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Abstract—In an effort to address the training instabilities
of GANs, we introduce a class of dual-objective GANs with
different value functions (objectives) for the generator (G) and
discriminator (D). In particular, we model each objective using
a-loss, a tunable classification loss, to obtain (ap,ac)-GANs,
parameterized by (ap,ag) € (0,00)°. For sufficiently large
number of samples and capacities for G and D, we show that
the resulting non-zero sum game simplifies to minimizing an
f-divergence under appropriate conditions on (ap,ag). In the
finite sample and capacity setting, we define estimation error to
quantify the gap in the generator’s performance relative to the
optimal setting with infinite samples and obtain upper bounds
on this error, showing it to be order optimal under certain
conditions. Finally, we highlight the value of tuning (ap, )
in alleviating training instabilities for the synthetic 2D Gaussian
mixture ring and the Stacked MNIST datasets.

I. INTRODUCTION

Generative adversarial networks (GANs) have become a
crucial data-driven tool for generating synthetic data. GANs
are generative models trained to produce samples from an
unknown (real) distribution using a finite number of training
data samples. They consist of two modules, a generator G and
a discriminator D, parameterized by vectors § € © C R™s and
w € ) C R™, respectively, which play an adversarial game
with each other. The generator Gy maps noise Z ~ Py to a
data sample in X via the mapping z — Gp(z) and aims to
mimic data from the real distribution P,. The discriminator
D, takes as input x € X and classifies it as real or
generated by computing a score D,,(z) € [0, 1] which reflects
the probability that x comes from P, (real) as opposed to
Pg, (synthetic). For a chosen value function V(f,w), the
adversarial game between G and D can be formulated as a
Zero-sum min-max problem given by

f sup V(0 1
;g@ilég (0,w). (1)

Goodfellow et al. [1] introduce the vanilla GAN for which

W (0,w)=Ex~p,[log Dy,(X)|+Ex ~pg, [log(1-D,(X))].

For this Vyg, they show that when the discriminator class
{Dy}weq is rich enough, (1) simplifies to minimizing the
Jensen-Shannon divergence [2] between P, and Pg,.
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Various other GANs have been studied in the literature using
different value functions, including f-divergence based GANs
called f-GANSs [3], IPM based GANs [4]-[6], etc. Observing
that the discriminator is a classifier, recently, Kurri et al. [7],
[8] show that the value function in (1) can be written using a
class probability estimation (CPE) loss £(y,?) whose inputs are
the true label y € {0,1} and predictor § € [0,1] (soft prediction
of y) as

V(0,w) =Ex~p,[~£(1,Du(X)) +Ex~pg, [-€(0, Dy (X))].

Using this approach, they introduce a-GAN using the tunable
CPE loss a-loss [9], [10], defined for a € (0,00] as
1

lalyd) == (1703 ~(1=9)(1-9) 7). @

They show that the a-GAN formulation recovers various f-
divergence based GANs including the Hellinger GAN [3] (o=
1/2), the vanilla GAN [1] (a=1), and the Total Variation (TV)
GAN [3] (¢=00). Further, for a large enough discriminator
class, the min-max optimization for a-GAN in (1) simplifies
to minimizing the Arimoto divergence [11], [12].

While each of the abovementioned GANs have distinct
advantages, they continue to suffer from one or more types of
training instabilities, including vanishing/exploding gradients,
mode collapse, and sensitivity to hyperparameter tuning. In
[1], Goodfellow et al. note that the generator’s objective in
the vanilla GAN can saturate early in training (due to the
use of the sigmoid activation) when D can easily distinguish
between the real and synthetic samples, i.e., when the output
of D is near zero for all synthetic samples, leading to vanishing
gradients. Further, a confident D induces a steep gradient at
samples close to the real data, thereby preventing G from
learning such samples due to exploding gradients. To alleviate
these, [1] proposes a non-saturating (NS) generator objective:

VoG (0,w) =Ex~pg, [~ log Du(X)]. 3)

This NS version of the vanilla GAN may be viewed as
involving different objective functions for the two players (in
fact, with two versions of the a«=1 CPE loss, i.e., log-loss,
for D and G). However, it continues to suffer from mode
collapse [13], [14]. While other dual-objective GANs have
also been proposed (e.g., Least Squares GAN (LSGAN) [15],
RényiGAN [16], NS f-GAN [3], hybrid f-GAN [17]), few
have had success fully addressing training instabilities.
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Recent results have shown that a-loss demonstrates desir-
able gradient behaviors for different v values [10]. It also as-
sures learning robust classifiers that can reduce the confidence
of D (a classifier) thereby allowing G to learn without gradient
issues. To this end, we introduce a different a-loss objective
for each player to address training instabilities. We propose
a tunable dual-objective (ap,aq)-GAN, where the objective
functions of D and G are written in terms of a-loss with
parameters ap € (0,00] and o € (0,00], respectively. Our key
contributions are:

« For this non-zero sum game, we show that a Nash equilib-
rium exists. For appropriate (ap,aq) values, we derive the
optimal strategies for D and G and prove that for the optimal
D,,», G minimizes an f-divergence and can therefore learn
the real distribution P,.

o Since a-GAN captures various GANSs, including the vanilla
GAN, it can potentially suffer from vanishing gradients due
to a saturation effect. We address this by introducing a
non-saturating version of the (ap,aq)-GAN and present
its Nash equilibrium strategies for D and G.

o A natural question that arises is how to quantify the theo-
retical guarantees for dual-objective GANSs, specifically for
(ap,aq)-GANSs, in terms of their estimation capabilities
in the setting of limited capacity models and finite train-
ing samples. To this end, we define estimation error for
(ap,aq)-GANs, present an upper bound on the error, and
a matching lower bound under additional assumptions.

« Finally, we demonstrate empirically that tuning ap and ag
significantly reduces vanishing and exploding gradients and
alleviates mode collapse on a synthetic 2D-ring dataset.
For the high-dimensional Stacked MNIST dataset, we show
that our tunable approach is more robust in terms of mode
coverage to the choice of GAN hyperparameters, including
number of training epochs and learning rate, relative to both
vanilla GAN and LSGAN.

II. MAIN RESULTS
A. ((XD,Oé(;)-GAN

We first propose a dual-objective (ap,aq)-GAN with dif-
ferent objective functions for the generator and discriminator.
In particular, the discriminator maximizes V,, , (f,w) while the
generator minimizes V., (6,w), where

Vo (0,w)
=Ex~p,[~la(1,Du(X))+Ex~pg, [-0a(0,Du(X))], 4
for a=ap,aq €(0,00]. We recover the a-GAN [7], [8] value

function when ap =ag=a. The resulting (ap,ag)-GAN is
given by

sup V, , (6,w) (5a)
weN
elggVaG(H,w). (5b)

The following theorem presents the conditions under which
the optimal generator learns the real distribution P, when the
discriminator set {2 is large enough.

Theorem 1. For a fixed generator Gy, the discriminator
optimizing (5a) is given by

o pr(x)*P

pr()P +pg, (z)2r’
where p, and pg, are the corresponding densities of the
distributions P, and Pg,, respectively, with respect to a base
measure dx (e.g., Lebesgue measure). For this D« and the
function fop, on Ry —R defined as

ag [ u*? (1_%>+1+1 a1
fap,ac(u)= 1 2% |,
ag— (UO‘D—Fl) ag

Dey- () (6)

(7

(5b) simplifies to minimizing a non-negative Ssymmetric
fap,ag-divergence Dy, . (-[|) as

. oG 1

£D P.||P, (2a —2),

91161@ faD~ac( T|| G9)+ac_1 ¢

which is minimized iff Pg,=P, for (ap,ac)€ (0,00]* such

that (ongl,ozg>agﬁ_1> or (

®)

OLD>1,QTD<05G§01D .

Proof sketch. We substitute the optimal discriminator of (5a)
into the objective function of (5b) and translate it into the form
in (8) by finding the appropriate conditions on «p and a for
fap,aq to be a strictly convex function. Figure 1(a) illustrates
the feasible (ap,aq)-region. A detailed proof can be found
in [18, Appendix A].

Noting that a-GAN recovers various well-known GANSs,
including the vanilla GAN, which is prone to saturation,
the (ap,aq)-GAN formulation using the generator objective
function in (4) can similarly saturate early in training, causing
vanishing gradients. We therefore propose the following NS
alternative to the generator’s objective in (4):

Vgs(aw):EXNPGe [EQG(LDw(X))]’ )
thereby replacing (5b) with
: NS
(alrel(favac (0,w). (10)

Comparing (5b) and (10), note that the additional expec-
tation term over P, in (4) results in (5b) simplifying to a
symmetric divergence for D~ in (6), whereas the single term
in (9) will result in (10) simplifying to an asymmetric diver-
gence. The optimal discriminator for this NS game remains the
same as in (6). The following theorem provides the solution to
(10) under the assumption that the optimal discriminator can
be attained.

Theorem 2. For the same D~ in (6) and the function gSDa o
R+ —R defined as
o0 (1-3¢)
N W)= (27— | D

ag—l

(5b) simplifies to minimizing a non-negative asymmetric
NS ; .
o .ag -divergence ngsm(xc Cll-) as

inf D (Pyl|Pg,)+— (1276 ") (12)
deo Iapag  TIIHG ag—1 ’
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F1g 1. (a) Plot of regions Ri={(ap,ag)€(0,00?|ap<l,ag>
ap +1} and Ry={(ap,aq)€(0,00*|ap>1,%L <ag<ap} for
which fap,aq is strictly convex. (b) Plot of region Rns={(ap,aq)€
(O,OO]Z\aD+ozg>aDag} for which f33 is strictly convex.

which is minimized iff Pg, (0,00]? such

that ap+ag>agap.

=P, for (ap,ag)€

The proof mimics that of Theorem 1 and is detailed in [18,
Appendix B]. Figure 1(b) illustrates the feasible (ap,aq)-
region; in contrast to the saturating setting of Theorem 1, the
NS setting constrains o <2 when ap =ag =a. Nonetheless,
we later show empirically in Section III-B that even tuning
over this restricted set provides robustness against hyperpa-
rameter choices.

B. Estimation Error

Theorems 1 and 2 assume sufficiently large number of
training samples and ample discriminator and generator ca-
pacity. However, in practice both the number of training
samples and model capacity are usually limited. We consider
a setting similar to prior works on generalization and esti-
mation error for GANs (e.g., [8], [19]) with finite training
samples S, ={X1,...,.X,,} and S.,={7,...,Z} from P.
and Py, respectively, and with neural networks chosen as the
discriminator and generator models. The sets of samples S,
and S, induce the empirical real and generated distributions
P, and ]3@6, respectively. A useful quantity to evaluate the
performance of GANS in this setting is that of the estimation
error, defined in [19] as the performance gap of the optimized
value function when trained using only finite samples relative
to the optimal when the statistics are known. Using this
definition, [8] derived upper bounds on this error for a-GANS.
However, such a definition requires a common value function
for both discriminator and generator, and therefore, does not
directly apply to the dual-objective setting we consider here.

Our definition relies on the observation that estimation error
inherently captures the effectiveness of the generator (for a
corresponding optimal discriminator model) in learning with
limited samples. We formalize this intuition below.

Since (ap,aq)-GANs use different objective functions for
the discriminator and generator, we start by defining the
optimal discriminator w™* for a generator model Gy as

w* (P, Pg,): —argnglzaXVaD (0w |P e (13)

where the notation |. . allows us to make explicit the distribu-
tions used in the value function. In keeping with the literature
where the value function being minimized is referred to as
the neural net (NN) distance (since D and G are modeled as
neural networks) [8], [19], [20], we define the generator’s NN
distance d«(p, Pg,) a8

dw*(PT,PGS)(PT‘apGg) = Vac (07w*(PT7PG9)) (14)

|P,,V,PG0

The resulting minimization for training the (ap,aq)-GAN
using finite samples is

1nfd (P“PGS)(P”PGG)' (15)
Denoting 6* as the minimizer of (15), we define the estimation

error for (ap,as)-GANs as

dw*(PT,PGé*)(PMPG@*)_eig(gdw*(PT,PGQ)(PMPGB)' (16)

We use the same notation as in [8], detailed in the follow-
ing for easy reference. For z € X :={x €R?:||z||s< B,} and
z€Z:={2€R?:||z||2 < B.}, we model the discriminator and

generator as k- and [-layer neural networks, respectively, with

D, :x—0 (wgrkq (Wa_1rp—2(...71 (Wl(x))))
Go:2—=Visi_1(Vi—1s1-2(...51(V12))),

where (i) wy, is a parameter vector of the output layer; (ii) for
i€[l:k—1] and j€[1:1], W, and V are parameter matrices;
(iii) r;(-) and s;(-) are entry-wise activation functions of layers
i and j, respectively, i.e., for a€ R, r;(a) =[r;(a1),...,7:(at)]
and s;(a)=[s;(a1),...,s:(at)]; and (iv) o(-) is the sigmoid
function given by o(p)=1/(1+e7P). We assume that each
ri(-) and s;(-) are R;- and S;-Lipschitz, respectively, and
also that they are positive homogeneous, i.e., r;(Ap) = Ar;(p)
and s;(Ap)=As;(p), for any A>0 and peR. Finally, as is
common in such analysis [19], [21]-[23], we assume that the
Frobenius norms of the parameter matrices are bounded, i.e.,
IWillp < M;, i€[1:k—1], ||wil[2 <Mk, and |[V;]|r <N;
j€[1:1]. We now present an upper bound on (16) in the
following theorem.

amn
(18)

Theorem 3. In the setting described above, with probability

at least 1—26 over the randomness of training samples S, =
{Xi}iey and S,={Z;}]L,, we have

d/w*(Pr,PGé*)(PmPGé*)_eiggdw*(Pr,Pge)(PmPGg)
4CQT(OZ(;)BQCUW\/3]€ 4CQz(ag)UngBZ 3(k+1-1)
<Q + v

Vn Vvm

4CQ (Ozg)Bx 4CQ (Ozg)BzU9>
Upr/l1 = 2 , (19
* \/Ogcs( T vem {19

where the parameters U, : Mka 1(MR) and U=
NI 21 (N;S)), Qei=UyBr, Q.=U,UyB., and

ae(0,1]

(20)

a€(1,00).
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Fig. 2. (a) Plot of mode coverage over epochs for (ap,aa)-GAN training with the saturating objectives in (5). Fixing a =1, we compare ap =1 (vanilla
GAN) with ap =0.2. Placed above this plot are 2D visuals of the generated samples (in black) at different epochs; these show that both GANs successfully
capture the ring-like structure, but the vanilla GAN fails to maintain the ring over time. We illustrate the discriminator output in the same visual as a heat
map to show that the ap =1 discriminator exhibits more confident predictions (tending to O or 1), which in turn subjects G to vanishing and exploding
gradients when its objective log(1—D) saturates as D — 0 and diverges as D — 1, respectively. This combination tends to repel the generated data when it
approaches the real data, thus freezing any significant weight update in the future. In contrast, the less confident predictions of the (0.2,1)-GAN create a
smooth landscape for the generated output to descend towards the real data. (b) Plot of success and failure rates over 200 seeds for a range of ap values
with g =1 for the saturating (ovp,ac)-GAN on the 2D-ring, which underscores the stability of (aup <1, )-GANS relative to vanilla GAN.

The proof is similar to that of [8, Theorem 3] (and also [19,
Theorem 1]). We observe that (19) does not depend on ap,
an artifact of the proof techniques used, and is therefore most
likely not the tightest bound possible. See [18, Appendix C]
for proof details.

When ap=ag=00, (8) reduces to the total variation
distance (up to a constant) [7, Theorem 2], and (14) simplifies
to the loss-inclusive NN distance dé}-m (+,-) defined in [8, eq.
(13)] with ¢(-)=—Ly(1,-) and t(-)=—L4(0,-) for a=oc.
We consider a slightly modified version of this quantity with
an added constant to ensure nonnegativity (more details in
[18, Appendix D]). For brevity, we henceforth denote this as
dg_-jn(~,~). As in [19], suppose the generator’s class {Gg}oco
is rich enough such that the generator G can learn the real
distribution P, and that the number m of training samples in
S. scales faster than the number n of samples in S,!. Then
(Pr,Pg,)=0, so the estimation error simplifies to
the single term dg_-":n (Pr,Pg,, ). Furthermore, the upper bound
in (19) reduces to O(c/+/n) for some constant ¢ (note that, in
(20), Cp(00)=1/4). In addition to the above assumptions, also
assume the activation functions r; for i€ [1:k—1] are either
strictly increasing or ReLU. For the above setting, we derive
a matching min-max lower bound (up to a constant multiple)
on the estimation error.

. loo
1nf9€@ d]_—n

Theorem 4. For the setting above, let P, be an estimator of

P, learned using the training samples S, ={X;}I" . Then,
X

C(P(X)) } 024,

inf sup ]P’{dé‘x’ (PH,PT)Z
a1 nn n

Po PLEP(X)
where the constant C(P(X)) is given by

~ log(2)
20

C(P(X)) [U(Mkrk,l(...rl(Mle))
—a(Mkrk_l(...rl(—Mle))}. @1)

I'Since the noise distribution Py is known, one can generate an arbitrarily
large number m of noise samples.

Proof sketch. We prove that dZ}i’:n is a semi-metric. The re-
mainder of the proof is similar to that of [19, Theorem 2]. A
detailed proof is in [18, Appendix D].

III. ILLUSTRATION OF RESULTS

In this section, we compare (ap,aq)-GAN to two state-of-
the-art GANs, namely the vanilla GAN (i.e., the (1,1)-GAN)
and LSGAN [15], on two datasets: (i) a synthetic dataset
generated by a two-dimensional, ring-shaped Gaussian mixture
distribution (2D-ring) [24] and (ii) the Stacked MNIST image
dataset [25]. For each dataset and different GAN objectives,
we report several metrics that encapsulate the stability of GAN
training over hundreds of random seeds. This allows us to
clearly showcase the potential for tuning (ap,aq) to obtain
stable and robust solutions for image generation.

A. 2D Gaussian Mixture Ring

The 2D-ring is an oft-used synthetic dataset for evaluating
GANs. We draw samples from a mixture of 8 equal-prior
Gaussian distributions, indexed ¢€{1,2,...,8} with a mean
of (cos(27i/8), sin(2mi/8)) and variance 10~%. We generate
50,000 training and 25,000 testing samples; additionally, we
generate the same number of 2D latent Gaussian noise vectors.

Both the D and G networks have 4 fully-connected layers
with 200 and 400 units, respectively. We train for 400 epochs
with a batch size of 128, and optimize with Adam [26] and
a learning rate of 10~ for both models. We consider three
distinct settings that differ in the objective functions as: (i)
(ap,aq)-GAN in (5); (ii) NS (ap,aq)-GAN’s in (5a), (10);
(iii) LSGAN with the 0-1 binary coding scheme (see [18,
Appendix E] for details).

For every setting listed above, we train our models on the
2D-ring dataset for 200 random state seeds, where each seed
contains different weight initializations for D and G. Ideally,
a stable method will reflect similar performance across ran-
domized initializations and also over training epochs; thus, we
explore how GAN training performance for each setting varies
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Fig. 3. Generated samples from two (ap,aq)-GANs trained with the NS
objectives in (5a), (10), as well as the LSGAN. We provide 6 seeds to illustrate
the stability in performance for each GAN across multiple runs.

across seeds and epochs. Our primary performance metric is
mode coverage, defined as the number of Gaussians (0-8) that
contain a generated sample within 3 standard deviations of its
mean. A score of 8 conveys successful training, while a score
of 0 conveys a significant GAN failure; on the other hand, a
score in between 0 and 8 may be indicative of common GAN
issues, such as mode collapse or failure to converge.

For the saturating setting, the improvement in stability of
the (0.2,1)-GAN relative to the vanilla GAN is illustrated
in Fig. 2 as detailed in the caption. In fact, vanilla GAN
completely fails to converge to the true distribution 30% of
the time while succeeding only 46% of the time. In contrast,
the (ap,aq)-GAN with ap <1 learns a more stable G due
to a less confident D (see also Fig. 2(a)). For example, the
(0.3,1)-GAN success and failure rates improve to 87% and
2%, respectively. Finally, for the NS setting in Fig. 3, we
find that tuning ap and a¢ yields more consistently stable
outcomes than vanilla and LSGANs. Mode coverage rates over
200 seeds for saturating (Tables I and II) and NS (Table III)
are in [18, Appendix E].

B. Stacked MNIST

The Stacked MNIST dataset is an enhancement of MNIST
[27] as it contains images of size 3x28x 28, where each RGB
channel is a 2828 image randomly sampled from MNIST.
Stacked MNIST is a popular choice for image generation since
its use of 3 channels allows for a total of 10% =1000 modes,
as opposed to the 10 modes (digits) in MNIST, which makes
the latter much easier for GANs to learn. We generate 100,000
training samples, 25,000 testing samples, and the same number
of 100-dimension latent Gaussian noise vectors.

We use the DCGAN architecture [28] for training, which
uses deep convolutional neural networks (CNN) for both
D and G (details in Tables IV, V [18, Appendix E]). As
in other works, we focus solely on the NS setting using
appropriate objective functions for vanilla GAN, (ap,aq)-
GAN, and LSGAN. We compute the mode coverage of each
trial by feeding each generated sample to a 1000-mode CNN
classifier. The classifier is obtained by pretraining on MNIST
to achieve 99.5% validation accuracy. We also consider a range
of settings for two key hyperparameters: the number of epochs
and learning rate for Adam optimization. Each combination
of objective function, number of epochs, and learning rate is
trained for 100 seeds; this allows us to report the mean mode

()

(b)

Fig. 4. Mode coverage vs. (a) varied learning rates with fixed epoch number
(=50) and (b) varied epoch numbers with fixed learning rate (=5x10~%) for
different GANs, underscoring the vanilla GAN’s hyperparameter sensitivity.

Seed2 Seed3 Seed4 Seed5 Seed6

Seed 1 Target

Fig. 5. Generated Stacked MNIST samples from three GANs over 6 seeds
when trained for 200 epochs with a learning rate of 5x10~%.

coverage. We also report the mean Fréchet Inception Distance
(FID)?.

In Fig. 4(a) and 4(b), we empirically demonstrate the
dependence of mode coverage on learning rate and number
of epochs, respectively (FID plots are in [18, Appendix E-
C]). Achieving robustness to hyperparameter initialization is
highly desirable in the unsupervised GAN setting as the
choices that facilitate steady model convergence are not easily
determined without prior mode knowledge. Observing the
mode coverage of different (ap,aq)-GANs, we find that as
the learning rate or training time increases, the performance of
both vanilla GAN and LSGAN deteriorates faster than a GAN
with ap =ag>1 (see [18, Appendix E] for additional details
that motivate this choice). Finally, as shown in Fig. 5, we
observe that the outputs of (ap,ag)-GAN are more consistent
and accurate across multiple seeds, relative to LSGAN and
vanilla GAN.

IV. CONCLUDING REMARKS

We have introduced a dual-objective GAN formulation,
focusing in particular on using a-loss for both players’ objec-
tives. Our results highlight the value of tuning « in alleviating
training instabilities and enhancing robustness to learning rates
and training epochs, hyperparameters whose optimal values
are generally not known a priori. Generalization guarantees
of (ap,aq)-GANs is a natural extension to study. An equally
important problem is to evaluate if our observations hold more
broadly, including, when the training data is noisy [30].

2FID is an unsupervised similarity metric between the real and generated
feature distributions extracted by InceptionNet-V3 [29].
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