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ABSTRACT

This article is concerned with causal mediation analysis with varying indirect and direct effects. We propose
a varying coefficient mediation model, which can also be viewed as an extension of moderation analysis
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on a causal diagram. We develop a new estimation procedure for the direct and indirect effects based on B-

splines. Under mild conditions, rates of convergence and asymptotic distributions of the resulting estimates
are established. We further propose a F-type test for the direct effect. We conduct simulation study to
examine the finite sample performance of the proposed methodology, and apply the new procedures for

empirical analysis of behavioral economics data.

1. Introduction

Since the seminal work of Baron and Kenny (1986), mediation
models have been applied in many fields such as finance, psy-
chology, communication research, genetics, and epidemiology
(MacKinnon 2008; Huang et al. 2015; Huang, VanderWeele, and
Lin 2014). Mediation occurs when an intervention or exposure
has an effect on an outcome via a third, intermediate vari-
able. The effect through the third variable is called the indirect
effect. The effect of the exposure on the outcome that does
not occur via the mediator is called the direct effect. Medi-
ation analysis has received increasing attention in the recent
literature. However, much of existing literature has focused on
relatively simple parametric relationships (e.g., linear) among
the variables although more recently significant advances have
allowed for multiple mediators, “effect modifiers” (i.e., modera-
tors), and mixed variable types (e.g., binary outcome or binary
mediators). For example, path-specific effects were introduced
to characterize the indirect effect of a pathway through multiple
mediators (Avin, Shpitser, and Pearl 2005; Daniel et al. 2015).
Generalized mediation models with mixed variable types have
been proposed (Albert and Nelson 2011; Albert et al. 2019),
and various methods of variable selection, dimension reduction,
and decorrelation in the high-dimensional case have been intro-
duced (Huang and Pan 2016; Zhang et al. 2016; Chén et al. 2018;
Zhou, Wang, and Zhao 2020). Effect modifiers, or variables that
modify the direct and indirect effects, have been incorporated
into the mediation model albeit in a parametric form by, for
example, using product terms between the effect modifier and
the exposure or between the effect modifier and the mediator
(Edwards and Lambert 2007; Preacher, Rucker, and Hayes 2007;
Valeri and VanderWeele 2013). However, the indirect effect
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may vary in a nonparametric way across levels of the effect
modifier.

Motivated by an empirical analysis of behavioral economic
data presented in Section 4, this article aims to develop a varying
coefficient mediation model (VCMM), which allows coefficients
of exposure variables and mediators to vary as smooth func-
tions of a continuous effect modifier variable. We provide a
foundation for statistical inference for varying indirect effects
under the regression analysis framework for mediation. As is
known, compared with the potential outcomes framework for
mediation analysis, the regression framework has stricter model
assumptions, such as linearity. By introducing these varying
coefficient functions into mediation regression models, we can
relax some of these assumptions and add significant flexibility
compared with the ordinary parametric mediation models. The
indirect and direct effects can then be represented as curves
of another variable, and estimated through polynomial spline
techniques inspired by Huang, Wu, and Zhou (2002, 2004). In
fact, when a coefficient function is set to be the effect modifier
itself, the product of the varying coefficient function and the
main effect is indeed an interaction term in linear mediation
models. Thus, the VCMM can also be viewed as an extension
of the classic moderation analysis in causal mediation models,
where the interaction effects are of primary interest. In this
article, we establish consistency and convergence rates of the
resulting estimates. We further derive their asymptotic distribu-
tions. Although both varying coefficient models (Cleveland et al.
1992; Fan et al. 1999; Cai, Fan, and Li 2000; Fan and Zhang 2008)
and linear mediation analysis have been systematically studied
in many existing literatures, the derivation of the asymptotic
properties in the proposed VCMM is not trivial partly because
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the mediators are random and typically unbounded, and there-
fore existing theory for varying coefficient models with bounded
covariates are not applicable for the setting studied in this article.
In addition, the point-wise confidence intervals and an F-type
test are also proposed for possible inferential pursuit.

We further use the advocated methodology of VCMM to
analyze small business owners’ affective and behavioral changes,
in response to economic pressure. The learned helplessness
theory convincingly shows that people encountering an event
out of their control are likely to have a sense of helplessness
(Hiroto and Seligman 1975; Pryce et al. 2011), and increased
depression would predict increased psychological intentions
to withdraw (Pollack, Vanepps, and Hayes 2012). Thus, the
mediating role of depression on the entrepreneurs’ withdrawal
intentions in response to economic stress is of practical interest.
In addition, entrepreneurs with different backgrounds, such as
length of tenures in their own companies, may perceive stress
differently. Some may consider economic pressure as a challenge
while others view it as a hindrance. Therefore, it is of interest
to explore the buffering/promoting effect of individual back-
grounds on the effect of economic stress on withdrawal inten-
tions via depressed affect. The results of this analysis are given in
Section 4.

The rest of this article is organized as follows. In Section 2, we
propose a new varying coefficient mediation model and develop
an estimation procedure for the direct and indirect effect coef-
ficient functions. We further study theoretical properties of
the proposed estimator. In Section 3, we conduct simulation
studies to verify the finite sample performance of the proposed
methods. Section 4 includes the empirical varying coefficient
mediation analysis using a behavioral economics dataset. Some
discussion and conclusion are given in Section 5. Technical
details are provided in the appendix.

2. Varying Coefficient Mediation Model
2.1. Model Setup

We consider a varying coefficient mediation model that allows
the direct and indirect coefficients to vary as smooth functions
over values of another variable (i.e., effect modifier). Specifically,
let y be the response, x be the g-dimensional exposure variable,
u be the effect modifier, and m be the p-dimensional mediator.
The VCMM is then presented as follows:

y=oow) m+a;(w)Tx+¢ (1)

m=TwTx+e, (2)

where ¢, is an error term for model (1), with mean 0 and
variance o, and € is a p-dimensional error vector for model
(2), with mean 0 and covariance matrix .. The errors are
independent of each other, as well as with m, x and u. For any
u in its support U, ao(u) = (o1 (1), . .. ,aop(u))T and oy (1) =
(@11 (1), .., ag( uNT are the p- and g-dimensional coefficient
vectors, respectively, and T'(u) = (T1(w)T,...,Tow)T)T isthe
q x p coefficient matrix, where I'y(u) = (I'y; (), .. ., F;p(ut))'lr is
the Ithrowof I'(1), I = 1,. . ., q. Plugging model (2) into model

(1) yields
y = {TWao(w) + a1} x+ e +ao(w)e
£ (B + 1) x + éor
2 y@)Tx+ €t 3)

where B(u) = I' (u)ag(u) is called the indirect effect of exposure
x on y mediated through m, and is our main interest in this
article. ory () is called the direct effect of x, and y (1) = B(u) +
o (u) is called the total effect. Moreover, €t = €1 + oo(u)Te is
the total error with mean 0 and variance o2,.

2.2. Estimating Procedures

In this section, we systematically study the estimation procedure
of the direct effect function e, () and the indirect effect func-
tion B(u) = T (u)aq(u). Suppose {(x;, m;, u;, y;)}7_, isarandom
sample. Then the sample-level presentation of model (1) and
(2) are

yi = oo(ui) Ty + oy (u) Tx; + €y

P q
=) agi(uymy+ Y ani(upxi + € (4)

j=1 =1

q
mi=T(u) xi+ €= Tiu)xi+ e (5)
=1

We apply a regression spline method to estimate the potential
varying effects described by the corresponding coefficient func-
tions. Specifically, using B-splines, we approximate {c;(1;),j =
1,....p} and fo(), = 1,...,q} by

Ko
A
agj(u;) =~ Zaojkb()jk(ui) = a[l;}b()j(ui)a and
k=1
an(u) = Y aykbyk(u;) = ajby(uy),
k=1

where forall j = 1,...,pand [ = 1,...,q, {bop(),k =
1...,Kp}and {by(-),k = 1...,K;}aresets of B-spline bases in
linear spaces G, and Ga,, on, respectively, with fixed degrees
and knots. Ky and K; are the numbers of basis functions for
agj(-) and ayy(-), 1 = 1,...,4,j = 1,...,p, respectively, which
are allowed to increase with the sample size n.

Since the Ith element of B(u) is only determined by the
Ith row of f'(u), we consider expanding I'(u) row by row.
Denote {dj(-),k = 1,..., K]} to be the B-spline basis in linear
space Grgf on U, where K, is the number of basis functions
correspondingly. For ease of presentation, set dy (u) = di (1),
then for every j = 1,...,p, we can approximate {I';(x;),] =

] I | o T
Km
Ti(u) ~ Y cndi(s) = Cdiu),
k=1
where ¢k = (Ciiks-.-.cpk)] € R and G = (...,

ci,, )T € REmxp,



Thus model (4) and (5) can be approximated by

i q
Yiies Z ag:;boj(ux‘)mzj + Z a}}bu(u,v)xﬂ + e (6)
j=1 =1

q
m; = Z Cldj(ui)x; + €. (7)
I=1

Let off = (agl,...,agp)T e RPKoX! m* = (m; boy(ui)7,
oMb )T)T e RPKoX, af:(a}"l,...,a?q)r c
RIXL, x* = (x by ()T, .o xighg(u) )T € ReKix,
C = (CT,...,CE;)T € REmxP and x = (xudi(u)7,...,
xigdq(u;)T)T € RIKm*1 Then Equations (6) and (7) become
yi ~ ofTm! + o3Txf +€; and m; = CTx™ + ;. In the
matrix form,

Y ~ M*a} + X*a* +E; and M=~X"C+E,

where Y = (y,.. .,y,,)T, M* = (i ,m:)r, xX* =
(x*) s 9x:)rr El = (Ell:- .. 5EIH)T: and M = (ml!- .. smﬂ)Ty
NPl ..x,,’”)T and E = (€4, . . ., €,)T. Therefore, estimat-
ing coefficient functions ao(u), a3 () and I (u) is converted to
estimating coefficients a;, aj and C.

By minimizing (e}, @) = |¥ — M¥a} — X*a}|? with
respect to azj and a}, we obtained the least-square estimates of
o and a}. The estimate of C can be obtained by minimizing
£,(C) = ||M — X™C||? with respect to C. Specifically,

ar = (M1, — P )My ' M T (1, — Pxo)Y,

at = (x*T (1, — Pi)X*) XM (1, — P )Y,
where Pyx = e ixy-1x*T ana P =
M*(M*T M*)~' M*T are the corresponding projection matrices.
For sake of simplicity, we further set bo;(u;) = bo(;), for all

j=1....pby(u) =by(uy),foralll = 1,...,q, and dy(u;) =
d(u;), foralll = 1,...q. Thus,

do(u) = (bo(u) Tagys . . ., bo(u;) Tiagy) T = {I, ® bo(u;) ),
6)
@1(u) = (by(u)Tay, ..., by(u)Ta) T = {I; ® bi(u)T)at,

(©)
F) = (€ dw),....,Cdwu)" = {I; ® dwu))C, (10)

with ® denoting the Kronecker product. The estimates &g (u),
o1 (1) and f‘(u) at any point u can also be obtained. Thus, the
direct effect a; (1) and the indirect effect 8(u) are estimated by
a1 (u) and E(u) = Twéaow), respectively.

Remark 1. To implement the proposed estimation procedure,
one needs to determine Ky, Ky, and K,,;, which control the model
complexity of ag(-), &1 (-) and I'(-), respectively. Condition Cé6
(in the appendix) presents technical conditions on these tuning
parameters to establish the sampling properties of the proposed
estimation procedure. In practical implementation, one may use
cross-validation to select Ky, K; and K,,,. This leads an expensive
computational cost. Thus, we would suggest setting Ko, K; and
K, be the same, chosen by 5- or 10-fold cross-validation. This
is implemented in our real data analysis.
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2.3. Hypothesis Tests

We in this section provide tests for the direct effect o) (1) based
on model (1), as well as the total effect y (1) based on model (3).
Denote a1 (1) = (aq1(u), a12(u),. .. ,alq(u))T, where a1 (1)
refers to the intercept. It is of interest to test

Hp:ay(u) =0foralucld,l=2,...,q,
versus Hy : aj(u) # O0forsomeucU,l=12,...,q.

(11)

With the aid of the approximated model (6), we formulate this
hypothesis problem as

Hy v = 0forall k=1, ... Kinl =2, 51

versus Hy : oy # Oforsomek =1,...,K;,1=2,...,4,
(12)

which is essentially testing regression coefficients in linear
regression models. Instead of testing many hypotheses on one-
dimensional parameters Hyj : a1k = 0 for k = 1,...,K; and
I=2,...,q, which leads to a large scale of multiple testings, we
test Hy directly. Generalized likelihood ratio test was proposed
for the generalized varying coefficient models in Cai, Fan, and
Li(2000). As it is well known, the traditional F-test is equivalent
to the likelihood ratio test in the normal linear model. Thus, we
adopt the following F-type test statistic for hypothesis (12)

_ (RS, —RSS)/(g — DK
" RSS/(N—pKo—gKi)

where RSSy and RSS are the residual sum of squares under Hy
and H,, respectively. In general, T, approximately follows F
distribution with degrees of freedom (g — 1)K; and N — pK, —
qK; when the sample size is large enough. In our simulation,
we set the critical value of T, to be the corresponding critical
value of the F distribution, and find it performs well in terms of
retaining Type I error rate.

Remark 2. In theory, as K; tends to oo, the degrees of F-
distribution tend to co. Thus, the traditional F distribution
cannot be applied directly. Note that RSS/(N — pKy — gK;)
converges to the variance of ¢; in probability, and RSSp — RSS
tends to a y? distribution with degrees of freedom (g — 1)K;
in distribution. Thus, if (g — 1)K is relatively large, we may
consider the following standardized T,

Tsn = {(q S I)Kl}{Tn - 1}/\." 2(‘1 — DK;.

It can be shown that T, asymptotically follows a N(0,1) by
using the properties of F-distribution and x2-distribution with
diverging degrees of freedom.

2.4. Asymptotic Properties

We next study the asymptotic properties of the direct
gﬂ‘ect estimate, &;(u), and the indirect effect estimate,
Bu) = f‘(u)&g(u). We begin by introducing notations.
Suppose that ||al|, denotes the L, norm of a square integrable
function a(-) on U, that is, |la() I}, = [, |a@)|*fu(u)du.
Let  dist{ag), Gay} = mfgnjEGnroj Sup,, 14 laoj () £oj(u)|
be the Ly distance between ap;(-) and G,,oj, and

take  ppo= maxj<j<, dist{ag; Gauj }.  Similarly, let
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dist{ar1), Goy } = infg, e, SUP, ey l1(1) - £uw)|
and take p,;1 = max g, dist{e;; Gy, }. Finally, let
dist{I'y;, Gry} = infg,jegrﬁ sup,, g, IT(u) — gi(u)|, and take
Pn2 = MaX)<j<p MaXi<l<q dist{I"y, Gry}. The approximation
rates pu0, pn1 and p,» depend on Ky, K;, and K, respectively,
under commonly used smoothing conditions on the elements
of ap, oy, and T, respectively (Schumaker 2007). Under
Conditions C4 and C5 (in the appendix), it has been shown that
pro = O(Ky?), pm = O(K;?) and pyz = O(K2).

First, we establish the asymptotic normality of ét =

(&B‘T,al )T, and then derive the asymptotic distribution of
& (u) and the estimated direct effect, &, (u).

Let 2} = [m}T,x*T]T and Z* = [M*,X*], then £, (a},a})
has a unique minimizerét = (&f, at Y= BTy 1Y
when Z* is of full rank. Set y; = oo(u) Tm; + ey (u)Tx;,

foranyi = 1,...,m,and ¥ = (Jy,...,7.)". Define é* =
(&E‘T,&TT)T (2*TZ2*)~1Z*TY. Then, it follows that E¢ ") =

aE ,where the expectation is taken conditional on X' = {(x;, u;) :
., n}. Specifically, E(@;) = &g and E(@]) = &

Moreover, E{ao(4;)}] = do(u;) £, I, ® bo(u;) )@} and
E{& (u)} = &1 () = (I; ® by (u) TN},

Since the length of vector £ ' depends on the number of knots,
which tends to infinity as n — oo, we establish the asymptotic

I = 1.

normality of é* by deriving the asymptotic normality of gré*
for any nonzero constant vector g in the following theorem (see
Appendix for proof).

Theorem 1. Under Conditions C1-C7 in the appendix, for any
nonzero constant vector g € R®K+aK)X1 the estimate 5*

satisfies

var,(gTE")} 2T & — EH BN, 1),

where var, (gT€") = 152¢¥ . . g7 is the asymptotic variance.

b 3 -
Theorem 1 implies that \/n(§ — E*) asymptotically follows
a multivariate normal distribution with mean 0 and covariance
matrix o‘lzfz_*lz.. Furthermore, for any nonzero constant matrix

G, \/n G(é* = é*) asymptotically follows a multivariate normal
distribution with mean 0 and covariance matrix JZGE ;‘lz,. GT
In particular, to obtain the asymptotic normality of @y and &,
note that

T mim:T  mixT
Ez*z* — E(ZTZT ) =E (x m*r xf(x}:jr
i memt zm‘x‘
Tpomr  Zyegr )
Denote s =  Epgr — Do Em,‘m* X and
D Em‘x*zxxxtzx‘*m*- By the formula for
the inverse of a block matrix, it follows that
1 = | =
z;‘z‘ g ( " D _Em*m‘.x_‘lzm*x*zx‘x‘)_
Ex*x* m* Ef“"""’*Em‘m‘ z;v4:°":v4:‘.11'r1"

Thus, /n(&y —&g) asymptotically follows a multivariate normal
distribution with mean 0 and covariance matrix 62X, . .,

and \/n(&] — &}) asymptotically follows a multivariate normal
distribution with mean 0 and covariance matrix o2X;%, .
Therefore, we may obtain the asymptotical normality of (1)
and &, (u) as follows:

&o(u) ~ N(ﬂfﬂ(u)— HI, ® bo@)VZ 2 0 oI, ® b)),
(13)
&1 () ~ N(@; (1), —61 My ® bi(w) Y2k (T ® bi(w)]).

(14)

Remark 3. Under Conditions C1-C6, it can be shown by using
related techniques in the proof of Theorem 2 that for =
0,1, |@wj — @ujll], = Op(pZ,) = Op(K5*). Furthermore, it
can be shown that [|G.; — @wjllf, = Op(1/n + K,/n). Thus,
1dwj — @wjll}, = Op(Kw/n + K;*). This provides us the rate
of convergence of @,. Since E{@.;} = &, the asymptotic bias
of @y iS @wj — @wj» Which is controlled by pue = O(K?).
In practice, we take K,, = O(n'/®). Thus, the asymptotic bias
of &,; is of order n~2/> and from Equations (13) and (14), the
asymptotic variance of &y is of order n=*/5.

We next study the a.symptotlc properties of B(-). Similar to
the asymptotic normality of aE we establish the asymptotic
normality of C and further establish the asymptotic normality
of f‘(u) in the aEpendix. This enables us to derive the rate of
convergence of fi(-) in the following theorem, whose proof is
given in the Appendix.

Theorem 2 (Convergence Rate). Under Conditions C1-C6 in the
appendix, if Ky — oo and K,,, — coasn — oo,

|51~ BO. = Optt/n+ Ko/n+ Knfn+ pia + ).

Let C = (X™TX™)~1X™TM, where M = (iity,...,HH,)T
with fit; = T(u;)Tx; fori = 1,...,n. Define I'(u) = {I; ®
tf(uf)r}é. We can obtain that ng?) = ﬁ(ﬁj and E{T'(;)} =
I'(4;) conditioning on X Define g(u) = I' (u)do(u). Then the
difference bethieen 51( u) and By (Au) can be decomposed into two
parts. That s, Bi(u) — Bi(u) = {Ai(w) — Bi(w)} +{Bi(w) — Bi(w)},

where B;(u) — Bi(u) contributes to the variance of estimation
2 s 2

and Bj(u) — Bi(u) to the bias. We can show that H B — Bi HL =
2

£ = N2
Opliky + plabrand B — A, = Opl1/n+ Ko/n+ K/,

Furthermore, we can establish the asymptotic normality of B ()
in the following theorem, whose proof is given in the Appendix.

Theorem 3. (a) (Asymptotic Normality). Under Conditions C1-
C7 in the Appendix, it follows that

[cova (B2 (Bw) — Bw)} 2 N©,I),

where cov,{B(u)} = (& () T edto () {I;0dw) T Z ot {1,®
d(u)}+o; F(u){Ip®bo(u) }Emm,,(ﬂ{lp@bg(u)}l‘(u)T] isthe
asymptotic covariance matrix.

(b) (Bias) Suppose Conditions C1-C6 hold, if Ky — oo and

K — 00 as 1 — 00, sup, ., |Bi(w) — Bi(W)| = Op(pno + Pn2)-



The bias term in Theorem 3(b) follows naturally from
(Huang, Wu, and Zhou 2004, theor. 4). In Huang, Wu, and Zhou
(2004), covariates are assumed to be bounded. However, under
model (1) and (2), the mediator m is not bounded. Fortunately,
this assumption can be relaxed based on Condition C2. The bias
term is negligible compared with the variance term.

3. Simulation Studies

In this section, we discuss the implementation of the VCMM
estimation procedures and evaluate the performance of the
proposed method via Monte Carlo simulation studies.

We generate the random sample (x;, yi,myu;), 1 = 1,...n
as follows. The dimension of x; is set to be ¢ = 3, and the
first element of x; is 1 to allow existence of the intercept term.
The remaining elements of x;, denoted x_, ;, as well as u; are
generated from

(H?, x—l,i) o, N3 (0) E), U = q)(u;k)s

where the (ky, k2)-element of X. is set to be plk1—*2l with p = 0.5,
and @ (-) is the cumulative distribution function of the standard
normal distribution. Therefore, u; is uniformly distributed on
[0, 1] and correlated with x_, ;.

Example 1. The coefficient functions oo (1), 3 (1), and I (u) are
taken to be

ao(u) = (ato1 (1), a2 ()",

a1 (u) = (11 (w), ar2(w), e13(w)’,

and
i) T
Fw) = |Taw TIaw]|,
3 (u) Tsp(w)
where

ao1(u) =0.5 cos(%u) + 0.5, ap(u)=0.5 sin(%u) + 0.5,
an(u) =05+ 26(w), apw) =1+ 1542,
ay3(u) = 1+ sin®(ru),
() = 0.5u°, T = 2cosz(rru — %) + 0.5,
T (u) = u> — 0.5,
I3y (u) = —u+2u® — 0.5,

21 (1) = 2.5 sin®(r ) + 0.5,
'3y (u) = 3(0.5 — u)> — 1.5,

with &(-) being the cumulative distribution function of
Gamma(0.5,1). Then m; and y;’s are generated using model (1)
and (2), where €; ~ N(0,I,), with I, being a 2 x 2 identity
matrix, and €;; ~ N(0, 0.5).

To apply B-spline approximations to the varying coefficients,
we set the degree of splines to be 3, and the number of interior
knots to be 3. Moreover, since u is uniformly generated from
[0, 1], the knots are reasonably taken with equal spacing. For
simplicity, we set the basis splines for approximating oo (1),
o (1) and I' (u) to be the same, that is, by (u;) = by (u;) = d(u;),
i = 1,...,n. In practice, one may choose different B-spline
basis functions for different coefficients based on prior knowl-
edge or professional experience. For instance, we may choose
different locations of knots for the B-spline bases, and knots
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are placed at the locations at which curvatures of coefficients
are changing. Furthermore, we may choose different degrees
of B-spline for different coefficients when we see the potential
different smoothness of coefficients.

In our simulation, we set n = 100, 200, and 400, and
conduct 1000 replications for each case. The estimate &;(u)
and ﬁ(u) = f‘(u)&g(u) are evaluated at a set of grid points
{up, k = 1,.. ., ngid} evenly distributing over [0,1] with ngriq =
500 points. Figures 1 and 2 depict the estimated coefficient
functions with different sample sizes. In these figures, the means
of the estimated coefficient functions are plotted as green dashed
curves, while the true curves are in solid black. Red dashed
lines are the 95% point-wise confidence bands. It can be seen
from Figures 1 and 2 that the proposed estimation procedure
performs well. The means of estimated functions and their true
curves are so close that the bias indeed is invisible. The true
curves fall within the corresponding 95% point-wise confidence
bands. As expected, the confidence bands become narrower as
n increases.

We next examine the accuracy of the proposed standard error
estimation procedure by comparing the estimated standard
error with true standard deviation of the proposed estimated
coefficient functions at three representative points u = 1/4,
1/2, and 3/4. Tables 1 and 2 summarize the estimation results
for the direct effect estimates @12(1), a13(u) and the indirect
effect estimates 8(u). In Tables 1 and 2, Mean(sd) denotes the
mean and standard deviation of &5 (u), &3 (1), ﬁg (u),and ,ég (u)
over the 1000 replications. The standard deviations of estimates
over the 1000 replications can be viewed as the true deviations
of these estimates. SE(sd) in the second column describes the
average and standard deviation of the 1000 estimated standard
errors calculated from the variance formula, by directly plugging
in the estimated @q(u) and T (u) with B-spline basis functions
at the grid points. In our simulation, we estimate o and X by
62 = ||Y — M*afT — x*a}T||%/(n — pKo — gKy) and £, =
niq Y &l respectively, where &; = m; — I'(u;)Tx;. As can
be seen in Tables 1 and 2, the standard error estimates, calculated
based on Theorem 3, are very close to the standard deviations
for the 1000 replications. Indeed, all differences between the
average estimated standard errors and the standard deviations in
Tables 1 and 2 are less than one standard deviation of the 1000
standard errors. This implies that the standard error estimates
based on Theorem 3 provide us an accurate estimation of the
standard error. Coverage probability (CP) is the proportion that
the true values are covered by the corresponding 95% point-wise
confidence intervals over 1000 simulations. The Monte Carlo
errors for 1000 simulations is 1.35% for confidence level 95%.
Most CP values in Tables 1 and 2 with n = 200 and n = 400
fall in 95% =+ 1.35%. This implies that the point-wise confidence
intervals based on Theorem 3 are valid. The CP values in Table 2
with n = 100 are slightly less 95%—1.35%=93.65%, and the
phenomenon disappears when 7 increases to 200 and 400. This
may imply that the estimation of indirect effect needs more
sample to achieve desired accuracy.

We next evaluate the testing procedure for the direct effects.
We keep the setting of ao() and I' () unchanged but change
o1 (u) to be

a1 (4) = {0.5 + 2&(u), w(1 + 1.5u%), w(1 + sin’ (1)},
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Figure 1. The mean of the estimated direct effect coefficient functions. The green and black curves are the estimated values and true values, respectively. The red dashed
curves are the estimated function plus/minus 1.96 times the standard errors from 1000 replications.
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Figure 2. The Mean of the estimated indirect effect coefficient functions ,éz (u) and ﬁg(u}. Caption is the same as that of Figure 1.



Table 1. Estimation of direct effects.

a12(w) a13(u)
n u Mean(sd) SE(sd) cp Mean(sd) SE(sd) cp
1/4 1.113(0.353) 0.335(0.083) 0.942 1.517(0.292) 0.272(0.060) 0.937
100 1/2 1.384(0.430) 0.417(0.085) 0.940 1.984(0.282) 0.275(0.060) 0.947
3/4 1.827(0.363) 0.336(0.082) 0.931 1.531(0.280) 0.264(0.058) 0.938
1/4 1.087(0.213) 0.209(0.033) 0.941 1.516(0.185) 0.170(0.024) 0.929
200 1/2 1.374(0.265) 0.270(0.036) 0.950 1.995(0.170) 0.177(0.025) 0.956
3/4 1.842(0.212) 0.209(0.033) 0.948 1.515(0.179) 0.164(0.023) 0.921
1/4 1.107(0.139) 0.139(0.015) 0.959 1.500(0.126) 0.114(0.011) 0.922
400 1/2 1.376(0.186) 0.183(0.017) 0.951 2.000(0.129) 0.120(0.012) 0.956
3/4 1.842(0.139) 0.139(0.014) 0.951 1.509(0.115) 0.110(0.010) 0.945
Table 2. Estimation of Indirect Effects.
By (u) B3(u)
n u  mean(sd) SE(sd) Ccp mean(sd) SE(sd) cP
1/4 1.394(0.515) 0.463(0.100) 0.917 —1.766(0.446) 0.408(0.084) 0.919
100 1/2 2.335(0.584) 0.554(0.107) 0.946 —1.910(0.445) 0.412(0.084) 0.929
3/4 1.311(0.551) 0.467(0.100) 0.916 —1.321(0.452) 0.405(0.086) 0.922
1/4 1.390(0.345) 0.306(0.042) 0.929 —1.774(0.288) 0.270(0.037) 0.932
200 1/2 2.347(0.362) 0.369(0.047) 0.958 —1.919(0.286) 0.278(0.037) 0.946
3/4 1.306(0.332) 0.308(0.044) 0.936 —1.317(0.293) 0.268(0.037) 0.926
1/4 1.371(0.227) 0.210(0.020) 0.939 —1.744(0.188) 0.186(0.017) 0.946
400 1/2 2.349(0.254) 0.254(0.023) 0.953 —1.920(0.196) 0.193(0.018) 0.951
3/4 1.280(0.222) 0.209(0.020) 0.930 —1.303(0.191) 0.184(0.017) 0.948
2]
E
=]
£
=
=

Figure 3. Empirical size and power for the direct effect test at the significance level
o = 0.05.

for a sequence of w € {—0.2,—0.15,—0.1,—0.05,0,0.05,0.1,
0.15,0.2}. The value w = 0 corresponds to the null hypothesis,
so that we can examine how the proposed test retains Type I
error rate. Figure 3 depicts the empirical size and power at the
significance level @ = 0.05 over 500 replications for testing the
direct effect. As can be seen in the figure, the proposed test T},
retains Type I error well, and the power increases to 1 quickly
when |w| increases from 0 to 0.15.

4. Real Data Example

We illustrate in this section our proposed procedure via an
application to the behavioral economics dataset introduced pre-
viously. According to the learned helplessness theory (Hiroto
and Seligman 1975; Pryce et al. 2011), entrepreneurs under eco-
nomic stress are compelled to change their standard behavioral
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patterns and more likely to develop a sense of depression, iso-
lation, and helplessness. These feelings, in turn, lead to greater
job-related withdrawal intentions.

Pollack, Vanepps, and Hayes (2012) conducted alinear medi-
ation analysis and suggested that social ties, a variable that
measures the number of daily contacts an entrepreneur has
with members in his or her own networking group about
work-related matters, buffers the impact of economic bur-
den on depressed affect, and reduces the indirect effect on
entrepreneurs’ withdrawal intentions. However, the moderat-
ing role of social ties was only analyzed based on interaction
terms in this article. Since the social ties variable is highly
skewed in the collected dataset, the interaction effect of the
social ties and main effect cannot be captured well and gener-
alized for different levels of social ties. Moreover, other factors
such as tenure can also play a crucial role in moderating the
withdrawal intentions of small business owners in response to
economic stress. Individuals with shorter tenures might have
tremendous enthusiasm but fewer back-up options, so they
are more likely to insist on business even under stress, while
entrepreneurs with longer tenures are likely to have a sound
economic basis but possibly tired of the business. This hypoth-
esis motivates us to examine the buffering/promoting effect of
entrepreneurs’ tenures in the aforementioned mediation rela-
tionship. Rather than conducting standard moderation analysis
that only involves the interaction terms, we explore the indirect
and direct effects of economic stress as flexible functions of
tenure so that effects at different tenures can be thoroughly
examined.

The data are available in Pollack, Vanepps, and Hayes (2012).
Small business owners (1 = 300) were recruited into the
study and a total of 262 participants (162 male, 100 female)
provided complete data. Economic stress was measured on a
scale ranging from 1 to 7 in the last year, where a larger number
indicates higher economic stress. Depressed affect was mea-
sured on a scale from 1 to 5, where larger values reflect more
depressed affect. Entrepreneurs’ intentions to withdraw from
entrepreneurship over the next year was measured on a scale
from 1 to 7, with higher scores indicative of greater intentions.
Other covariates include entrepreneurial self-efficacy, social
competence, age, tenure (how long a person has worked in the
company), social ties, and gender (1 = male, 0 = female).

In this analysis, we take the economic stress variable to be
the exposure variable x, the depressed affect variable to be the
mediator m, with p = 1, and the withdrawal intention to be
the response y. Since tenure is also skewed to the right and
some values are close to 0, u is defined as log(1 + tenure).
In this analysis, we also include an intercept term (z1) and
covariates in both models (2) and (3). The covariates consist
of entrepreneurial self-efficacy (z;), social competence (z3),
age (z4), the log-transformed social ties variable (zs) since the
social ties variable itself is very skewed, and gender (z¢). This
leads to

6
y=cap()m+ a;(u)x + Zaj+1(u)zj + €1, (15)
=1
6
m=y1Wx+ Y v Wz +e.
j=1

(16)
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Figure 4. The estimated coefficient functions for ag(u) and the indirect effect §(u) for Economic Stress. The dashed curves are the estimated functions plus/minus 1.96

times the estimated standard errors.
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Figure 5. The estimated coefficient functions for g (u) associated with gender and a7 (u) associated with social ties. The dashed curves are the estimated functions

plus/minus 1.96 times the estimated standard errors.

‘We rewrite models (15) and (16) as the form of models (2) and
(3). Thus, the proposed procedures in Section 2 can be directly
applied for both models (15) and (16). We use cubic splines
with the number of knots chosen to be 2 using 10-fold cross-
validation. We first test the significance of the varying pattern
based on the procedures similar to Cai, Fan, and Li (2000). The
p-value for the null hypothesis that y;s are constant is 0.41, indi-
cating a favor of constant effects. Furthermore, given varying
ag(+), ag(-), and a7(-), the p-value for the null hypothesis that
ay(-) is constant for all k = 1,...,5, is 0.47. Thus, we set ay’s,
I'=1,...,5,andall ;s to be constant in our analysis, and allow
the other coefficients to be varying over u. That is, only effects
of depressed affect, social ties, and gender on the response are
varying with u. Therefore, we consider the following model for
subsequent analysis.

yi = ao(u)m; + a1x; + o2z + a3zip + 0423

+ as5zig + as(Ui)zis + a7 (U;)zie + €14,

6

m; = y1Xi + Z Vj+1Zij + €.
j=1

The left panel of Figure 4 illustrates the effect of depres-
sion on withdrawal intentions, which is positive and indeed
changes over tenure. The two dashed lines are the 95% point-
wise confidence band. As can be seen, the effect of increased
depressed affect on withdrawal intentions becomes stronger
with longer tenure (> 2 years). This probably is because young
businessmen are usually full of energy and vigor, and less likely
to withdraw from entrepreneurship in response to depression,
while individuals with longer tenure might be more aware of
the difficulty they meet with, and have back-up options. The
estimated coefficient y; associated with economic stress is 0.16,
and significant at the @ = 0.05 level. The indirect effect 8(-) =
y1ao(-) of economic stress is still positive and shares a pattern
similar to that of @y (-), as indicated by the right panel of Figure 4.



The direct effect «; of economic stress on withdrawal intentions
is not significant.

The coefficient functions associated with gender and social
ties are presented in Figure 5. Interestingly, compared with
females, males are more likely to withdraw when tenure is
short (< 3 years), implied by the positive estimates of as(u)
for short tenure. When tenure is longer, there are no significant
differences between males and females. This might be explained
by more alternative working options for males. Finally, for
entrepreneurs with shorter tenure, an increase in the work-
related social ties triggers greater withdrawal intentions, while
the effect of work-related social ties on withdrawal intentions is
not statistically significant for entrepreneurs with longer tenure.

For the purpose of comparison, we also fit the data with
constant-coefficient linear mediation model. The estimated
effect of depressed affect on withdrawal intentions «p and the
coefficient y; are 0.74 and 0.16, respectively. The indirect effect
of economic stress 8 = y,«j is then estimated to be 0.12, with
a 95% confidence interval (0.07,0.17). However, the dynamic
patterns of ap and B over u cannot be captured. All coefficients
are considered as constants and the promoting effect of tenure
is ignored. The direct effect of economic stress on withdrawal
intentions is not significant, in accordance with the VCMM. In
addition, the coefficients associated with gender and social ties
in the constant linear mediation model are not significant at the
level « = 0.05, while the VCMM illustrates that both of them
have positive effect when tenure falls in a certain interval.

5. Conclusion

In this article we propose the VCMM, which is distinguished
from the linear mediation model in that all the direct and
indirect effects are varying with a variable of particular interest.
The model is flexible in the sense that both varying and invariant
coefficients can be included in the same model. We propose
an estimation procedure based on the polynomial spline based
method (Huang, Wu, and Zhou 2002, 2004), and establish
asymptotic normality of the resulting estimates. A F-type test
are proposed for testing of the direct effects. Simulation studies
are conducted to verify them empirically. Finally, in the real
data analysis, we evaluate the effect of economic stress on small
business owners’ intentions to withdraw from entrepreneurship
via depressed effect, and illustrate that the indirect effect indeed
varies as a function of tenure.
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Appendix. Lemmas and Technical Proofs

Suppose that given sequences of positive numbers a,, and b, a, < by,
and b, > a, mean a, /by, is bounded, and a,, < b, means both a, <
by and a, 2 by, hold.

A.1. Technical Conditions

The following technical conditions along with some notations are
imposed to facilitate the technical proofs, although they may not be
the weakest ones.

Technical Conditions:

C1. The points {u;;i = 1,...,n} are independently distributed
with distribution Fy; on a bounded and compact support &4 and
Lebesgue density f{7 (1) which is bounded away from 0 and infinity
uniformly over u € U.

C2. For some constant § > 0, all elements of x and m have finite (2 +
8)th moments. Specifically, there are constants N; and N> such
that E(jx;|>t%) < Ny for/ = 1,...,4, and E{lmj|2+5) < N; for
G = 7

C3. Both €; and € have finite (2 +§)th moments. In other words, there
exist constants N3 and N; such that E(|e; |2+8) < N3 < oo and

E(||e||2+‘3) o N; < 0o. All eigenvalues of Z. are bounded away
from 0 and infinity.

C4. The second-order derivatives of coefficient functions T (u), ag(14)
and a (u) are assumed to be continuous over U. Thus, they and
their second-order derivatives are bounded. Denote M, My and
M; to be the bounds of T (u), eg(u) and o1 (u) over u € U,
respectively.

C5. limsup,,_, o (%ﬁ%) <o00,w=0,1,m.

Cé6. Let Kg; = max{Ky, K;}. Assume lim,_, n_sz((ﬁ—l—E)(v—l—l) =0

for some v € (0,1.5], and, lim,_, o n_‘sK,(f”}(UZH) = 0 for

some vy € (0, 1.5].

C7. Let szz,.:E(z’i."z;."T} and iz*z*:%2?=l z}"z;."T. Assume

s —1/2¢ —1/2
Raa(Bok) = O (Bl San® 0l < N
—1/2

for some constant Ny when n is large, and Apmax{Z

(Z:{i.iz_;lz* Egﬁ, - I)"‘Zz_*lz{z] — 0asn — oo, where

Amax(-) denotes the largest eigenvalue. i
Similarly, let Zymem =E@x"x"T) and Eumem =137,

Fal o

B B I
2R Then Rage(E o) = Op(KYD), R (B oy 2 8 i
Z;n}ii} < Ny for soine constant N, when n is large, and
—1/2 o 1/2 &— 1/2 —1/2
lmu{zrﬂim(zxﬁexm}:xmxmzx,ixm — I)ZExmim} - 0 as
n— oo.
Condition C1 guarantees that the observations u;, i = 1,...,n,

are randomly scattered. Such a condition can be weakened when {u;}
are deterministic under other mild conditions (Huang, Wu, and Zhou
2004). Conditions C2 and C3 are implied by non-singularity of the
covariance matrices. Condition C4 is needed to derive the convergence
rate of I'(u), &¢(u), and ,é (u). Conditions C5 and Cé6 are adapted from
Huang, Wu, and Zhou (2004). And Conditions C5-C7 are only purely
technical and serve to facilitate theoretical proofs of the proposed
estimation procedure. These are some mild conditions that can be
satisfied in many practical scenarios.
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A.2. Proof of Theorem 1

Since é* —{&3T, "TT)T:{Z“TZ*)—IZ*TY and é* -
(agT,&’fT}T = {Z*T7*)-17*TY, it follows by the definition of
Vthat " — & = @Tz%'2*TE,. Let K = pKo + gK,. For

any nonzero constant vector g € RX*1, we want to establish the
asymptotic normality of
JigT @ — & = ngT @124 2*TE,
1

1 -
1
\/Hg

Without loss of generality, we assume || g”

= —eT3 L 2*TE + %g""(i;lz* PVl R
= 1. We consider the
term 7% z_*l .Z*TE, at first by checking Lyapounov condition, where
g1 S I =58 X St

Let $2 = var(z?zlgTE *l*z €15) = nclgTEz,lz,.g Thus, for §
in Conditions C2 and C3,

I 25 _
2+ Y Elg Iz el

B i=1
g (|§Tz* +5) : E(|el,-|2+5)]

1 n
= G2+8 Z
n =1
248
)|

by independence and g & ¥, z_,.‘i* g
243
)|

1, gt 3
e 0 [ (|§Tzl”2 s il
oo
248
E|( trzztz*z ) . ]'N3:|

Z%2* T 2%z
by condition C3
<Ly g (|aTs L2
= 82+6 Z 4 2tz
no =1
by Cauchy—Swartz Inequality
1 n
Y
st a

Note that

2—|—3. E_-U?- *

2t

243

Js7szte]

248
EI( Fregkar) ]mm(z Lo BT ).

since E((z}Tz5)F) = EB(TL, 13T <

ZkK=1 E(lz’."lk|2+‘3) < K@H/2 < Kg”)/ 2 by Jensen's Inequality and
Condition C2, it follows by Condition C7 that

248
i 8 248
sf(amsza) | s memath

< K(()\;—I—l)(z-l-ﬁ)f?_

K@+9)/21

Thus, it follows that

T 243 gw+D(2+8)/2
Sz_l_a ZE(Lg Ez*z*z 611' it ) < 12+£ 01

n i=1

5 (248)(v1)\1/2
_ (rirgroe)

which tends to 0 as n — oo by Condition Cé.
Thus,

s, g s g D
moleTx L0 V2 3 1. 2*TE, S N, 1.

‘We next deal with the second term R, = ﬁ gT( f;‘lz, — Ez_,lz*)

Z*TE. Since E(Rs|Z*) = 0, E(Rs) = 0. Thus, R, = 0p(1) and is
negligible if we can show that

var(R,,) = E(R%)

=0y E{g (Zz*z"‘ = szz*)zz*z‘ (Ez*z"‘ = Ez‘z"‘ )8}

tends to 0 as 1 — oo.
Note that

] 1. a1 g

gT(Ez*z‘ = szlz*)zz*z* (e — szlz* )8
5125172 1/2 —1/2
z‘z"‘ (EZ*Z.ZZ,Z.EZ*Z* I)E

—1;2

—1/2 1/2 1/2
z*f/" {Ez‘{z*zz*z‘ E;.'{z" _I)Ez*z* g

= )‘-max{}:ztz* }:z*z‘ 22*12,1’2)

=125 1/2 1/2 —1/2
g z*z* {Ez‘z*zz*z‘zz*z‘ _I) Ez"z‘ £

—-1/2 —1/2
= A-ma:r((}:ztza« zz*z‘ szzi )A-ma.x{z 4
1/2 1/2 1/2
(Ez’{z"‘ Zf‘z‘ Zz{z"‘ — 1) Ez*z{‘ = "g" ’
which tends to 0 by Condition C7. Thus, var(R,,) tends to 0 as n — oo
and R,, is negligible.
Therefore, for any K x 1 nonzero constant vector g with norm 1,

iz"‘z‘

{Cova(gTE") 12T — E)2N(o, 1),

where cov,(gTE") = —61322*2*3]"-

A.3. Asymptotic Normality of T (u)

To derive the asymptotic normality of (u), we first derive the asymp-
totic distribution of T (u). Suppose that X™X™T is invertible, then
z‘?z(C) has a unique minimizer C = (X"’TX”’)_IX"’TM Set m; =
Tu)Tx; foranyi = 1,...,m, M = (iy,... ,m,,) ,and C =
(XmTXm)—lmeM. We can obtain that E(C) = € and E{T (1;)} =

T = {I; ® d(u;) T}C conditioning on X’

Lemma A.1. Under Conditions C1-C7, for any nonzero constant
vector h € R9KmPX1 the estimate C satisfies

[cova{thec{éT)}]_ hrvec{(é - (-J)T} B» N(0,1),

where cova{thec(ﬁ?T)} = %hT(E;,,}xm ® Xo)h.

Proof. Since € = (XmTXm)y=1xmTp and C = (xmTxm)y—1xmT jy,
we can obtain that

E—C=am iy ixriy:

To derive the asymptotic distribution of C, let us first define the
covariance of a matrix. Let B be a matrix of dimension m x n, where

= (by,...,by). Then vec(B) = (b7,.. .,bI}T, and cov(B) =
cov{vec(BT)].

To find the asymptotic distribution of /ni(C — C), suppose for any
nonzero constant vector h € RZ¥KmP*1 e have

VnhTvec((C — )T}

_LT Tml mT ymy—1
_ﬁh [vec{E" X (nX X"~

1 1 -
——hTvec(ETX™ 2L ) + —=hTveclETX™ (. o m —

=



Without loss of generality, we assume ||}|] = 1. Similar to the proof of
Theorem 1, we want to derive the asymptotic distribution of ﬁthec
(ETxm E;ﬂ}xﬂ' ) and show that %thec{ETX’”(i;:}xm = E;,..lx,,,)} is
negligible.

First, we show the asymptotic normality of h vec (ETX™ E;,,}xm Vi

Ry thec(e,vx;"TE;,,.l) by checking Lyapounov condition, where
€; € RP*! denotes the ith row of E,i = 1, ...
we can show that

82 =var(hTvec(ETX™2 1 m)} = nhT (20 m ® E)h.
Since thec(e x"’TExmxm) = hT{(E;,,}xmx;”) ® Lle =
‘|hT{(£xmxmx;") ® IP]" - |l€;]] by Cauchy-Schwartz Inequality, we can
obtain that for some constant § > 0,

, n. By direct calculation,

i A _
— O Ellh vec(ex 3 o0 1)
n i=1

o E(EthT{(Exmxmx’”)cafp}|| 1Bl
by independence
1 & 248
3 (e o™ )
i=
by Condition C3
1 n
2 wg( (" e
& BVl B P R @IP}||H] .N;)

1 3 Pngey 1/22+8
< @E("h (gt © T2
n =1

(RS ARTRE i T 35! Y

- 22 (e oo "
n =1

|| 0z 2 (im0 ) | M)
< g Soe[loe o7

2448
-{{E;ml'xmx;") @ IP}HF ] -
Note that
2448
— [tr{(x;"TE;,,}xm)

®Ip}(Emm ® Z) (g ma") @ I)
](z+5),fz

] (2+8)/2

—E [tr{(xlf"TZ;,}xmx;”) QX )

]
< B [irthman Sk b 521]

= Pmax (Bt} CH2 B [ (r(m ) CHO/2
£ K:%(Z—i—&)ﬁ ] E("x:" ||2+6) ) {tr(Z;l)}(2+5)/2

by Conditions C7 and C3
2 Kg-’z-l-l)(?--i-rs)ﬂ,
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since (x| = E(TIET kmpy@9/2) < Bk

ZEE;' |xig |(2+8)} =2 Kf,f +2/2 by Condition C2 and Jensen’s Inequal-
ity Thus,
n i=1

which tends to 0 by Condition Cé. Therefore,

a,fz

(nhT (Z ot m ® TRy 21T vec(ETX™ 23 m) B No, 1.

Second, we want to show that R,, = %hrvec{ETX’"( i;n}xm —
Z;,,}x,., )} is negligible. Note that R, = ThT{(Ex'"x"‘ —

2 m)X™T ® Ipvec(ET). Since E(R,|X™) = 0, E(R,) = 0. We
next show R, = o0p(1) by showing that E(’R,ﬁ) = 0p(1). Note that

E(R2)
=3 [%hT{(i;Jxm 2 o) X™ @ Ipjvec(ETyvec(ET)T
(X" (S nm — T ) ® Tyl
[ W {(Emem — E b m)X™T @ I, )E{vec(ETyvec(ET)T|X™)
(X" (S nm — Eghm) ® Tyl
[ W (S mem — Egh )X™ @ L)1, ® )
(X" (Emam — Zghem) ® Tyl
= E (1" [(Bmen — Ztm) Emem
Esmem — Zgben)} ® Te | ),

and
BT [(Bnem — Ztem) Emam (B gmm — E o)} ® Ze |

< max [{(Emem — Zim) Emem
| _
Emem — Ttem)} © Ze |- IhI

. | _ - ~ —1 ]
= l\max{(}:xmxm o melxm)}:xmx'"(zx’"xm = Zx"}x’“}}

Amax(Ze) - [|h]|*
= Amax(Z gl E e S s — 1)
b AP L i ol A 5 AR ) Sy
BBl TP
=S R B B e
B B B A (B <RI,

which tends to 0 by Conditions C3 and C7. Thus, E(’R’.i) = 0p(1) and
R, is negligible.
As a result, it follows that
LT g1 -2 g 5 oz D
=h" (Emm ® L)h h* [vec{(C— C)" })] = N(0,1).
n
This completes the proof of this lemma.

Lemma A.1 implies that ./n(C — C) asymptotically follows a matrix
normal distribution with mean 0 and covariance matrix (X ! e ®Le).
Based on this,

5 a = 1
) ~ NE @, ~[1; ® dw) ") Z0m (g © dw)] ® o).
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A.4. Proof of Theorem 2

Under Conditions C1-C, it follows by Huang, Wu, and Zhou (2004)
. s 52 - = 12

that |[&o; — doj |7, = Op(1/n-+Ko/n) and || £y — r,jHL2 = 0,(1/n+

K /n). Moreover,

— 2 :

Y _ﬂﬂ}'lle = Op(p2,) foranyj = 1,...,p,
. 2

and ||F1j — FEHLZ = Op(piz) foranyj=1,...,p,1 = 1,...,q. The

results of convergence rates for longitudinal data in Huang, Wu, and
Zhou (2004) can be applied to this article under the assumption that
the number of observation times for each individual i is n; = 1.

It is noteworthy that in Huang, Wu, and Zhou (2004), covariates are
assumed to be bounded. However, under model (1) and (2), the medi-
ator m; is no longer bounded. Some lemmas in Huang, Wu, and Zhou
(2004) are slightly affected. For example, in the proof of Lemma A 4,
to obtain the order of E{M?(t)B(t)}, we cannot apply the boundness
condition of covariate M and properties of B-splines directly. Instead,
we need to check E{M?())B%(t)} < E(M%(t)|)) - | B*(t)| , explicitly
and then obtain the order. Another example is in the proof of Lemma
A.7 in Huang, Wu, and Zhou (2004). Instead of bound the covariates
directly, we can control the order of covariates by Condition C2. The
only lemma influenced substantially by this additional constraint is
Lemma A.2 in Huang, Wu, and Zhou (2004). However, we can still show
that it is applicable here. The reason is as follows.

Lety— (myye= <> Mips Xils - - - ,x,-q)T S e ,zP+q)T,
where h = 1,...,p + q. For simplicity, assume bg(u) = by (1) = b(u)
for any u € U. Let

Wi = Wip gy jok = (Zinbhic(ui)zit ke (4;))
— E{zinbnk (i) zie b (u)};
where k = 1,...,K,and K = K; = Kp. We want to show that
P(|>°",wil > ns),s > 0, can be bounded by the same constant
derived from Bernstein’s inequality in Huang, Wu, and Zhou (2004).

Instead of obtaining the bound of P (|37, w;| > ns) directly, we
decompose it into Py, P; and P; as follows.

n
—I (E w; > ns,max |z;,| < My, max |z;y| < M,,)

i=1

n
+P (E w; < —ns,max |z | < My, max |z;/] < M,,)
i=1

A

> M, or max |z;yr| > M, or both, for somei)

n

D w

i=1

> ns, max |z;,|

Fa¥
=P +P,+P;3

It is easy to show that P; and P; can be controlled using the
same procedures in (Huang, Wu, and Zhou 2004, lem. A.2). In addi-
tion, P3 can be controlled by nP(|z] = M,) based on countable
subadditivity. Since z satisfies the sub-exponential tail probability in
P + g, that is, there exists sp > 0, such that for 0 < s < sp,
max)<p<piqgE [exp (szﬁlu)] < 00. By Lemma S3 in Liu, Li, and
Wu (2014), there exist m;, my > 0, such that P(Jz]| = M,) <
myexp{—myM,}. Thus, P3 < cnmj exp{—maM,} < c(1 — €)" for
some constant ¢ > 0, by taking M, = m; " log n”—f’elﬁl, and P; tends
to 0 as n increases.

Therefore, the results of convergence rates in Huang, Wu, and Zhou
(2004) naturally apply to this article. Then, || Goj — agj || iz = Op(1/n+

i 2
Ko/n+ plg) and | — 1“;}'“!42 = 0p(1/n + K/ + pZ,). Since

8-, - f Vo) — B Pfyyd

»/L:eu

P - . 2
<p-). f » |F;,-(u)aoj{u) - F;;(u)aoj(u)| Sudu
g1

2

P
> (P wéojw) — Tiwaow)| fu(wdu
j=1

by the Cauchy-Schwartz inequality, and
3 2
f ‘Flj(“)&ﬂj(“) - rﬁ(“)aﬂj(”)l fouydu
ueld
o % 2
- f [Pt @ — a0} + a@(Fy00) ~ Ty)| fowdu
Ue,
- 2
<2 f ., [P t0jw) — agjw))|fuupau +2
=
i 2
|, Javitty — ryan| o
uecld
<2Mf f - i) — oy )| fur(wydu + 2M3
HE,
5 2
| |5 =ty foads
ucld
2 4 2 2|7 "
=M}, oy — aoy}, +2M3 | Py — FI}."LZ
by Condition C4, we can derive that
- 2
f = |Fy(ado@) — Pywaeyw)|fud
= Op{1/n+ Ko/n+ Km/n + ok + 02).

. 2
Thus, |4~ B, = Opl1/n-+ Ko/n+ Kn/n+ o3y + o).

A.5. Proof of Theorem 3 (a)
First, because € and € are independent, the joint log-likelihood func-
tion
n n
D loglf@ilm}, . a5, a])) + ) log{f (m;lx]", C))
=1 i=1

implies that Cand &} are independent, and therefore, ['(4) and &g(n)
are independent.

The asymptotic distribution of A(1) can be obtained as follows. For
any ag 1, we consider Cramer’s Device. Since

cova{vec(f‘(u)T — f‘(u)T)]
1
= ~[llg ® dw)")Zn,mIg ® dw)}] ® Ze,

vec(Ipf‘(u)Ta) — (aT®Ip)vec(f‘(u)T),andvec(f‘(u)ra—f‘{u)Ta) =
@l'e Ip){vec{f‘(u)T) —vec(Tw)T)}, we can get that

cova{vec(f‘(u)Ta — f‘{u)ra)}
=coval(a’ ® Ip){vec(F ()T — T(w)"))]

1
=@’ ® IP)(;[{L; @dw1Z5 mily ® dw}] ® ):e)(a ® I)

1
==[a" I3 ® dw) "2 i m {1y ® dW)a] ® Z.



Ifwelet O(u) = T(w)Taand f(u) = T'(w)Ta, then

[coval® @)@ T —dw ") 3 N, 1),

where cov,{f(u)} = L [aT{Iq ® d(u}T}mex,.. I;® t:l(L.!)}a]EE

To obtain the asymptotic distribution of ﬁ(u) = Twéagw) by the
delta method, let Eg(“) = cova{ﬂ(u)} and Ly, (y) = cova{@o(u)} =
—crl {Il.J ® bouw)T }E;*m*‘u{lp ® bg(u)} for simplicity.

Since &g (u) and T (u) are independent and

Zo(u) 0 )_IIE{(é(u)T) B (a(u)T)} D i
( S gow)) ~\aow)f = N @D

we have

(@0 ) Toy@ow) + 0(1) " o0 W)~/ {8(w) a0 (w)

— 8w Taow) 2 N, I,

where &(H)TEQ(H)&O(H) = %&O(R)Tiééo{u}aT{Iq ®
d(u) il ® d(u)}a, and 0w Ty =
502aT T W{I, ® bo() T} mamsxs Iy ® boW)}T ()T a. Thus,

&0(u) T oy @o(w) + 0() T Ty ()0 (w)

1
==a! [& )" Ecto@){Iy ® d))E i m{lg ® d(w)

+ 02T )Ty ® bo(w)VE ks s 1Tp @ bO ()T (@) a.

Since {6 (u)T &0 (w)— 0 (u)T @ (w)} = a” (T (wyo(u) — T W)ao ()},
it follows that

[cova{B )1~ Y2(F (wydo(u) — T (u)ao(u)}

=[cova{ B2 (B(w) — Bw))

BNjo, 13,

where cova{B(u)} = 1[nfa(u)TEenfa(u){l'q ® d(u)T}Exm,m{Ig ®
d@)}+ o2T W) {Ip ® bo() T} T imse e Ip @ bo(w)}T ()]
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