
134 COMMUNICATIONS OF THE ACM | AUGUST 2024 | VOL. 67 | NO. 8

Compiler-Driven
FPGA Virtualization
with SYNERGY
By Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J. Rossbach, and Eric Schkufza

Abstract

FPGAs are increasingly common in modern applications, and
cloud providers now support on-demand FPGA acceleration in
datacenters. Applications in datacenters run on virtual infra-
structure, where consolidation, multi-tenancy, and workload
migration enable economies of scale that are fundamental to
the provider’s business. However, a general strategy for virtu-
alizing FPGAs has yet to emerge. While manufacturers strug-
gle with hardware-based approaches, we propose a compiler/
runtime-based solution called Synergy. We show a compiler
transformation for Verilog programs that produces code able
to yield control to software at sub-clock-tick granularity ac-
cording to the semantics of the original program. Synergy
uses this property to efficiently support core virtualization
primitives: suspend and resume, program migration, and
spatial/temporal multiplexing, on hardware which is available
today. We use Synergy to virtualize FPGA workloads across
a cluster of Intel SoCs and Xilinx FPGAs on Amazon F1. The
workloads require no modification, run within 3–4x of unvir-
tualized performance, and incur a modest increase in FPGA
fabric usage.

1. INTRODUCTION

Field-programmable gate arrays (FPGAs) combine the func-

tional efficiency of hardware with the programmability of

software. FPGAs can exceed CPU performance by orders of

magnitude20 and offer lower cost and time to market than

ASICs. FPGAs have become a compelling acceleration alter-

native for machine learning,4 databases,14 graph processing,17

and communication.8 In datacenters, FPGAs serve diverse

hardware needs with a single technology. Amazon provides F1

instances with large FPGAs attached and Microsoft deploys

FPGAs in their new datacenters.

Virtualization is fundamental to datacenters. It decou-

ples software from hardware, enabling economies of scale

through consolidation. However, a standard technique for

virtualizing FPGAs has yet to emerge. There are no widely

agreed upon methods for supporting key primitives such

as workload migration (suspending and resuming a hard-

ware program or relocating it between FPGAs mid-execu-

tion) or multitenancy (multiplexing multiple hardware pro-

grams on a single FPGA). Better virtualization support is

required for FPGAs to become a mainstream accelerator

technology.

Virtualizing FPGAs is difficult because they lack a well-de-

fined interposable application binary interface (ABI) and state

capture primitives. On CPUs, hardware registers are restricted

to a small, static set and access to data is abstracted through

virtual memory, making it trivial to save and restore state. In

contrast, the state of an FPGA program is distributed through-

out its reprogrammable fabric in a program- and hardware-

dependent fashion, making it inaccessible to the OS. Without

knowing how programs are compiled for an FPGA, there is no

way to share the FPGA with other programs or to relocate pro-

grams mid-execution. FPGA vendors are pursuing hardware-

based solutions to enable sharing by partitioning the device

into smaller, isolated fabrics. However, lacking state capture

primitives, this does not solve the fundamental problem and

cannot support features such as workload migration.

We argue that the right place to support FPGA virtualiza-

tion is in a combined compiler/runtime environment. Our

system, Synergy, combines a just-in-time (JIT) runtime for

Verilog, canonical interfaces to OS-managed resources, and

an OS-level protection layer to abstract and isolate shared re-

sources. The key insight behind Synergy is that a compiler

can transparently rewrite Verilog code to compensate for the

missing ABI and explicitly expose application state to the OS.

The core technique in Synergy is a static analysis to trans-

form the user’s code into a distributed-system-like intermedi-

ate representation (IR) consisting of monadic subprograms,

which can be moved back and forth mid-execution between

a software interpreter and native FPGA execution. This is pos-

sible because the transformations produce code that can trap

to software at arbitrary execution points without violating the

semantics of Verilog.

Synergy’s first contribution is a set of compiler transfor-

mations to produce code that can be interrupted at sub-clock-

tick granularity (§3) according to the semantics of the original

program. This allows Synergy to support a large class of un-

synthesizable Verilog. Traditional Verilog uses unsynthesiz-

able language constructs for testing and debugging in a simu-

lator. Synergy uses them to expose interfaces to OS-managed

resources and to start, stop, and save the state of a program

at any point in its execution. This allows Synergy to perform

context switch and workload migration without hardware

support or modifications to Verilog.

Synergy’s second contribution is a new technique for

FPGA multi-tenancy (§4). Synergy introduces a hypervisor

layer into the compiler’s runtime which can transparently

To view the accompanying Technical Perspective,
visit doi.acm.org/10.1145/3655633 tp

The original version of this paper was published in the In-

tern. Conf. on Architectural Support for Programming Lan-

guages and Operating Systems (April 2021).

research highlights

DOI:10.1145/3613903

Figure 1. A simple Verilog module. Verilog supports a combination of

sequential and concurrent semantics.

 1: module Module (

 2: input wire clock,

 3: output wire[31:0] res

 4:);

 5: wire[31:0} x = 1, y = x + 1;

 6: reg[31:0] r = 0;

 7: SubModule sm(clock);

 8:

 9: always @(posedge clock) begin

 10: $display(r); // Prints 0,3,3,…

 11: r = y;

 12: $display(r); // Prints ?,2,2,…

 13: r <= 3;

 14: $display(r); // Prints ?,2,2,…

 15: end

 16:

 17: always @(posedge clock) fork

 18: $display(r);// Prints ?,?,?,…

 19: join

 20:

 21: assign res = 4[47:16] & 31’hf0f0f0f0;

 22: endmodule

AUGUST 2024 | VOL. 67 | NO. 8 | COMMUNICATIONS OF THE ACM 135

ments and control blocks are finished.

When used idiomatically, these semantics map directly

onto hardware primitives: Wires appear to change value in-

stantly and registers appear to change value with the clock.

However, unsynthesizable statements have no analogue. The

print statement on line 18 is non-deterministic and can be

interleaved with any assignment in lines 10–14. Likewise, the

first execution of lines 12 and 14 can be interleaved with the

assignment on line 5. While the assignment on line 11 is vis-

ible immediately, the one on line 13 is only performed after

every block and assignment has been scheduled.

2.1. Cascade

Cascade is the first JIT compiler for Verilog. Cascade parses

and adds Verilog to a program one line at a time, with side

effects appearing immediately. While JIT compilation is or-

thogonal to Synergy, Cascade’s runtime techniques are a

fundamental building block. Cascade transforms programs

to produce code which can trap into the Cascade runtime at

the end of the logical clock tick. These traps are used to handle

unsynthesizable statements in a way that is consistent with

Verilog’s scheduling semantics, even during hardware execu-

tion. Synergy improves upon this to trap into the runtime at

sub-clock-tick granularity according to the semantics of the

original program and to enable context switch (§3).

Cascade manages programs at module granularity. Its IR

expresses a distributed system of Verilog sub-programs, each

corresponding to a module in the user’s program. A sub-pro-

gram’s state is represented by a data structure known as an

engine. Sub-programs start as low-performance, software-

simulated engines that are replaced over time by high-per-

formance FPGA-resident engines. The IR’s constrained ABI

enables engines to be relocated through messages sent over

the runtime’s data/control plane. Get/set messages read

and write an engine’s inputs, outputs, and program variables.

Evaluate/update messages instruct an engine to run un-

til no more continuous assigns or procedural blocks can be

combine the sub-program representations from multiple

applications into a single hardware program by interleaving

asynchronous data and control requests between each of

those instances and the FPGA. In contrast to hardware-based

approaches, manipulating each instance’s state is straightfor-

ward, as the hypervisor has access to every instance’s source

and knows how it is mapped onto the device.

Synergy’s final contribution is a compiler backend tar-

geting an OS-level protection layer for process isolation, fair

scheduling, and cross-platform compatibility (§5). Recent

FPGA-OS proposals introduce interfaces for state capture for

context switch.9,16 A major obstacle to using these systems is

the requirement that the developer implement those state

capture interfaces. Synergy satisfies the state capture re-

quirement transparently by using compiler analysis to iden-

tify the set of variables that comprise a program’s state and

emitting code to interact with state capture and quiescence

interfaces. For applications which natively support such

mechanisms, Synergy can dramatically reduce the overhead

for context switch and migration.

Our Synergy prototype extends the Cascade21 JIT compil-

er and composes it with the AmorphOS9 FPGA OS. We demon-

strate the ability to suspend and resume programs running

on a cluster of Intel SoCs and Xilinx FPGAs running on Ama-

zon’s F1 cloud instances, to transition applications between

them, and to temporally and spatially multiplex both devices

efficiently with strong OS-level isolation guarantees. This is

done without exposing the architectural differences between

the platforms, extending the Verilog language, or modifying

the programs. We achieve performance within 3–4x of unvir-

tualized code with a reasonable fabric cost.

2. BACKGROUND

Verilog is one of two standard HDLs used to program FPGAs.

VHDL is essentially isomorphic. Verilog consists of synthesiz-

able and unsynthesizable constructs. Synthesizable Verilog de-

scribes computation which can be lowered onto an FPGA. Un-

synthesizable Verilog includes tasks such as print statements,

which are more expressive and aid in debugging, but must be

executed in software.

Verilog programs are declarative and organized hierarchi-

cally in units called modules. Figure 1 shows an example Ver-

ilog module. The interface to a module is defined in terms of

its input/output ports (clock, res). Its semantics are defined

in terms of arbitrary-width wires (x,y) and registers (r), logic

gates (for example, &), arithmetic (for example, +), and nested

sub-modules (sm). The value of a wire is derived from its inputs

(lines 5, 21), whereas a register is updated at discrete intervals

(lines 6, 11, 13).

Verilog supports sequential and concurrent semantics.

Continuous assignments (lines 5, 21) are scheduled when

the value of their right-hand-side changes while procedural

blocks (lines 9–19) are scheduled when their guard is satisfied

(for example, clock changes from 0 to 1). Only a begin/end

block guarantees sequential execution; statements in a fork/

join block may be evaluated in any order. There are two types

of assignments to registers: blocking (=) and non-blocking

(<=). Blocking assignments execute immediately, whereas

non-blocking assignments wait until all continuous assign-

Figure 2. Motivating example. A Verilog program that uses

unsynthesizable IO to sum the values in a large file.

 1: module M(input wire clock);

 2: integer fd = $fopen("path/to/file");

 3: reg[31:0] r = 0;

 4: reg[127:0] sum = 0;

 5:

 6: always @(posedge clock) begin

 7: $fread(fd, r); //TASK 1

 8: if ($feof(fd)) // FEOF 2

 9: $display(sum); // TASK 2

 10: $finish(0); // TASK 3

 11: else

 12: sum <= sum + r;

 13: end

 14: endmodule

research highlights

136 COMMUNICATIONS OF THE ACM | AUGUST 2024 | VOL. 67 | NO. 8

scheduled, and to latch the result of non-blocking assign-

ments, respectively.

Unsynthesizable traps are placed in a queue and evaluated

between clock ticks, when the engine state has fixed-pointed

and the program is in a consistent state. This limits support

for unsynthesizable Verilog to output-only. For example, print

statements can occur at any point in a program, but their side

effects are only made visible between clock-ticks. There is no

way to schedule an interrupt between the statements in a be-

gin/end block, block on the result, and continue execution.

Synergy removes these limitations.

2.2. AmorphOS

AmorphOS is an FPGA runtime infrastructure which sup-

ports cross-program protection and compatibility at very

high degrees of multi-tenancy. AmorphOS enables hardware

programs to scale dynamically in response to FPGA load and

availability. AmorphOS introduces an FPGA process abstrac-

tion called Morphlets, which access OS-managed resources

through a shell-like component called a hull. The hull acts

as an isolation boundary and a compatibility layer, enabling

AmorphOS to increase utilization by co-locating several Mor-

phlets in a single reconfigurable zone without compromising

security. AmorphOS leaves the problems of efficient context

switch, over-subscription, and support for multiple FPGAs

mostly unsolved by relying on a compilation cache and a pro-

grammer-exposed quiescence interface.

AmorphOS’s quiescence interface forces the programmer

to write state-capture code (§1), which requires explicitly iden-

tifying live state. The interface is simple to support for request-

response style programs such as DNN inference acceleration,

but difficult for programs that can execute unbounded se-

quences of instructions, such as a RISC core. This can subject

an OS-scheduler to arbitrary latency based on a program’s im-

plementation and introduces the need for forced revocation

mechanisms as a fallback. Transparent state capture mecha-

nisms which insulate the programmer from low-level details

of on-fabric state are not supported.

3. VIRTUALIZATION PRIMITIVES

In this Section, we describe a sound transformation for Ver-

ilog that allows a program to yield control at sub-clock-tick

granularity. This transformation allows Synergy to support

the entire unsynthesizable Verilog standard from hardware,

including $save and $restart, which are necessary for sup-

porting workload migration. We frame this discussion with a

file IO case study.

3.1. Motivating Example: File I/O

Consider the program shown in Figure 2, which uses un-

synthesizable IO tasks to sum the values contained in a file.

The program opens the file (line 2) and, on every clock tick,

attempts to read a 32-bit value (line 7). When the program

reaches the end-of-file, it prints the sum and returns to the

host (lines 8–10). Otherwise, it adds the value to the running

sum and continues (line 12). While this program is simple,

its structure is typical of applications that perform streaming

computation over large data-sets.

The key obstacle to supporting this program is that the

IO tasks introduce data-dependencies within a single clock-

tick. The end-of-file check on line 8 depends on the result of

the read operation on line 7, as does the assignment on line

12. Because these operations interact with the file system, we

must not only pause the execution of the program mid-cycle

while control is transferred to the host, but also block for an

arbitrary amount of time until the host produces a result. Our

solution is to transform the program into a state machine

which implements a co-routine style semantics. While a pro-

grammer could adopt this idiom, it would harm both read-

ability and maintainability.

3.2. Scheduling Transformations

Synergy uses several transformations to establish the invari-

ant that all procedural logic appears in a single control state-

ment. Any fork/join block may be replaced by an equivalent

begin/end block, as the sequential semantics of the latter are

a valid scheduling of the former. Also, any nested set of be-

gin/end blocks may be flattened into a single block as there

are no scheduling constraints implied by nested blocks. Next,

we combine every procedural control statement in the pro-

gram into a single statement called the core. The core is guard-

ed by the union of the events that guard each individual state-

ment. This is sound, as Verilog only allows disjunctive guards.

Next, we set the body of the core to a new begin/end block

containing the conjunction of the bodies of each individual

block. This is sound as well, as sequential execution is a valid

scheduling of active procedural control statements. Finally,

we guard each conjunct with a name-mangled version of its

original guard (details to follow) as all of the conjuncts would

otherwise be executed when the core is triggered. These trans-

formations are sound, even for programs with multiple clock

domains.

3.3. Control Transformations

 Additional transformations modify the control structure of

the core so that it is compatible with the Cascade ABI. Recall

that the Cascade ABI requires that all of the inputs to an IR

sub-program, including clocks, will be communicated through

set messages which may be separated by many native clock

cycles on the target device. Thus we declare state to hold the

previous values of variables that appear in the core’s guard,

and wires that capture their semantics in the original pro-

Figure 3. The motivating example after modification to yield control

to the runtime at the sub-clock-tick granularity.

 1: module M(

 2: input wire __clk,

 3: output wire[5:0] __abi

 4:);

 5: reg __pclock;

 6: reg[31:0] __state = 5;

 7: reg[31:0] __task = ‘NONE;

 8: always @(posedge __clk)

 9: __pclock <= clock;

 10: if (__pos_clock)

 11: {__task, __state} = {‘TASK_1, 1};

 12: if ((__state == 1) && __cont)

 13: __task = ‘NONE;

 14: __state = __feof1 ? 2 : 4;

 15: if ((__state == 2) && __cont)

 16: {__task,__state) = {‘TASK_2, 3};

 17: if ((__state == 3) && __cont)

 18: {__task,__state) = {‘TASK_3, 5};

 19: if ((__state == 4) && __cont)

 20: __sum_next <= sum + r;

 21: {__task,__state} = {‘NONE, 5};

 22: if ((__state == 5) && __cont)

 23: {__task,__state} = {‘NONE, 5};

 24:

 25: wire __pos_clock = !__pclock & clock;

 26: wire __tasks = __task != ‘NONE;

 27: wire __final = __state == 5;

 28: wire __cont = (__abi == ‘CONT) |

 29: (!__final !__tasks);

 30: wire __done = __final & !__tasks;

 31: endmodule

Figure 4. The Synergy virtualization layer. The hypervisor combines

sub-programs from multiple applications onto a single target (1–6).

A handshake protocol establishes state-safe interrupts in the

scheduler (A–E).

Application 1

Scheduler

Data/Control Plane

Compiler

Scheduler Compiler

SW

NET 5D

4

3

1

B

C

Application 2

Scheduler

Data/Control Plane

Compiler
C

D D DE

HW

Other

2

6

A

Hypervisor

Engine Table

AUGUST 2024 | VOL. 67 | NO. 8 | COMMUNICATIONS OF THE ACM 137

gram (for example, __ pos _ x is true when a set message

changes x from false to true). We also declare new variables

(__ state and __ task) to track the state of the core and

whether a system task requires the attention of the runtime.

Finally, we replace the core’s guard by a posedge trigger for the

native clock on the target device (__ clk).

3.4. State Machine Transformations

The body of the core is lowered onto a state machine with the

following semantics. States consist of synthesizable state-

ments, terminated by either unsynthesizable tasks or the

guard of an if or case statement. A new state is created for

each branch of a conditional statement, and an SSA-style phi

state is used to rejoin control flow.

A compiler has flexibility in how it chooses to lower the

resulting state machine onto Verilog text. Figure 3 shows

one possible implementation. Each state is materialized as

an if statement that performs the logic associated with the

state, takes a transition, and sets the __ task register if the

state ended in an unsynthesizable statement. Control enters

the first state when the variable associated with the original

guard (__ pos _ clock) evaluates to true, and continues

via the fall-through semantics of Verilog until a task is trig-

gered. When this happens, a runtime can take control, place

its results (if any) in the appropriate hardware location, and

yield back to the target device by asserting the __ cont sig-

nal. When control enters the final state, the program asserts

the __ done signal, indicating that there is no further work.

Collectively, these steps represent the compute portion of the

evaluate and update requests required by the ABI.

3.5. Workload Migration

With these transformations, support for the $save and $re-

start system tasks is straightforward. Both can be material-

ized as traps into a runtime compatible with the Cascade ABI.

The former prompts the runtime to save the state of the pro-

gram through a series of get requests, and the latter prompts

a sequence of set requests. Either statement can be triggered

via normal program execution or an eval statement. Once a

program’s state is read out, it can be suspended, migrated to

another machine, and resumed.

4. HYPERVISOR DESIGN

In this section, we describe Synergy’s support for the two pri-

mary forms of hardware multiplexing: spatial (where two pro-

grams run simultaneously on the same fabric) and temporal

(where two programs share resources using timeslice sched-

uling). Synergy provides an indirection layer that allows mul-

tiple runtime instances to share a compiler at the hypervisor

layer.

4.1. Program Coalescing

Figure 4 shows a sketch of Synergy during an execution in

which two applications share a single hardware fabric. In ad-

dition to the scheduler and data/control plane introduced in

§2, we have called out the compilers associated with both the

runtime instance running those applications, and the Syner-

gy hypervisor. These compilers are responsible for lowering a

sub-program onto a target-specific engine that satisfies Cas-

cade’s distributed-system ABI.

The compiler in the runtime instance connects to the hy-

pervisor (1), which runs on a known port. It sends the code for

a sub-program over the connection, where it is passed to the

research highlights

138 COMMUNICATIONS OF THE ACM | AUGUST 2024 | VOL. 67 | NO. 8

their logical clock-ticks when they are in a consistent state

(C). The interrupt causes the instances to send get requests

to Synergy (D) to save their program state. When they have

finished, the instances send a reply indicating it is safe to

reprogram the device (E) and block until they receive an ac-

knowledgment. Compilation proceeds after the final reply.

The device is reprogrammed and the handshake finishes in

the opposite fashion. The hypervisor informs the instances it

is finished, they send set requests to restore their state on the

target device and control proceeds as normal.

4.3. Multitenancy

Collectively, these techniques suffice to enable multitenancy.

Spatial multiplexing is accomplished by combining the sub-

programs from each connected runtime into a single mono-

lithic program on the target device. Temporal multiplexing

is accomplished by serializing ABI requests that involve an IO

resource (say, a connection to an in-memory dataset) which is

in use by another sub-program. Sharing preserves tenant pro-

tection boundaries using AmorphOS, which provides support

for isolating sub-programs sharing the FPGA fabric (§2.2).

5. IMPLEMENTATION

Our implementation of Synergy comprises the hypervisor

described in §4, compilation passes which enable sub-clock-

tick granularity support for the unsynthesizable primitives

described in §3, and both Intel and AmorphOS backends.

5.1. Intel Backends

Our implementation of Synergy extends Cascade’s support

for the DE10 Nano SoC to the family of Intel devices that fea-

ture reprogrammable fabric and an ARM CPU. The core fea-

ture these targets share is support for Intel’s Avalon interface

for memory-mapped IO. This allows us to lower the transfor-

mations described in §3 onto a Verilog module that converts

accesses on the Avalon interface into ABI requests.

Adding support for a new Intel backend amounts to com-

piling this module in a hardware context which contains an

Avalon memory-mapped master whose control registers are

mmap’ed into the same process space as the runtime or hy-

pervisor. Unlike the AmorphOS backend described below, our

DE10 backend does not yet support the AmorphOS protection

layer.

5.2. AmorphOS Backends

Synergy uses a similar strategy for supporting multiple

AmorphOS backends. We lower the transformations de-

scribed in §3 onto a Verilog module implementing the Amor-

phOS CntrlReg interface. The module runs as a Morphlet

inside the AmorphOS hull, which provides cross-domain pro-

tection and thus preserves tenant isolation boundaries. The

Synergy hypervisor communicates with the Morphlet via a

library from AmorphOS. This makes adding support for a new

AmorphOS backend as simple as bringing AmorphOS up on

that target.

A key difference between the DE10 and F1 is the size and

speed of the reprogrammable fabric they provide. Each F1

FPGA has 10x more LUTs and operates 5x faster than a DE10.

This enables Synergy to accelerate larger applications, but

native hardware compiler in the hypervisor, which produces

a target-specific implementation of an engine and places it on

the FPGA fabric (2). The hypervisor responds with a unique

identifier representing the engine (3) and the runtime’s com-

piler creates an engine which remains permanently in soft-

ware and is configured with the unique identifier (4). The

resulting engine interacts with the runtime as usual. How-

ever, its implementation of the Cascade ABI simply forwards

requests across the network to the hypervisor (5) and blocks

further execution until a reply is obtained.

The key idea that makes this possible is that the compiler in

the hypervisor has access to the source code for every sub-pro-

gram in every connected instance. This allows the compiler to

support multitenancy by combining the source code for each

sub-program into a single monolithic program. Whenever the

text of any sub-program changes, the combined program is

recompiled to support the new logic. Whenever an applica-

tion finishes executing, all of its sub-programs are flagged

for removal on the next recompilation. The implementation

of this combined program is straightforward. The text of the

sub-programs is placed in modules named after their unique

hypervisor identifier. The combined program concatenates

these modules together and routes ABI requests to the ap-

propriate module based on their identifier. By isolating both

sub-program code and communication, the FPGA fabric can

be shared securely.

The overhead of the Synergy hypervisor depends primar-

ily on the application. While regular communication can

become a bottleneck, optimizations21 can reduce the ABI re-

quests between the runtime and an engine to a tolerable level.

For batch-style applications, fewer than one ABI request per

second is required, enabling near-native performance even

for programs separated from the hypervisor by a network con-

nection. In contrast, applications that invoke frequent ABI

calls (for example, for file I/O) will have overheads that scale

with the frequency of interaction. While our discussion pres-

ents a hypervisor which compiles all of its sub-programs to

FPGA fabric, this is not fundamental. The virtualization layer

nests, and it is both possible and performant for a hypervisor

to delegate the compilation of a sub-program to a second hy-

pervisor (6), say if the device is full.

4.2. Scheduling State-Safe Compilation

The Synergy hypervisor schedules ABI requests sequentially

to avoid resource contention. The one exception is compila-

tion, which can take a very long time to complete. If compi-

lation were serialized between ABI requests, it could render

applications non-interactive. But scheduling compilation

asynchronously leads to a key implementation challenge:

changing the text of one instance’s sub-programs requires

that the entire FPGA be reprogrammed, destroying all con-

nected instances’ state. The solution is to schedule these de-

structive events when all connected instances are between

logical clock-ticks and have saved their state.

Figure 4 shows the handshake protocol used to establish

these invariants. Compilation requests are scheduled asyn-

chronously (A), and run until they would do something de-

structive. The hypervisor then sends a request to every con-

nected runtime instance (B) to schedule an interrupt between

AUGUST 2024 | VOL. 67 | NO. 8 | COMMUNICATIONS OF THE ACM 139

gy’s F1 backend was configured to use build tools adapted

from the F1 toolchain and to communicate with the instanc-

es’ FPGA fabric over PCIe.

Table 1 summarizes the benchmarks used in our evalua-

tion, a combination of batch and streaming computations.

The ability to handle file IO directly from hardware made

the latter easy to support, as developing these benchmarks

amounted to repurposing testbench code designed for de-

bugging. Benchmarks were compiled prior to running experi-

ments to prime Synergy’s bitstream caches. This is appropri-

ate as Synergy’s goal is to provide virtualization support for

applications which have spent sufficient time in development

to have converged on a stable design.

Name Description

adpcm Pulse-code modulation encoder/decoder

bitcoin Bitcoin mining accelerator

df Double-precision arithmetic circuits

mips32 Bubble-sort on a 32-bit MIPS processor

nw* DNA sequence alignment

regex* Streaming regular expression matcher

Table 1. Benchmarks were chosen to represent a mix of batch- and

streaming-style computation (marked *).

6.1. Workload Migration

Figure 6 plots bitcoin’s performance as it is moved between

software and hardware on two different target architectures.

This workflow is typical of suspend and resume style virtual-

ization.

The application begins execution in a new instance of

Synergy and, after running briefly in software, transitions

to hardware execution on a DE10 (t = 5) where it achieves a

peak throughput of 16M nonces evaluated per second. At (t =

15) we emit a signal which causes the instance to evaluate a

$save task. Control then transitions temporarily to software

as the runtime evacuates the program’s state. The applica-

tion’s throughput drops significantly during this window,

but quickly returns to steady-state as control returns to hard-

ware (t = 22). Synergy is then terminated (t = 30), and simi-

lar process is initiated on an F1 instance (t = 39). In this case,

the instance evaluates a restart task to restore the context

which was saved on the DE10 (t = 50). Due to the larger, higher

performance hardware on F1, the program achieves a higher

also makes achieving timing closure challenging. Synergy

adopts two solutions. The first is to pipeline access to program

variables which are modified by get/set requests. For writes,

Synergy adds buffer registers between the AmorphOS hull

and the variables. For reads, Synergy builds a tree with the

program’s variables at the leaves and the hull at the trunk. By

adding buffer registers at certain branches, this logic is re-

moved from the critical timing path.

The second solution is to iteratively reduce the target de-

vice frequency until the design does meets timing. This is au-

tomated by Synergy’s build scripts, which can also preserve

synthesis, placement, and routing data to help offset the cost

of performing multiple compiles.

5.3. Quiescence Interface

AmorphOS provides a quiescence interface that notifies appli-

cations when they will lose access to the FPGA (for example,

during reconfiguration), allowing them to quiesce and back

up their state accordingly. Synergy supports this interface by

handling the implementation of execution control and state

management for developers. By default, all program variables

are considered non _ volatile, and will be saved and re-

stored automatically.

For applications that implement quiescence, Synergy

introduces an optional, non-standard $yield task, shown

in Figure 5. Developers can assert $yield to signal that the

program has entered an application-specific consistent state.

When present, Synergy will only perform state-safe compi-

lations at the end of a logical clock tick in which $yield was

asserted. The use of $yield causes stateful program vari-

ables to be considered volatile by default. Volatile variables

are ignored by state-safe compilations, making it is the user’s

responsibility to restore or reset their values at the beginning

of each logical clock tick following an invocation of $yield.

Users may override this behavior by annotating a variable as

non _ volatile.

6. EVALUATION

We evaluated Synergy using a combination of Intel DE10

SoCs and Amazon F1 cloud instances. The DE10s consist of a

Cyclone V device with an 800MHz dual core ARM processor,

reprogrammable fabric of 110K LUTs, 50MHz clock, and 1GB

of shared DDR3 memory. Synergy’s DE10 backend was con-

figured to generate bitstreams using Intel’s Quartus Lite Com-

piler and to interact with the DE10s’ FPGA fabric via a soft-IP

implementation of an Avalon Memory-Mapped master. The

F1 cloud instances support multiple Xilinx UltraScale+ VU9Ps

running at 250MHz and four 16GB DDR4 channels. Syner-

Figure 5. The $yield task enables Synergy’s quiescence interface.

Volatile variables must be managed by the user.

 1: module Root();

 2: (* non_volatile *) reg[31:0] x;

 3: reg[31:0] y;

 4: always @(posedge clock.val)

 5: if (…) $yield;

 6: // Additional program logic…

 7: SubModule sm(clock);

 8: endmodule

Figure 6. Suspend and Resume. Bitcoin is executed on a DE10

target, suspended, saved, and resumed on F1.

Wall Time (s)

H
a

s
h

e
s

/s

0

105

106

107

108

10 20 30 40 50 60 70

de10 f1

Figure 8. Temporal Multiplexing. Regex and nw are timeslice

scheduled to resolve contention on off-device IO.

Wall Time (s)

M
e

m
o

ry
 O

p
s

 (
k

IO
/s

)

0

50

100

200

500

10 20 30 40 50 60 70

regex nw

research highlights

140 COMMUNICATIONS OF THE ACM | AUGUST 2024 | VOL. 67 | NO. 8

throughput (83M), but suffers from higher performance deg-

radation during the restart as it takes longer to reconfigure.

Figure 7 plots the performance of a 32-bit MIPS processor

consisting of registers, a datapath, and on-chip memory. The

CPU repeatedly randomizes and sorts an in-memory array,

with execution transitioning between two FPGAs. This work-

load is typical of long-running batch computations which are

coalesced to improve datacenter utilization. The curves show

two different execution contexts: one where the program is

migrated between nodes in a cluster of DE10s, and one where

it is migrated between F1 instances. The timing of key events

is synchronized to highlight the differences between the en-

vironments. In both cases control begins in software and

transitions shortly thereafter to hardware (t = 2,4) where the

targets achieve throughputs of 14M and 41M instructions

per second, respectively. At (t = 15) we emit a signal which

causes both contexts to evaluate $save/$restart tasks as

the program is moved between FPGAs. A short time later (t =

20), performance returns to peak. Performance degradation

during hardware/software transitions is more pronounced for

mips32, with the virtual frequency temporarily lowering to 2K

on F1. This is partially due to the large amount of state which

must be managed by get/set requests (the state of a MIPS

processor consists of its registers, data memory, and instruc-

tion memory).

6.2. Multitenancy

Figure 8 plots the performance of two streaming-style com-

putations on a DE10. Both read inputs from data files that are

too large to store on-chip. The first (regex) reads in characters

and generates statistics on the stream using a regular expres-

sion matching algorithm. The second (nw) reads in DNA se-

quences and evaluates how well they match using a tile-based

alignment algorithm.

The regular expression matcher begins execution in a new

instance of Synergy and, at time (t = 10), transitions to hard-

ware where it achieves a peak throughput of 500,000 reads

per second. At (t = 15), the sequence aligner begins execution

in a second instance of Synergy. For the next few seconds,

the performance of the matcher is unaffected. At (t = 24), the

aligner transitions to hardware and the hypervisor is forced

to temporally multiplex the execution of both applications,

as they now contend on a common IO path between software

and hardware. During the period where both applications are

active (t = 24 – 60), the matcher’s throughput drops to slightly

less than 50%. This is due to the hypervisor’s use of round-rob-

in scheduling and the fact that the primitive read operations

performed by the matcher (characters) require less time to run

to completion than the primitive read operations performed

by the aligner (strings).

At (t = 60), the sequence aligner completes execution, and

the throughput for the matcher returns to its peak value

shortly thereafter. Compared to previous examples, the time

required to transition between performance regimes is slight-

ly more pronounced. This is due to Synergy’s use of adaptive

refinement21 to determine the time spent in hardware execu-

tion before yielding control back to the REPL. It takes several

seconds after the aligner finishes execution for Cascade to ad-

just back to a schedule which achieves peak throughput while

also maintaining interactivity.

Figure 9 plots the performance of some batch-style com-

putations on an F1 instance. The first two applications read

small inputs sets and transition to long-running computa-

tion before returning a result. The former (df) performs dou-

ble-precision floating-point computations characteristic of

numeric simulations, and the latter (bitcoin) is the miner

described in §6.1. The hypervisor is able to run both in par-

allel. The applications begin software execution in separate

instances of Synergy (t = 0,22) and after transitioning to

hardware (t = 2,24) achieve a virtual clock rate21 of 83MHz. At

(t = 42), another batch-style application that encodes and de-

codes audio data (adpcm) begins execution in a new instance

of Synergy. While the hypervisor can run this application in

parallel with the first two, lowering its application logic onto

the F1 instance causes the resulting design to no longer meet

timing at the peak frequency of 250MHz. To accommodate all

three applications, the global clock is set to 125MHz, reducing

their virtual clock frequencies to 41MHz. The Synergy hyper-

visor hides the number of applications running simultane-

ously from the user. As a result, this can lead to unexpected

performance regressions in our prototype. Future work can

address this by running each application in an appropriate

clock domain, with clock-crossing logic added automatically

as needed.

6.3. Quiescence

Saving and restoring large volumes of state not only degrades

reconfiguration performance (Figure 7) but also requires a

large amount of device-side resources to implement (§ 6.4).

Synergy’s quiescence interface allows developers to signal

when a program is quiescent and which variables are state-

ful at that time. We found that most of our benchmarks had

Figure 7. Hardware Migration. Mips32 begins execution on one target

and is migrated mid-execution to another.

Wall Time (s)

In
s

tr
u

c
ti

o
n

s
/s

0

105

106

107

108

5 10 15 20 25 30

de10 f1

AUGUST 2024 | VOL. 67 | NO. 8 | COMMUNICATIONS OF THE ACM 141

a large number of volatile variables, including 99%, 96%, and

71% of df’s, bitcoin’s, and mips32’s state. For these applica-

tions, implementing quiescence resulted in an average LUT

and FF savings of 50% and 15%, respectively. In our other

benchmarks, 1/8 to 1/4 of the state was volatile. Implement-

ing quiescence for them resulted in an average LUT and FF

savings of 2% and 9%, respectively.

6.4. Overheads

There are two ma jor sources of overheads in programs con-

structed by Synergy. The first are discrete, nonfundamen-

tal overheads resulting from how programs are virtualized

in hardware in the Synergy prototype. Implementing the

semantics of the original program with the ability to pause

execution in the middle of a virtual clock cycle involves tog-

gling the virtual clock variable, evaluating relevant program

logic, and latching variable assignments. When these are

done in separate hardware cycles, there is a minimum 3x per-

formance overhead. This not a fundamental requirement and

can be improved with future work on target-specific backends.

The second source of overheads comes from the state ac-

cess and execution control logic added by Synergy. As a base-

line, we compile our benchmarks natively on AmorphOS, pro-

viding an upper bound on resource and frequency overheads.

We also simulate a Cascade on AmorphOS baseline by com-

piling our benchmarks without system tasks, which avoids

overheads introduced by our new state machine transforma-

tions. Finally, we modified our benchmarks to implement the

quiescence protocol, allowing us to estimate the savings of ex-

posing reconfiguration to developers and establishing a lower

bound on state access overhead.

We find that Synergy’s FF and LUT usage is generally 2–4x

and 1–6x that of native, respectively (figures shown in the full

paper). Overall, Synergy’s overheads are similar to Cascade’s,

References

1. Byma, S. et al. FPGAs in the cloud:
Booting virtualized hardware
accelerators with openstack. In
Proceedings of the 2014 IEEE 22nd
Intern. Symp. on Field-Programmable
Custom Computing Machines,
FCCM ’14. IEEE Computer Society,
Washington, DC, USA, 109–116.

2. Chen, F. et al. Enabling FPGAs in the
cloud. In Proceedings of the 11th ACM

Conf. on Computing Frontiers, CF
’14. ACM, New York, NY, USA, (2014),
3:1–3:10.

3. Chen, L., Marconi, T., and Mitra, T.
Online scheduling for multi-core shared
reconfigurable fabric. In Proceedings
of the Conf. on Design, Automation
and Test in Europe, DATE ’12. EDA
Consortium, San Jose, CA, USA, (2012),
582–585.

4. Chung, E. et al. Serving DNNs in Real

with quiescence annotations providing a savings of up to ~2x.

Figure 10 shows that Synergy does not reduce the design’s

operating frequency in most cases. adpcm is an exception,

likely due to its use of system tasks from inside complex con-

trol logic. Synergy’s frequency overhead for mips32 is almost

entirely due to forcing the use of FFs to implement RAMs,

which is not a fundamental limitation. Compared to Amor-

phOS using FFs (AOS FF), Synergy was less than 6% slower

despite supporting full state capture. When combined with

the previous 3x overhead, we find that Synergy’s overall ex-

ecution overhead is within 3–4x that of native.

7. RELATED WORK

Primitives for FPGAs include sharing FPGA fabric,1,2,6,11,12,23

spatial multiplexing,3,22 memory virtualization,15,24 preemp-

tion,16 and interleaved hardwaresoftware task execution.22

Core techniques include virtualizing FPGA fabric, including

regions19 and abstraction layers/overlays10 Extending OS ab-

stractions to FPGAs is an area of active research. ReconOS15

extends eCos5 with hardware threads similar to Hthreads.18

Previous multi-application FPGA sharing proposals3 restrict

programming models or fail to provide isolation. OS primi-

tives have been combined to form OSes for FPGAs7,15 as well

as FPGA hypervisors.19 Chen et al. explore virtualization chal-

lenges when FPGAs are a shared resource;2 AmorphOS9 pro-

vides an OS-level management layer to concurrently share FP-

GAs among mutually distrustful processes. ViTAL25 exposes a

single-FPGA abstraction for scale-out acceleration over mul-

tiple FPGAs; unlike Synergy, it exposes a homogeneous ab-

straction of the hardware to enable offline compilation. The

Optimus16 hypervisor supports spatial and temporal sharing

of FPGAs attached to the host memory bus, but does virtual-

ize reconfiguration capabilities. Coyote13 is a shell for FPGAs

which supports both spatial and temporal multiplexing as

well as communication and virtual memory management.

While sharing goals with these systems, Synergy differs fun-

damentally from them by virtualizing FPGAs at the language

level in addition to providing access to OS-managed resources.

8. CONCLUSION

FPGAs are emerging in datacenters so techniques for virtual-

izing them are urgently needed to enable them as a practical

resource for on-demand hardware acceleration. Synergy is a

compiler/runtime solution that supports multi-tenancy and

workload migration on hardware which is available today.

9. ACKNOWLEDGMENTS

This research was supported by NSF grants CNS-1846169 and

CNS-2006943, and U.S. Department of Energy, National Nucle-

ar Security Administration Award Number DENA0003969.

Figure 9. Spatial Multiplexing. Bitcoin, df, and adpcm are co-

scheduled on one device without contention.

Wall Time (s)

V
ir

t.
 F

re
q

.
(H

z
)

0

107

108

10 20 30 40 50 60 70

df bitcoin adpcm

Figure 10. Design frequency achieved in MHz.

Synergy Synergy + Yield Cascade + AOS AOS AOS FF
250

200

150

100

50

0

adpcm bitcoin df mips32 nw regex

research highlights

142 COMMUNICATIONS OF THE ACM | AUGUST 2024 | VOL. 67 | NO. 8

Time at Datacenter Scale with Project
Brainwave. IEEE, (March 2018).

5. Domahidi, A., Chu, E., and Boyd, S.
ECOS: An SOCP solver for embedded
systems. In Control Conf. (ECC)
European. IEEE, (2013), 3071–3076.

6. Fahmy, S.A., Vipin, K., and Shreejith,
S. Virtualized FPGA accelerators
for efficient cloud computing. In
Proceedings of the 2015 IEEE 7th
Intern. Conf. on Cloud Computing
Technology and Science (CloudCom),
CLOUDCOM ’15. IEEE Computer
Society, Washington, D.C., USA,
430–435

7. Hamilton, B.K., Inggs, M., and So,
H.K.H. Scheduling mixed-architecture
processes in tightly coupled FPGA-CPU
reconfigurable computers. In Field-
Programmable Custom Computing
Machines (FCCM), 2014 IEEE 22nd
Annual Intern. Symp., 240–240.

8. Kapitza, R. et al. CheapBFT: Resource-
efficient byzantine fault tolerance. In
Proceedings of the 7th ACM European
Conf. on Computer Systems, EuroSys
’12. ACM, New York, NY, USA, (2012),
295–308.

9. Khawaja, A. et al. Sharing, protection,
and compatibility for reconfigurable
fabric with amorphos. In 13th {USENIX}
Symp. on Operating Systems Design
and Implementation ({OSDI}, 2018,
107–127.

10. Kirchgessner, R., George, A.D., and Stitt,
G. Low-overhead FPGA middleware for
application portability and productivity.
ACM Trans. Reconfigurable Technol.
Syst. 8, 4, (Sept. 2015), 21:1–21:22.

11. Knodel, O., Lehmann, P., and Spallek,
R.G. RC3E: Reconfigurable accelerators
in data centres and their provision by

adapted service models. In 2016 IEEE
9th Intern. Conf. on Cloud Computing
(CLOUD), 19–26.

12. Knodel, O. and Spallek, R.G. Rc3e:
Provision and management of
reconfigurable hardware accelerators
in a cloud environment. CoRR,
abs/1508.06843, (2015).

13. Korolija, D., Roscoe, T., and Alonso,
G. Do OS abstractions make sense
on FPGAs? In 14th USENIX Symp.
on Operating Systems Design and
Implementation (OSDI 20). USENIX
Association, (Nov. 2020), 991–1010.

14. Li, S. et al. Architecting to achieve a
billion requests per second throughput
on a single key-value store server
platform. In Proceedings of the 42nd
Annual Intern. Symp. on Computer
Architecture, ISCA ’15. ACM, New York,
NY, USA, (2015), 476–488.

15. Lübbers, E. and Platzner, M. ReconOS:
Multithreaded programming for
reconfigurable computers. ACM Trans.
Embed. Comput. Syst. 9, 1, Oct. 2009,
8:1–8:33.

16. Ma, J. et al. A hypervisor for
shared-memory FPGA platforms. In
Proceedings of the 25th Intern. Conf. on
Architectural Support for Programming
Languages and Operating Systems,
2020.

17. Oguntebi, T. and Olukotun, K. GraphOps:
A dataflow library for graph analytics
acceleration. In Proceedings of the
2016 ACM/SIGDA Intern. Symp. on
Field-Programmable Gate Arrays,
FPGA ’16. ACM, New York, NY, USA,
111–117.

18. Peck, W. et al. Hthreads: A
computational model for reconfigurable
devices. In FPL. IEEE, (2006), 1–4.

19. Pham, K.D. et al. Microkernel hypervisor
for a hybrid ARM-FPGA platform.
In Application-Specific Systems,
Architectures and Processors (ASAP),
2013 IEEE 24th Intern. Conf. on, pages
219–226.

20. Putnam, A. et al. A reconfigurable
fabric for accelerating large-
scale datacenter services. In 41st
Annual Intern. Symp. on Computer
Architecture (ISCA), (June 2014).

21. Schkufza, E., Wei, M., and Rossbach,
C.J. Just-in-time compilation for
verilog: A new technique for improving
the FPGA programming experience. In
Proceedings of the 24th Intern. Conf. on
Architectural Support for Programming
Languages and Operating Systems,
ASPLOS 2019, Providence, RI, USA,
(Apr. 2019), 271–286.

22. Wassi, G. et al. Multi-shape tasks
scheduling for online multitasking
on FPGAs. In Reconfigurable and
Communication-Centric Systems-on-
Chip (ReCoSoC), 2014 9th Intern. Symp.
on, pages 1–7, (May 2014).

23. Weerasinghe, J., Abel, F., Hagleitner, C.,
and Herkersdorf, A. Enabling FPGAs
in hyperscale data centers. In 2015
IEEE 12th Intern. Conf. on Ubiquitous
Intelligence and Computing and 2015
IEEE 12th Intern. Conf. on Autonomic
and Trusted Computing and 2015
IEEE 15th Intern. Conf. on Scalable
Computing and Communications and
Its Associated Workshops (UIC-ATC-
ScalCom), Beijing, China, (August
2015), 1078–1086.

24. Winterstein, F. et al. Matchup: Memory
abstractions for heap manipulating
programs. In Proceedings of the 2015
ACM/SIGDA Intern. Symp. on Field-
Programmable Gate Arrays, FPGA
’15. ACM, New York, NY, USA, (2015),
136–145.

25. Zha, Y. and Li, J. Virtualizing FPGAs
in the cloud. In ASPLOS 2020:
Architectural Support for Programming
Languages and Operating Systems.
ACM, (2020).

Joshua Landgraf (jland@cs.utexas.edu),
University of Texas at Austin, TX, USA.

Tiffany Yang (tiffanyyang@utexas.edu),
University of Texas at Austin, TX, USA.

Will Lin (w5lin@ucsd.edu), University of
California, San Diego, CA, USA. This work
was done while he was at University of
Texas at Austin.

Christopher J. Rossbach (rossbach@
cs.utexas.edu), University of Texas at
Austin and VMware Research Group,
Austin, TX, USA.

Eric Schkufza (eric.schkufza@gmail.com),
Graft, Inc., San Francisco, CA, USA. This
work was done while he was at VMWare
Research Group.

This work is licensed under a Creative Commons
Attribution-NoDerivs International 4.0 License..

