19

it corresponds to the hyperbolic plane under the isomorphism between motivic π0,020

and the Grothendieck–Witt group of symmetric bilinear forms [Mor04]. Second,21

it plays the role of the zeroth Hopf map, in the sense that the Steenrod operations22

on its cofiber are simpler than the Steenrod operations for the cofiber of 2.23

Consequently, instead of describing motivic stable homotopy groups as a module24

over the 2-adic integers Z (i.e., in terms of the action of 2), it is easier to describe25

the homotopy groups in terms of the action of h.26

1.4. Future directions. Our work points toward several open problems.27

Problem 1.2. Compute motivic v1-periodic homotopy over an arbitrary base28

field. Using [BH20], one can define L as the fiber of the map ψ3 − 1, and it is29

conceivable that one could carry out the effective spectral sequence for L in this30

level of generality, similar to the kind of computations that appear in [RSØ19] and31

[RSØ21]. See Section 1.5 for further discussion. For prime fields of characteristic32

not two, some explicit computations were carried out in [KQ23].33

Problem 1.3. Recompute the homotopy of L using the R-motivic Adams spectral34

sequence. This would be a useful comparison object for further computations35

with the Adams spectral sequence for the R-motivic sphere. The classical Adams36

spectral sequence for jtop was studied by Davis [Dav75], but it was only recently37

computed completely by Bruner and Rognes [BR22]. We are proposing a motivic38

analogue of their results.39
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Problem 1.4. Carry out the effective spectral sequence for the R-motivic sphere1

in a range. These computations would serve as a useful companion to R-motivic2

Adams spectral sequence computations [BI22]. The idea is to build on the3

techniques that are developed in this manuscript.4

Problem 1.5. Compute the v1-periodic C2-equivariant stable homotopy groups.5

More precisely, carry out the C2-effective spectral sequence for a C2-equivariant6

version of L. The details will be similar to but more complicated than the7

computations in this manuscript. See [Kon23] for the effective approach to the8

C2-equivariant version of ko. Alternatively, one might compute the v1-periodic9

C2-equivariant stable homotopy groups by periodicizing the v1-periodic R-motivic10

groups with respect to τ , as considered by Behrens and Shah [BS20].11

Recall that the R-motivic and C2-equivariant stable homotopy groups are12

isomorphic in a range [BGI21]. Consequently, we anticipate that some version of13

the structure described in this manuscript appears in the C2-equivariant context14

as well.15

In the equivariant context, we mention Balderrama’s [Bal21] computation of the16

homotopy groups of the Borel C2-equivariant K(1)-local sphere, using techniques17

that are entirely different from ours. Roughly speaking, Balderrama computes18

the τ 4v41-periodicization of our result. The effective E∞ charts in Figures 13–1919

possess an obvious regularity every 8 stems, and Balderrama’s computation sees20

that regular pattern.21

Problem 1.6. Study K(1)-localization in the motivic context, which ought to be22

something like localization with respect to KGL/2. 2 Compute K(1)-local motivic23

homotopy. This would provide an intrinsic definition of v1-periodic homotopy that24

would improve upon the practical computational perspective of this manuscript.25

A guide to the motivic situation could lie in the work of Balderrama [Bal21]26

and Carrick [Car22] on equivariant localizations.27

1.5. Towards v1-periodic homotopy over general base fields. Our explicit28

computations point the way towards a complete computation of the v1-periodic29

motivic stable homotopy groups over arbitrary fields. The situation here is30

analogous to the η-periodic R-motivic computations of [GI16], which foreshadowed31

the more general η-periodic computations of [Wil18], [OR20], and [BH20].32

Problem 1.7. Let k be an arbitrary field of characteristic different from 2.33

Let GW (k) be the Grothendieck–Witt ring of symmetric bilinear forms over k.34

Describe the 2-primary homotopy groups of the k-motivic spectrum L in terms35

of the cokernels and kernels of multiplication by various powers of 2 and of h on36

GW (k).37

2After the first version of this manuscript appeared, some progress has occurred in [BOQ23].
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Problem 1.7 is stated only in terms of 2-primary computations because that1

is the most interesting part. We expect that the generalization to odd primes is2

straightforward.3

The exact powers of 2 and h that are required in Problem 1.7 depend not only4

on the coweight but also on the stem. Figures 17 and 18 show that 2v(j)+3 is the5

relevant power of 2 in most stems in coweight 4j − 1. Here v(j) is the 2-adic6

valuation of j, i.e., largest number v such that 2v divides j. In coweight 4j − 17

and stem 4i− 1, we see larger powers of 2, as well as powers of h.8

Similar observations apply to the kernels that contribute to coweight 4i.9

1.6. Outline. Section 2 contains some background information that we will need10

to get started on our computations. We briefly discuss convergence of the effective11

spectral sequences that we will use. We recall some results of Bachmann–Hopkins12

[BH20] about motivic Adams operations and of Ananyevskiy–Röndigs–Østvær13

[ARØ20] about the slices of ko.14

In Section 2, we have taken some care to eliminate details that we do not use.15

In other words, Section 2 describes the minimal hypotheses necessary in order to16

carry out our computations.17

Section 3 considers C-motivic computations, which play two roles in our work.18

First, they serve as a warmup to the more intricate R-motivic computations.19

Second, the comparison between R-motivic and C-motivic homotopy is a necessary20

ingredient for our computations. In this section, we describe the effective spectral21

sequence for koC. This material is well-known, since it is the same (up to regrading)22

as the C-motivic Adams–Novikov spectral sequence for koC, which is nearly the23

same as the classical Adams–Novikov spectral sequence for kotop. We then use24

the fiber sequence25

LC −→ koC
ψ3−1−→ koC

in order to determine the E1-page of the effective spectral sequence for LC.26

We next completely analyze the effective spectral sequence for the η-period-27

icization LC[η−1]. The η-periodic spectral sequence is significantly simpler than28

the unperiodicized spectral sequence. We note the close similarity between the29

homotopy of LC[η−1] and the computations of Andrew–Miller [AM17].30

The η-periodic effective differentials completely determine the unperiodicized31

effective differentials for LC. Finally, we determine hidden extensions in the32

effective E∞-page for LC.33

Section 3 completely computes the homotopy of LC, but the effective spectral34

sequence is not necessarily the simplest way of obtaining the computation. Nev-35

ertheless, we have chosen this approach because of its relationship to our later36

R-motivic computations.37

Section 4 analyzes the effective spectral sequence for R-motivic ko, including38

all differentials and hidden extensions. The E1-page is readily determined from39

the work of Ananyevskiy–Röndigs–Østvær [ARØ20] on the slices of ko. We draw40

particular attention to the formula41

(1.1) (τh1)
2 = τ 2 · h21 + ρ2 · v21.
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This formula has a major impact on the shape of the answers that we obtain. In1

a sense, our work merely draws algebraic conclusions from Equation (1.1) and2

η-periodic information. The hidden extensions in the effective E∞-page for ko are3

easily determined by comparison to the C-motivic case, using the relationship4

between C-motivic and R-motivic homotopy that is described in [BS20, Corollary5

1.9].6

Our computation of the homotopy of R-motivic ko is not original. See [Kon23]7

for a C2-equivariant analogue of the effective spectral sequence for ko. The R-8

motivic computation can be extracted from the C2-equivariant computation by9

dropping the “negative cone” elements. Also, Hill [Hil11] computed the Adams10

spectral sequence for ko, although the R-motivic spectrum ko had not yet been11

constructed at the time.12

The next step, undertaken in Section 4.2, is to analyze the effect of ψ3 on the13

effective spectral sequence of ko. This follows from a straightforward comparison14

to the classical case, together with careful bookkeeping. In turn, this leads to15

a complete understanding of the effective E1-page of L, which is described in16

Section 5.1. Again, this is mostly a matter of careful bookkeeping.17

Section 5.2 completely analyzes the effective spectral sequence for η-periodic18

L[η−1]. This information is essentially already well-known, either from [GI16]19

or from Ormsby–Röndigs [OR20], although those references do not specifically20

mention L.21

As in the C-motivic situation of Section 3, η-periodic information yields ev-22

erything that we need to know about the unperiodic situation, including all23

multiplicative relations in the effective E1-page for L (see Section 5.3) and all24

differentials (see Sections 5.4 and 5.5). We again emphasize the significance of25

Equation (1.1) in carrying out the details. Finally, Section 5.6 studies hidden26

extensions in the effective E∞-page for L. As for ko, these hidden extensions27

follow by comparison to the C-motivic case.28

1.7. Notation. We use the following notation conventions.29

• v(n) is the 2-adic valuation of n, i.e., the largest integer v such that 2v divides30

n.31

• Except in Section 2, everything is implicitly 2-completed. For example, S is32

actually the 2-complete R-motivic sphere spectrum. Similarly, Z is the 2-adic33

integers.34

• s∗(X) are the slices of a motivic spectrum X.35

• Er(X) is the Er-page of the effective spectral sequence for a motivic spectrum36

X.37

• We find the effective slice filtration to be slightly inconvenient for our purposes.38

We prefer to use the “Adams–Novikov filtration”, which equals twice the39

effective filtration minus the stem.40

• Coweight equals the stem minus the motivic weight.41
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• Elements in Er(X) are tri-graded. We write Es,f,w
r (X) to denote the part1

with topological dimension s, Adams–Novikov filtration f , and motivic weight2

w.3

• We use unadorned symbols for R-motivic spectra. For example, ko is the very4

effective cover of the R-motivic Hermitian K-theory spectrum.5

• XC is the C-motivic extension-of-scalars spectrum of an R-motivic spectrum6

X.7

• Xtop is the Betti realization of an R-motivic spectrum X.8

• S is the R-motivic sphere spectrum.9

• KO is the R-motivic spectrum that represents Hermitian K-theory (also10

known as KQ).11

• ko is the very effective connective cover of KO.12

• HA is the R-motivic Eilenberg–Mac Lane spectrum on the group A.13

• ψ3 is an Adams operation. We use the same symbol in the R-motivic, C-14

motivic, and classical situations.15

• L is the fiber of ko
ψ3−1−→ ko.16

• Σs,wX is a (bigraded) suspension of a motivic spectrum X.17

• π∗,∗(X) are the bigraded stable homotopy groups of an R-motivic or C-motivic18

spectrum.19

• Recall that ε is the motivic homotopy class that is represented by the twist map20

S ∧S → S ∧S, where S is the motivic sphere spectrum. Let h be the element21

1 − ε, which corresponds to the hyperbolic plane under the isomorphism22

between π0,0(S) and the Grothendieck-Witt ring GW (R) [Mor04].23

• The element ρ belongs to the R-motivic homology of a point. It is the class24

represented by −1 in the Milnor K-theory of R. Since ρ survives all of25

the spectral sequences under consideration, we use the same symbol for the26

corresponding homotopy class. However, there is a choice of homotopy class27

represented by ρ because of the presence of elements in higher filtration. There28

is an inconsistency in the literature about this choice. Following [Bac18], we29

define ρ such that ε = ρη − 1, or equivalently 2 = ρη + h.30

We frequently use names for indecomposables that consist of more than one31

symbol. For example, Theorem 2.1 discusses the indecomposable element v21 of32

the effective E1-page for koC. These longer names are slightly more cumbersome.33

This is especially the case when we consider products. We will use expressions of34

the form x · y for clarity.35

On the other hand, our names are particularly convenient because they reflect36

the origins of the elements in terms of the spectral sequences that we use. For37

example, consider the indecomposable element 2v21 of the effective E∞-page for38

koC, as discussed in Theorem 3.3 (see also Figure 2). This name reflects the39

8



element’s origin in the effective E1-page. It also illuminates relations such as1

2v21 · 2v21 = 4 · v41
However, one must be careful about possible error terms in such formulas; see2

especially Equation (1.1).3

2. Background4

In this section only, we write ko for the integral version of the very effective5

cover of the Hermitian K-theory spectrum, and we use the usual decorations to6

indicate localizations and completions of ko. In the rest of the manuscript, ko is7

assumed to be 2-completed.8

2.1. The effective slices of ko. We recall the structure of the effective slices of9

ko.10

Theorem 2.1 ([ARØ20, Theorem 17]). The slices of ko are

s∗(ko) = HZ[h1, v
2
1]/(2h1),

where v21 and h1 have degrees (4, 0, 2) and (1, 1, 1) respectively.11

We explain the expression in Theorem 2.1. Each monomial of degree (s, f, w)12

contributes a summand of Σs,wHA in the
(

s+f
2

)

th slice. Here HA is the motivic13

Eilenberg–Mac Lane spectrum associated to A. The abelian group A is F2 when14

the monomial is 2-torsion, and is Z when the monomial is torsion free. We list15

the first three slices as examples:16

s0(ko) = HZ{1},
s1(ko) = Σ1,1HF2{h1},
s2(ko) = Σ2,2HF2{h21} ∨ Σ4,2HZ{v21}.

Beware that the multiplicative structure of s∗(ko) is not completely captured17

by the notation in Theorem 2.1. The essential multiplicative relation is Equation18

(1.1), which follows immediately from the general formulas in [ARØ20].19

Remark 2.2. The calculation of the slices of the motivic sphere spectrum, due
to Röndigs, Spitzweck, and Østvær [RSØ19], is commonly expressed at the prime
2 as

s∗(S) = HZ⊗ Ext∗,∗BP∗BP
(BP∗, BP∗).

Analogously, Theorem 2.1 says that20

s∗(ko) = HZ⊗ Ext∗,∗BP∗BP
(BP∗, BP∗(ko

top)).

However, we do not know of a general theorem relating the slices of a motivic21

spectrum with the Adams–Novikov E2-page for its topological counterpart.22
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2.2. The Adams operation ψ3 and the spectrum L. Bachmann and Hopkins1

[BH20] constructed a motivic analogue of the classical Adams operation ψ3. We2

summarize the results that we need.3

Theorem 2.3 ([BH20]). There is a unital ring map ψ3 : ko
[

1
3

]

→ ko
[

1
3

]

whose4

Betti realization is the classical Adams operation ψ3.5

Proof. There is a unital ring map ψ3 : KO
[

1
3

]

→ KO
[

1
3

]

[BH20, Theorem 3.1],6

which is an E∞-map. Its Betti realization is also an E∞-map whose action on7

the classical Bott element is multiplication by 81. These properties uniquely8

characterize the classical Adams operation.9

Now apply very effective covers, and the result about ko follows formally. �10

The original result is more general in more than one sense. First, it works over11

general base schemes in which 2 is invertible, while we only use the construction12

over R. Second, its values are computed more precisely than just compatibility13

with the classical values.14

Corollary 2.4.15

(1) ψ3 : π∗,∗(ko
∧

2 )→ π∗,∗(ko
∧

2 ) is a ring map.16

(2) If x is in the image of the unit map π∗,∗(S
∧

2 )→ π∗,∗(ko
∧

2 ), then ψ
3(x) = x.17

(3) There is a commutative diagram18

π∗,∗(ko
∧

2 )
ψ3

//

��

π∗,∗(ko
∧

2 )

��

π∗((ko
top)∧2 )

ψ3

// π∗((ko
top)∧2 ),

where the vertical maps are Betti realization homomorphisms.19

Proof. These are computational consequences of Theorem 2.3. Part (1) follows20

from the fact that ψ3 is a ring map. Part (2) follows from the fact that ψ3 is21

unital. Part (3) follows from the fact that the Betti realization of the motivic22

Adams operation is the classical Adams operation. �23

Remark 2.5. Corollary 2.4 can also be stated in a localized sense rather than24

completed sense, but we will not need that.25

Definition 2.6. Let L be the fiber of the map ko
[

1
3

] ψ3−1−→ ko
[

1
3

]

.26

Note that our definition of L is already localized; we do not consider an integral27

version. Except for this section, L is assumed to be 2-completed.28
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The most important point for us is that there is a fiber sequence1

L∧

2 −→ ko∧2
ψ3−1−→ ko∧2

of completed spectra since completion preserves fiber sequences.2

2.3. Convergence of the effective spectral sequence. The effective spectral3

sequence for a motivic spectrum X denotes the spectral sequence associated to4

the effective slice filtration of X. We refer to [Lev13, RSØ19] for details on the5

construction and properties of this spectral sequence.6

The effective slice filtration [Voe02] has truncations f q(X) and quotients (i.e.,7

slices) sq(X). The E1-page of the effective spectral sequence is π∗,∗(s∗(X)). In8

good cases, it converges to the homotopy groups of a completion of X. We also9

use the very effective slice filtration [SØ12], but only to define ko.10

The slice functors do not necessarily commute with completions, i.e., s∗(X)∧211

and s∗(X
∧

2 ) are not always equivalent. Consequently, we must carefully define the12

spectral sequences that we use to study completed spectra. On the other hand,13

the effective slices do interact nicely with localizations [Spi08, Corollary 4.6].14

Theorem 2.7. There are strongly convergent spectral sequences

Es,f,w
1 (ko) = πs,w

(

s s+f

2

(ko)∧2

)

=⇒ πs,w(ko
∧

2 )

and
Es,f,w

1 (L) = πs,w

(

s s+f

2

(L)∧2

)

=⇒ πs,w(L
∧

2 )

with differentials dr : E
s,f,w
r → Es−1,f+2r+1,w

r .15

We remind the reader that our grading of the effective spectral sequence is16

different than the standard grading in the literature. Briefly, s represents the17

topological stem, f represents the Adams–Novikov filtration (not the effective18

filtration), and w represents the motivic weight. See Section 1.7 for more discussion.19

Proof. We discuss the spectral sequence for ko in detail; most of the argument for20

L is the same.21

Consider the effective slice tower22

f 0(ko)← f 1(ko)← f 2(ko)← · · · .
Now take the 2-completion of this tower to obtain23

f 0(ko)∧2 ← f 1(ko)∧2 ← f 2(ko)∧2 ← · · · .
The resulting layers are the same as s∗(ko)

∧

2 since completion respects cofiber24

sequences. Beware that this is not necessarily the same as the slice tower of25

the completion ko∧2 , since slices do not interact nicely with completions. The26

associated spectral sequence of this tower is the one described in the statement of27

the theorem.28

It remains to determine the target of the completed spectral sequence. The limit
of the uncompleted slice tower of ko is equivalent to its η-completion [RSØ19],

11



[ARØ20], i.e.,
holim fn(ko) ≃ ko∧η .

Completion respects limits, so the limit holim(fn(ko)∧2 ) of the completed slice1

tower is equivalent to (ko∧η )
∧

2 , which is equivalent to ko∧2 by [HKO11, Theorem 1].2

Consequently, the completed effective spectral sequence of ko converges to the3

homotopy of ko∧2 , as desired.4

Strong convergence follows from [Boa99, Theorem 7.1], which has a technical5

hypothesis involving derived E∞-pages. For ko, this technical hypothesis follows6

directly from the computations of Section 4. For L, the technical hypothesis7

follows directly from the computations in Sections 5.4 and 5.5. �8

Remark 2.8. By construction, we have a fiber sequence9

s∗(L)
∧

2 −→ s∗(ko)
∧

2

ψ3−1−→ s∗(ko)
∧

2 ,

which yields a long exact sequence10

· · · −→ Es,f,w
1 (L) −→ Es,f,w

1 (ko)
ψ3−1−→ Es,f,w

1 (ko) −→ · · · .
This long exact sequence will be our main tool for computing E1(L) in Section11

5.1.12

3. C-motivic computations13

In this section, we carry out a preliminary computation of the effective spectral14

sequences for koC and LC. We also consider the η-periodic spectral sequences. We15

are primarily interested in R-motivic computations, but we will need to compare16

our R-motivic computations to their C-motivic counterparts.17

3.1. The effective spectral sequence for koC. We review the effective spectral18

sequence for koC.19

Proposition 3.1. The effective spectral sequence for koC takes the form20

E1(ko
C) = Z[τ, h1, v

2
1]/2h1.

Proof. This follows from Theorem 2.1 by taking stable homotopy groups. There21

are no possible error terms to complicate the multiplicative structure. �22

Table 1 lists the generators of E1(ko
C). Figure 1 depicts E1(ko

C) in graphical23

form.24

Table 1: Multiplicative generators for E1(ko
C)

coweight (s, f, w) x d1(x) ψ3(x)

0 (1, 1, 1) h1 h1

1 (0, 0,−1) τ τ

12



Table 1: Multiplicative generators for E1(ko
C)

coweight (s, f, w) x d1(x) ψ3(x)

2 (4, 0, 2) v21 τh31 9v21

Proposition 3.2. Table 1 gives the values of the effective d1 differential on the1

multiplicative generators of E1(ko
C).2

Proof. The C-motivic effective spectral sequence is identical to the C-motivic3

Adams–Novikov spectral sequence up to reindexing. This claim does not appear4

to be cleanly stated in the literature, but it is a computational consequence of the5

weight 0 result of [Lev15, Theorem 1]. Alternatively, there is only one pattern of6

effective differentials that computes the motivic stable homotopy groups of koC,7

which were previously described using the C-motivic Adams spectral sequence8

[IS11]. �9

Theorem 3.3. The E∞-page of the effective spectral sequence for koC takes the10

form11

E∞(koC) =
Z[τ, h1, 2v

2
1, v

4
1]

2h1, τh31, (2v
2
1)

2 = 4 · v41
.

Proof. For degree reasons, there can be no higher differentials in the effective12

spectral sequence for koC. �13

Table 2 lists the multiplicative generators of E∞(koC). Figure 2 depicts E∞(koC)14

in graphical form.15

Table 2: Multiplicative generators for E∞(koC)

coweight (s, f, w) x ψ3(x)

0 (1, 1, 1) h1 h1

1 (0, 0,−1) τ τ

2 (4, 0, 2) 2v21 9 · 2v21
4 (8, 0, 4) v41 81v41

Remark 3.4. There are no possible hidden extensions in E∞(koC) for degree16

reasons. Therefore, Theorem 3.3 describes π∗,∗(ko
C) as a ring.17

3.2. The effective E1-page for LC. Our next goal is to describe the effective18

E1-page E1(L
C). First we must study the values of ψ3 on koC.19

13



Lemma 3.5. The map E∞(koC)→ E∞(koC) induced by ψ3 on effective E∞-pages1

takes the values shown in Table 2.2

Proof. All values follow immediately by comparison along Betti realization to the3

values of classical ψ3. �4

Lemma 3.6. The map E1(ko
C)→ E1(ko

C) induced by ψ3 on effective E1-pages5

takes the values shown in Table 1.6

Proof. The values of ψ3 on E1(ko
C) are compatible with the values of ψ3 on7

E∞(koC), as shown in Table 2 (see also Lemma 3.5). This immediately yields all8

values. �9

In order to describe E1(L
C), we need some elementary number theory.10

Definition 3.7. Let v(n) be the 2-adic valuation of n, i.e., the exponent of the11

largest power of 2 that divides n.12

Lemma 3.8.

v(3n − 1) =







1 if v(n) = 0

2 + v(n) if v(n) > 0

Proof. Let n = 2a · b, where b is an odd number, so v(n) = a. Then13

3n − 1 =
(

1 + 32
a

+ (32
a

)2 + · · ·+ (32
a

)b−1
)

(3− 1)
a−1
∏

i=0

(1 + 32
i

).

The first factor is odd, so it does not contribute to the 2-adic valuation. The14

factor (1 + 32
i

) has valuation 1 if i > 0, and it has valuation 2 if i = 0. �15

Proposition 3.9. The chart in Figure 3 depicts the effective E1-page of LC.16

Proof. The long exact sequence17

· · · −→ E1(L
C) −→ E1(ko

C)
ψ3−1−→ E1(ko

C) −→ · · ·
induces a short exact sequence18

0 −→ Σ−1C −→ E1(L
C) −→ K −→ 0,

where C and K are the cokernel and kernel of E1(ko
C)

ψ3−1−→ E1(ko
C) respectively.19

The cokernel and kernel can be computed directly from the information given in20

Table 1 (see also Lemma 3.6).21

The kernel is additively generated by all multiples of h1 in E1(ko
C), together22

with the elements τ k for k ≥ 0.23

The cokernel C is nearly the same as E1(ko
C) itself. We must impose the24

relations (32k − 1)v2k1 = 0 for all k > 0. Lemma 3.8 says that 32k − 1 equals25

14



2v(2k)+2 ·u, where u is an odd number, i.e., a unit in our 2-adic context. Therefore,1

the relation (32k − 1)v2k1 = 0 is equivalent to the relation 2v(2k)+2v2k1 = 0. �2

Table 3 lists some elements of the effective E1-page of L
C. In fact, these elements3

are multiplicative generators for E1(L
C). By inspection, all elements of E1(L

C)4

are of the form τahb1x, for some x in the table.5

We use the same notation for elements of E1(L
C) and their images in E1(ko

C).6

On the other hand, we define the elements ιx of E1(L
C) by the property that7

they are the image of x under the map ι : Σ−1E1(ko)→ E1(L). For example, the8

element 1 of E1(ko) maps to ι.9

Table 3: Multiplicative generators for E1(L
C): k ≥ 0

coweight (s, f, w) generator

1 (0, 0,−1) τ

2k (4k + 1, 1, 2k + 1) h1v
2k
1

2k − 1 (4k − 1, 1, 2k) ιv2k1

Remark 3.10. Our choice of notation for elements of E1(L
C) is helpful for the10

particular analysis at hand. The generators of E1(L
C) also have traditional names11

from the perspective of the Adams–Novikov spectral sequence. Namely, h1v
2k
112

and ιv2k1 correspond to α2k+1 and α2k/v(8k) respectively. However, the α-family13

perspective is not so helpful for us.14

3.3. The effective spectral sequence of LC[η−1]. Next, we describe the effective15

spectral sequence of LC[η−1].16

In the η-periodic context, the element h1 is a unit. Therefore, powers of h117

are inconsequential for computational purposes. Consequently, we have removed18

these powers from all η-periodic formulas. The appropriate powers of h1 can be19

easily reconstructed from the degrees of elements (although this reconstruction is20

typically not necessary).21

Proposition 3.11. The effective E1-page for LC[η−1] is given by22

E1(L
C[η−1]) = F2[h

±1
1 , τ, v21, ι]/ι

2.

Proof. The functors s∗ commute with homotopy colimits [Spi08, Corollary 4.6].23

Therefore, we can just invert h1 in E1(ko
C) to obtain24

E1(ko
C[η−1]) = F2[h

±1
1 , τ, v21].

See Proposition 3.1 (and Figure 1) for the description of E1(ko
C).25

The map E1(ko
C[η−1])

ψ3−1−→ E1(ko
C[η−1]) is trivial because (ψ3 − 1)(v2k1 ) is a26

multiple of 2, as shown in Table 1 (see also Lemma 3.6). Therefore, the long exact27

15



sequence1

· · · −→ E1(L
C[η−1]) −→ E1(ko

C[η−1])
ψ3−1−→ E1(ko

C[η−1]) −→ · · ·
implies that E1(L

C[η−1]) splits as2

E1(ko
C[η−1])⊕ Σ−1E1(ko

C[η−1]).

This establishes the additive structure of E1(L[η
−1]), as well as most of the3

multiplicative structure.4

The relation ι2 = 0 is immediate because there are no possible non-zero values5

for ι2. �6

Proposition 3.12. In the effective spectral sequence for LC[η−1], we have d1(v
2
1) =7

τ . The effective differentials are zero on all other multiplicative generators on all8

pages.9

Proof. The value of d1(v
2
1) in E1(L

C[η−1]) follows by comparison of effective10

spectral sequences along the maps LC → LC[η−1] and LC → koC. Table 1 (see11

also Proposition 3.2) gives the value of d1(v
2
1) in E1(ko

C) . �12

Remark 3.13. The effective spectral sequence for LC[η−1] is very close to the13

effective spectral sequence for the η-periodic sphere SC[η−1]. The effective spectral14

sequence for SC[η−1] is the same (up to reindexing) as the motivic Adams–Novikov15

spectral sequence for SC[η−1]. This motivic Adams–Novikov spectral sequence is16

analyzed in [AM17]. The element ι is not present in E1(S
C[η−1]), but its multiples17

ι(v21)
k are present.18

3.4. Effective differentials for LC.19

Proposition 3.14. Table 4 gives the values of the effective d1 differentials on20

the multiplicative generators of E1(L
C). There are no higher differentials in the21

effective spectral sequence for LC.22

Proof. All of these differentials follow immediately from the effective d1 differentials23

for LC[η−1], which are determined by Proposition 3.12.24

For degree reasons, there are no possible higher differentials. �25

Table 4: Effective d1 differentials for LC: k ≥ 0

coweight (s, f, w) x d1(x)

1 (0, 0,−1) τ

4k (8k + 1, 1, 4k + 1) h1v
4k
1

4k + 2 (8k + 5, 1, 4k + 3) h1v
4k+2
1 τh31 · h1v4k1

16



Table 4: Effective d1 differentials for LC: k ≥ 0

coweight (s, f, w) x d1(x)

4k − 1 (8k − 1, 1, 4k) ιv4k1

4k + 1 (8k + 3, 1, 4k + 2) ιv4k+2
1 τh31 · ιv4k1

Theorem 3.15. The E∞-page of the effective spectral sequence for LC is depicted1

in Figure 4.2

Proof. Because there are no higher effective differentials for LC, we obtain the3

effective E∞-page immediately from the effective d1 differentials in Table 4 (see4

also Proposition 3.14). �5

3.5. Hidden extensions in E∞(LC).6

Proposition 3.16. In the effective spectral sequence for LC, the elements h1v
4k
17

do not support hidden h extensions for all k ≥ 0.8

Proof. The elements h1v
4k
1 detect elements in π∗,∗L

C that are in the image of9

the homotopy π∗,∗S
C of the C-motivic sphere. In the C-motivic sphere, these10

v1-periodic elements are annihilated by h. �11

Remark 3.17. The proof of Proposition 3.16 appeals to knowledge of the homo-12

topy of the C-motivic sphere. In fact, one can avoid this by use of Toda brackets13

in the homotopy of LC. Namely, in the homotopy of LC, the E∞-page element14

h1v
4k+4
1 detects an element in the bracket 〈h3σ, h, α〉, where α is detected by h1v

4k
115

and σ is detected by ιv41. By induction,16

〈h3σ, h, α〉h = h
3 · σ〈h, α, h〉 = h

3 · σ · τη · α = 0.

Proposition 3.18. In the effective spectral sequence for LC, there are hidden h17

extensions from ι4v4k+2
1 to τh21 · h1v4k1 for all k ≥ 0.18

Proof. Recall that τη2 = 〈h, η, h〉 in the homotopy of the C-motivic sphere [Isa19,19

Table 7.23]. If α is a homotopy element of LC such that hα is zero, then20

α · τη2 = α〈h, η, h〉 = 〈α, h, η〉h.
In particular, let α be detected by h1v

4k
1 . Note that hα = 0 by Proposition 3.16.21

Then τh21 · h1v4k1 detects a homotopy element that is divisible by h, so τh21 · h1v4k122

must be the target of a hidden h extension. There is only one possible source for23

this extension. �24

17



4. The effective spectral sequence for ko1

We now study the effective spectral sequence for R-motivic ko.2

Proposition 4.1. The effective spectral sequence for ko takes the form3

E1(ko) =
Z[ρ, τ 2, h1, τh1, v

2
1]

2ρ, 2h1, 2 · τh1, (τh1)2 = τ 2 · h21 + ρ2 · v21
Proof. The additive structure follows from Theorem 2.1 by taking stable homotopy4

groups. We need that the homotopy groups of R-motivic HZ are5

HZ∗,∗ = Z[τ 2, ρ]/2ρ,

and the homotopy groups of R-motivic HF2 are6

(HF2)∗,∗ = F2[τ, ρ].

The multiplicative structure is mostly also immediate from Theorem 2.1. As7

explained in [Kon23], our formula for (τh1)
2 is equivalent to the formula η2

δ→ √α8

given in [ARØ20, p. 1029]. �9

Table 5 lists the generators of E1(ko). Figure 5 depicts E1(ko) in graphical10

form.11

Table 5: Multiplicative generators for E1(ko)

coweight (s, f, w) x d1(x) ψ3(x) image in E1(ko[η
−1])

0 (−1, 1,−1) ρ ρ ρ

0 (1, 1, 1) h1 h1 1

1 (1, 1, 0) τh1 τh1 τ · h1
2 (0, 0,−2) τ 2 ρ2 · τh1 τ 2 τ 2 + ρ2 · v21 · h−2

1

2 (4, 0, 2) v21 τh1 · h21 9v21 v21

Proposition 4.2. Table 5 gives the values of the effective d1 differential on the12

multiplicative generators of E1(ko).13

Proof. The value of d1(τ
2) follows from [ARØ20, Theorem 20] and R-motivic14

Steenrod algebra actions. Then the value of d1(v
2
1) follows from Equation (1.1).15

Alternatively, there is only one pattern of effective differentials that computes16

the motivic stable homotopy groups of ko, which were previously computed with17

the R-motivic Adams spectral sequence [Hil11]. �18

The entire d1 differential in the effective spectral sequence for ko can easily be19

deduced from Proposition 4.2 and the Leibniz rule.20

18



Theorem 4.3. The E∞-page of the effective spectral sequence for ko is depicted1

in Figures 6, 7, and 8.2

Proof. The Leibniz rule, together with the values in Table 5 (see also Proposition3

4.2), completely determines the effective d1 differential on E1(ko). The E2-page4

can then be determined directly. However, the computation is not entirely5

straightforward. Of particular note is the differential6

d1(τ
2 · τh1 · v21) = τ 4 · h41 + ρ4 · v41,

which yields the relation7

(4.1) τ 4 · h41 = ρ4 · v41
in E2(ko).8

For degree reasons, there can be no higher differentials in the effective spectral9

sequence for ko. �10

For legibility, Figures 6, 7, and 8 display E∞(ko) in three different charts11

separated by coweight modulo 4. There is no chart for coweights 3 mod 4 because12

E∞(ko) is zero in those coweights.13

Figure 9 illustrates part of the analysis of the d1 differentials and the determi-14

nation of E2(ko); it is meant to be representative, not thorough. The chart shows15

some of the elements in coweights 1 and 2 mod 4, together with the d1 differentials16

that relate these elements. In this chart, one can see that τ 2 · h21 + ρ2 · v21 survives17

to E2(ko). This element survives to E∞(ko). It is labelled (τh1)
2 in Figure 8, in18

accordance with Equation (1.1).19

Remark 4.4. There is an alternative, slightly more structured, method for20

obtaining E∞(ko). One can filter E1(ko) by powers of τh1 and obtain a spectral21

sequence that converges to E2(ko). In this spectral sequence, we have the relation22

τ 2 · h21 = ρ2 · v21. There are differentials d1(τ
2) = ρ2 · τh1 and d1(v

2
1) = h21 · τh1.23

Then there is a higher differential d3(τ
2 · v21) = (τh1)

3. None of this is essential to24

our study, but the interested reader may wish to carry out the details.25

26

Table 6 lists the multiplicative generators of E∞(ko). It is possible to give a27

complete list of relations. However, the long list is not so helpful for understanding28

the structure of E∞(ko). The charts in Figures 6, 7, and 8 are more useful for29

this purpose.30

Table 6: Multiplicative generators for E∞(ko)

coweight (s, f, w) x ψ3(x)

0 (−1, 1,−1) ρ ρ

0 (1, 1, 1) h1 h1

1 (1, 1, 0) τh1 τh1
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Table 6: Multiplicative generators for E∞(ko)

coweight (s, f, w) x ψ3(x)

2 (0, 0,−2) 2τ 2 2τ 2

2 (4, 0, 2) 2v21 9 · 2v21
4 (0, 0,−4) τ 4 τ 4

4 (4, 0, 0) 2τ 2v21 9 · 2τ 2v21
4 (8, 0, 4) v41 81v41

Proposition 4.5. Table 7 lists some hidden extensions by ρ, h, and η in the1

effective spectral sequence for ko. All other hidden extensions by ρ, h, and η are2

v41-multiples and τ 4-multiples of these.3

Proof. Recall from [BS20, Corollary 1.9] that the homotopy of ko/ρ is isomorphic4

to the homotopy of koC. Therefore, we completely understand the homotopy of5

ko/ρ from Theorem 3.3 and Figure 2.6

The hidden ρ extensions follow from inspection of the long exact sequence7

associated to the cofiber sequence8

Σ−1,−1ko
ρ−→ ko→ ko/ρ.

The map ko→ ko/ρ takes the elements τ 4 · h31 and (τh1)
2h1 to zero because there9

are no possible targets in the homotopy of ko/ρ. Therefore, those two elements10

must receive hidden ρ extensions, and there is only one possibility in both cases.11

The relation τ 4 · h41 = ρ4 · v41 (see Equation (4.1)) then implies that 2τ 2v21 also12

supports an h1 extension.13

The map ko/ρ → Σ0,−1ko takes τ 3 and τ 3h1 to 2τ 2 and ρ(τh1)
2 respectively.14

There is an h1 extension connecting τ 3 and τ 3h1 in ko/ρ, so there must be a15

hidden η extension from 2τ 2 to ρ(τh1)
2.16

The hidden h extension on τh1 follows from the analogous hidden extension in17

the homotopy groups of the R-motivic sphere [DI17] [BI22], using the unit map18

S → ko. Alternatively, this hidden extension is computed in [Hil11, Proposition19

4.3] in the context of the R-motivic Adams spectral sequence for ko.20

Finally, multiply by τh1 to obtain the hidden h extension on (τh1)
2.21

For degree reasons, there are no other possible hidden extensions to consider. �22

Table 7: Hidden extensions in E∞(ko)

coweight source type target (s, f, w)

2 2v21 ρ (τh1)
2h1 (3, 3, 1)
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Table 7: Hidden extensions in E∞(ko)

coweight source type target (s, f, w)

4 2τ 2v21 ρ τ 4 · h31 (3, 3,−1)
4 2τ 2v21 η ρ3 · v41 (5, 3, 1)

2 2τ 2 η ρ(τh1)
2 (1, 3,−1)

1 τh1 h ρ · τh1 · h1 (1, 3, 0)

2 (τh1)
2

h ρ(τh1)
2h1 (2, 4, 0)

Remark 4.6. We have completely analyzed the E∞-page of the effective spectral1

sequence for ko, but this is not quite the same as completely describing the2

homotopy of ko. In particular, one must choose an element of π∗,∗ko that is3

represented by each multiplicative generator of E∞(ko) (see Table 6). In some4

cases, there is more than one choice because of the presence of elements in5

higher filtration in the E∞-page. The choices of ρ, h1, τh1, and τ
4 can be made6

arbitrarily; the ring structure is unaffected by these choices. The elements 2τ 27

and 2v21 are already well-defined because there are no elements in higher filtration.8

Finally, the choices of 2τ 2v21 and v41 can then be uniquely specified by the relations9

ρ · 2τ 2v21 = τ 4 · h31 and ρ4 · v41 = τ 4 · h41.10

4.1. η-periodic ko. Later we will need some information about the η-periodic11

spectrum ko[η−1]. As in Section 3.3, powers of h1 are inconsequential for compu-12

tational purposes in the η-periodic context. Consequently, we have removed these13

powers from all η-periodic formulas.14

Proposition 4.7. The effective E1-page for ko is given by15

E1(ko[η
−1]) = F2[h

±1
1 , τ, ρ, v21].

Moreover, the periodicization map ko → ko[η−1] induces the map on effective16

E1-pages whose values are given in Table 5.17

The first part of Proposition 4.7 was first proved in [ARØ20, Theorem 19],18

although the notation is different.19

Proof. The functors s∗ commute with homotopy colimits [Spi08, Corollary 4.6].20

Therefore, we can just invert h1 in the description of E1(ko) given in Proposition21

4.1 (see also Figure 5).22

After inverting h1, the relation 2h1 in E1(ko) implies that 2 = 0 in E1(ko[η
−1]).23

This gives that24

E1(ko[η
−1]) =

F2[h
±1
1 , ρ, τ 2, τh1, v

2
1]

τ 2 = h−2
1 (τh1)2 + h−2

1 · ρ2 · v21
.

21



Because of the relation, the generator τ 2 is redundant.1

The values of the periodicization map given in Table 5 are immediate from the2

algebraic analysis of the previous paragraph. �3

Remark 4.8. Table 5 gives an unexpected value for τ 2. Recall that τ 2 is inde-4

composable in E1(ko), so there is no inconsistency. The unexpected value arises5

from Equation (1.1).6

4.2. The Adams operation ψ3 in effective spectral sequences. Our goal7

in this section is to study ψ3 as a map of effective spectral sequences. This will8

allow us to compute the E1-page of the effective spectral sequence for L.9

Lemma 4.9. The map E∞(ko)→ E∞(ko) induced by ψ3 on effective E∞-pages10

takes the values shown in Table 6.11

Proof. Corollary 2.4(2) gives the values of ψ3 on ρ, h1, and τh1.12

The value of ψ3 on τ 4 is determined immediately by comparison along Betti13

realization to the classical value ψ3(1) = 1. The computation is greatly simplified14

by ignoring terms in higher effective filtration. Similarly, the value of ψ3 on 2τ 2 is15

determined by the classical value ψ3(2) = 2.16

The remaining values in Table 6 are also determined by comparison along Betti17

realization to the classical values ψ3(2v21) = 9 · 2v21 and ψ3(v41) = 81v41. �18

Lemma 4.10. The map E1(ko) → E1(ko) induced by ψ3 on effective E1-pages19

takes the values shown in Table 5.20

Proof. The values of ψ3 on E1(ko) are compatible with the values of ψ3 on E∞(ko),21

as shown in Table 6. This immediately yields the value of ψ3 on ρ, h1, and τh1.22

The value of ψ3((τ 2)2) must be (τ 2)2 by compatibility with the value of ψ3(τ 4)23

in E∞(ko). Then the relation ψ3((τ 2)2) = (ψ3(τ 2))2 implies that ψ3(τ 2) = τ 2.24

Similarly, the value of ψ3((v21)
2) must be 81(v21)

2 by compatibility with the25

value of ψ3(v41) in E∞(ko). Then the relation ψ3((v21)
2) = (ψ3(v21))

2 implies that26

ψ3(v21) = 9v21. �27

Remark 4.11. Since ψ3 is a ring homomorphism, all values of ψ3 on E1(ko) are28

readily determined by the values on multiplicative generators given in Table 5. In29

particular, for all k ≥ 0,30

ψ3(v2k1 ) = 9kv2k1 .

Remark 4.12. Table 5 implies that ψ3(v41) = 81v41. The careful reader will notice31

that this expression appears to be simpler than the analogous formula in [BH20,32

Theorem 3.1(2)]. The difference is explained by the fact that we are working33

only up to higher effective filtration. In particular, our formulas do not reflect34

the difference between the homotopy elements 2 and h, since their difference is35
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detected by ρh1 in higher effective filtration. This also means that our formulas1

are less precise, but that has no consequence for our computational results.2

5. The effective spectral sequence for L3

5.1. The effective E1-page of L. In this section we compute the E1-page of4

the effective spectral sequence for L.5

The fiber sequence L→ ko
ψ3−1−→ ko induces a fiber sequence6

s∗L −→ s∗ko
ψ3−1−→ s∗ko

on slices. Upon taking homotopy groups, we obtain a long exact sequence7

· · · −→ E1(L) −→ E1(ko)
ψ3−1−→ E1(ko) −→ · · · .

Table 5 (see also Lemma 4.10) gives us complete computational knowledge of the8

map E1(ko)→ E1(ko). This allows us to compute E1(L).9

Proposition 5.1. The chart in Figure 10 depicts the effective E1-page of L.10

Proof. The long exact sequence11

· · · −→ E1(L) −→ E1(ko)
ψ3−1−→ E1(ko) −→ · · ·

induces a short exact sequence12

0 −→ Σ−1C −→ E1(L) −→ K −→ 0,

where C and K are the cokernel and kernel of E1(ko)
ψ3−1−→ E1(ko). The cokernel13

and kernel can be computed directly from the information given in Lemma 4.10.14

See also Remark 4.11.15

The kernel consists of all elements in E1(ko) with the exception of the integer16

multiples of τ 2j · v2k1 for j ≥ 0 and k > 0.17

The cokernel C is nearly the same as E1(ko) itself. We must impose the relations18

(32k−1)v2k1 = 0 for all k > 0. Lemma 3.8 says that 32k−1 equals 2v(2k)+2 ·u, where19

u is an odd number, i.e., a unit in our 2-adic context. Therefore, the relation20

(32k − 1)v2k1 = 0 is equivalent to the relation 2v(2k)+2v2k1 = 0. �21

Table 8 lists some elements of the effective E1-page of L. In fact, by inspection22

these elements are multiplicative generators for E1(L).23

We use the same notation for elements of E1(L) and their images in E1(ko).24

On the other hand, we define the element ιx of E1(L) to be the image of x under25

the map ι : Σ−1E1(ko)→ E1(L). For example, the element 1 of E1(ko) maps to ι26

in E1(L).27
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Table 8: Multiplicative generators for E1(L): k ≥ 0

coweight (s, f, w) generator image in E1(L[η
−1])

2 (0, 0,−2) τ 2 τ 2 + ρ2 · v21
2k + 1 (4k + 1, 1, 2k) τh1v

2k
1 τ(v21)

k

2k (4k − 1, 1, 2k − 1) ρv2k1 ρ(v21)
k

2k (4k + 1, 1, 2k + 1) h1v
2k
1 (v21)

k

2k − 1 (4k − 1, 1, 2k) ιv2k1 ι(v21)
k

5.2. The effective spectral sequence for L[η−1]. In Section 5.1, we determined1

the effective E1-page of L. The next steps in the analysis of the effective spectral2

sequence for L are to determine the multiplicative structure of E1(L) (see Section3

5.3) and to determine the effective differentials (see Sections 5.4 and 5.5).4

Before doing so, we collect some information on the η-periodicization L[η−1].5

We will study L[η−1] by comparing to the more easily understood ko[η−1].6

As in Sections 3.3 and 4.1, powers of h1 are inconsequential for computational7

purposes in the η-periodic context. Consequently, we have removed these powers8

from all η-periodic formulas.9

Proposition 5.2. The effective E1-page for L[η−1] is given by10

E1(L[η
−1]) = F2[h

±1
1 , τ, ρ, v21, ι]/ι

2.

Moreover, the periodicization map L→ L[η−1] induces the map E1(L)→ E1(L[η
−1])11

whose values are given in Table 8.12

Proof. As in Proposition 4.7, we can just invert h1 in the additive description of13

E1(L) given in Proposition 5.1.14

The map E1(ko[η
−1])

ψ3−1−→ E1(ko[η
−1) is trivial because (ψ3 − 1)(h1) = 0, as15

shown in Table 5 (see also Lemma 4.10). Therefore, the long exact sequence16

· · · −→ E1(L[η
−1) −→ E1(ko[η

−1])
ψ3−1−→ E1(ko[η

−1]) −→ · · ·
splits as17

E1(L[η
−1]) ∼= E1(ko[η

−1])⊕ Σ−1E1(ko[η
−1]).

With Proposition 4.7, this establishes the additive structure of E1(L[η
−1]), as well18

as most of the multiplicative structure.19

The relation ι2 = 0 is immediate because there are no possible non-zero values20

for ι2. �21
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Remark 5.3. As in Remark 4.8, Table 8 gives an unexpected value for τ 2, which1

arises from Equation (1.1). Also, the last column of Table 8 leaves out of h1 for2

readability.3

Remark 5.4. Note that E1(L[η
−1]) is very close to the effective E1-page for4

the η-periodic sphere S[η−1] [RSØ19, Theorem 2.32] [OR20, Theorem 2.3]. The5

element ι is not present in E1(S[η
−1]), but the elements ιv2k1 are present.6

Proposition 5.5. Some values of the differentials in the effective spectral sequence7

of L[η−1] are:8

(1) d1(v
2
1) = τ .9

(2) dn+1(v
2n

1 ) = ρn+1 · ιv2n1 for n ≥ 2.10

The effective differentials are zero on all other multiplicative generators on all11

pages.12

Following our convention throughout this section, we have omitted the powers13

of h1 from the formulas in Proposition 5.5.14

Proof. The d1 differential follows from [RSØ19, Lemma 4.2] or [OR20, Theorem15

2.6].16

To study the higher differentials, consider the map S[η−1]→ L[η−1]. This map17

induces an isomorphism on stable homotopy groups, except in coweight −1. This18

follows from a minor adjustment to [BH20, Theorem 1.1]. The adjustment arises19

from the fact that our L[η−1] is the fiber of ko[η−1]
ψ3−1−→ ko[η−1], while [BH20,20

Theorem 1.1] refers to the fiber of ko[η−1]
ψ3−1−→ Σ8,4ko[η−1].21

The homotopy of S[η−1] is completely computed in [GI16], so the homotopy of22

L[η−1] is known (except in coweight −1). There is only one pattern of differentials23

that is compatible with the known values for L[η−1]. �24

Remark 5.6. In the language of [OR20, Section 4], Proposition 5.5 establishes25

the profile of the η-periodic effective spectral sequence over R.26

5.3. Multiplicative relations for E1(L). In this section, we will completely27

describe the product structure on E1(L). We do not need all of this structure for28

our later computations, but we include it for completeness.29

Proposition 5.7. Table 9 lists some products in E1(L).30

Table 9: Products in E1(L): j ≥ 0 and k ≥ 0

ρv2j1 h1v
2j
1 τh1v

2j
1 ιv2j1

ρv2k1 ρ · ρv2j+2k
1

25



Table 9: Products in E1(L): j ≥ 0 and k ≥ 0

ρv2j1 h1v
2j
1 τh1v

2j
1 ιv2j1

h1v
2k
1 ρ · h1v2j+2k

1 h1 · h1v2j+2k
1

τh1v
2k
1 ρ · τh1v2j+2k

1 h1 · τh1v2j+2k
1 τ 2 · h1 · h1v2j+2k

1 +

+ρ · ρv2j+2k+2
1

ιv2k1 ρ · ιv2j+2k
1 h1 · ιv2j+2k

1 τh1 · ιv2j+2k
1 0

Proof. All of these products are detected by E1(L[η
−1]), which is described1

in Proposition 5.2. We need the values of the periodicization map E1(L) →2

E1(L[η
−1]) given in Table 8. �3

5.4. The effective d1 differential for L. Our next task is to compute the4

differentials in the effective spectral sequence for L.5

Proposition 5.8. Table 10 gives the values of the effective d1 differential on the6

multiplicative generators of E1(L).7

Table 10: Effective d1 differentials for L: k ≥ 0

coweight (s, f, w) x d1(x)

2 (0, 0,−2) τ 2 ρ2 · τh1
4k (8k − 1, 1, 4k − 1) ρv4k1

4k + 2 (8k + 3, 1, 4k + 1) ρv4k+2
1 ρh21 · τh1v4k1

4k (8k + 1, 1, 4k + 1) h1v
4k
1

4k + 2 (8k + 5, 1, 4k + 3) h1v
4k+2
1 h31 · τh1v4k1

4k + 3 (8k + 5, 1, 4k + 2) τh1v
4k+2
1 τ 2 · h31 · h1v4k1 + ρ2h1 · h1v4k+2

1

4k + 1 (8k + 1, 1, 4k) τh1v
4k
1

4k + 1 (8k + 3, 1, 4k + 2) ιv4k+2
1 τh1 · h21 · ιv4k1

4k − 1 (8k − 1, 1, 4k) ιv4k1

Proof. All of these differentials follow immediately from the effective d1 differentials8

for L[η−1], which are all determined by Proposition 5.5(1) Beware that the exact9

values of the map E1(L)→ E1(L[η
−1]), as shown in Table 8, are important.10

For example, consider the differential on the element τh1v
4k+2
1 . It maps to11

τ(v21)
2k+1 in E1(L[η

−1]) (up to h1 multiples, which as usual we ignore in the12

η-periodic situation). The η-periodic differential on this latter element is τ 2(v21)
2k.13
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Finally, we need to find an element of E1(L) in the correct degree whose η-period-1

icization is τ 2(v21)
2k, The only possibility is τ 2 · h31 · h1v4k1 + ρ2h1 · h1v4k+2

1 . �2

Remark 5.9. All d1 differentials in E1(L) can be deduced from the information3

in Table 10 and the Leibniz rule, but the computations can be complicated by4

the multiplicative relations of Table 9. For example,5

d1(τ
2 · τh1v21) = ρ2 · τh1 · τh1v21 + τ 2(τ 2 · h41 + ρ2h1 · h1v21) = τ 4 · h41 + ρ4 · v41.

Having completely analyzed the slice d1 differentials for E1(L), it is now possible6

to compute the E2-page of the slice spectral sequence for L.7

Proposition 5.10. The E2-page of the effective spectral sequence for L is depicted8

in Figures 11, 12, 14, and 15.9

For legibility, Figures 11, 12, 14, and 15 display E2(L) in four different charts10

separated by coweight modulo 4. Note that Figures 14 and 15 also serve as E∞-11

page charts in coweights 1 and 2 modulo 4 because there are no higher differentials12

that affect these coweights.13

Proof. The Leibniz rule, together with the values in Table 10, completely deter-14

mines the effective d1 differential on E1(L). The E2-page can then be determined15

directly. However, as in the proof of Theorem 4.3, the computation is not entirely16

straightforward.17

It turns out that the d1 differential preserves the image of the map Σ−1E1(ko)→18

E1(L). Moreover, it turns out that all d1 differentials with values in the image of19

Σ−1E1(ko)→ E1(L) also have source in this image. (This is not for formal reasons;20

in fact, the higher effective differentials do not have this property.) Consequently,21

the determination of the E2-page splits into two separate computations: one for22

the image of Σ−1E1(ko)→ E1(L), and one for the cokernel of the same map.23

In more concrete terms, we can determine E2(L) by first considering only24

elements of the form ιx, and then separately considering only elements that are25

not of this form.26

The d1 differential on the image of Σ−1E1(ko) → E1(L) is identical to the27

d1 differential for ko discussed in Section 4. The d1 differential on the cokernel28

of Σ−1E1(ko) → E1(L) is similar to the d1 differential on E1(ko), but slightly29

different. The difference is created by the absence of the elements v2k1 in E1(L). �30

5.5. Higher differentials. We now consider the higher differentials in the effec-31

tive spectral sequence for L.32

By inspection of the charts for E2(L), the only possible higher differentials have33

source in coweight congruent to 0 modulo 4 and value in coweight congruent to 334

modulo 4. In other words, in coweights congruent to 1 and 2 modulo 4, we have35

that E2(L) equals E∞(L).36

It turns out that there are many higher differentials. In fact, nearly all of37

the elements in E2(L) in coweight congruent to 0 modulo 4 support differentials.38

While it is possible to write down explicit formulas for all of these differentials,39
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the formulas would be cumbersome and not so helpful. Rather, we give a more1

qualitative description of the differentials because it is more useful for computation.2

Proposition 5.11. Consider the elements of E2(L) in coweights congruent to 03

modulo 4 that belong to the cokernel of the map Σ−1E2(ko)→ E2(L).4

(1) The only permanent cycles are the multiples of 1, the multiples of 2τ 4k for5

k ≥ 0, and ρahb1 for all a ≥ 0 and b ≥ 0.6

(2) Excluding the elements listed in (1), if an element has coweight congruent7

to 2r−1 modulo 2r, then it supports a dr differential.8

Proposition 5.11 may seem imprecise because it does not give the values of the9

differentials. However, there is only one non-zero possible value in every case, so10

there is no ambiguity.11

Proof. These differentials follow immediately from the η-periodic differentials of12

Proposition 5.5, together with multiplicative relations in E2(L).13

For example, consider the element τ 8 · ρv121 in coweight 20, which is congruent14

to 22 modulo 23. Using Table 8, we find that this element maps to ρ9(v21)
10 in15

E2(L[η
−1]). Here we are using that τ 2 is zero in E2(L[η

−1]) since it is hit by16

an η-periodic d1 differential. Proposition 5.5 says that this element supports an17

η-periodic d3 differential. It follows that τ
8 ·ρv121 also supports a d3 differential. �18

Theorem 5.12. The E∞-page of the effective spectral sequence for L is depicted19

in Figures 13, 14, 15, 16, 17, 18, and 19.20

Proof. The E∞-page can be deduced directly from the higher differentials described21

in Proposition 5.11. �22

The E∞-page in coweights congruent to 3 modulo 4 is by far the most com-23

plicated case. Figures 17, 18, and 19 display E∞(L) in coweights congruent to 324

modulo 8, 7 modulo 16, and 15 modulo 32 respectively.25

In each case (and more generally in coweights congruent to 2n−1− 1 modulo 2n,26

we see similar patterns with minor variations. The lower boundary of each chart27

takes the same shape. The upper boundary of the τ -periodic portion of each chart28

also takes the same shape. However, the filtration jump between the lower and29

upper boundaries increases linearly with n.30

In addition to the τ -periodic portion of each chart, there are also τ -torsion,31

η-periodic regions. These consist of bands of infinite h1-towers of width n that32

repeat every 2n+1 stems. The first such band starts at ιv2
n−1

1 .33

5.6. Hidden extensions. Our last goal is to compute hidden extensions by ρ,34

h, and η. See [Isa19, Section 4.1] for a precise definition of a hidden extension.35

Fortunately, none of the complications associated with crossing extensions occur36

in this manuscript.37
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Proposition 5.13. Table 11 lists some hidden extensions by ρ, h, and η in the1

effective spectral sequence for L.2

Proof. The last column of Table 11 indicates the reason for each hidden extension.3

Some of the hidden extensions follow from the analogous extensions for ko given4

in Table 7, using the maps Σ−1ko→ L and L→ ko.5

Other extensions follow from the long exact sequence associated to the cofiber6

sequence7

Σ−1,−1L
ρ−→ L −→ L/ρ.

Here we need that the homotopy of L/ρ is isomorphic to the homotopy of LC,8

as shown in [BS20, Corollary 1.9]. For example, the hidden h extensions of9

Proposition 3.18 give hidden h extensions in L/ρ, which then imply the hidden10

extension from ι4v21 to h21 · τh1.11

�12

Table 11: Hidden extensions in E∞(L)

coweight source type target (s, f, w) proof

0 ι · τh1 h ι · ρh1 · τh1 (0, 2, 0) Σ−1ko→ L

1 τh1 h ρh1 · τh1 (1, 1, 0) L→ ko

1 ι(τh1)
2

h ι · ρh1(τh1)2 (1, 3, 0) Σ−1ko→ L

1 ι · 2τ 2 η ι · ρ(τh1)2 (−1, 1,−2) Σ−1ko→ L

1 ι2v21 ρ ι · h1(τh1)2 (3, 1, 2) Σ−1ko→ L

1 ι4v21 h h21 · τh1 (3, 1, 2) L/ρ

2 (τh1)
2

h ρh1(τh1)
2 (2, 2, 0) L→ ko

3 ι4τ 2v21 h (τh1)
3 (3, 1, 0) L/ρ

3 ι2τ 2v21 ρ ιτ 4 · h31 (3, 1, 0) Σ−1ko→ L

3 ι2τ 2v21 η ρ3 · ιv41 (3, 1, 0) Σ−1ko→ L

2 2τ 2 η ρ(τh1)
2 (0, 0,−2) L→ ko

3 (τh1)
3

h ιτ 4 · ρ2h61 (3, 3, 0) L/ρ

5 ιv41 · 8τ 2 h ρ2 · τh1v41 (7, 1, 2) L/ρ

Remark 5.14. The hidden extensions in Table 11 are τ 4-periodic in the following13

sense. If we take the source and target of each extension in E1(L) and multiply14

by τ 4, then we obtain permanent cycles that are related by a hidden extension.15

For example, the hidden h extension from τh1 to ρh1 · τh1 generalizes to a family16

of hidden extensions from τ 4k+1h1 to ρh1 · τ 4k+1h1 for all k ≥ 0.17
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Remark 5.15. Similarly to the τ 4-periodicity discussed in Remark 5.14, most of1

the hidden extensions in Table 11 are v41-periodic as well. For example, the hidden2

h extension from τh1 to ρh1 · τh1 generalizes to a family of hidden extensions from3

τh1v
4k
1 to ρh1 · τh1v4k1 for all k ≥ 0. There are three exceptions, which appear4

below the horizontal divider at the bottom of the table. These exceptions are5

discussed in more detail in Remarks 5.16, 5.17, and 5.18.6

Remark 5.16. The hidden η extension from 2τ 2 to ρ(τh1)
2 is τ 4-periodic as in7

Remark 5.14, but it is not v41-periodic. The elements 2τ 2v4k1 are not permanent8

cycles for k ≥ 1.9

Remark 5.17. The hidden h extension from ιv41 · 8τ 2 to ρ2 · τh1v41 is v41-periodic,10

but the situation is slightly more complicated than in Remark 5.15. For all k,11

ρ2 · τh1v4k1 receives a hidden h extension from an appropriate multiple of ιv4k1 · 2τ 2.12

For example, as shown in Figure 14, there is a hidden h extension from ιv4k1 · 16τ 213

to ρ2 · τh1v81.14

Remark 5.18. The hidden h extension from (τh1)
3 to ιτ 4 · ρ2h61 is v41-periodic,15

but the situation is more complicated than in Remarks 5.15 and 5.17. For all16

k ≥ 0, the element (τh1)
2τh1v

4k
1 supports a hidden h extension to the element of17

E∞(L) of highest filtration in the appropriate degree. For example, as shown in18

Figure 18, there is a hidden h extension from (τh1)
2 · τ 5h1 to ιτ 8 · ρ3h71. Figures19

17, 18, and 19 show several extensions of this type.20

6. Charts21

We explain the notation used in the charts.22

• The horizontal coordinate is the stem s. The vertical coordinate is the23

Adams-Novikov filtration f (see Section 1.7 for further discussion).24

• Black or green circles represent copies of F2, periodicized by some power of τ .25

The relevant power of τ varies from chart to chart.26

• Black or green unfilled boxes represent copies of Z (the 2-adic integers),27

periodicized by some power of τ . The relevant power of τ varies from chart28

to chart.29

• Black or green boxes containing a number n represent copies of Z/2n, peri-30

odicized by some power of τ . The relevant power of τ varies from chart to31

chart.32

• Red unfilled boxes represent copies of Z (the 2-adic integers) that are not33

τ k-periodic for any k.34

• Green objects represent elements in the image of the map E1(Σ
−1ko)→ E1(L)35

(or E1(Σ
−1koC)→ E1(L

C)). Beware that the color refers to the E1-page origin36

of the element, not the properties of the homotopical element that it detects.37
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For example, in Figure 4, the element τh31 detects an element in π3,2L
C that1

maps to zero in π3,2ko
C, so it is in the image of π4,2ko

C. Nevertheless, the2

element is colored black because it is not in the image on E1-pages.3

• Black objects represent elements in the cokernel of the map E1(Σ
−1ko) →4

E1(L) (or E1(Σ
−1koC)→ E1(L

C)). In other words, they are detected by the5

map L → ko (or LC → koC). As in the previous paragraph, beware of the6

distinction between E1-page origins and homotopical properties.7

• Lines of slope 1 represent h1-multiplications.8

• Black or green arrows of slope 1 represent infinite sequences of elements that9

are τ k-periodic for some k > 0 and are connected by h1-multiplications.10

• Red arrows of slope 1 represent infinite sequences of elements that are con-11

nected by h1-multiplications and are not τ k-periodic for any k.12

• Lines of slope −1 represent ρ-multiplications.13

• Dashed lines of slope −1 represent ρ-multiplications whose values are multiples14

of τ k for some k > 0. For example, in Figure 6, we have ρ · ρ3v41 equals τ 4 · h41.15

• Black or green arrows of slope −1 represent infinite sequences of elements16

that are τ k-periodic for some k > 0 and are connected by ρ-multiplications.17

• Light blue lines of slope −3 represent effective d1 differentials.18

• Dashed light blue lines of slope −3 represent effective d1 differentials that hit19

multiples of τ k, for some k > 0. For example, the dashed line in Figure 120

indicates that d1(v
2
1) equals τh

3
1.21

• Dark blue lines indicate hidden extensions by h, ρ, or h1.22

• Dashed dark blue lines indicate hidden extensions whose value is a multiple23

of τ k for some k > 0. For example, in Figure 4, there is a hidden h extension24

from ι4v21 to τh31.25
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Figure 4. The E∞-page of the effective spectral sequence for LC
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Figure 13. The E∞-page of the effective spectral sequence for L in coweights 0 mod 4

- 1 0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

E2(L) = E∞(L) in coweights 1 mod 4 � = Z2[τ
4]

�n = Z/2n[τ4]

• = F2[τ
4]

-2 0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

rS

ι · 2τ2

b ι(τh1)
2

b b

b

b

τh1

b b

b
b

rS2

ι2v2
1

rS3

ιv4
1
· 2τ2

b ιv4
1
(τh1)

2

b b

b

b

τh1v
4

1

b

b

b

b
b

rS2

ι2v6
1

rS4

ιv8
1
· 2τ2

b ιv8
1
(τh1)

2

b b

b

b

τh1v
8

1

b

b

b

b
b

rS2

ι2v10
1

Figure 14. The E∞-page of the effective spectral sequence for L in coweights 1 mod 4
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Figure 18. The E∞-page of the effective spectral sequence for L in coweights 7 mod 16
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Figure 19. The E∞-page of the effective spectral sequence for L in coweights 15 mod 32
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