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R-MOTIVIC v;-PERIODIC HOMOTOPY
EVA BELMONT, DANIEL C. ISAKSEN, AND HANA JIA KONG

ABSTRACT. We compute the vi-periodic R-motivic stable homotopy groups.
The main tool is the effective slice spectral sequence. Along the way, we
also analyze C-motivic and n-periodic vi-periodic homotopy from the same
perspective.

1. INTRODUCTION

The computation of the stable homotopy groups of spheres is a difficult but
central problem of stable homotopy theory. There is much that we do not know
about stable homotopy. However, the v;-periodic stable homotopy groups (also
known as the homotopy groups of the spectrum J) are completely understood,
and they have interesting number-theoretic properties.

The goal of this article is to explore v;-periodic stable homotopy in the R-
motivic context. This choice of ground field represents a middle ground between
the well-understood C-motivic situation and the much more difficult situation of
an arbitrary field, in which arithmetic necessarily enters into the picture.

From our perspective, the field R introduces just one piece of arithmetic: the
failure of —1 to have a square root. This leads to complications in R-motivic
homotopical computations, but they can be managed with care and attention to
detail.

Classically, v;-periodic homotopy is detected by the connective spectrum j*°P,

which is defined to be the fiber of a map ko™? wg—_; Y4ksp™P, where ko™P is the
connective real K-theory spectrum, ksp™® is the connective symplectic K-theory
spectrum, and % is an Adams operation. (The “top” superscripts indicate that
we are discussing the classical context here, rather than the motivic context.)

In fact, ko™ itself is the more natural target for the map ¢* — 1. However,

3_
the fiber of ko'®® “7 ko' has a minor defect. It has some additional homotopy

classes in stems —1, 0, and 1 that do not correspond to homotopy classes for the
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sphere spectrum. In other words, the map from S° to this fiber is not surjective in
homotopy. If we change the target of % — 1 from ko"P to its 3-connective cover
Y4ksp™P, then this problem disappears, and the map from S° to the fiber is onto
in homotopy.

It is possible to mimic these constructions in motivic stable homotopy theory
[BH20]. At the prime 2, one can define the motivic connective spectrum j to

be the fiber of a map ko 1&3_31 ¥42ksp, where ko is the very effective connective
Hermitian K-theory spectrum, ksp is defined in terms of very effective covers of
ko, and 13 is a motivic lift of an Adams operation.

However, from a computational perspective, this definition of j introduces
apparently unnecessary complications. It is possible to compute the homotopy of
R-motivic 7 using the techniques that appear later in this manuscript. However,
the computation is slightly messy, involving some exceptional differentials and
exceptional hidden extensions in low dimensions. In any case, the homotopy of
the R-motivic sphere does not surject onto the homotopy of R-motivic j. In other
words, the main rationale for using ksp in the first place does not apply in the
motivic situation.

On the other hand, the computation of the homotopy of the R-motivic fiber of

ko wg—_; ko is much cleaner. Moreover, it tells us just as much about v;-periodic R-
motivic homotopy as j. In other words, it has all of the computational advantages
of j, while avoiding some unfortunate complications.

Consequently, in this manuscript, we will be solely concerned with the fiber of

3_
ko " ko. We use the notation L for this fiber in order to avoid confusion with
the traditional meaning of j. The symbol L is meant to draw a connection to the

classical K (1)-local sphere Ly 1)S°, which is the fiber of KO Y KO, Our
main result is a computation of the homotopy of L.

Theorem 1.1. The homotopy of the R-motivic spectrum L is depicted in Figures
15-19 via the E-page of the effective spectral sequence, including all hidden
extensions by p, h, and n.

The proof of Theorem 1.1 appears in Section 5. See especially Theorem 5.12
and Proposition 5.13.

Beware that the homotopy of the R-motivic spheres does not surject onto the
homotopy of R-motivic L. It is possible that we may have not yet constructed
the “correct” motivic version of the classical connective spectrum j*P. These
considerations raise questions about vector bundles and the motivic Adams
conjecture. We make no attempt to study these more geometric issues. '

We claim to compute the v-periodic R-motivic stable homotopy groups, but
this claim deserves some clarification. We do not use an intrinsic definition of
vi-periodic R-motivic homotopy, although such a definition could probably be

IAfter the first version of this manuscript appeared, some of these issues have been addressed in
[AERY23].
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formulated in terms of the motivic K (1)-local sphere. See [BOQ)23] for some
progress on motivic K (1)-localization.

Rather, we merely compute the homotopy of L, and we observe that it detects
large-scale structure in the stable homotopy of the R-motivic sphere, which was
described in a range in [BI122]. In other words, we have a practical description of
R-motivic vi-periodic homotopy, not a theoretical one.

The careful reader may object that our approach with effective spectral sequences
is long-winded and unnecessarily complicated. In fact, the homotopy of L could
be determined by direct analysis of the long exact sequence associated to the
defining fiber sequence for L. However, there is a disadvantage in this direct
approach. We find that the effective filtration is useful additional information
about the homotopy of L that helps us understand the computation. The effective
filtration is part of the “higher structure” of the homotopy of L. For example,
some subtle phenomena, such as hidden multiplicative extensions, can only shift
into higher effective filtration, so detailed knowledge of effective filtrations of
homotopy classes can rule out possibilities that may otherwise be difficult to
analyze. Another example occurs with Toda brackets, which may be computable
using effective differentials. While we have no immediate uses for this higher
structure, we know from experience that it inevitably becomes important in deeper
homotopical analyses.

1.1. Charts. We provide a series of charts that display the effective spectral
sequences for ko and L, as well as their C-motivic counterparts. We consider these
charts to be the central achievement of this manuscript. We encourage the reader
to rely heavily on the charts. In a sense, they provide an illustrated guide to our
computations.

Caution must be exercised in the comparison to [BI22] since the Adams fil-
trations and effective filtrations are different. As in [BI22], our charts consider
each coweight separately; we have found that this is a practical way of studying
R-motivic homotopy groups. Periodicity by 7% (which is not a permanent cycle,
but should be thought of as a periodicity operator in coweight 4) allows us to give
a fairly compact depiction of the homotopy of L in coweights congruent to 0, 1,
and 2 modulo 4; see Figures 13, 14, and 15.

The homotopy of L in coweights congruent to 3 modulo 4 is much more
interesting but harder to describe. See Figures 17 and 18.

1.2. Completions. We are computing exclusively in the 2-complete context. This
simplifies all questions surrounding convergence of spectral sequences. Also, the
final computational 2-complete answers are easier to state than their 2-localized
or integral counterparts.

We generally omit completions from our notation for brevity. For example, we
write Z for the 2-adic integers, and we write KO for the 2-completed R-motivic
Hermitian K-theory spectrum.

Section 2.3 discusses these topics in slightly more detail.
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1.3. Regarding the element 2. When passing from the effective F,-page to
stable homotopy groups, one must choose homotopy elements that are represented
by each element of the E,.-page. For the element 2 in the F..-page, there is more
than one choice in 7y because of the presence of elements in the E,-page in
higher effective filtration.

From the perspective of abelian groups, the element 2 = 1 4 1 is the obvious
choice of homotopy element. However, there is another element h, also detected by
2 in the effective spectral sequence, that turns out to be a much more convenient
choice. The difference between h and 2 in homotopy is detected by the element
phy in higher filtration (to be discussed later). Experience has shown that the
motivic stable homotopy groups are easier to describe in terms of h than in terms
of 2. For example, we have the relations hp = 0 and hn = 0, where p and 7 are
homotopy elements detected by p and hy respectively. However, neither 2p nor 279
are zero. Because of the presence of elements in higher filtration, the homotopy
elements p and 7 are not uniquely defined by the effective E,.-page elements
that detect them. However, the mentioned relations hold for all choices. In this
discussion, the exact definitions of p and 7 are less important than the observation
that they satisfy nicer relations with respect to h than with respect to 2.

There are two additional reasons why the element h plays a central role. First,
it corresponds to the hyperbolic plane under the isomorphism between motivic g g
and the Grothendieck—Witt group of symmetric bilinear forms [Mor04]. Second,
it plays the role of the zeroth Hopf map, in the sense that the Steenrod operations
on its cofiber are simpler than the Steenrod operations for the cofiber of 2.

Consequently, instead of describing motivic stable homotopy groups as a module
over the 2-adic integers Z (i.e., in terms of the action of 2), it is easier to describe
the homotopy groups in terms of the action of h.

1.4. Future directions. Our work points toward several open problems.

Problem 1.2. Compute motivic vi-periodic homotopy over an arbitrary base
field. Using [BH20], one can define L as the fiber of the map 93 — 1, and it is
conceivable that one could carry out the effective spectral sequence for L in this
level of generality, similar to the kind of computations that appear in [RSO19] and
[RSO21]. See Section 1.5 for further discussion. For prime fields of characteristic
not two, some explicit computations were carried out in [[KQ)23].

Problem 1.3. Recompute the homotopy of L using the R-motivic Adams spectral
sequence. This would be a useful comparison object for further computations
with the Adams spectral sequence for the R-motivic sphere. The classical Adams
spectral sequence for 7P was studied by Davis [Dav75], but it was only recently
computed completely by Bruner and Rognes [BR22]. We are proposing a motivic
analogue of their results.
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Problem 1.4. Carry out the effective spectral sequence for the R-motivic sphere
in a range. These computations would serve as a useful companion to R-motivic
Adams spectral sequence computations [BI22]. The idea is to build on the
techniques that are developed in this manuscript.

Problem 1.5. Compute the vi-periodic Cs-equivariant stable homotopy groups.
More precisely, carry out the Cy-effective spectral sequence for a Cs-equivariant
version of L. The details will be similar to but more complicated than the
computations in this manuscript. See [Kon23] for the effective approach to the
Cs-equivariant version of ko. Alternatively, one might compute the v;-periodic
Cs-equivariant stable homotopy groups by periodicizing the v;-periodic R-motivic
groups with respect to 7, as considered by Behrens and Shah [BS20].

Recall that the R-motivic and Ch-equivariant stable homotopy groups are
isomorphic in a range [BGI21]. Consequently, we anticipate that some version of
the structure described in this manuscript appears in the Cs-equivariant context
as well.

In the equivariant context, we mention Balderrama’s [Bal21] computation of the
homotopy groups of the Borel Cy-equivariant K (1)-local sphere, using techniques
that are entirely different from ours. Roughly speaking, Balderrama computes
the 74v{-periodicization of our result. The effective E,, charts in Figures 13-19
possess an obvious regularity every 8 stems, and Balderrama’s computation sees
that regular pattern.

Problem 1.6. Study K (1)-localization in the motivic context, which ought to be
something like localization with respect to KGL/2. * Compute K (1)-local motivic
homotopy. This would provide an intrinsic definition of v;-periodic homotopy that
would improve upon the practical computational perspective of this manuscript.

A guide to the motivic situation could lie in the work of Balderrama [Bal21]
and Carrick [Car22] on equivariant localizations.

1.5. Towards v;-periodic homotopy over general base fields. Our explicit
computations point the way towards a complete computation of the vi-periodic
motivic stable homotopy groups over arbitrary fields. The situation here is
analogous to the n-periodic R-motivic computations of [GI16], which foreshadowed
the more general n-periodic computations of [Will8], [OR20], and [BH20].

Problem 1.7. Let k be an arbitrary field of characteristic different from 2.
Let GW (k) be the Grothendieck-Witt ring of symmetric bilinear forms over k.
Describe the 2-primary homotopy groups of the k-motivic spectrum L in terms
of the cokernels and kernels of multiplication by various powers of 2 and of h on

GW (k).

2After the first version of this manuscript appeared, some progress has occurred in [BOQ23].
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Problem 1.7 is stated only in terms of 2-primary computations because that
is the most interesting part. We expect that the generalization to odd primes is
straightforward.

The exact powers of 2 and h that are required in Problem 1.7 depend not only
on the coweight but also on the stem. Figures 17 and 18 show that 2V0)*3 is the
relevant power of 2 in most stems in coweight 45 — 1. Here v(j) is the 2-adic
valuation of j, i.e., largest number v such that 2¥ divides j. In coweight 45 — 1
and stem 47 — 1, we see larger powers of 2, as well as powers of h.

Similar observations apply to the kernels that contribute to coweight 4.

1.6. Outline. Section 2 contains some background information that we will need
to get started on our computations. We briefly discuss convergence of the effective
spectral sequences that we will use. We recall some results of Bachmann—Hopkins
[BH20] about motivic Adams operations and of Ananyevskiy-Rondigs—Ostveer
[ARO20] about the slices of ko.

In Section 2, we have taken some care to eliminate details that we do not use.
In other words, Section 2 describes the minimal hypotheses necessary in order to
carry out our computations.

Section 3 considers C-motivic computations, which play two roles in our work.
First, they serve as a warmup to the more intricate R-motivic computations.
Second, the comparison between R-motivic and C-motivic homotopy is a necessary
ingredient for our computations. In this section, we describe the effective spectral
sequence for ko®. This material is well-known, since it is the same (up to regrading)
as the C-motivic Adams—Novikov spectral sequence for ko®, which is nearly the
same as the classical Adams-Novikov spectral sequence for ko”. We then use
the fiber sequence

L€ — ko© Y5 kot
in order to determine the E;-page of the effective spectral sequence for LC.

We next completely analyze the effective spectral sequence for the n-period-
icization LE[n~1]. The n-periodic spectral sequence is significantly simpler than
the unperiodicized spectral sequence. We note the close similarity between the
homotopy of L¢[n~!] and the computations of Andrew—Miller [AM17].

The n-periodic effective differentials completely determine the unperiodicized
effective differentials for L. Finally, we determine hidden extensions in the
effective E,-page for LC.

Section 3 completely computes the homotopy of LE, but the effective spectral
sequence is not necessarily the simplest way of obtaining the computation. Nev-
ertheless, we have chosen this approach because of its relationship to our later
R-motivic computations.

Section 4 analyzes the effective spectral sequence for R-motivic ko, including
all differentials and hidden extensions. The Ej-page is readily determined from
the work of Ananyevskiy—Rondigs—Ostveer [AR(X20] on the slices of ko. We draw
particular attention to the formula

(1.1) (Thi)? =72 - hi + p* - vl
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This formula has a major impact on the shape of the answers that we obtain. In
a sense, our work merely draws algebraic conclusions from Equation (1.1) and
n-periodic information. The hidden extensions in the effective F.-page for ko are
easily determined by comparison to the C-motivic case, using the relationship
between C-motivic and R-motivic homotopy that is described in [BS20, Corollary
1.9].

Our computation of the homotopy of R-motivic ko is not original. See [Kon23]
for a Cs-equivariant analogue of the effective spectral sequence for ko. The R-
motivic computation can be extracted from the Cs-equivariant computation by
dropping the “negative cone” elements. Also, Hill [Hill1] computed the Adams
spectral sequence for ko, although the R-motivic spectrum ko had not yet been
constructed at the time.

The next step, undertaken in Section 4.2, is to analyze the effect of ¢® on the
effective spectral sequence of ko. This follows from a straightforward comparison
to the classical case, together with careful bookkeeping. In turn, this leads to
a complete understanding of the effective Ei-page of L, which is described in
Section 5.1. Again, this is mostly a matter of careful bookkeeping.

Section 5.2 completely analyzes the effective spectral sequence for n-periodic
L[n~']. This information is essentially already well-known, either from [GI10]
or from Ormsby-Rondigs [OR20], although those references do not specifically
mention L.

As in the C-motivic situation of Section 3, n-periodic information yields ev-
erything that we need to know about the unperiodic situation, including all
multiplicative relations in the effective Ej-page for L (see Section 5.3) and all
differentials (see Sections 5.4 and 5.5). We again emphasize the significance of
Equation (1.1) in carrying out the details. Finally, Section 5.6 studies hidden
extensions in the effective E,-page for L. As for ko, these hidden extensions
follow by comparison to the C-motivic case.

1.7. Notation. We use the following notation conventions.
e v(n) is the 2-adic valuation of n, i.e., the largest integer v such that 2" divides
n.

e Except in Section 2, everything is implicitly 2-completed. For example, S is
actually the 2-complete R-motivic sphere spectrum. Similarly, Z is the 2-adic
integers.

e s5.(X) are the slices of a motivic spectrum X.

e [.(X) is the E,-page of the effective spectral sequence for a motivic spectrum
X.

e We find the effective slice filtration to be slightly inconvenient for our purposes.
We prefer to use the “Adams—Novikov filtration”, which equals twice the
effective filtration minus the stem.

e Coweight equals the stem minus the motivic weight.
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e Elements in E,(X) are tri-graded. We write E5/*(X) to denote the part
with topological dimension s, Adams—Novikov filtration f, and motivic weight
w.

e We use unadorned symbols for R-motivic spectra. For example, ko is the very
effective cover of the R-motivic Hermitian K-theory spectrum.

e X is the C-motivic extension-of-scalars spectrum of an R-motivic spectrum
X.

e X'™P is the Betti realization of an R-motivic spectrum X.
e S is the R-motivic sphere spectrum.

e KO is the R-motivic spectrum that represents Hermitian K-theory (also
known as KQ).

e ko is the very effective connective cover of KO.
e HA is the R-motivic Eilenberg—Mac Lane spectrum on the group A.

e Y? is an Adams operation. We use the same symbol in the R-motivic, C-
motivic, and classical situations.

3_
e L is the fiber of ko 5 ko.
e >°"X is a (bigraded) suspension of a motivic spectrum X.

o 7. .(X) are the bigraded stable homotopy groups of an R-motivic or C-motivic
spectrum.

e Recall that ¢ is the motivic homotopy class that is represented by the twist map
SNANS — SAS, where S is the motivic sphere spectrum. Let h be the element
1 — &, which corresponds to the hyperbolic plane under the isomorphism
between 7 o(S) and the Grothendieck-Witt ring GW (R) [Mor04].

e The element p belongs to the R-motivic homology of a point. It is the class
represented by —1 in the Milnor K-theory of R. Since p survives all of
the spectral sequences under consideration, we use the same symbol for the
corresponding homotopy class. However, there is a choice of homotopy class
represented by p because of the presence of elements in higher filtration. There
is an inconsistency in the literature about this choice. Following [Bac18], we
define p such that € = pn — 1, or equivalently 2 = pn + h.

We frequently use names for indecomposables that consist of more than one
symbol. For example, Theorem 2.1 discusses the indecomposable element v? of
the effective Ej-page for ko®. These longer names are slightly more cumbersome.
This is especially the case when we consider products. We will use expressions of
the form z - y for clarity.

On the other hand, our names are particularly convenient because they reflect
the origins of the elements in terms of the spectral sequences that we use. For
example, consider the indecomposable element 2v? of the effective E,.-page for
ko®, as discussed in Theorem 3.3 (see also Figure 2). This name reflects the
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element’s origin in the effective F-page. It also illuminates relations such as
w207 =40}

However, one must be careful about possible error terms in such formulas; see
especially Equation (1.1).

2. BACKGROUND

In this section only, we write ko for the integral version of the very effective
cover of the Hermitian K-theory spectrum, and we use the usual decorations to
indicate localizations and completions of ko. In the rest of the manuscript, ko is
assumed to be 2-completed.

2.1. The effective slices of ko. We recall the structure of the effective slices of
ko.

Theorem 2.1 ([AR(V20, Theorem 17]). The slices of ko are
S*(kO) = HZ[hl, U%]/(th),

where v? and hy have degrees (4,0,2) and (1,1,1) respectively.

We explain the expression in Theorem 2.1. Each monomial of degree (s, f, w)
contributes a summand of X**“H A in the (#)th slice. Here H A is the motivic
Eilenberg-Mac Lane spectrum associated to A. The abelian group A is Fy when
the monomial is 2-torsion, and is Z when the monomial is torsion free. We list
the first three slices as examples:

so(ko) = HZ{1},
s1(ko) = S HFo{h,},
sy(ko) = 2 HFo{h2} v ¥ HZ{v?}.
Beware that the multiplicative structure of s, (ko) is not completely captured

by the notation in Theorem 2.1. The essential multiplicative relation is Equation
(1.1), which follows immediately from the general formulas in [ARX20].

Remark 2.2. The calculation of the slices of the motivic sphere spectrum, due
to Rondigs, Spitzweck, and Ostveer [RSO19], is commonly expressed at the prime
2 as
5.(S) = HZ ® Extls, up(BP., BP.),
Analogously, Theorem 2.1 says that
s«(ko) = HZ ® Extyp pp(BP,, BP.(ko™P)).

However, we do not know of a general theorem relating the slices of a motivic
spectrum with the Adams—Novikov Es-page for its topological counterpart.
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2.2. The Adams operation 1/ and the spectrum L. Bachmann and Hopkins
[BH20] constructed a motivic analogue of the classical Adams operation ¢3. We
summarize the results that we need.

Theorem 2.3 ([BH20]). There is a unital ring map ¢® : ko [3] — ko [3] whose
Betti realization is the classical Adams operation 3.

Proof. There is a unital ring map 3 : KO [%] — KO [%] [BH20, Theorem 3.1],
which is an E,-map. Its Betti realization is also an E.,-map whose action on
the classical Bott element is multiplication by 81. These properties uniquely
characterize the classical Adams operation.

Now apply very effective covers, and the result about ko follows formally. [

The original result is more general in more than one sense. First, it works over
general base schemes in which 2 is invertible, while we only use the construction
over R. Second, its values are computed more precisely than just compatibility
with the classical values.

Corollary 2.4.
(1) 3 : 7, (ko)) — T, .(kob) is a ring map.

(2) If x is in the image of the unit map 7, .(S3) — . .(kob), then 13 (x) = .

(8) There is a commutative diagram

3
e (ko) —2 s 7, (kob)

| l

T((ko"*P)3) — 5 o ((ko™)3),

where the vertical maps are Betti realization homomorphisms.

Proof. These are computational consequences of Theorem 2.3. Part (1) follows
from the fact that ¢? is a ring map. Part (2) follows from the fact that 3 is
unital. Part (3) follows from the fact that the Betti realization of the motivic
Adams operation is the classical Adams operation. O

Remark 2.5. Corollary 2.4 can also be stated in a localized sense rather than
completed sense, but we will not need that.

3_
Definition 2.6. Let L be the fiber of the map ko [5] “= ko [1].

Note that our definition of L is already localized; we do not consider an integral
version. Except for this section, L is assumed to be 2-completed.

10
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The most important point for us is that there is a fiber sequence

3-1
L) — ko) pai ko
of completed spectra since completion preserves fiber sequences.

2.3. Convergence of the effective spectral sequence. The effective spectral
sequence for a motivic spectrum X denotes the spectral sequence associated to
the effective slice filtration of X. We refer to [Levl3, RSO19] for details on the
construction and properties of this spectral sequence.

The effective slice filtration [Voe02] has truncations f9(X) and quotients (i.e.,
slices) s,(X). The Ej-page of the effective spectral sequence is 7, ,(s.(X)). In
good cases, it converges to the homotopy groups of a completion of X. We also
use the very effective slice filtration [S()12], but only to define ko.

The slice functors do not necessarily commute with completions, i.e., s.(X)%
and s,(X2') are not always equivalent. Consequently, we must carefully define the
spectral sequences that we use to study completed spectra. On the other hand,
the effective slices do interact nicely with localizations [Spi08, Corollary 4.6].

Theorem 2.7. There are strongly convergent spectral sequences
B (ko) = oy (503 (k0)3 ) = (ko))

and
EPY(L) = man (SM(L>§) = Tow(Ly)

with differentials d, : E>/Y — Es—LI+r+lw,

We remind the reader that our grading of the effective spectral sequence is
different than the standard grading in the literature. Briefly, s represents the
topological stem, f represents the Adams—Novikov filtration (not the effective
filtration), and w represents the motivic weight. See Section 1.7 for more discussion.

Proof. We discuss the spectral sequence for ko in detail; most of the argument for
L is the same.
Consider the effective slice tower

(ko) + f'(ko) < f*(ko) < --- .
Now take the 2-completion of this tower to obtain
f(ko)y « fl(ko)y ¢ f(ko)y ¢ -

The resulting layers are the same as s,(ko)) since completion respects cofiber
sequences. Beware that this is not necessarily the same as the slice tower of
the completion ko, since slices do not interact nicely with completions. The
associated spectral sequence of this tower is the one described in the statement of
the theorem.

It remains to determine the target of the completed spectral sequence. The limit
of the uncompleted slice tower of ko is equivalent to its n-completion [RSO19],

11
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[AROV20], i.e.,

holim f" (ko) ~ ko,/z\.
Completion respects limits, so the limit holim(f"(ko)3) of the completed slice
tower is equivalent to (ko)))3, which is equivalent to ko by [HKO11, Theorem 1].
Consequently, the completed effective spectral sequence of ko converges to the
homotopy of koy, as desired.

Strong convergence follows from [Boa99, Theorem 7.1}, which has a technical
hypothesis involving derived E.-pages. For ko, this technical hypothesis follows
directly from the computations of Section 4. For L, the technical hypothesis
follows directly from the computations in Sections 5.4 and 5.5. 0J

Remark 2.8. By construction, we have a fiber sequence

s (L)) — s.(ko)) 3 5. (ko)

which yields a long exact sequence
s, fw s, f,w P3—1 s, f,w
This long exact sequence will be our main tool for computing E;(L) in Section
5.1.
3. C-MOTIVIC COMPUTATIONS

In this section, we carry out a preliminary computation of the effective spectral
sequences for ko® and L€. We also consider the n-periodic spectral sequences. We
are primarily interested in R-motivic computations, but we will need to compare
our R-motivic computations to their C-motivic counterparts.

3.1. The effective spectral sequence for ko®. We review the effective spectral
sequence for ko®.

Proposition 3.1. The effective spectral sequence for ko takes the form
B\ (ko®) = Z[r, hy,v3] /2.

Proof. This follows from Theorem 2.1 by taking stable homotopy groups. There
are no possible error terms to complicate the multiplicative structure. [l

Table 1 lists the generators of Fi(ko®). Figure 1 depicts Ey(ko®) in graphical
form.

Table 1: Multiplicative generators for E; (ko®)

coweight (s, f,w) x di(z) ¥3(x)
0 (1,1,1) M hy
1 (0,0,-1) 7 T

12
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Table 1: Multiplicative generators for E;(ko®)

coweight (s, f,w) x di(z) *(x)
2 (4,0,2) v Th? 9o}

Proposition 3.2. Table 1 gives the values of the effective dy differential on the
multiplicative generators of Fy (ko).

Proof. The C-motivic effective spectral sequence is identical to the C-motivic
Adams—Novikov spectral sequence up to reindexing. This claim does not appear
to be cleanly stated in the literature, but it is a computational consequence of the
weight 0 result of [Lev15, Theorem 1]. Alternatively, there is only one pattern of
effective differentials that computes the motivic stable homotopy groups of ko®,

which were previously described using the C-motivic Adams spectral sequence
[IS11]. O

Theorem 3.3. The E..-page of the effective spectral sequence for ko® takes the
form

Z[T, hy, 202, vi]
2hy, Th3, (202)2 = 4 - v}’
Proof. For degree reasons, there can be no higher differentials in the effective
spectral sequence for koC. O

E(ko®) =

Table 2 lists the multiplicative generators of E (ko). Figure 2 depicts Ey(ko®)
in graphical form.

Table 2: Multiplicative generators for E(ko®)

coweight (s, f,w) x  ¥3(x)
0 (1 1L1) h M

1 (0,0,-1) 7 7

2 (4,0, 2) 2?2 9. 22
4 (8,0,4) vf 8lv}

Remark 3.4. There are no possible hidden extensions in E.(ko®) for degree
reasons. Therefore, Theorem 3.3 describes 7T*7*(k0(c) as a ring.

3.2. The effective E,-page for L. Our next goal is to describe the effective
Ei-page Ei(LS). First we must study the values of ¢/® on ko®.
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Lemma 3.5. The map Foo(ko®) = E (ko) induced by ¢* on effective FE-pages
takes the values shown in Table 2.

Proof. All values follow immediately by comparison along Betti realization to the
values of classical ¥3. O

Lemma 3.6. The map Ey(ko%) — F;(ko®) induced by ¢* on effective Ey-pages
takes the values shown in Table 1.

Proof. The values of 9 on Fj(ko®) are compatible with the values of ¥* on
E.(ko®), as shown in Table 2 (see also Lemma 3.5). This immediately yields all
values. O

In order to describe E;(L%), we need some elementary number theory.

Definition 3.7. Let v(n) be the 2-adic valuation of n, i.e., the exponent of the
largest power of 2 that divides n.

Lemma 3.8.

1 if =0
v(3"—1) = it v(n)
2+v(n) if wvn)>0
Proof. Let n = 2%-b, where b is an odd number, so v(n) = a. Then
a—1
3n — 1= (1 4 32“ 4 (32“)2 N (32”)671) (3 o 1) H(l + 321)
=0

The first factor is odd, so it does not contribute to the 2-adic valuation. The
factor (1 + 32") has valuation 1 if ¢ > 0, and it has valuation 2 if i = 0. U

Proposition 3.9. The chart in Figure 5 depicts the effective E1-page of L.

Proof. The long exact sequence

s By (LS — Eu(ko®) Y B (ko®) — -
induces a short exact sequence
0— X7'C — Ey(LF) — K — 0,

where C' and K are the cokernel and kernel of E;(ko®) vy E (ko®) respectively.
The cokernel and kernel can be computed directly from the information given in
Table 1 (see also Lemma 3.6).

The kernel is additively generated by all multiples of h; in E;(ko®), together
with the elements 7% for k& > 0.

The cokernel C' is nearly the same as F(ko®) itself. We must impose the
relations (3% — 1)v* = 0 for all £k > 0. Lemma 3.8 says that 3% — 1 equals
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2v(2k)+2 .4y where u is an odd number, i.e., a unit in our 2-adic context. Therefore,
the relation (3% — 1)v?* = 0 is equivalent to the relation 20 +2y2F — ), O

Table 3 lists some elements of the effective F;-page of LE. In fact, these elements
are multiplicative generators for E;(L®). By inspection, all elements of E;(L%)
are of the form 7%h5x, for some z in the table.

We use the same notation for elements of E;(L®) and their images in E (ko®).
On the other hand, we define the elements 1z of E;(L%) by the property that
they are the image of x under the map ¢ : ¥~'E; (ko) — E;(L). For example, the
element 1 of E)(ko) maps to .

Table 3: Multiplicative generators for Fy(L%): k>0

coweight (s, f,w) generator
| (0,0, -1) T

2k (4k +1,1,2k +1) hyo?*
2k—1  (4k —1,1,2k) wik

Remark 3.10. Our choice of notation for elements of E;(L®) is helpful for the
particular analysis at hand. The generators of F;(L%) also have traditional names
from the perspective of the Adams—Novikov spectral sequence. Namely, hiv3¥
and (v?* correspond to agry1 and gy Jo(8k) respectively. However, the a-family
perspective is not so helpful for us.

3.3. The effective spectral sequence of L[n~!]. Next, we describe the effective
spectral sequence of LE[n~1].

In the n-periodic context, the element hy is a unit. Therefore, powers of h;
are inconsequential for computational purposes. Consequently, we have removed
these powers from all n-periodic formulas. The appropriate powers of h; can be
easily reconstructed from the degrees of elements (although this reconstruction is
typically not necessary).

Proposition 3.11. The effective E\-page for L[~ is given by
El(LC[nil]) = ]F2[h1i17 T, U%v [’]/[’2'

Proof. The functors s, commute with homotopy colimits [Spi08, Corollary 4.6].
Therefore, we can just invert h; in Ej(ko®) to obtain

Eq(ko®[y71]) = Fafhy™, 7,01].
See Proposition 3.1 (and Figure 1) for the description of F (ko®).

The map E;(ko®[n71]) fae ) (ko®[n~1]) is trivial because (¢* — 1)(v3*) is a
multiple of 2, as shown in Table 1 (see also Lemma 3.6). Therefore, the long exact
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sequence
3_
c— Bi(L ™) — Ea(ko“[7']) B B (koY) — -
implies that £, (L%[n~1]) splits as
Eq(ko®[n”']) @ ST By (ko® [ 1),

This establishes the additive structure of E;(L[n~']), as well as most of the
multiplicative structure.

The relation (2 = 0 is immediate because there are no possible non-zero values
for 2. O

Proposition 3.12. In the effective spectral sequence for L€[n~], we have dy(v?) =
7. The effective differentials are zero on all other multiplicative generators on all

pages.

Proof. The value of d;(v?) in E;(L¢[n~1]) follows by comparison of effective
spectral sequences along the maps L& — LE[n~'] and L® — ko®. Table 1 (see
also Proposition 3.2) gives the value of d;(v?) in E(ko®) . O

Remark 3.13. The effective spectral sequence for L%[n~!] is very close to the
effective spectral sequence for the n-periodic sphere S€[n~!]. The effective spectral
sequence for S€[n~!] is the same (up to reindexing) as the motivic Adams-Novikov
spectral sequence for S€[n~!]. This motivic Adams-Novikov spectral sequence is
analyzed in [AM17]. The element ¢ is not present in E;(S€[n~!]), but its multiples
t(v?)k are present.

3.4. Effective differentials for LC.

Proposition 3.14. Table / gives the values of the effective dy differentials on
the multiplicative generators of E1(L%). There are no higher differentials in the
effective spectral sequence for L.

Proof. All of these differentials follow immediately from the effective d; differentials
for L%n~!], which are determined by Proposition 3.12.
For degree reasons, there are no possible higher differentials. 0

Table 4: Effective d; differentials for LE: k> 0

coweight (s, f,w) T di(x)

1 (0,0,—1) T

4k 8k +1,1,4k +1) hyvi*

4k 42  (8k+5,1,4k+3) hyw{*? 7h3. bl

16



10
11

12
13
14
15
16

17
18

19
20

21
22
23
24

Table 4: Effective d; differentials for LE: k > 0

coweight (s, f,w) x di(x)
4k —1  (8k —1,1,4k) wik
4k +1  (8k+3,1,4k+2) w2 7h3. ik

Theorem 3.15. The E.-page of the effective spectral sequence for L is depicted
i Figure 4.

Proof. Because there are no higher effective differentials for L®, we obtain the
effective E.-page immediately from the effective d; differentials in Table 4 (see
also Proposition 3.14). O

3.5. Hidden extensions in E,(L%).

Proposition 3.16. In the effective spectral sequence for L, the elements hyvi*
do not support hidden h extensions for all k > 0.

Proof. The elements hlvf’“ detect elements in W*’*LC that are in the image of
the homotopy 7, .S® of the C-motivic sphere. In the C-motivic sphere, these
vi-periodic elements are annihilated by h. ([l

Remark 3.17. The proof of Proposition 3.16 appeals to knowledge of the homo-
topy of the C-motivic sphere. In fact, one can avoid this by use of Toda brackets
in the homotopy of L®. Namely, in the homotopy of L®, the E,.-page element
hiv{** detects an element in the bracket (h3c, h, o), where « is detected by hiv{*
and o is detected by (w}. By induction,

(h3c,h,a)h =h*-o(h,a,h)y =h*. 0. - a=0.

Proposition 3.18. In the effective spectral sequence for L, there are hidden h
extensions from 14v{*2 to Th? - hyvt* for all k > 0.

Proof. Recall that 7n? = (h,n, h) in the homotopy of the C-motivic sphere [[sal9,
Table 7.23]. If  is a homotopy element of L® such that ha is zero, then
a-7n° = alh,n,h) = (a,h n)h.

In particular, let o be detected by hivi*. Note that ha = 0 by Proposition 3.16.
Then 7h? - hyvi* detects a homotopy element that is divisible by h, so 7h? - hyvk
must be the target of a hidden h extension. There is only one possible source for
this extension. 0
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4. THE EFFECTIVE SPECTRAL SEQUENCE FOR ko

We now study the effective spectral sequence for R-motivic ko.

Proposition 4.1. The effective spectral sequence for ko takes the form

Z[pa7_27h1a7_hlav%]
FEi(ko) =
1(ko) 2p,2h1,2 - Thy, (Th)? = 72 - hi + p? - v?

Proof. The additive structure follows from Theorem 2.1 by taking stable homotopy
groups. We need that the homotopy groups of R-motivic HZ are

HZ.,.=7[1* p]/2p,
and the homotopy groups of R-motivic HFy are
(H]F2>*7* = ]FQ[T, p]

The multiplicative structure is mostly also immediate from Theorem 2.1. As

explained in [Kon23], our formula for (7hy)? is equivalent to the formula 7? KN Va
given in [AR(V20, p. 1029]. O

Table 5 lists the generators of Ej(ko). Figure 5 depicts Fj(ko) in graphical
form.

Table 5: Multiplicative generators for F; (ko)

coweight (s, f,w) x di(x) ¢3(x) image in Ey(ko[n!])
0 (-1,1,-1) p p p

0 (1,1,1) o1

1 (1,1,0) Thy Thy Tl

p (0,0,—2) 712 p2orhy 12 724 p%-02. by

2 (4,0,2) vi Thy-hi v 0P

Proposition 4.2. Table 5 gives the values of the effective dy differential on the
multiplicative generators of Ey(ko).

Proof. The value of d;(7?) follows from [AR()20, Theorem 20] and R-motivic
Steenrod algebra actions. Then the value of d;(v?) follows from Equation (1.1).

Alternatively, there is only one pattern of effective differentials that computes
the motivic stable homotopy groups of ko, which were previously computed with
the R-motivic Adams spectral sequence [Hill1]. O

The entire d; differential in the effective spectral sequence for ko can easily be
deduced from Proposition 4.2 and the Leibniz rule.
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Theorem 4.3. The E.-page of the effective spectral sequence for ko is depicted
wmn Figures 0, 7, and §.

Proof. The Leibniz rule, together with the values in Table 5 (see also Proposition
4.2), completely determines the effective d; differential on E (ko). The E,-page
can then be determined directly. However, the computation is not entirely
straightforward. Of particular note is the differential

dy(7%-Thy -v?) =74 b+ pt ot

which yields the relation

(4.1) ™ ht=ptof
in Ey (ko).

For degree reasons, there can be no higher differentials in the effective spectral
sequence for ko. O

For legibility, Figures 6, 7, and 8 display E. (ko) in three different charts
separated by coweight modulo 4. There is no chart for coweights 3 mod 4 because
F (ko) is zero in those coweights.

Figure 9 illustrates part of the analysis of the d; differentials and the determi-
nation of Fsy(ko); it is meant to be representative, not thorough. The chart shows
some of the elements in coweights 1 and 2 mod 4, together with the d; differentials
that relate these elements. In this chart, one can see that 72 - h? + p? - v¥ survives
to Fy(ko). This element survives to E (ko). It is labelled (7h;)? in Figure 8, in
accordance with Equation (1.1).

Remark 4.4. There is an alternative, slightly more structured, method for
obtaining F., (ko). One can filter F;(ko) by powers of 7hy and obtain a spectral
sequence that converges to Fs(ko). In this spectral sequence, we have the relation
72 - h? = p* - vi. There are differentials d;(7%) = p* - 7hy and d;(v?) = h3 - Th;.
Then there is a higher differential ds(72 - v}) = (7h;)3. None of this is essential to
our study, but the interested reader may wish to carry out the details.

Table 6 lists the multiplicative generators of FE.. (ko). It is possible to give a
complete list of relations. However, the long list is not so helpful for understanding
the structure of E (ko). The charts in Figures 6, 7, and & are more useful for
this purpose.

Table 6: Multiplicative generators for E., (ko)

coweight (s, f,w) T 3 ()
0 (-1,1,-1) p p

0 1,1,1) ol

1 (1,1,0) Thy  Th
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Table 6: Multiplicative generators for E., (ko)

coweight (s, f,w) x 3 (x)

2 (0,0,—-2) 272 272

2 (4,0,2) 202 9.2

4 (0,0,—4) 74 T

4 (4,0,0) 27202 9. 27202
4 (8,0,4) v} 81vf

Proposition 4.5. Table 7 lists some hidden extensions by p, h, and n in the
effective spectral sequence for ko. All other hidden extensions by p, h, and n are
vi-multiples and T*-multiples of these.

Proof. Recall from [BS20, Corollary 1.9] that the homotopy of ko/p is isomorphic
to the homotopy of ko®. Therefore, we completely understand the homotopy of
ko/p from Theorem 3.3 and Figure 2.

The hidden p extensions follow from inspection of the long exact sequence
associated to the cofiber sequence

>~ 1 1ko 25 ko — ko/p.

The map ko — ko/p takes the elements 7% - h? and (7h1)?hy to zero because there
are no possible targets in the homotopy of ko/p. Therefore, those two elements
must receive hidden p extensions, and there is only one possibility in both cases.

The relation 74 - hi = p? - v (see Equation (4.1)) then implies that 27%v? also
supports an hy extension.

The map ko/p — X% ko takes 73 and 73h; to 272 and p(7hy)? respectively.
There is an h; extension connecting 73 and 73h; in ko/p, so there must be a
hidden 7 extension from 272 to p(7hy)?.

The hidden h extension on 7h; follows from the analogous hidden extension in
the homotopy groups of the R-motivic sphere [DI17] [BI22], using the unit map
S — ko. Alternatively, this hidden extension is computed in [Hilll, Proposition
4.3] in the context of the R-motivic Adams spectral sequence for ko.

Finally, multiply by 7h; to obtain the hidden h extension on (7h;)?2.

For degree reasons, there are no other possible hidden extensions to consider. [J

Table 7: Hidden extensions in E, (ko)

coweight source type target (s, f,w)

2 20? p (thi)*hy  (3,3,1)
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Table 7: Hidden extensions in E (ko)

coweight source type target (s, f,w)
4 27202 p T h3 (3,3,—1)
4 2207 p® - vl (5 3, 1)
2 272 n p(Thy)? (1,3,-1)
1 Thy h p-Thy-hy (1,3,0)
2 (thi)* h p(Thy)?*hy  (2,4,0)

Remark 4.6. We have completely analyzed the F..-page of the effective spectral
sequence for ko, but this is not quite the same as completely describing the
homotopy of ko. In particular, one must choose an element of , ko that is
represented by each multiplicative generator of E., (ko) (see Table 6). In some
cases, there is more than one choice because of the presence of elements in
higher filtration in the E..-page. The choices of p, hi, Thy, and 7% can be made
arbitrarily; the ring structure is unaffected by these choices. The elements 272
and 2v? are already well- deﬁned because there are no elements in higher filtration.
Fmally, the ch01ces of 2720 and vl can then be uniquely specified by the relations
p-27%0% =74 h3 and p* - ’Ul_T - hi.

4.1. n-periodic ko. Later we will need some information about the n-periodic
spectrum ko[n~1]. As in Section 3.3, powers of h; are inconsequential for compu-
tational purposes in the n-periodic context. Consequently, we have removed these
powers from all n-periodic formulas.

Proposition 4.7. The effective Ey-page for ko is given by
Bi(koln™']) = Fo[hi, 7, p, vi].

Moreover, the periodicization map ko — ko[n~!] induces the map on effective
FE-pages whose values are given in Table 5.

The first part of Proposition 4.7 was first proved in [AR?20, Theorem 19],
although the notation is different.

Proof. The functors s, commute with homotopy colimits [Spi08, Corollary 4.6].
Therefore, we can just invert h; in the description of F4(ko) given in Proposition
4.1 (see also Figure 5).

After inverting hy, the relation 2h; in Ej(ko) implies that 2 = 0 in E) (ko[n™!]).
This gives that

Fy[hiEt, p, 72 Thl,U%]
72 = hi2(Thy)2 + hy? - p? - v}

Eq(koln™']) =
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Because of the relation, the generator 72 is redundant.
The values of the periodicization map given in Table 5 are immediate from the
algebraic analysis of the previous paragraph. U

Remark 4.8. Table 5 gives an unexpected value for 72. Recall that 72 is inde-
composable in Ej(ko), so there is no inconsistency. The unexpected value arises
from Equation (1.1).

4.2. The Adams operation ¢? in effective spectral sequences. Our goal
in this section is to study v¥? as a map of effective spectral sequences. This will
allow us to compute the Fi-page of the effective spectral sequence for L.

Lemma 4.9. The map Ey (ko) — E4 (ko) induced by ¢ on effective E.-pages
takes the values shown in Table 0.

Proof. Corollary 2.4(2) gives the values of 1% on p, hy, and Th;.

The value of ¥* on 7* is determined immediately by comparison along Betti
realization to the classical value 3(1) = 1. The computation is greatly simplified
by ignoring terms in higher effective filtration. Similarly, the value of ¥* on 272 is
determined by the classical value ¥?(2) = 2.

The remaining values in Table 6 are also determined by comparison along Betti
realization to the classical values ¥3(20?) = 9 - 20? and ¥3(v}) = 81v}. O

Lemma 4.10. The map E;(ko) — E;(ko) induced by 1* on effective Ey-pages
takes the values shown in Table O.

Proof. The values of ¢® on F; (ko) are compatible with the values of ¢* on E,(ko),
as shown in Table 6. This immediately yields the value of ¢* on p, h;, and 7h;.
The value of ¥3((7%)?) must be (7%)? by compatibility with the value of 1*(7%)
in E, (ko). Then the relation ¢*((72)?) = (1*(7?))? implies that 3(7%) = 72.
Similarly, the value of 13((v?)?) must be 81(v?)? by compatibility with the
value of ¢3(v}) in E, (ko). Then the relation 13((v?)?) = (¢3(v?))? implies that
3 (v}) = 9v?. O

Remark 4.11. Since ¢ is a ring homomorphism, all values of ¢»* on F;(ko) are
readily determined by the values on multiplicative generators given in Table 5. In
particular, for all k£ > 0,

) = 9

Remark 4.12. Table 5 implies that 1)3(v{) = 81v{. The careful reader will notice
that this expression appears to be simpler than the analogous formula in [BH20,
Theorem 3.1(2)]. The difference is explained by the fact that we are working
only up to higher effective filtration. In particular, our formulas do not reflect
the difference between the homotopy elements 2 and h, since their difference is
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detected by ph; in higher effective filtration. This also means that our formulas
are less precise, but that has no consequence for our computational results.

5. THE EFFECTIVE SPECTRAL SEQUENCE FOR L

5.1. The effective F -page of L. In this section we compute the E;-page of
the effective spectral sequence for L.

3_
The fiber sequence L — ko 7 ko induces a fiber sequence

31
s L — s.ko w—> s.ko

on slices. Upon taking homotopy groups, we obtain a long exact sequence

5 Ey(L) — Ev(ko) Y5 Ey(ko) — -

Table 5 (see also Lemma 4.10) gives us complete computational knowledge of the
map E;(ko) — FEj(ko). This allows us to compute E;(L).

Proposition 5.1. The chart in Figure 10 depicts the effective Ei-page of L.

Proof. The long exact sequence

S Ey(L) — Ey(ko) Y5 Ey(ko) — -
induces a short exact sequence
0— % 'C — E(L) — K —0,

where C' and K are the cokernel and kernel of E (ko) vy E4 (ko). The cokernel
and kernel can be computed directly from the information given in Lemma 4.10.
See also Remark 4.11.

The kernel consists of all elements in F; (ko) with the exception of the integer
multiples of 72/ - v for j > 0 and k > 0.

The cokernel C is nearly the same as E (ko) itself. We must impose the relations
(3% —1)v?* = 0 for all k > 0. Lemma 3.8 says that 3% — 1 equals 2°?*)+2. 4, where
u is an odd number, i.e., a unit in our 2-adic context. Therefore, the relation
(3%F — 1)v?k = 0 is equivalent to the relation 2v(20)+2y2k = 0 O

Table 8 lists some elements of the effective Ej-page of L. In fact, by inspection
these elements are multiplicative generators for Ey(L).

We use the same notation for elements of Ey(L) and their images in F; (ko).
On the other hand, we define the element tz of E;(L) to be the image of x under
the map ¢ : X' Fy (ko) — E{(L). For example, the element 1 of E;(ko) maps to ¢
in E1 (L)
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Table 8: Multiplicative generators for Ey(L): k>0

coweight (s, f,w) generator image in E1(L[n~])
2 (0,0, —2) 72 T2+ p? 0]

2k+1  (4k +1,1,2k) Thiv?*  7(v?)*

2k (4k —1,1,2k — 1) pou?* p(v?)k

2k (4k +1,1,2k + 1) hjo?* (v)*

2k —1  (4k —1,1,2k) w3k L(v})k

5.2. The effective spectral sequence for L[n~!]. In Section 5.1, we determined
the effective Fy-page of L. The next steps in the analysis of the effective spectral
sequence for L are to determine the multiplicative structure of F1(L) (see Section
5.3) and to determine the effective differentials (see Sections 5.4 and 5.5).

Before doing so, we collect some information on the n-periodicization L[n~!].
We will study L[n~!] by comparing to the more easily understood ko[n~!].

As in Sections 3.3 and 4.1, powers of h; are inconsequential for computational
purposes in the n-periodic context. Consequently, we have removed these powers
from all n-periodic formulas.

Proposition 5.2. The effective E1-page for Lin~'] is given by

El(L[n_l]) = FQ[hiﬂ7 Ty P, U%) L]/L2'
Moreover, the periodicization map L — Lin~'] induces the map Ey(L) — Ey(L[n~!])
whose values are given in Table §.
Proof. As in Proposition 4.7, we can just invert h; in the additive description of
E;(L) given in Proposition 5.1.

3_
The map B, (ko[n~]) “= Ei(ko[n~?) is trivial because (¢ — 1)(h;) = 0, as
shown in Table 5 (see also Lemma 4.10). Therefore, the long exact sequence

s By(Lly) — Bi(kofy 1)) £ By (loln ) — -
splits as
Ey(LIn™)) = Ei(ko[n™']) @ X7 Ex(ko[n™']).
With Proposition 4.7, this establishes the additive structure of E1(L[n™']), as well
as most of the multiplicative structure.

The relation (2 = 0 is immediate because there are no possible non-zero values
for +2. O
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Remark 5.3. As in Remark 4.8, Table 8 gives an unexpected value for 72, which
arises from Equation (1.1). Also, the last column of Table 8 leaves out of h; for
readability.

Remark 5.4. Note that F;(L[n~']) is very close to the effective Ej-page for
the n-periodic sphere S[n~1] [RSO19, Theorem 2.32] [OR20, Theorem 2.3]. The

element ¢ is not present in E;(S[n~!]), but the elements (v?* are present.

Proposition 5.5. Some values of the differentials in the effective spectral sequence
of Lin~'] are:
(1) di(vi) = 7.

(2) dpiy(vF) = p"TL o forn > 2.
The effective differentials are zero on all other multiplicative generators on all
pages.
Following our convention throughout this section, we have omitted the powers
of hy from the formulas in Proposition 5.5.

Proof. The d; differential follows from [RSO19, Lemma 4.2] or [OR20, Theorem
2.6].

To study the higher differentials, consider the map S[p~'] — L[n~!]. This map
induces an isomorphism on stable homotopy groups, except in coweight —1. This
follows from a minor adjustment to [BH20, Theorem 1.1]. The adjustment arises

from the fact that our L[n~'] is the fiber of ko[n™!] vy ko[n™1], while [BH20,

Theorem 1.1] refers to the fiber of ko[n™!] vy ¥84ko[n 1.

The homotopy of S[n~!] is completely computed in [GI16], so the homotopy of
L[n™1] is known (except in coweight —1). There is only one pattern of differentials
that is compatible with the known values for L[n~!]. O

Remark 5.6. In the language of [OR20, Section 4], Proposition 5.5 establishes
the profile of the n-periodic effective spectral sequence over R.

5.3. Multiplicative relations for F;(L). In this section, we will completely
describe the product structure on Ej(L). We do not need all of this structure for
our later computations, but we include it for completeness.

Proposition 5.7. Table 9 lists some products in Fy(L).
Table 9: Products in Ey(L): 7 > 0and k>0

2j 2j 2j 2j
pU] hyvi Thyv] L]

2% 2j+2k
Py P pPYy
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Table 9: Products in Ey(L): j > 0and k>0

2j 2j 2j 2j
pU] hyvy Thyv] L]
2j+2k 2j+2k
hiv | p- hyv} A hy - hyv? "
2j-+2k 2j-+2k 2j+2k
Thi?* | p-Thivd ™ by - rhioP T 22 by bt TR
2j+2k+2
+p - pvy
2j+2k 2j-+2k 2j-+2k
w | pewt hy - wP ™t Thy - Pt 0

Proof. All of these products are detected by Ej(L[p~!']), which is described
in Proposition 5.2. We need the values of the periodicization map Ei(L) —
Ei(L[n~']) given in Table 8. O

5.4. The effective d; differential for L. Our next task is to compute the
differentials in the effective spectral sequence for L.

Proposition 5.8. Table 10 gives the values of the effective dy differential on the
multiplicative generators of F1(L).

Table 10: Effective d; differentials for L: £ > 0

coweight
2
4k

s, fyw) x dy(x)
0,0,—2) 72 p* - Thy
8k —1,1,4k — 1)
Ak+2  (8k+3,1,4k + 1)
4k 8k +1,1,4k +1) hyoi*
)
)

(

(

( put*

(

(

4k +2  (8k+5,1,4k+3) hof*™? k3. rhiof

(

(

(

(8K

4k+2 2 4k
pPUL phi - Thivy

4k +3 8k +5,1,4k +2) Thiof*™? 72 b3 hot*t + p?hy - bt
4k +1  (8k+1,1,4k) Thyvk

4k 41 8k +3,1,4k +2) wi*™  rhy-h?-wik

4k —1 —1,1,4Fk) ik

Proof. All of these differentials follow immediately from the effective d; differentials
for L[n~'], which are all determined by Proposition 5.5(1) Beware that the exact
values of the map E;(L) — E;(L[n~']), as shown in Table 8, are important.

For example, consider the differential on the element T]’L1U4k+2. It maps to
7(v3)?**1 in Ei(L[n7']) (up to h; multiples, which as usual we ignore in the
n-periodic situation). The n-periodic differential on this latter element is 72(v?)%.
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Finally, we need to find an element of F;(L) in the correct degree whose 7-period-
icization is 72(v?)?*, The only possibility is 72 - h3 - hyv{¥ 4 p?hy - hyv{*2, O

Remark 5.9. All d; differentials in (L) can be deduced from the information
in Table 10 and the Leibniz rule, but the computations can be complicated by
the multiplicative relations of Table 9. For example,

dy (7% - Thivd) = p* - Thy - Thyvl + 7272 - b + p*hy - hv?) = 74 BT+ pt ot

Having completely analyzed the slice d; differentials for E;(L), it is now possible
to compute the Fs-page of the slice spectral sequence for L.

Proposition 5.10. The Es-page of the effective spectral sequence for L is depicted
wn Figures 11, 12, 1/, and 15.

For legibility, Figures 11, 12, 14, and 15 display E5(L) in four different charts
separated by coweight modulo 4. Note that Figures 14 and 15 also serve as F-
page charts in coweights 1 and 2 modulo 4 because there are no higher differentials
that affect these coweights.

Proof. The Leibniz rule, together with the values in Table 10, completely deter-
mines the effective d; differential on F;(L). The Es-page can then be determined
directly. However, as in the proof of Theorem 4.3, the computation is not entirely
straightforward.

It turns out that the d; differential preserves the image of the map X1 E; (ko) —
E,(L). Moreover, it turns out that all d; differentials with values in the image of
Y71F; (ko) — E;(L) also have source in this image. (This is not for formal reasons;
in fact, the higher effective differentials do not have this property.) Consequently,
the determination of the Fs-page splits into two separate computations: one for
the image of X' E) (ko) — F;(L), and one for the cokernel of the same map.

In more concrete terms, we can determine Es(L) by first considering only
elements of the form tz, and then separately considering only elements that are
not of this form.

The d; differential on the image of X7'F)(ko) — E;(L) is identical to the
d; differential for ko discussed in Section 4. The d; differential on the cokernel
of X7'E)(ko) — E;j(L) is similar to the d; differential on E;(ko), but slightly
different. The difference is created by the absence of the elements v#* in £y (L). O

5.5. Higher differentials. We now consider the higher differentials in the effec-
tive spectral sequence for L.

By inspection of the charts for Ey(L), the only possible higher differentials have
source in coweight congruent to 0 modulo 4 and value in coweight congruent to 3
modulo 4. In other words, in coweights congruent to 1 and 2 modulo 4, we have
that Ey(L) equals E(L).

It turns out that there are many higher differentials. In fact, nearly all of
the elements in Fy(L) in coweight congruent to 0 modulo 4 support differentials.
While it is possible to write down explicit formulas for all of these differentials,
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the formulas would be cumbersome and not so helpful. Rather, we give a more
qualitative description of the differentials because it is more useful for computation.

Proposition 5.11. Consider the elements of Ey(L) in coweights congruent to 0
modulo 4 that belong to the cokernel of the map X~ Fy(ko) — Eo(L).
(1) The only permanent cycles are the multiples of 1, the multiples of 27* for
k>0, and p“hl{ foralla >0 and b > 0.

(2) Excluding the elements listed in (1), if an element has coweight congruent
to 2"~ modulo 2", then it supports a d, differential.
Proposition 5.11 may seem imprecise because it does not give the values of the
differentials. However, there is only one non-zero possible value in every case, so
there is no ambiguity.

Proof. These differentials follow immediately from the n-periodic differentials of
Proposition 5.5, together with multiplicative relations in Ea(L).

For example, consider the element 78 - pvi? in coweight 20, which is congruent
to 22 modulo 23. Using Table 8, we find that this element maps to p°(v})!® in
Ey(L[n~']). Here we are using that 72 is zero in Eo(L[n~']) since it is hit by
an n-periodic d; differential. Proposition 5.5 says that this element supports an
n-periodic ds differential. Tt follows that 78- pv{? also supports a d3 differential. [

Theorem 5.12. The E..-page of the effective spectral sequence for L is depicted
wn Figures 13, 1/, 15, 10, 17, 18, and 19.

Proof. The E.-page can be deduced directly from the higher differentials described
in Proposition 5.11. U

The E.-page in coweights congruent to 3 modulo 4 is by far the most com-
plicated case. Figures 17, 18, and 19 display F. (L) in coweights congruent to 3
modulo 8, 7 modulo 16, and 15 modulo 32 respectively.

In each case (and more generally in coweights congruent to 2"~ — 1 modulo 2",
we see similar patterns with minor variations. The lower boundary of each chart
takes the same shape. The upper boundary of the 7-periodic portion of each chart
also takes the same shape. However, the filtration jump between the lower and
upper boundaries increases linearly with n.

In addition to the 7-periodic portion of each chart, there are also 7-torsion,
n-periodic regions. These consist of bands of infinite hj-towers of width n that
repeat every 2"! stems. The first such band starts at w%n_l

5.6. Hidden extensions. Our last goal is to compute hidden extensions by p,
h, and 7. See [Isal9, Section 4.1] for a precise definition of a hidden extension.
Fortunately, none of the complications associated with crossing extensions occur
in this manuscript.
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Proposition 5.13. Table 11 lists some hidden extensions by p, h, and n in the
effective spectral sequence for L.

Proof. The last column of Table 11 indicates the reason for each hidden extension.
Some of the hidden extensions follow from the analogous extensions for ko given
in Table 7, using the maps ¥ 'ko — L and L — ko.

Other extensions follow from the long exact sequence associated to the cofiber
sequence

L 2L — Lp.

Here we need that the homotopy of L/p is isomorphic to the homotopy of L,
as shown in [BS20, Corollary 1.9]. For example, the hidden h extensions of
Proposition 3.18 give hidden h extensions in L/p, which then imply the hidden
extension from t4v} to h? - Thy.

O

Table 11: Hidden extensions in E (L)

coweight source  type target (s, f,w) proof

0 t-Thy h t-phy-Thy  (0,2,0) Y 'ko = L
1 Thy h phy - Thy (1,1,0) L — ko

1 t(thy)* h - phi(Thy)* (1,3,0) Y ko — L
1 L2 vop(thy)?*  (-1,1,-2) X7'ko— L
1 1203 ) t-hi(th)?* (3,1,2) Y lko — L
1 14v? h h?-Thy (3,1,2) L/p

2 (thy)> h phy(Thy)? (2,2,0) L — ko

3 r*v?  h (thy)? (3,1,0) L/p

3 2% p ot hd (3,1,0) Y %ko — L
3 27202 p* -t (3,1,0) Y 'ko — L
2 272 n p(Thy)? (0,0,—2) L — ko

3 (thy)> h ot p?hf (3,3,0) L/p

5 wi-8r% h p* - Thyv} (7,1,2) L/p

Remark 5.14. The hidden extensions in Table 11 are 7%-periodic in the following
sense. If we take the source and target of each extension in Fj(L) and multiply
by 74, then we obtain permanent cycles that are related by a hidden extension.
For example, the hidden h extension from 7h; to phy - Thy generalizes to a family
of hidden extensions from 7%#*1h; to phy - 7***1h, for all k > 0.
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Remark 5.15. Similarly to the 74-periodicity discussed in Remark 5.14, most of
the hidden extensions in Table 11 are v{-periodic as well. For example, the hidden
h extension from 7h; to phy - Thy generalizes to a family of hidden extensions from
Thiv{* to phy - Thiv* for all k > 0. There are three exceptions, which appear
below the horizontal divider at the bottom of the table. These exceptions are
discussed in more detail in Remarks 5.16, 5.17, and 5.18.

Remark 5.16. The hidden 75 extension from 272 to p(7h;)? is 74-periodic as in
Remark 5.14, but it is not v{-periodic. The elements 27%v{* are not permanent

cycles for k > 1.

Remark 5.17. The hidden h extension from v} - 872 to p? - Thyv{ is vi-periodic,
but the situation is slightly more complicated than in Remark 5.15. For all k,
p? - Thivik receives a hidden h extension from an appropriate multiple of (wi¥ - 272.
For example, as shown in Figure 14, there is a hidden h extension from ¥ - 1672
to p? - Thyvt.

Remark 5.18. The hidden h extension from (7h1)? to t7% - p?h$ is vi-periodic,
but the situation is more complicated than in Remarks 5.15 and 5.17. For all
k > 0, the element (7hy)?>7hivi*¥ supports a hidden h extension to the element of
E (L) of highest filtration in the appropriate degree. For example, as shown in
Figure 18, there is a hidden h extension from (7hy)? - 75h; to 7% - p3h]. Figures
17, 18, and 19 show several extensions of this type.

6. CHARTS

We explain the notation used in the charts.
e The horizontal coordinate is the stem s. The vertical coordinate is the
Adams-Novikov filtration f (see Section 1.7 for further discussion).

e Black or green circles represent copies of Fy, periodicized by some power of 7.
The relevant power of 7 varies from chart to chart.

e Black or green unfilled boxes represent copies of Z (the 2-adic integers),
periodicized by some power of 7. The relevant power of 7 varies from chart
to chart.

e Black or green boxes containing a number n represent copies of Z /2", peri-
odicized by some power of 7. The relevant power of 7 varies from chart to
chart.

e Red unfilled boxes represent copies of Z (the 2-adic integers) that are not
Tk-periodic for any k.

e Green objects represent elements in the image of the map (X~ 'ko) — Fy(L)
(or By (Yo%) — E1(L®)). Beware that the color refers to the E;-page origin
of the element, not the properties of the homotopical element that it detects.
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For example, in Figure 4, the element 7h? detects an element in 73, L that
maps to zero in 7T372k0(c, so it is in the image of 7r4,2k0(c. Nevertheless, the
element is colored black because it is not in the image on E\-pages.

Black objects represent elements in the cokernel of the map Fy(X ko) —
Ei(L) (or E(Y ko) — Ey(L)). In other words, they are detected by the
map L — ko (or L® — koC). As in the previous paragraph, beware of the
distinction between Fj-page origins and homotopical properties.

Lines of slope 1 represent hi-multiplications.

Black or green arrows of slope 1 represent infinite sequences of elements that
are TF-periodic for some k > 0 and are connected by h;-multiplications.

Red arrows of slope 1 represent infinite sequences of elements that are con-
nected by h;-multiplications and are not 7*-periodic for any k.

Lines of slope —1 represent p-multiplications.

Dashed lines of slope —1 represent p-multiplications whose values are multiples
of 7% for some k > 0. For example, in Figure 6, we have p - pv? equals 74 - h{.

Black or green arrows of slope —1 represent infinite sequences of elements
that are 7%-periodic for some k > 0 and are connected by p-multiplications.

Light blue lines of slope —3 represent effective d; differentials.

Dashed light blue lines of slope —3 represent effective d; differentials that hit
multiples of 7%, for some k£ > 0. For example, the dashed line in Figure 1
indicates that d;(v?) equals Th3.

Dark blue lines indicate hidden extensions by h, p, or hy.

Dashed dark blue lines indicate hidden extensions whose value is a multiple
of 7% for some k > 0. For example, in Figure 4, there is a hidden h extension
from 14v? to Th3.
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FIGURE 1. The Ej-page of the effective spectral sequence for ko®

B (ko®) 0 =2z[r]
o =Fy[7]

0 O

202 v 208

2 4 6 8 10 12

FIGURE 2. The E..-page of the effective spectral sequence for ko®
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Ey(LE) 0-zp
W=7/2"[7]
o = Fy[7]

wi hyvi wf hyv$

FIGURE 3. The E)-page of the effective spectral sequence for L®

O=2Z[r]
B (L") @=2/2"[r]
o = Fy[7]
|
|
|
|
|
&)
wi hyvt 1209
0 2 4 6 8 10 12 14

FIGURE 4. The E..-page of the effective spectral sequence for L®
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E1 (kO) O = Z[r?]

Thy Thy - v} Thy - v} Thy - 08
1 6
1 vy U1 U1
0 2 4 6 8 10 12 14

FIGURE 5. The F;-page of the effective spectral sequence for ko
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FE+(ko), COWEIGHTS 0 MOD 4

FIGURE 6. The E -page of the effective spectral sequence for ko

in coweights 0 mod 4
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E+(ko), COWEIGHTS 1 MOD 4 o = Far]

Thi Thy - v} Thy - 0§

FI1GURE 7. The E,-page of the effective spectral sequence for ko in coweights 1 mod 4

FE+(ko), COWEIGHTS 2 MOD 4 O = Zo[r!]
o = F[r!]
(th1)? (Thy1)?v] (Th1)?v8
20% 272 . ot 202 v 272 . 0% 202 - v
2 4 6 8 10 12 14 16 18 20

F1GURE 8. The E-page of the effective spectral sequence for ko in coweights 2 mod 4



PART OF Fj (ko)

Thy Thy - v‘f
72 7)% 72 vy 'U?
0 2 4 6 8 10 12

FIGURE 9. Some differentials in the effective spectral sequence for ko

E(L) 0 =2[r
m=7/2"[?]
4 ° — F2[7_2]

1/7)12 -Thy /,1);1 - Thy

: BV A Thivi A L] ) Thyv]
’ Thy pUT hivi ok hiv}
1
2 0 2 4 6 8 10

FiGURE 10. The FE;-page of the effective spectral sequence for L
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FE5(L) IN COWEIGHTS 0 MOD 4

F1GURE 11. The FEs-page of the effective spectral sequence for L in coweights 0 mod 4
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10

E»(L) IN COWEIGHTS 3 MOD 4 0 = Zo[r']

= 7/2"[rY]

o = Iy [7"]

F1GURE 12. The FEs-page of the effective spectral sequence for L in coweights 3 mod 4
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E(L) IN COWEIGHTS 0 MOD 4

. 4
t-Thy wi - Thy

\:424

-
1
0 2 4 6 8 10 12 14

FIGURE 13. The FE-page of the effective spectral sequence for L in coweights 0 mod 4

E.(L) IN COWEIGHTS 1 MOD 4

Thy 1203

FIGURE 14. The FE-page of the effective spectral sequence for L in coweights 1 mod 4

U :ZQ[T4]
O=7Z,

o = FQ [7'4]

w - Thy

16 18

0= Z2[T4]
W= 7Z/2" %]

o = Fy[r4

18 20



Es(L) = Ex(L) IN COWEIGHTS 2 MOD 4 O = Zo[r"]

o — F2[7-4]

(Thy)? Thy - Thyvt Thy - Thiv$

FIGURE 15. The F-page of the effective spectral sequence for L in coweights 2 mod 4

E.(L) IN COWEIGHT —1

U=12Z,

-2 0 2

FIGURE 16. The F.-page of the effective spectral sequence for L in coweight —1
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E.(L) IN COWEIGHTS 3 MOD 8

0= ZQ[Tg]
W= Z/2"[r8]
[ = FQ[Tg]

10

12 14 16 18 20 22 24

FIGURE 17. The E-page of the effective spectral sequence for L in coweights 3 mod 8
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