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Abstract

FPGAs are increasingly common in modern applications, and 
cloud providers now support on-demand FPGA acceleration in 
datacenters. Applications in datacenters run on virtual infra-
structure, where consolidation, multi-tenancy, and workload 
migration enable economies of scale that are fundamental to 
the provider’s business. However, a general strategy for virtu-
alizing FPGAs has yet to emerge. While manufacturers strug-
gle with hardware-based approaches, we propose a compiler/
runtime-based solution called Synergy. We show a compiler 
transformation for Verilog programs that produces code able 
to yield control to software at sub-clock-tick granularity ac-
cording to the semantics of the original program. Synergy 
uses this property to efficiently support core virtualization 
primitives: suspend and resume, program migration, and 
spatial/temporal multiplexing, on hardware which is available 
today. We use Synergy to virtualize FPGA workloads across 
a cluster of Intel SoCs and Xilinx FPGAs on Amazon F1. The 
workloads require no modification, run within 3–4x of unvir-
tualized performance, and incur a modest increase in FPGA 
fabric usage.

1. INTRODUCTION

Field-programmable gate arrays (FPGAs) combine the func-

tional efficiency of hardware with the programmability of 

software. FPGAs can exceed CPU performance by orders of 

magnitude20 and offer lower cost and time to market than 

ASICs. FPGAs have become a compelling acceleration alter-

native for machine learning,4 databases,14 graph processing,17 

and communication.8 In datacenters, FPGAs serve diverse 

hardware needs with a single technology. Amazon provides F1 

instances with large FPGAs attached and Microsoft deploys 

FPGAs in their new datacenters.

Virtualization is fundamental to datacenters. It decou-

ples software from hardware, enabling economies of scale 

through consolidation. However, a standard technique for 

virtualizing FPGAs has yet to emerge. There are no widely 

agreed upon methods for supporting key primitives such 

as workload migration (suspending and resuming a hard-

ware program or relocating it between FPGAs mid-execu-

tion) or multitenancy (multiplexing multiple hardware pro-

grams on a single FPGA). Better virtualization support is 

required for FPGAs to become a mainstream accelerator 

technology.

Virtualizing FPGAs is difficult because they lack a well-de-

fined interposable application binary interface (ABI) and state 

capture primitives. On CPUs, hardware registers are restricted 

to a small, static set and access to data is abstracted through 

virtual memory, making it trivial to save and restore state. In 

contrast, the state of an FPGA program is distributed through-

out its reprogrammable fabric in a program- and hardware-

dependent fashion, making it inaccessible to the OS. Without 

knowing how programs are compiled for an FPGA, there is no 

way to share the FPGA with other programs or to relocate pro-

grams mid-execution. FPGA vendors are pursuing hardware-

based solutions to enable sharing by partitioning the device 

into smaller, isolated fabrics. However, lacking state capture 

primitives, this does not solve the fundamental problem and 

cannot support features such as workload migration.

We argue that the right place to support FPGA virtualiza-

tion is in a combined compiler/runtime environment. Our 

system, Synergy, combines a just-in-time (JIT) runtime for 

Verilog, canonical interfaces to OS-managed resources, and 

an OS-level protection layer to abstract and isolate shared re-

sources. The key insight behind Synergy is that a compiler 

can transparently rewrite Verilog code to compensate for the 

missing ABI and explicitly expose application state to the OS. 

The core technique in Synergy is a static analysis to trans-

form the user’s code into a distributed-system-like intermedi-

ate representation (IR) consisting of monadic subprograms, 

which can be moved back and forth mid-execution between 

a software interpreter and native FPGA execution. This is pos-

sible because the transformations produce code that can trap 

to software at arbitrary execution points without violating the 

semantics of Verilog.

Synergy’s first contribution is a set of compiler transfor-

mations to produce code that can be interrupted at sub-clock-

tick granularity (§3) according to the semantics of the original 

program. This allows Synergy to support a large class of un-

synthesizable Verilog. Traditional Verilog uses unsynthesiz-

able language constructs for testing and debugging in a simu-

lator. Synergy uses them to expose interfaces to OS-managed 

resources and to start, stop, and save the state of a program 

at any point in its execution. This allows Synergy to perform 

context switch and workload migration without hardware 

support or modifications to Verilog.

Synergy’s second contribution is a new technique for 

FPGA multi-tenancy (§4). Synergy introduces a hypervisor 

layer into the compiler’s runtime which can transparently 
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Figure 1. A simple Verilog module. Verilog supports a combination of 

sequential and concurrent semantics.

 1: module Module (

 2:  input wire clock,

 3:  output wire[31:0] res

 4: );

 5:   wire[31:0} x = 1, y = x + 1;

 6:   reg[31:0] r = 0;

 7:   SubModule sm(clock);

 8:

 9:   always @(posedge clock) begin

 10:    $display(r); // Prints 0,3,3,…

 11:    r = y;

 12:    $display(r); // Prints ?,2,2,…

 13:    r <= 3;

 14:    $display(r); // Prints ?,2,2,…

 15:   end

 16:

 17:   always @(posedge clock) fork

 18:    $display(r);// Prints ?,?,?,…

 19:   join

 20:

 21:   assign res = 4[47:16] & 31’hf0f0f0f0;

 22: endmodule
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ments and control blocks are finished.

When used idiomatically, these semantics map directly 

onto hardware primitives: Wires appear to change value in-

stantly and registers appear to change value with the clock. 

However, unsynthesizable statements have no analogue. The 

print statement on line 18 is non-deterministic and can be 

interleaved with any assignment in lines 10–14. Likewise, the 

first execution of lines 12 and 14 can be interleaved with the 

assignment on line 5. While the assignment on line 11 is vis-

ible immediately, the one on line 13 is only performed after 

every block and assignment has been scheduled.

2.1. Cascade 

Cascade is the first JIT compiler for Verilog. Cascade parses 

and adds Verilog to a program one line at a time, with side 

effects appearing immediately. While JIT compilation is or-

thogonal to Synergy, Cascade’s runtime techniques are a 

fundamental building block. Cascade transforms programs 

to produce code which can trap into the Cascade runtime at 

the end of the logical clock tick. These traps are used to handle 

unsynthesizable statements in a way that is consistent with 

Verilog’s scheduling semantics, even during hardware execu-

tion. Synergy improves upon this to trap into the runtime at 

sub-clock-tick granularity according to the semantics of the 

original program and to enable context switch (§3).

Cascade manages programs at module granularity. Its IR 

expresses a distributed system of Verilog sub-programs, each 

corresponding to a module in the user’s program. A sub-pro-

gram’s state is represented by a data structure known as an 

engine. Sub-programs start as low-performance, software-

simulated engines that are replaced over time by high-per-

formance FPGA-resident engines. The IR’s constrained ABI 

enables engines to be relocated through messages sent over 

the runtime’s data/control plane. Get/set messages read 

and write an engine’s inputs, outputs, and program variables. 

Evaluate/update messages instruct an engine to run un-

til no more continuous assigns or procedural blocks can be 

combine the sub-program representations from multiple 

applications into a single hardware program by interleaving 

asynchronous data and control requests between each of 

those instances and the FPGA. In contrast to hardware-based 

approaches, manipulating each instance’s state is straightfor-

ward, as the hypervisor has access to every instance’s source 

and knows how it is mapped onto the device.

Synergy’s final contribution is a compiler backend tar-

geting an OS-level protection layer for process isolation, fair 

scheduling, and cross-platform compatibility (§5). Recent 

FPGA-OS proposals introduce interfaces for state capture for 

context switch.9,16 A major obstacle to using these systems is 

the requirement that the developer implement those state 

capture interfaces. Synergy satisfies the state capture re-

quirement transparently by using compiler analysis to iden-

tify the set of variables that comprise a program’s state and 

emitting code to interact with state capture and quiescence 

interfaces. For applications which natively support such 

mechanisms, Synergy can dramatically reduce the overhead 

for context switch and migration.

Our Synergy prototype extends the Cascade21 JIT compil-

er and composes it with the AmorphOS9 FPGA OS. We demon-

strate the ability to suspend and resume programs running 

on a cluster of Intel SoCs and Xilinx FPGAs running on Ama-

zon’s F1 cloud instances, to transition applications between 

them, and to temporally and spatially multiplex both devices 

efficiently with strong OS-level isolation guarantees. This is 

done without exposing the architectural differences between 

the platforms, extending the Verilog language, or modifying 

the programs. We achieve performance within 3–4x of unvir-

tualized code with a reasonable fabric cost.

2. BACKGROUND

Verilog is one of two standard HDLs used to program FPGAs. 

VHDL is essentially isomorphic. Verilog consists of synthesiz-

able and unsynthesizable constructs. Synthesizable Verilog de-

scribes computation which can be lowered onto an FPGA. Un-

synthesizable Verilog includes tasks such as print statements, 

which are more expressive and aid in debugging, but must be 

executed in software.

Verilog programs are declarative and organized hierarchi-

cally in units called modules. Figure 1 shows an example Ver-

ilog module. The interface to a module is defined in terms of 

its input/output ports (clock, res). Its semantics are defined 

in terms of arbitrary-width wires (x,y) and registers (r), logic 

gates (for example, &), arithmetic (for example, +), and nested 

sub-modules (sm). The value of a wire is derived from its inputs 

(lines 5, 21), whereas a register is updated at discrete intervals 

(lines 6, 11, 13).

Verilog supports sequential and concurrent semantics. 

Continuous assignments (lines 5, 21) are scheduled when 

the value of their right-hand-side changes while procedural 

blocks (lines 9–19) are scheduled when their guard is satisfied 

(for example, clock changes from 0 to 1). Only a begin/end 

block guarantees sequential execution; statements in a fork/

join block may be evaluated in any order. There are two types 

of assignments to registers: blocking (=) and non-blocking 

(<=). Blocking assignments execute immediately, whereas 

non-blocking assignments wait until all continuous assign-

 



Figure 2. Motivating example. A Verilog program that uses 

unsynthesizable IO to sum the values in a large file.

 1: module M(input wire clock);

 2:  integer fd = $fopen("path/to/file");

 3:  reg[31:0] r = 0;

 4:  reg[127:0] sum = 0;

 5:

 6:  always @(posedge clock) begin 

 7:   $fread(fd, r);  //TASK 1

 8:   if ($feof(fd)) // FEOF 2

 9:    $display(sum); // TASK 2

 10:    $finish(0); // TASK 3

 11:   else

 12:    sum <= sum + r;

 13:  end

 14: endmodule
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scheduled, and to latch the result of non-blocking assign-

ments, respectively.

Unsynthesizable traps are placed in a queue and evaluated 

between clock ticks, when the engine state has fixed-pointed 

and the program is in a consistent state. This limits support 

for unsynthesizable Verilog to output-only. For example, print 

statements can occur at any point in a program, but their side 

effects are only made visible between clock-ticks. There is no 

way to schedule an interrupt between the statements in a be-

gin/end block, block on the result, and continue execution. 

Synergy removes these limitations.

2.2. AmorphOS 

AmorphOS is an FPGA runtime infrastructure which sup-

ports cross-program protection and compatibility at very 

high degrees of multi-tenancy. AmorphOS enables hardware 

programs to scale dynamically in response to FPGA load and 

availability. AmorphOS introduces an FPGA process abstrac-

tion called Morphlets, which access OS-managed resources 

through a shell-like component called a hull. The hull acts 

as an isolation boundary and a compatibility layer, enabling 

AmorphOS to increase utilization by co-locating several Mor-

phlets in a single reconfigurable zone without compromising 

security. AmorphOS leaves the problems of efficient context 

switch, over-subscription, and support for multiple FPGAs 

mostly unsolved by relying on a compilation cache and a pro-

grammer-exposed quiescence interface.

AmorphOS’s quiescence interface forces the programmer 

to write state-capture code (§1), which requires explicitly iden-

tifying live state. The interface is simple to support for request-

response style programs such as DNN inference acceleration, 

but difficult for programs that can execute unbounded se-

quences of instructions, such as a RISC core. This can subject 

an OS-scheduler to arbitrary latency based on a program’s im-

plementation and introduces the need for forced revocation 

mechanisms as a fallback. Transparent state capture mecha-

nisms which insulate the programmer from low-level details 

of on-fabric state are not supported.

3. VIRTUALIZATION PRIMITIVES

In this Section, we describe a sound transformation for Ver-

ilog that allows a program to yield control at sub-clock-tick 

granularity. This transformation allows Synergy to support 

the entire unsynthesizable Verilog standard from hardware, 

including $save and $restart, which are necessary for sup-

porting workload migration. We frame this discussion with a 

file IO case study.

3.1. Motivating Example: File I/O

Consider the program shown in Figure 2, which uses un-

synthesizable IO tasks to sum the values contained in a file. 

The program opens the file (line 2) and, on every clock tick, 

attempts to read a 32-bit value (line 7). When the program 

reaches the end-of-file, it prints the sum and returns to the 

host (lines 8–10). Otherwise, it adds the value to the running 

sum and continues (line 12). While this program is simple, 

its structure is typical of applications that perform streaming 

computation over large data-sets.

The key obstacle to supporting this program is that the 

IO tasks introduce data-dependencies within a single clock-

tick. The end-of-file check on line 8 depends on the result of 

the read operation on line 7, as does the assignment on line 

12. Because these operations interact with the file system, we 

must not only pause the execution of the program mid-cycle 

while control is transferred to the host, but also block for an 

arbitrary amount of time until the host produces a result. Our 

solution is to transform the program into a state machine 

which implements a co-routine style semantics. While a pro-

grammer could adopt this idiom, it would harm both read-

ability and maintainability.

3.2. Scheduling Transformations 

Synergy uses several transformations to establish the invari-

ant that all procedural logic appears in a single control state-

ment. Any fork/join block may be replaced by an equivalent 

begin/end block, as the sequential semantics of the latter are 

a valid scheduling of the former. Also, any nested set of be-

gin/end blocks may be flattened into a single block as there 

are no scheduling constraints implied by nested blocks. Next, 

we combine every procedural control statement in the pro-

gram into a single statement called the core. The core is guard-

ed by the union of the events that guard each individual state-

ment. This is sound, as Verilog only allows disjunctive guards. 

Next, we set the body of the core to a new begin/end block 

containing the conjunction of the bodies of each individual 

block. This is sound as well, as sequential execution is a valid 

scheduling of active procedural control statements. Finally, 

we guard each conjunct with a name-mangled version of its 

original guard (details to follow) as all of the conjuncts would 

otherwise be executed when the core is triggered. These trans-

formations are sound, even for programs with multiple clock 

domains.

3.3. Control Transformations

 Additional transformations modify the control structure of 

the core so that it is compatible with the Cascade ABI. Recall 

that the Cascade ABI requires that all of the inputs to an IR 

sub-program, including clocks, will be communicated through 

set messages which may be separated by many native clock 

cycles on the target device. Thus we declare state to hold the 

previous values of variables that appear in the core’s guard, 

and wires that capture their semantics in the original pro-



Figure 3. The motivating example after modification to yield control 

to the runtime at the sub-clock-tick granularity.

 1: module M(

 2:  input wire __clk,

 3:  output wire[5:0] __abi

 4: );

 5:  reg __pclock;

 6:  reg[31:0] __state = 5;

 7:  reg[31:0] __task = ‘NONE;

 8:  always @(posedge __clk)

 9:   __pclock <= clock;

 10:   if (__pos_clock)

 11:    {__task, __state} = {‘TASK_1, 1};

 12:   if ((__state == 1) && __cont)

 13:    __task = ‘NONE;

 14:    __state = __feof1 ? 2 : 4;

 15:   if ((__state == 2) && __cont)

 16:    {__task,__state) = {‘TASK_2, 3};

 17:   if ((__state == 3) && __cont)

 18:    {__task,__state) = {‘TASK_3, 5};

 19:   if ((__state == 4) && __cont)

 20:    __sum_next <= sum + r;

 21:    {__task,__state} = {‘NONE, 5};

 22:   if ((__state == 5) && __cont)

 23:    {__task,__state} = {‘NONE, 5};

 24:

 25:  wire __pos_clock = !__pclock & clock;

 26:  wire __tasks = __task != ‘NONE;

 27:  wire __final = __state == 5;

 28:  wire __cont = (__abi == ‘CONT) |

 29:     (!__final !__tasks);

 30:  wire __done = __final & !__tasks;

 31: endmodule

Figure 4. The Synergy virtualization layer. The hypervisor combines 

sub-programs from multiple applications onto a single target (1–6). 

A handshake protocol establishes state-safe interrupts in the 

scheduler (A–E).
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gram (for example, __ pos _ x is true when a set message 

changes x from false to true). We also declare new variables 

( __ state and __ task) to track the state of the core and 

whether a system task requires the attention of the runtime. 

Finally, we replace the core’s guard by a posedge trigger for the 

native clock on the target device ( __ clk).

3.4. State Machine Transformations 

The body of the core is lowered onto a state machine with the 

following semantics. States consist of synthesizable state-

ments, terminated by either unsynthesizable tasks or the 

guard of an if or case statement. A new state is created for 

each branch of a conditional statement, and an SSA-style phi 

state is used to rejoin control flow.

A compiler has flexibility in how it chooses to lower the 

resulting state machine onto Verilog text. Figure 3 shows 

one possible implementation. Each state is materialized as 

an if statement that performs the logic associated with the 

state, takes a transition, and sets the __ task register if the 

state ended in an unsynthesizable statement. Control enters 

the first state when the variable associated with the original 

guard ( __ pos _ clock) evaluates to true, and continues 

via the fall-through semantics of Verilog until a task is trig-

gered. When this happens, a runtime can take control, place 

its results (if any) in the appropriate hardware location, and 

yield back to the target device by asserting the __ cont sig-

nal. When control enters the final state, the program asserts 

the __ done signal, indicating that there is no further work. 

Collectively, these steps represent the compute portion of the 

evaluate and update requests required by the ABI.

3.5. Workload Migration 

With these transformations, support for the $save and $re-

start system tasks is straightforward. Both can be material-

ized as traps into a runtime compatible with the Cascade ABI. 

The former prompts the runtime to save the state of the pro-

gram through a series of get requests, and the latter prompts 

a sequence of set requests. Either statement can be triggered 

via normal program execution or an eval statement. Once a 

program’s state is read out, it can be suspended, migrated to 

another machine, and resumed.

4. HYPERVISOR DESIGN

In this section, we describe Synergy’s support for the two pri-

mary forms of hardware multiplexing: spatial (where two pro-

grams run simultaneously on the same fabric) and temporal 

(where two programs share resources using timeslice sched-

uling). Synergy provides an indirection layer that allows mul-

tiple runtime instances to share a compiler at the hypervisor 

layer.

4.1. Program Coalescing 

Figure 4 shows a sketch of Synergy during an execution in 

which two applications share a single hardware fabric. In ad-

dition to the scheduler and data/control plane introduced in 

§2, we have called out the compilers associated with both the 

runtime instance running those applications, and the Syner-

gy hypervisor. These compilers are responsible for lowering a 

sub-program onto a target-specific engine that satisfies Cas-

cade’s distributed-system ABI.

The compiler in the runtime instance connects to the hy-

pervisor (1), which runs on a known port. It sends the code for 

a sub-program over the connection, where it is passed to the 
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their logical clock-ticks when they are in a consistent state 

(C). The interrupt causes the instances to send get requests 

to Synergy (D) to save their program state. When they have 

finished, the instances send a reply indicating it is safe to 

reprogram the device (E) and block until they receive an ac-

knowledgment. Compilation proceeds after the final reply. 

The device is reprogrammed and the handshake finishes in 

the opposite fashion. The hypervisor informs the instances it 

is finished, they send set requests to restore their state on the 

target device and control proceeds as normal.

4.3. Multitenancy 

Collectively, these techniques suffice to enable multitenancy. 

Spatial multiplexing is accomplished by combining the sub-

programs from each connected runtime into a single mono-

lithic program on the target device. Temporal multiplexing 

is accomplished by serializing ABI requests that involve an IO 

resource (say, a connection to an in-memory dataset) which is 

in use by another sub-program. Sharing preserves tenant pro-

tection boundaries using AmorphOS, which provides support 

for isolating sub-programs sharing the FPGA fabric (§2.2).

5. IMPLEMENTATION

Our implementation of Synergy comprises the hypervisor 

described in §4, compilation passes which enable sub-clock-

tick granularity support for the unsynthesizable primitives 

described in §3, and both Intel and AmorphOS backends.

5.1. Intel Backends 

Our implementation of Synergy extends Cascade’s support 

for the DE10 Nano SoC to the family of Intel devices that fea-

ture reprogrammable fabric and an ARM CPU. The core fea-

ture these targets share is support for Intel’s Avalon interface 

for memory-mapped IO. This allows us to lower the transfor-

mations described in §3 onto a Verilog module that converts 

accesses on the Avalon interface into ABI requests.

Adding support for a new Intel backend amounts to com-

piling this module in a hardware context which contains an 

Avalon memory-mapped master whose control registers are 

mmap’ed into the same process space as the runtime or hy-

pervisor. Unlike the AmorphOS backend described below, our 

DE10 backend does not yet support the AmorphOS protection 

layer.

5.2. AmorphOS Backends 

Synergy uses a similar strategy for supporting multiple 

AmorphOS backends. We lower the transformations de-

scribed in §3 onto a Verilog module implementing the Amor-

phOS CntrlReg interface. The module runs as a Morphlet 

inside the AmorphOS hull, which provides cross-domain pro-

tection and thus preserves tenant isolation boundaries. The 

Synergy hypervisor communicates with the Morphlet via a 

library from AmorphOS. This makes adding support for a new 

AmorphOS backend as simple as bringing AmorphOS up on 

that target.

A key difference between the DE10 and F1 is the size and 

speed of the reprogrammable fabric they provide. Each F1 

FPGA has 10x more LUTs and operates 5x faster than a DE10. 

This enables Synergy to accelerate larger applications, but 

native hardware compiler in the hypervisor, which produces 

a target-specific implementation of an engine and places it on 

the FPGA fabric (2). The hypervisor responds with a unique 

identifier representing the engine (3) and the runtime’s com-

piler creates an engine which remains permanently in soft-

ware and is configured with the unique identifier (4). The 

resulting engine interacts with the runtime as usual. How-

ever, its implementation of the Cascade ABI simply forwards 

requests across the network to the hypervisor (5) and blocks 

further execution until a reply is obtained.

The key idea that makes this possible is that the compiler in 

the hypervisor has access to the source code for every sub-pro-

gram in every connected instance. This allows the compiler to 

support multitenancy by combining the source code for each 

sub-program into a single monolithic program. Whenever the 

text of any sub-program changes, the combined program is 

recompiled to support the new logic. Whenever an applica-

tion finishes executing, all of its sub-programs are flagged 

for removal on the next recompilation. The implementation 

of this combined program is straightforward. The text of the 

sub-programs is placed in modules named after their unique 

hypervisor identifier. The combined program concatenates 

these modules together and routes ABI requests to the ap-

propriate module based on their identifier. By isolating both 

sub-program code and communication, the FPGA fabric can 

be shared securely.

The overhead of the Synergy hypervisor depends primar-

ily on the application. While regular communication can 

become a bottleneck, optimizations21 can reduce the ABI re-

quests between the runtime and an engine to a tolerable level. 

For batch-style applications, fewer than one ABI request per 

second is required, enabling near-native performance even 

for programs separated from the hypervisor by a network con-

nection. In contrast, applications that invoke frequent ABI 

calls (for example, for file I/O) will have overheads that scale 

with the frequency of interaction. While our discussion pres-

ents a hypervisor which compiles all of its sub-programs to 

FPGA fabric, this is not fundamental. The virtualization layer 

nests, and it is both possible and performant for a hypervisor 

to delegate the compilation of a sub-program to a second hy-

pervisor (6), say if the device is full.

4.2. Scheduling State-Safe Compilation 

The Synergy hypervisor schedules ABI requests sequentially 

to avoid resource contention. The one exception is compila-

tion, which can take a very long time to complete. If compi-

lation were serialized between ABI requests, it could render 

applications non-interactive. But scheduling compilation 

asynchronously leads to a key implementation challenge: 

changing the text of one instance’s sub-programs requires 

that the entire FPGA be reprogrammed, destroying all con-

nected instances’ state. The solution is to schedule these de-

structive events when all connected instances are between 

logical clock-ticks and have saved their state.

Figure 4 shows the handshake protocol used to establish 

these invariants. Compilation requests are scheduled asyn-

chronously (A), and run until they would do something de-

structive. The hypervisor then sends a request to every con-

nected runtime instance (B) to schedule an interrupt between 
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gy’s F1 backend was configured to use build tools adapted 

from the F1 toolchain and to communicate with the instanc-

es’ FPGA fabric over PCIe.

Table 1 summarizes the benchmarks used in our evalua-

tion, a combination of batch and streaming computations. 

The ability to handle file IO directly from hardware made 

the latter easy to support, as developing these benchmarks 

amounted to repurposing testbench code designed for de-

bugging. Benchmarks were compiled prior to running experi-

ments to prime Synergy’s bitstream caches. This is appropri-

ate as Synergy’s goal is to provide virtualization support for 

applications which have spent sufficient time in development 

to have converged on a stable design.

Name Description

adpcm Pulse-code modulation encoder/decoder

bitcoin Bitcoin mining accelerator

df Double-precision arithmetic circuits

mips32 Bubble-sort on a 32-bit MIPS processor

nw* DNA sequence alignment

regex* Streaming regular expression matcher

Table 1. Benchmarks were chosen to represent a mix of batch- and 

streaming-style computation (marked *).

6.1. Workload Migration 

Figure 6 plots bitcoin’s performance as it is moved between 

software and hardware on two different target architectures. 

This workflow is typical of suspend and resume style virtual-

ization.

The application begins execution in a new instance of 

Synergy and, after running briefly in software, transitions 

to hardware execution on a DE10 (t = 5) where it achieves a 

peak throughput of 16M nonces evaluated per second. At (t = 

15) we emit a signal which causes the instance to evaluate a 

$save task. Control then transitions temporarily to software 

as the runtime evacuates the program’s state. The applica-

tion’s throughput drops significantly during this window, 

but quickly returns to steady-state as control returns to hard-

ware (t = 22). Synergy is then terminated (t = 30), and simi-

lar process is initiated on an F1 instance (t = 39). In this case, 

the instance evaluates a restart task to restore the context 

which was saved on the DE10 (t = 50). Due to the larger, higher 

performance hardware on F1, the program achieves a higher 

also makes achieving timing closure challenging. Synergy 

adopts two solutions. The first is to pipeline access to program 

variables which are modified by get/set requests. For writes, 

Synergy adds buffer registers between the AmorphOS hull 

and the variables. For reads, Synergy builds a tree with the 

program’s variables at the leaves and the hull at the trunk. By 

adding buffer registers at certain branches, this logic is re-

moved from the critical timing path.

The second solution is to iteratively reduce the target de-

vice frequency until the design does meets timing. This is au-

tomated by Synergy’s build scripts, which can also preserve 

synthesis, placement, and routing data to help offset the cost 

of performing multiple compiles.

5.3. Quiescence Interface 

AmorphOS provides a quiescence interface that notifies appli-

cations when they will lose access to the FPGA (for example, 

during reconfiguration), allowing them to quiesce and back 

up their state accordingly. Synergy supports this interface by 

handling the implementation of execution control and state 

management for developers. By default, all program variables 

are considered non _ volatile, and will be saved and re-

stored automatically.

For applications that implement quiescence, Synergy 

introduces an optional, non-standard $yield task, shown 

in Figure 5. Developers can assert $yield to signal that the 

program has entered an application-specific consistent state. 

When present, Synergy will only perform state-safe compi-

lations at the end of a logical clock tick in which $yield was 

asserted. The use of $yield causes stateful program vari-

ables to be considered volatile by default. Volatile variables 

are ignored by state-safe compilations, making it is the user’s 

responsibility to restore or reset their values at the beginning 

of each logical clock tick following an invocation of $yield. 

Users may override this behavior by annotating a variable as 

non _ volatile.

6. EVALUATION

We evaluated Synergy using a combination of Intel DE10 

SoCs and Amazon F1 cloud instances. The DE10s consist of a 

Cyclone V device with an 800MHz dual core ARM processor, 

reprogrammable fabric of 110K LUTs, 50MHz clock, and 1GB 

of shared DDR3 memory. Synergy’s DE10 backend was con-

figured to generate bitstreams using Intel’s Quartus Lite Com-

piler and to interact with the DE10s’ FPGA fabric via a soft-IP 

implementation of an Avalon Memory-Mapped master. The 

F1 cloud instances support multiple Xilinx UltraScale+ VU9Ps 

running at 250MHz and four 16GB DDR4 channels. Syner-

Figure 5. The $yield task enables Synergy’s quiescence interface. 

Volatile variables must be managed by the user.

 1: module Root();

 2:  (* non_volatile *) reg[31:0] x;

 3:  reg[31:0] y;

 4:  always @(posedge clock.val)

 5:   if (…) $yield;

 6:  // Additional program logic…

 7:   SubModule sm(clock);

 8: endmodule

Figure 6. Suspend and Resume. Bitcoin is executed on a DE10 

target, suspended, saved, and resumed on F1.
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Figure 8. Temporal Multiplexing. Regex and nw are timeslice 

scheduled to resolve contention on off-device IO.
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throughput (83M), but suffers from higher performance deg-

radation during the restart as it takes longer to reconfigure.

Figure 7 plots the performance of a 32-bit MIPS processor 

consisting of registers, a datapath, and on-chip memory. The 

CPU repeatedly randomizes and sorts an in-memory array, 

with execution transitioning between two FPGAs. This work-

load is typical of long-running batch computations which are 

coalesced to improve datacenter utilization. The curves show 

two different execution contexts: one where the program is 

migrated between nodes in a cluster of DE10s, and one where 

it is migrated between F1 instances. The timing of key events 

is synchronized to highlight the differences between the en-

vironments. In both cases control begins in software and 

transitions shortly thereafter to hardware (t = 2,4) where the 

targets achieve throughputs of 14M and 41M instructions 

per second, respectively. At (t = 15) we emit a signal which 

causes both contexts to evaluate $save/$restart tasks as 

the program is moved between FPGAs. A short time later (t = 

20), performance returns to peak. Performance degradation 

during hardware/software transitions is more pronounced for 

mips32, with the virtual frequency temporarily lowering to 2K 

on F1. This is partially due to the large amount of state which 

must be managed by get/set requests (the state of a MIPS 

processor consists of its registers, data memory, and instruc-

tion memory).

6.2. Multitenancy 

Figure 8 plots the performance of two streaming-style com-

putations on a DE10. Both read inputs from data files that are 

too large to store on-chip. The first (regex) reads in characters 

and generates statistics on the stream using a regular expres-

sion matching algorithm. The second (nw) reads in DNA se-

quences and evaluates how well they match using a tile-based 

alignment algorithm.

The regular expression matcher begins execution in a new 

instance of Synergy and, at time (t = 10), transitions to hard-

ware where it achieves a peak throughput of 500,000 reads 

per second. At (t = 15), the sequence aligner begins execution 

in a second instance of Synergy. For the next few seconds, 

the performance of the matcher is unaffected. At (t = 24), the 

aligner transitions to hardware and the hypervisor is forced 

to temporally multiplex the execution of both applications, 

as they now contend on a common IO path between software 

and hardware. During the period where both applications are 

active (t = 24 – 60), the matcher’s throughput drops to slightly 

less than 50%. This is due to the hypervisor’s use of round-rob-

in scheduling and the fact that the primitive read operations 

performed by the matcher (characters) require less time to run 

to completion than the primitive read operations performed 

by the aligner (strings).

At (t = 60), the sequence aligner completes execution, and 

the throughput for the matcher returns to its peak value 

shortly thereafter. Compared to previous examples, the time 

required to transition between performance regimes is slight-

ly more pronounced. This is due to Synergy’s use of adaptive 

refinement21 to determine the time spent in hardware execu-

tion before yielding control back to the REPL. It takes several 

seconds after the aligner finishes execution for Cascade to ad-

just back to a schedule which achieves peak throughput while 

also maintaining interactivity.

Figure 9 plots the performance of some batch-style com-

putations on an F1 instance. The first two applications read 

small inputs sets and transition to long-running computa-

tion before returning a result. The former (df) performs dou-

ble-precision floating-point computations characteristic of 

numeric simulations, and the latter (bitcoin) is the miner 

described in §6.1. The hypervisor is able to run both in par-

allel. The applications begin software execution in separate 

instances of Synergy (t = 0,22) and after transitioning to 

hardware (t = 2,24) achieve a virtual clock rate21 of 83MHz. At 

(t = 42), another batch-style application that encodes and de-

codes audio data (adpcm) begins execution in a new instance 

of Synergy. While the hypervisor can run this application in 

parallel with the first two, lowering its application logic onto 

the F1 instance causes the resulting design to no longer meet 

timing at the peak frequency of 250MHz. To accommodate all 

three applications, the global clock is set to 125MHz, reducing 

their virtual clock frequencies to 41MHz. The Synergy hyper-

visor hides the number of applications running simultane-

ously from the user. As a result, this can lead to unexpected 

performance regressions in our prototype. Future work can 

address this by running each application in an appropriate 

clock domain, with clock-crossing logic added automatically 

as needed.

6.3. Quiescence 

Saving and restoring large volumes of state not only degrades 

reconfiguration performance (Figure 7) but also requires a 

large amount of device-side resources to implement (§ 6.4). 

Synergy’s quiescence interface allows developers to signal 

when a program is quiescent and which variables are state-

ful at that time. We found that most of our benchmarks had 

Figure 7. Hardware Migration. Mips32 begins execution on one target 

and is migrated mid-execution to another.
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a large number of volatile variables, including 99%, 96%, and 

71% of df’s, bitcoin’s, and mips32’s state. For these applica-

tions, implementing quiescence resulted in an average LUT 

and FF savings of 50% and 15%, respectively. In our other 

benchmarks, 1/8 to 1/4 of the state was volatile. Implement-

ing quiescence for them resulted in an average LUT and FF 

savings of 2% and 9%, respectively.

6.4. Overheads 

There are two ma jor sources of overheads in programs con-

structed by Synergy. The first are discrete, nonfundamen-

tal overheads resulting from how programs are virtualized 

in hardware in the Synergy prototype. Implementing the 

semantics of the original program with the ability to pause 

execution in the middle of a virtual clock cycle involves tog-

gling the virtual clock variable, evaluating relevant program 

logic, and latching variable assignments. When these are 

done in separate hardware cycles, there is a minimum 3x per-

formance overhead. This not a fundamental requirement and 

can be improved with future work on target-specific backends.

The second source of overheads comes from the state ac-

cess and execution control logic added by Synergy. As a base-

line, we compile our benchmarks natively on AmorphOS, pro-

viding an upper bound on resource and frequency overheads. 

We also simulate a Cascade on AmorphOS baseline by com-

piling our benchmarks without system tasks, which avoids 

overheads introduced by our new state machine transforma-

tions. Finally, we modified our benchmarks to implement the 

quiescence protocol, allowing us to estimate the savings of ex-

posing reconfiguration to developers and establishing a lower 

bound on state access overhead.

We find that Synergy’s FF and LUT usage is generally 2–4x 

and 1–6x that of native, respectively (figures shown in the full 

paper). Overall, Synergy’s overheads are similar to Cascade’s, 

References

1. Byma, S. et al. FPGAs in the cloud: 
Booting virtualized hardware 
accelerators with openstack. In 
Proceedings of the 2014 IEEE 22nd 
Intern. Symp. on Field-Programmable 
Custom Computing Machines, 
FCCM ’14. IEEE Computer Society, 
Washington, DC, USA, 109–116.

2. Chen, F. et al. Enabling FPGAs in the 
cloud. In Proceedings of the 11th ACM 

Conf. on Computing Frontiers, CF 
’14. ACM, New York, NY, USA, (2014), 
3:1–3:10.

3. Chen, L., Marconi, T., and Mitra, T. 
Online scheduling for multi-core shared 
reconfigurable fabric. In Proceedings 
of the Conf. on Design, Automation 
and Test in Europe, DATE ’12. EDA 
Consortium, San Jose, CA, USA, (2012), 
582–585.

4. Chung, E. et al. Serving DNNs in Real 

with quiescence annotations providing a savings of up to ~2x.

Figure 10 shows that Synergy does not reduce the design’s 

operating frequency in most cases. adpcm is an exception, 

likely due to its use of system tasks from inside complex con-

trol logic. Synergy’s frequency overhead for mips32 is almost 

entirely due to forcing the use of FFs to implement RAMs, 

which is not a fundamental limitation. Compared to Amor-

phOS using FFs (AOS FF), Synergy was less than 6% slower 

despite supporting full state capture. When combined with 

the previous 3x overhead, we find that Synergy’s overall ex-

ecution overhead is within 3–4x that of native.

7. RELATED WORK

Primitives for FPGAs include sharing FPGA fabric,1,2,6,11,12,23 

spatial multiplexing,3,22 memory virtualization,15,24 preemp-

tion,16 and interleaved hardwaresoftware task execution.22 

Core techniques include virtualizing FPGA fabric, including 

regions19 and abstraction layers/overlays10 Extending OS ab-

stractions to FPGAs is an area of active research. ReconOS15 

extends eCos5 with hardware threads similar to Hthreads.18 

Previous multi-application FPGA sharing proposals3 restrict 

programming models or fail to provide isolation. OS primi-

tives have been combined to form OSes for FPGAs7,15 as well 

as FPGA hypervisors.19 Chen et al. explore virtualization chal-

lenges when FPGAs are a shared resource;2 AmorphOS9 pro-

vides an OS-level management layer to concurrently share FP-

GAs among mutually distrustful processes. ViTAL25 exposes a 

single-FPGA abstraction for scale-out acceleration over mul-

tiple FPGAs; unlike Synergy, it exposes a homogeneous ab-

straction of the hardware to enable offline compilation. The 

Optimus16 hypervisor supports spatial and temporal sharing 

of FPGAs attached to the host memory bus, but does virtual-

ize reconfiguration capabilities. Coyote13 is a shell for FPGAs 

which supports both spatial and temporal multiplexing as 

well as communication and virtual memory management. 

While sharing goals with these systems, Synergy differs fun-

damentally from them by virtualizing FPGAs at the language 

level in addition to providing access to OS-managed resources.

8. CONCLUSION

FPGAs are emerging in datacenters so techniques for virtual-

izing them are urgently needed to enable them as a practical 

resource for on-demand hardware acceleration. Synergy is a 

compiler/runtime solution that supports multi-tenancy and 

workload migration on hardware which is available today.

9. ACKNOWLEDGMENTS

This research was supported by NSF grants CNS-1846169 and 

CNS-2006943, and U.S. Department of Energy, National Nucle-

ar Security Administration Award Number DENA0003969. 

Figure 9. Spatial Multiplexing. Bitcoin, df, and adpcm are co-

scheduled on one device without contention.

Wall Time (s)

V
ir

t.
 F

re
q

. 
(H

z
)

0

107

108

10 20 30 40 50 60 70

df bitcoin adpcm

Figure 10. Design frequency achieved in MHz.

Synergy Synergy + Yield Cascade + AOS AOS AOS FF
250

200

150

100

50

0

adpcm bitcoin df mips32 nw regex



research highlights 

 

142    COMMUNICATIONS OF THE ACM   |   AUGUST 2024  |   VOL.  67  |   NO.  8

Time at Datacenter Scale with Project 
Brainwave. IEEE, (March 2018).

5. Domahidi, A., Chu, E., and Boyd, S. 
ECOS: An SOCP solver for embedded 
systems. In Control Conf. (ECC) 
European. IEEE, (2013), 3071–3076.

6. Fahmy, S.A., Vipin, K., and Shreejith, 
S. Virtualized FPGA accelerators 
for efficient cloud computing. In 
Proceedings of the 2015 IEEE 7th 
Intern. Conf. on Cloud Computing 
Technology and Science (CloudCom), 
CLOUDCOM ’15. IEEE Computer 
Society, Washington, D.C., USA, 
430–435

7. Hamilton, B.K., Inggs, M., and So, 
H.K.H. Scheduling mixed-architecture 
processes in tightly coupled FPGA-CPU 
reconfigurable computers. In Field-
Programmable Custom Computing 
Machines (FCCM), 2014 IEEE 22nd 
Annual Intern. Symp., 240–240.

8. Kapitza, R. et al. CheapBFT: Resource-
efficient byzantine fault tolerance. In 
Proceedings of the 7th ACM European 
Conf. on Computer Systems, EuroSys 
’12. ACM, New York, NY, USA, (2012), 
295–308.

9. Khawaja, A. et al. Sharing, protection, 
and compatibility for reconfigurable 
fabric with amorphos. In 13th {USENIX} 
Symp. on Operating Systems Design 
and Implementation ({OSDI}, 2018, 
107–127.

10. Kirchgessner, R., George, A.D., and Stitt, 
G. Low-overhead FPGA middleware for 
application portability and productivity. 
ACM Trans. Reconfigurable Technol. 
Syst. 8, 4, (Sept. 2015), 21:1–21:22.

11. Knodel, O., Lehmann, P., and Spallek, 
R.G. RC3E: Reconfigurable accelerators 
in data centres and their provision by 

adapted service models. In 2016 IEEE 
9th Intern. Conf. on Cloud Computing 
(CLOUD), 19–26.

12. Knodel, O. and Spallek, R.G. Rc3e: 
Provision and management of 
reconfigurable hardware accelerators 
in a cloud environment. CoRR, 
abs/1508.06843, (2015).

13. Korolija, D., Roscoe, T., and Alonso, 
G. Do OS abstractions make sense 
on FPGAs? In 14th USENIX Symp. 
on Operating Systems Design and 
Implementation (OSDI 20). USENIX 
Association, (Nov. 2020), 991–1010.

14. Li, S. et al. Architecting to achieve a 
billion requests per second throughput 
on a single key-value store server 
platform. In Proceedings of the 42nd 
Annual Intern. Symp. on Computer 
Architecture, ISCA ’15. ACM, New York, 
NY, USA, (2015), 476–488.

15. Lübbers, E. and Platzner, M. ReconOS: 
Multithreaded programming for 
reconfigurable computers. ACM Trans. 
Embed. Comput. Syst. 9, 1, Oct. 2009, 
8:1–8:33.

16. Ma, J. et al. A hypervisor for 
shared-memory FPGA platforms. In 
Proceedings of the 25th Intern. Conf. on 
Architectural Support for Programming 
Languages and Operating Systems, 
2020.

17. Oguntebi, T. and Olukotun, K. GraphOps: 
A dataflow library for graph analytics 
acceleration. In Proceedings of the 
2016 ACM/SIGDA Intern. Symp. on 
Field-Programmable Gate Arrays, 
FPGA ’16. ACM, New York, NY, USA, 
111–117.

18. Peck, W. et al. Hthreads: A 
computational model for reconfigurable 
devices. In FPL. IEEE, (2006), 1–4.

19. Pham, K.D. et al. Microkernel hypervisor 
for a hybrid ARM-FPGA platform. 
In Application-Specific Systems, 
Architectures and Processors (ASAP), 
2013 IEEE 24th Intern. Conf. on, pages 
219–226.

20. Putnam, A. et al. A reconfigurable 
fabric for accelerating large-
scale datacenter services. In 41st 
Annual Intern. Symp. on Computer 
Architecture (ISCA), (June 2014).

21. Schkufza, E., Wei, M., and Rossbach, 
C.J. Just-in-time compilation for 
verilog: A new technique for improving 
the FPGA programming experience. In 
Proceedings of the 24th Intern. Conf. on 
Architectural Support for Programming 
Languages and Operating Systems, 
ASPLOS 2019, Providence, RI, USA, 
(Apr. 2019), 271–286.

22. Wassi, G. et al. Multi-shape tasks 
scheduling for online multitasking 
on FPGAs. In Reconfigurable and 
Communication-Centric Systems-on-
Chip (ReCoSoC), 2014 9th Intern. Symp. 
on, pages 1–7, (May 2014).

23. Weerasinghe, J., Abel, F., Hagleitner, C., 
and Herkersdorf, A. Enabling FPGAs 
in hyperscale data centers. In 2015 
IEEE 12th Intern. Conf. on Ubiquitous 
Intelligence and Computing and 2015 
IEEE 12th Intern. Conf. on Autonomic 
and Trusted Computing and 2015 
IEEE 15th Intern. Conf. on Scalable 
Computing and Communications and 
Its Associated Workshops (UIC-ATC-
ScalCom), Beijing, China, (August 
2015), 1078–1086.

24. Winterstein, F. et al. Matchup: Memory 
abstractions for heap manipulating 
programs. In Proceedings of the 2015 
ACM/SIGDA Intern. Symp. on Field-
Programmable Gate Arrays, FPGA 
’15. ACM, New York, NY, USA, (2015), 
136–145.

25. Zha, Y. and Li, J. Virtualizing FPGAs 
in the cloud. In ASPLOS 2020: 
Architectural Support for Programming 
Languages and Operating Systems. 
ACM, (2020).

Joshua Landgraf (jland@cs.utexas.edu), 
University of Texas at Austin, TX, USA.

Tiffany Yang (tiffanyyang@utexas.edu), 
University of Texas at Austin, TX, USA.

Will Lin (w5lin@ucsd.edu), University of 
California, San Diego, CA, USA. This work 
was done while he was at University of 
Texas at Austin.

Christopher J. Rossbach (rossbach@
cs.utexas.edu), University of Texas at 
Austin and VMware Research Group, 
Austin, TX, USA.

Eric Schkufza (eric.schkufza@gmail.com), 
Graft, Inc., San Francisco, CA, USA. This 
work was done while he was at VMWare 
Research Group.

This work is licensed under a Creative Commons  
Attribution-NoDerivs International 4.0 License..


