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Abstract—Generative adversarial networks (GANs), modeled
as a zero-sum game between a generator (G) and a discrimina-
tor (D), allow generating synthetic data with formal guarantees.
Noting that D is a classifier, we begin by reformulating the GAN
value function using class probability estimation (CPE) losses.
We prove a two-way correspondence between CPE loss GANs
and f -GANs which minimize f -divergences. We also show that
all symmetric f -divergences are equivalent in convergence. In the
finite sample and model capacity setting, we define and obtain
bounds on estimation and generalization errors. We specialize
these results to α-GANs, defined using α-loss, a tunable CPE loss
family parametrized by α ∈ (0,∞]. We next introduce a class of
dual-objective GANs to address training instabilities of GANs by
modeling each player’s objective using α-loss to obtain (αD,αG)-
GANs. We show that the resulting non-zero sum game simplifies
to minimizing an f -divergence under appropriate conditions on
(αD, αG). Generalizing this dual-objective formulation using CPE
losses, we define and obtain upper bounds on an appropriately
defined estimation error. Finally, we highlight the value of tuning
(αD, αG) in alleviating training instabilities for the synthetic 2D
Gaussian mixture ring as well as the large publicly available
Celeb-A and LSUN Classroom image datasets.

Index Terms—Generative adversarial networks, CPE loss
formulation, estimation error, training instabilities, dual
objectives.

I. INTRODUCTION

GENERATIVE adversarial networks (GANs) have
become a crucial data-driven tool for generating

synthetic data. GANs are generative models trained to produce
samples from an unknown (real) distribution using a finite
number of training data samples. They consist of two modules,
a generator G and a discriminator D, parameterized by vectors
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θ ∈ " ⊂ Rng and ω ∈ $ ⊂ Rnd , respectively, which play
an adversarial game with each other. The generator Gθ maps
noise Z ∼ PZ to a data sample in X via the mapping z $→
Gθ (z) and aims to mimic data from the real distribution Pr.
The discriminator Dω takes as input x ∈ X and classifies it as
real or generated by computing a score Dω(x) ∈ [0, 1] which
reflects the probability that x comes from Pr (real) as opposed
to PGθ (synthetic). For a chosen value function V(θ,ω), the
adversarial game between G and D can be formulated as a
zero-sum min-max problem given by

inf
θ∈"

sup
ω∈$

V(θ,ω). (1)

Goodfellow et al. [1] introduce the vanilla GAN for which

VVG(θ,ω) = EX∼Pr

[
log Dω(X)

]
+ EX∼PGθ

[
log (1− Dω(X))

]
.

For this VVG, they show that when the discriminator class
{Dω}ω∈$ is rich enough, (1) simplifies to minimizing the
Jensen-Shannon divergence [2] between Pr and PGθ .

Various other GANs have been studied in the literature using
different value functions, including f -divergence based GANs
called f -GANs [3], integral probability metric (IPM) based
GANs [4], [5], [6], etc. Observing that the discriminator is
a classifier, recently, in [7], we show that the value function
in (1) can be written using a class probability estimation (CPE)
loss %(y, ŷ) whose inputs are the true label y ∈ {0, 1} and
predictor ŷ ∈ [0, 1] (soft prediction of y) as

V(θ,ω) = EX∼Pr [−%(1, Dω(X))] + EX∼PGθ
[−%(0, Dω(X))].

We further introduce α-GAN in [7] using the tunable CPE loss
α-loss [8], [9], defined for α ∈ (0,∞] as

%α
(
y, ŷ

)
:= α

α − 1

(
1− yŷ

α−1
α − (1− y)

(
1− ŷ

) α−1
α

)
, (2)

and show that this α-GAN formulation recovers various f -
divergence based GANs including the Hellinger GAN [3]
(α = 1/2), the vanilla GAN [1] (α = 1), and the Total
Variation (TV) GAN [3] (α = ∞). Furthermore, for a
large enough discriminator class, we also show that the min-
max optimization for α-GAN in (1) simplifies to minimizing
the Arimoto divergence [10], [11]. In [12], we also show
that the resulting Arimoto divergences are equivalent in
convergence.

While each of the abovementioned GANs have distinct
advantages, they continue to suffer from one or more types
of training instabilities, including vanishing/exploding gradi-
ents, mode collapse, and sensitivity to hyperparameter tuning.

2641-8770 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Arizona State University. Downloaded on August 16,2024 at 18:02:35 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8439-5668
https://orcid.org/0000-0001-6031-4114
https://orcid.org/0000-0001-8122-5444


WELFERT et al.: ADDRESSING GAN TRAINING INSTABILITIES VIA TUNABLE CLASSIFICATION LOSSES 535

In [1], Goodfellow et al. note that the generator’s objective
in the vanilla GAN can saturate early in training (due to the
use of the sigmoid activation) when D can easily distinguish
between the real and synthetic samples, i.e., when the output
of D is near zero for all synthetic samples, leading to vanishing
gradients. Furthermore, a confident D induces a steep gradient
at samples close to the real data, thereby preventing G from
learning such samples due to exploding gradients. To alleviate
these problems, [1] proposes a non-saturating (NS) generator
objective:

VNS
VG(θ,ω) = EX∼PGθ

[
− log Dω(X)

]
. (3)

This NS version of the vanilla GAN may be viewed as
involving different objective functions for the two players
(in fact, with two versions of the α = 1 CPE loss, i.e.,
log-loss, for D and G). However, it continues to suffer
from mode collapse [13], [14] due to failure to converge
and sensitivity to hyperparameter initialization (e.g., learning
rate) because of large gradients. While other dual-objective
GANs have also been proposed (e.g., Least Squares GAN
(LSGAN) [15], RényiGAN [16], NS f -GAN [3], hybrid f -
GAN [17]), few have successfully addressed the landscape of
training instabilities.

Recent results have shown that α-loss demonstrates desir-
able gradient behaviors for different α values [9]. These
results also assure learning robust classifiers that can reduce
the confidence of D (a classifier); this, in turn, can allow
G to learn without gradient issues. More broadly, by using
different loss-based value functions for D and G, we can fully
exploit this varying gradient behavior. To this end, in [18]
we introduce a different α-loss objective1 for each player and
propose a tunable dual-objective (αD,αG)-GAN, where the
value functions of D and G are written in terms of α-loss with
parameters αD ∈ (0,∞] and αG ∈ (0,∞], respectively.

This paper ties together and significantly enhances our prior
results investigating single-objective CPE loss-based GANs
including α-GAN [7], [12] and dual-objective GANs including
(αD,αG)-GANs [18]. One of the most important contributions
of this work is taking a loss function perspective of GANs,
be it single- or dual-objective. CPE loss based GANs can be
easier to implement, provide a more intuitive formulation, and
also provide a unifying framework for analyzing convergence
guarantees in addition to generalization and estimation error
bounds. Moreover, compared to f -GANs, this formulation more
clearly emphasizes the connection between the discriminator
as a classifier and the divergence being minimized. We list
below all our contributions (while highlighting novelty relative
to [7], [12], [18]) for both single- and dual-objective GANs.

A. Our Contributions

Single-objective GANs:
• We review CPE loss GANs and include a two-way cor-

respondence between CPE loss GANs and f -divergences
(Theorem 1) previously published in [12]. We note that
we include a more comprehensive proof of this result

1Throughout the paper, we use the terms objective and value function
interchangeably.

here. We review α-GANs, originally proposed in [7],
and present the optimal strategies for G and D, provided
they have sufficiently large capacity and infinite samples
(Theorem 2). We also include a result from [7] showing
that α-GAN interpolates between various f -GANs includ-
ing vanilla GAN (α = 1), Hellinger GAN [3] (α =
1/2), and Total Variation GAN [3] (α =∞) by tuning α
(Theorem 3).

• A novel contribution of this work is proving an equiv-
alence between a CPE loss GAN and a corresponding
f -GAN (Theorem 5). We specialize this for α-GANs
and fα-GANs to show that one can go between the
two formulations using a bijective activation function
(Theorem 4).

• We study convergence properties of CPE loss GANs in
the presence of sufficiently large number of samples and
discriminator capacity. We show that all symmetric f -
divergences are equivalent in convergence (Theorem 6)
generalizing an equivalence proven in our prior work [12]
for Arimoto divergences. We remark that the proof
techniques used here give rise to a conceptually simpler
proof of equivalence between Jensen-Shannon diver-
gence and total variation distance proved earlier by
Arjovsky et al. [4, Th. 2(1)].

• In the setting of finite training samples and limited
capacity for the generator and discriminator models, we
extend the definition of generalization, first introduced
by Arora et al. [19], to CPE loss GANs. We do so by
introducing a refined neural net divergence and prove that
it indeed generalizes with increasing number of training
samples (Theorem 7).

• To conclude our results on single-objective GANs, we
review the definition of estimation error for CPE loss
GANs introduced in [12], present an upper bound on
the error originally proven in [12] (Theorem 8), and a
matching lower bound under additional assumptions for
α-GANs previously proven in [18] (Theorem 9).

Dual-objective GANs:
• We begin by reviewing (αD,αG)-GANs, originally

proposed in [18], and the corresponding optimal strate-
gies for D and G for appropriate (αD,αG) values
(Theorem 10). We also review the non-saturating version
of (αD,αG)-GANs, also proposed in [18], and present its
Nash equilibrium strategies for D and G (Theorem 11).

• A novel contribution of this work is a gradient analysis
highlighting the effect of tuning (αD,αG) on the magni-
tude of the gradient of the generator’s loss for both the
saturating and non-saturating versions of the (αD,αG)-
GAN formulation (Theorem 12).

• We introduce a dual-objective CPE loss GAN formulation
generalizing our dual-objective (αD,αG)-GAN formula-
tion in [18]. For this non-zero sum game, we present the
optimal strategies for D and G and prove that for the
optimal Dω∗ , G minimizes an f -divergence under certain
conditions (Proposition 1).

• We generalize the definition of estimation error we
introduced in [18] for (αD,αG)-GANs to dual-objective
CPE loss GANs. We present an upper bound on the error
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(Theorem 13), and show that this result subsumes that for
(αD,αG)-GANs in [18].

• Focusing on (αD,αG)-GANs, we demonstrate empirically
that tuning αD and αG significantly reduces vanishing and
exploding gradients and alleviates mode collapse on a
synthetic 2D-ring dataset (originally published in [18]).
For the high-dimensional Celeb-A and LSUN Classroom
datasets, we show that our tunable approach is more
robust in terms of the Fréchet Inception Distance (FID) to
the choice of GAN hyperparameters, including number of
training epochs and learning rate, relative to both vanilla
GAN and LSGAN.

• Finally, throughout the paper, we illustrate the effect
of tuning (αD,αG) on training instabilities including
vanishing and exploding gradients, as well as model
oscillation and mode collapse.

B. Related Work

GANs face several challenges that threaten their training
stability [1], [20], [21], [22], such as vanishing/exploding
gradients, mode collapse, sensitivity to hyperparameter ini-
tialization, and model oscillation, which occurs when the
generated data oscillates around modes in real data due to
large gradients. Many GAN variants have been proposed to
stabilize training by changing the objective optimized [1],
[3], [4], [15], [16], [17], [23], [24], [25], [26], [27] or the
architecture design [28], [29], [30], [31]. Since we focus on
tuning the objective, we restrict discussions and comparisons
to similar approaches. Approaches modifying the objective can
be categorized as single-objective or dual-objective variants.
For the single objective setting, arguing that vanishing gradi-
ents are due to the sensitivity of f -divergences to mismatch in
distribution supports, Arjovsky et al. [4] proposed Wasserstein
GAN (WGAN) using a “weaker” Euclidean distance between
distributions. However, this formulation requires a Lipschitz
constraint on D, which in practice is achieved either via
clipping model weights or using a computationally expensive
gradient penalty method [25]. More generally, a broader class
of GANs based on IPM distances have been proposed, includ-
ing MMD GANs [32], [33], Sobolev GANs [34], (surveyed
in [6]), and total variation GANs [35]. Our work focuses
on classifier based GANs, and does not require clipping
or penalty methods, thus limiting meaningful comparisons
with IPM-based GANs. Finally, for single-objective GANs,
many theoretical approaches to GANs assume that a particular
divergence is minimized and study the role of regularization
methods [36], [37]. Our work goes beyond these approaches
by explicitly analyzing the value function optimizations of
both D and G, thereby enabling understanding and addressing
training instabilities.

Noting the benefit of using different objectives for the D
and G, various dual-objective GANs, beyond the NS vanilla
GAN, have been proposed. Mao et al. [15] proposed Least
Squares GAN (LSGAN) where the objectives for D and G use
different linear combinations of squared loss-based measures.
LSGANs can be viewed as state of the art in highlighting
the effect of objective in GAN performance; therefore, in

addition to vanilla GAN, we contrast our results to this
work, as it allows for a fair comparison when choosing the
same hyperparameters including model architecture, learning
rate, initialization, optimization methodology, etc. for both
approaches. Dual objective variants including RényiGAN [16],
least kth-order GANs [16], NS f -GAN [3], and hybrid f -
GAN [17] have also been proposed. Recently, [38] attempts to
unify a variety of divergence-based GANs (including special
cases of both our (αD,αG)-GANs and LSGANs) via Lα-
GANs. However, our work is distinct in highlighting the role
of GAN objectives in reducing training instabilities. Finally,
it is worth mentioning that dual objectives have been shown
to be essential in the context of learning models robust to
adversarial attacks [39].

Generalization for single-objective GANs was first intro-
duced by Arora et al. [19]. Our work is the first to extend the
definition of generalization to incorporate CPE losses. There
is a growing interest in studying and constructing bounds
on the estimation error in training GANs [6], [40], [41].
Estimation error evaluates the performance of a limited fixed
capacity generator (e.g., a class of neural networks) learned
with finite samples relative to the best generator. The results
in [6], [40], [41] study estimation error using a specific for-
mulation that does not take into account the loss used and also
define estimation error only in the single-objective setting. In
this work, we study the impact of the loss used as well as the
dual-objective formulation on the estimation error guarantees.
To the best of our knowledge, this is the first result of this
kind for dual-objective GANs.

The remainder of the paper is organized as follows. We
review various GANs in the literature, classification loss
functions, particularly α-loss, and GAN training instabilities
in Section II. In Section III, we present and analyze the
loss function perspective of GANs and introduce tunable α-
GANs. In Section IV, we propose and analyze dual-objective
(αD,αG)-GANs and introduce a dual-objective CPE-loss
GAN formulation. Finally, in Section V, we highlight the
value of tuning (αD,αG) for (αD,αG)-GANs on several
datasets. Proof sketches for our results are included in this
manuscript; detailed proofs and additional experimental results
can be found in the accompanying supplementary material
(Appendices A-P).

II. PRELIMINARIES: OVERVIEW OF GANS AND LOSS

FUNCTIONS FOR CLASSIFICATION

A. Background on GANs

We begin by presenting an overview of GANs in the
literature. Let Pr be a probability distribution over X ⊂ Rd,
which the generator wants to learn implicitly by producing
samples by playing a competitive game with a discriminator in
an adversarial manner. We parameterize the generator G and
the discriminator D by vectors θ ∈ " ⊂ Rng and ω ∈ $ ⊂
Rnd , respectively, and write Gθ and Dω (θ and ω are typically
the weights of neural network models for the generator and the
discriminator, respectively). The generator Gθ takes as input
a d′(+ d)-dimensional latent noise Z ∼ PZ and maps it to
a data point in X via the mapping z $→ Gθ (z). For an input
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x ∈ X , the discriminator outputs Dω(x) ∈ [0, 1], an estimate of
the probability that x comes from Pr (real) as opposed to PGθ
(synthetic). The generator and the discriminator play a two-
player min-max game with a value function V(θ,ω), resulting
in a saddle-point optimization problem given by

inf
θ∈"

sup
ω∈$

V(θ,ω). (4)

Goodfellow et al. [1] introduced the vanilla GAN using

VVG(θ,ω) = EX∼Pr

[
log Dω(X)

]

+ EZ∼PZ

[
log (1− Dω(Gθ (Z)))

]

= EX∼Pr

[
log Dω(X)

]
+ EX∼PGθ

[
log (1− Dω(X))

]
,

(5)

for which they showed that when the discriminator class
{Dω}, parametrized by ω, is rich enough, (4) simplifies to
finding infθ∈" 2DJS(Pr||PGθ ) − log 4, where DJS(Pr||PGθ ) is
the Jensen-Shannon divergence [2] between Pr and PGθ . This
simplification is achieved, for any Gθ , by choosing the optimal
discriminator

Dω∗(x) = pr(x)
pr(x) + pGθ (x)

, x ∈ X , (6)

where pr and pGθ are the corresponding densities of the
distributions Pr and PGθ , respectively, with respect to a base
measure dx (e.g., Lebesgue measure).

Generalizing this by leveraging the variational characteri-
zation of f -divergences [42], Nowozin et al. [3] introduced
f -GANs via the value function

Vf (θ,ω) = EX∼Pr [Dω(X)] + EX∼PGθ

[
−f ∗(Dω(X))

]
, (7)

where2 Dω : X → R and f ∗(t) := supu{ut −
f (u)} is the Fenchel conjugate of a convex lower
semicontinuous function f defining an f -divergence3

Df (Pr||PGθ ) :=
∫
X pGθ (x)f (

pr(x)
pGθ (x) )dx [44], [45]. In particular,

supω∈$ Vf (θ,ω) = Df (Pr||PGθ ) when there exists ω∗ ∈
$ such that Dω∗(x) = f ′( pr(x)

pGθ (x) ). In order to respect the
domain dom(f ∗) of the conjugate f ∗, Nowozin et al. further
decomposed (7) by assuming the discriminator Dω can be
represented in the form Dω(x) = gf (Qω(x)), yielding the value
function

Ṽf (θ,ω) = EX∼Pr

[
gf (Qω(x))

]
+ EX∼PGθ

[
−f ∗(gf (Qω(x)))

]
,

(8)

where Qω : X → R and gf : R → dom(f ∗) is an output
activation function specific to the f -divergence used.

Highlighting the problems with the continuity of various
f -divergences (e.g., Jensen-Shannon, KL, reverse KL, total
variation) over the parameter space " [13], Arjovsky et al. [4]

2This is a slight abuse of notation in that Dω does not map to [0, 1] here.
However, we chose this for consistency in notation of discriminator across
various GANs.

3In the classical information theory literature, two more conditions on f
are considered: f (1) = 0 and f strictly convex at 1, which are regularity
conditions. The condition f (1) = 0 is mainly required for non-negativity of
Df (·||·); otherwise, Df (·||·) ≥ f (1). The condition of f being strictly convex
at 1 is required for Df (P||Q) = 0 =⇒ P = Q; however, for our most
general analysis in Theorems 1, 4, and 5, we relax these two conditions in
line with [43].

proposed Wasserstein-GAN (WGAN) using the following
Earth Mover’s (also called Wasserstein-1) distance:

W(Pr, PGθ ) = inf
'X1X2∈((Pr,PGθ )

E(X1,X2)∼'X1X2
‖X1 − X2‖2, (9)

where ((Pr, PGθ ) is the set of all joint distributions 'X1X2

with marginals Pr and PGθ . WGAN employs the Kantorovich-
Rubinstein duality [46] using the value function

VWGAN(θ,ω) = EX∼Pr [Dω(X)]− EX∼PGθ
[Dω(X)], (10)

where the functions Dω : X → R are all 1-Lipschitz, to
simplify supω∈$ VWGAN(θ,ω) to W(Pr, PGθ ) when the class
$ is rich enough. Although various GANs have been proposed
in the literature, each of them exhibits their own strengths
and weaknesses in terms of convergence, vanishing/exploding
gradients, mode collapse, computational complexity, etc.,
leaving the problem of addresing GAN training instabilities
unresolved [14].

B. Background on Loss Functions for Classification

The ideal loss function for classification is the Bayes loss,
also known as the 0-1 loss. However, the complexity of
implementing such a non-convex loss has led to much interest
in seeking surrogate loss functions for classification. Several
surrogate losses with desirable properties have been proposed
to train classifiers; the most oft-used and popular among them
is log-loss, also referred to as cross-entropy loss. However,
enhancing robustness of classifier has broadened the search for
better surrogate losses or families of losses; one such family
is the class probability estimator (CPE) losses that operate on
a soft probability or risk estimate. Recently, it has been shown
that a large class of known CPE losses can be captured by
a tunable loss family called α-loss, which includes the well-
studied exponential loss (α = 1/2), log-loss (α = 1), and
soft 0-1 loss, i.e., the probability of error (α =∞). Formally,
α-loss is defined as follows.

Definition 1 (Sypherd et al. [9]): For a set of distributions
P(Y) over Y , α-loss %α : Y × P(Y)→ R+ for α ∈ (0, 1) ∪
(1,∞) is defined as

%α(y, P̂) = α

α − 1

(
1− P̂(y)

α−1
α

)
. (11)

By continuous extension, %1(y, P̂) = − log P̂(y), %∞(y, P̂) =
1− P̂(y), and %0(y, P̂) =∞.

Note that %1/2(y, P̂) = P̂(y)−1 − 1, which is related to the
exponential loss, particularly in the margin-based form [9].
Also, α-loss is convex in the probability term P̂(y). Regarding
the history of (11), Arimoto first studied α-loss in finite-
parameter estimation problems [47], and later Liao et al. [48]
independently introduced and used α-loss to model the infer-
ential capacity of an adversary to obtain private attributes.
Most recently, Sypherd et al. [9] studied α-loss extensively in
the classification setting, which is an impetus for this work.

C. Background on GAN Training Instabilities

GANs face several challenges during training. Imbalanced
performance between the generator and discriminator often
coincides with the presence of exploding and vanishing
gradients. When updating the generator weights during the
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Fig. 1. A toy example of the vanilla GAN illustrating vanishing and exploding gradients, where the real distribution Pr = 0.5N (2, 0.52) + 0.5N (3, 0.52)
(orange curve) and the assumed initial generated distribution PGθ = N (2, 0.52) (blue curve). (a) A plot of the optimal discriminator output Dω∗ (x) in (6)
(green curve). (b) A plot of the generator’s saturating loss log(1−Dω∗ (x)) (pink curve). The rightmost generated samples receive steep gradients (exploding
gradients) which causes the generated data to overshoot the real data mode toward the Dω∗ (x) ≈ 1 region. (c) For this saturating generator loss setting,
following the generator’s update using (b), when the discriminator updates, the generated samples now receive flat gradients (vanishing gradients), thus
freezing PGθ .

backward pass of the network Gθ ◦ Dω, the gradients are
computed by propagating the gradient of the value function
from the output layer of Dω to the input layer of Gθ , following
the chain rule of derivatives. Each layer contributes to the
gradient update by multiplying the incoming gradient with the
local gradient of its activation function, and passing it to the
preceding layer. When the gradients become large, the suc-
cessive multiplication of these gradients across the layers can
result in an exponential growth, known as exploding gradients.
Conversely, small gradients can lead to an exponential decay,
referred to as vanishing gradients. In both cases, networks
with multiple hidden layers are particularly susceptible to
unstable weight updates, causing extremely large or small
values that may overflow or underflow the numerical range of
computations, respectively.

In the context of the vanilla GAN, exploding gradients
can occur when the generator successfully produces samples
that are severely misclassified (close to 1) by the discrim-
inator. During training, the generator is updated using the
loss function log(1 − Dω(x)), which diverges to −∞ as
the discriminator output Dω(x) approaches 1. Consequently,
the gradients for the generator weights fail to converge to
non-zero values, leading to the generated data potentially
overshooting the real data in any direction. This is illustrated
in Fig. 1(b), relative to an initial starting point in Fig. 1(a).
In severe cases of exploding gradients, the weight update can
push the generated data towards a region far from the real
data. As a result, the discriminator can easily assign scores
close to zero to the generated data and close to one to the
real data. As the discriminator output approaches zero, the
generator’s loss function saturates, causing the gradients of
the generator weights to gradually vanish. This is shown in
Fig. 1(c). The conflation of these two phenomena can prevent
the generator from effectively correcting itself and improving
its performance over time.

To alleviate the issues of exploding and vanishing gradi-
ents, Goodfellow et al. [1] proposed a non-saturating (NS)
generator objective:

Fig. 2. A plot of the vanilla GAN generator’s saturating loss log(1−Dω∗ (x))
and non-saturating loss − log(Dω∗ (x)).

VNS
VG(θ,ω) = EX∼PGθ

[
− log Dω(X)

]
. (12)

The use of this non-saturating objective provides a more
intuitive optimization trajectory that allows the generated
distribution PGθ to converge to the real distribution Pr. As the
discriminator output Dω(x) for a sample x approaches 1, the
generator loss − log Dω(x) approaches zero, indicating that the
generated data is closer to the real distribution Additionally,
with a high-performing discriminator, the generator receives
steep gradients (as opposed to vanishing gradients) during the
update process; this occurs because the generator loss diverges
to +∞ as the discriminator output approaches zero (see
Fig. 2). As we show in the sequel, using α-loss based value
functions allow modulating the magnitude of the gradient (and
therefore, how steeply it rises), thereby improving over the
vanilla GAN performance.

While the non-saturating vanilla GAN (an industry stan-
dard) incorporates two different objective functions for the
generator and discriminator in order to combat vanishing and
exploding gradients, it can still suffer from mode collapse
and oscillations [13], [14]. These issues often arise due to the
sensitivity of the GAN to hyperparameter initialization. The
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Fig. 3. A toy example of the vanilla GAN illustrating mode collapse, where
Pr = 0.5N (1, 0.32) + 0.5N (4, 0.32) (orange curve) and PGθ = N (4, 0.32)
(blue curve). (a) A plot of the optimal discriminator output Dω∗ (x) in (6).
The discriminator output is flat in the dense pGθ region. (b) A plot of the
generator’s non-saturating loss − log(Dω∗ (x)). The loss is also flat in the
dense pGθ region, causing the generator to receive near-zero gradients, thus
appearing to “collapse” on the real data mode.

problem of mode collapse occurs when the generator produces
samples that closely resemble only a limited subset of the
real data. In such cases, the generator lacks the incentive to
capture the remaining modes since the discriminator struggles
to effectively differentiate between the real and generated
samples. One possible explanation for this phenomenon, as
depicted in Fig. 3, is that the generator and/or discriminator
become trapped in a local minimum, impeding the neces-
sary adjustments to mitigate mode collapse. In Fig. 3(a), the
generated distribution approaches a single mode of the real
distribution, which causes the optimal discriminator to have
uniform predicted probabilities in this region; as a result, when
the discriminator landscape is sufficiently flat in the mode
neighborhood, the generator will get stuck and will not move
out of the mode. We note that an extreme case of complete
mode collapse is captured in Fig. 1(c) where the generator is
stuck in a non-mode region. As we show in the sequel, α-loss
based dual objective GANs can resolve such mode collapse
issues which result from vanishing and exploding gradients.

Yet another potential cause of mode collapse is model
oscillation. This occurs when a generator training with the
non-saturating value function VNS

VG fails to converge due to the
influence of a generated outlier data sample, as illustrated in
Fig. 4. In Fig. 4(a), most of the generated data is situated at
a real data mode, while some are outliers and are situated
very far from the real distribution. The discriminator very
confidently classifies such outlier data as fake but is less sure
about the generated data that is close to the real data. As shown
in Fig. 4(b), the outlier data consequently receive gradients
of very large magnitude while the generated data closer to
the real data receive gradients of much smaller magnitude.
The generator then prioritizes directing the outlier data toward
the real data over keeping the data close to the real data in
place; as a result, the generator update reflects a compromise
in Fig. 4(c), where the outliers are resolved at the expense of
moving the other data away from the real data mode. Although
the generator succeeds at bringing down the average loss by
eliminating these outliers, the discriminator is now able to
confidently distinguish between the distributions, leading to
near-zero scores assigned to the generated data. In turn, as

shown in Fig. 4(d), the generated samples all receive very
large gradients which may result in oscillations around the
real data. For this setting as well, in the sequel, we show that
choosing value functions that allow modulating the role of the
outliers such as via α-loss, can be very beneficial in addressing
mode oscillation. We begin our analysis by first introducing a
loss function perspective of GANs.

III. LOSS FUNCTION PERSPECTIVE ON GANS

Noting that a GAN involves a classifier (i.e., discriminator),
it is well known that the value function VVG(θ,ω) in (5)
considered by Goodfellow et al. [1] is related to binary cross-
entropy loss. We first formalize this loss function perspective
of GANs. In [19], Arora et al. observed that the log function
in (5) can be replaced by any (monotonically increasing)
concave function φ(x) (e.g., φ(x) = x for WGANs). In the
context of using classification-based losses, we show that one
can write V(θ,ω) in terms of any class probability estimation
(CPE) loss %(y, ŷ) whose inputs are the true label y ∈ {0, 1}
and predictor ŷ ∈ [0, 1] (soft prediction of y). For a GAN, we
have (X|y = 1) ∼ Pr, (X|y = 0) ∼ PGθ , and ŷ = Dω(x). With
this, we define a value function

V(θ,ω) = EX|y=1
[
−%(y, Dω(X))

]
+ EX|y=0

[
−%(y, Dω(X))

]

= EX∼Pr [−%(1, Dω(X))] + EX∼PGθ
[−%(0, Dω(X))].

(13)

For binary cross-entropy loss, i.e., %CE(y, ŷ) := −y log ŷ−(1−
y) log (1− ŷ), notice that the expression in (13) is equal to
VVG in (5). For the value function in (13), we consider a GAN
given by the min-max optimization problem:

inf
θ∈"

sup
ω∈$

V(θ,ω). (14)

Let φ(·) := −%(1, ·) and ψ(·) := −%(0, ·) in the sequel.
The functions φ and ψ are assumed to be monotonically
increasing and decreasing functions, respectively, so as to
retain the intuitive interpretation of the vanilla GAN (that the
discriminator should output high values to real samples and
low values to the generated samples). These functions should
also satisfy the constraint

φ(t) + ψ(t) ≤ φ
(

1
2

)
+ ψ

(
1
2

)
, for all t ∈ [0, 1], (15)

so that the optimal discriminator guesses uniformly at random
(i.e., outputs a constant value 1/2 irrespective of the input)
when Pr = PGθ . A loss function %(y, ŷ) is said to be
symmetric [49] if ψ(t) = φ(1−t), for all t ∈ [0, 1]. Notice that
the value function considered by Arora et al. [19] is a special
case of (13), i.e., (13) recovers the value function in [19,
Equation (2)] when the loss function %(y, ŷ) is symmetric. For
symmetric losses, concavity of the function φ is a sufficient
condition for satisfying (15), but not a necessary condition.

A. CPE Loss GANs and f -Divergences

We now establish a precise correspondence between the
family of GANs based on CPE loss functions and a
family of f -divergences. We do this by building upon a
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Fig. 4. A toy example of the vanilla GAN illustrating model oscillation, where the real distribution Pr = N (4, 0.52) (orange curve) and the assumed
initial generated distribution PGθ = 0.1N (1, (1/9)2) + 0.9N (3.9, 0.52) (blue curve). (a) A plot of the optimal discriminator output Dω∗ (x) in (6). The
discriminator confidently classifies “outlier” generated data and gives cautious predictions for remaining data. (b) A plot of the generator’s non-saturating loss
− log(Dω∗ (x)). The outlier generated data receive very large gradients while generated data close to the real data receive relatively small gradients, which
causes the generator to prioritize correcting the outlier data at the expense of preserving the proximity of the generated data close to the real data. (c) A
plot of the optimal discriminator output Dω∗ (x) in (6) after the generator and discriminator both update. The discriminator now confidently distinguishes the
generated data from the real data. (d) A plot of the generator’s non-saturating loss − log(Dω∗ (x)) after the updates in (c). The generated samples now receive
very large gradients, which may lead to oscillations around the real mode.

relationship between margin-based loss functions [50] and
f -divergences first demonstrated by Nguyen et al. [43] and
leveraging our CPE loss function perspective of GANs given
in (13). This complements the connection established by
Nowozin et al. [3] between the variational estimation approach
of f -divergences [42] and f -divergence based GANs. We call
a CPE loss function %(y, ŷ) symmetric [49] if %(1, ŷ) =
%(0, 1 − ŷ) and an f -divergence Df (·‖·) symmetric [51], [52]
if Df (P‖Q) = Df (Q‖P). We assume GANs with sufficiently
large number of samples and ample discriminator capacity.

Theorem 1: For any symmetric CPE loss GAN with a
value function in (13), the min-max optimization in (4)
reduces to minimizing an f -divergence. Conversely, for any
GAN designed to minimize a symmetric f -divergence, there
exists a (symmetric) CPE loss GAN minimizing the same
f -divergence.

Proof Sketch: Let % be the symmetric CPE loss of a given
CPE loss GAN; note that % has a bivariate input (y, ŷ) (e.g.,
in (2)), where y ∈ {0, 1} and ŷ ∈ [0, 1]. We define an associated
margin-based loss function %̃ using a bijective link function
(satisfying a mild regularity condition); note that a margin-
based loss function has a univariate input z ∈ R (e.g., the
logistic loss l̃log(z) = log (1 + e−z)) and the bijective link
function maps z → ŷ (see [49], [50] for more details). We
show after some manipulations that the inner optimization of
the CPE loss GAN reduces to an f -divergence with

f (u) := − inf
t∈R

(
%̃(−t) + u%̃(t)

)
. (16)

For the converse, given a symmetric f -divergence, using [43,
Corollary 3 and Th. 1(b)], note that there exists a margin-based
loss %̃ such that (16) holds. The rest of the argument follows
from defining a symmetric CPE loss % from this margin-
based loss %̃ via the inverse of the same link function. See
Appendix A for the detailed proof.

A consequence of Theorem 1 is that it offers an interpretable
way to design GANs and connect a desired measure of
divergence to a corresponding loss function, where the latter
is easier to implement in practice. Moreover, CPE loss based
GANs inherit the intuitive and compelling interpretation of

vanilla GANs that the discriminator should assign higher
likelihood values to real samples and lower ones to generated
samples.

We now specialize the loss function perspective of GANs to
the GAN obtained by plugging in α-loss. We first write α-loss
in (11) in the form of a binary classification loss to obtain

%α(y, ŷ) := α

α − 1

(
1− yŷ

α−1
α − (1− y)(1− ŷ)

α−1
α

)
, (17)

for α ∈ (0, 1)∪(1,∞). Note that (17) recovers %CE as α→ 1.
Now consider a tunable α-GAN with the value function

Vα(θ,ω) = EX∼Pr [−%α(1, Dω(X))]

+ EX∼PGθ
[−%α(0, Dω(X))]

= α

α − 1
×

(
EX∼Pr

[
Dω(X)

α−1
α

]

+ EX∼PGθ

[
(1− Dω(X))

α−1
α

]
− 2

)
. (18)

We can verify that limα→1 Vα(θ,ω) = VVG(θ,ω), recovering
the value function of the vanilla GAN. Also, notice that

lim
α→∞Vα(θ,ω) = EX∼Pr [Dω(x)]− EX∼PGθ

[Dω(x)]− 1(19)

is the value function (modulo a constant) used in IPM based
GANs,4 e.g., WGAN, McGan [27], Fisher GAN [26], and
Sobolev GAN [34]. The resulting min-max game in α-GAN
is given by

inf
θ∈"

sup
ω∈$

Vα(θ,ω). (20)

The following theorem provides the min-max solution, i.e.,
Nash equilibrium, to the two-player game in (20) for the non-
parametric setting, i.e., when the discriminator set $ is large
enough.

Theorem 2: For α ∈ (0, 1) ∪ (1,∞) and a generator Gθ ,
the discriminator Dω∗ optimizing the sup in (20) is

Dω∗(x) = pr(x)α

pr(x)α + pGθ (x)α
, x ∈ X , (21)

4Note that IPMs do not restrict the function Dω to map to [0, 1].
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where pr and pGθ are the corresponding densities of the
distributions Pr and PGθ , respectively, with respect to a base
measure dx (e.g., Lebesgue measure). For this Dω∗ , (20) sim-
plifies to minimizing a non-negative symmetric fα-divergence
Dfα (·||·) to obtain

inf
θ∈"

Dfα (Pr||PGθ ) + α

α − 1

(
2

1
α − 2

)
, (22)

where

fα(u) = α

α − 1

((
1 + uα

) 1
α − (1 + u)− 2

1
α + 2

)
, (23)

for u ≥ 0 and5

Dfα (P||Q) = α

α − 1

(∫

X

(
p(x)α + q(x)α

) 1
α dx− 2

1
α

)
, (24)

which is minimized iff PGθ = Pr.
A detailed proof of Theorem 2 is in Appendix B.
Remark 1: As α → 0, note that (21) implies a more

cautious discriminator, i.e., if pGθ (x) ≥ pr(x), then Dω∗(x)
decays more slowly from 1/2, and if pGθ (x) ≤ pr(x), Dω∗(x)
increases more slowly from 1/2. Conversely, as α→∞, (21)
simplifies to Dω∗(x) = 1{pr(x) > pGθ (x)} + 1

21{pr(x) =
pGθ (x)}, where the discriminator implements the Maximum
Likelihood (ML) decision rule, i.e., a hard decision whenever
pr(x) 4= pGθ (x). In other words, (21) for α → ∞ induces
a very confident discriminator. Regarding the generator’s
perspective, (22) implies that the generator seeks to minimize
the discrepancy between Pr and PGθ according to the geometry
induced by Dfα . Thus, the optimization trajectory traversed
by the generator during training is strongly dependent on the
practitioner’s choice of α ∈ (0,∞). Please refer to Fig. 11 in
Appendix C for an illustration of this observation. Figure 5
illustrates this effect of tuning α on the optimal D and the
corresponding loss of the generator for a toy example.

It is worth noting that the divergence Dfα (·||·) in (24)
that naturally emerges from the analysis of α-GAN was
first proposed by Österriecher [10] in a statistical context of
measures and was later referred to as the Arimoto divergence
by Liese and Vajda [11]. Next, we show that α-GAN recovers
various well known f -GANs.

Theorem 3: α-GAN recovers vanilla GAN, Hellinger GAN
(H-GAN) [3], and Total Variation GAN (TV-GAN) [3] as α→
1, α = 1

2 , and α→∞, respectively.
Proof Sketch: We show the following: (i) as α → 1, (22)

equals infθ∈" 2DJS(Pr||PGθ ) − log 4 recovering the vanilla
GAN; (ii) for α = 1

2 , (22) gives 2 infθ∈" DH2(Pr||PGθ ) − 2
recovering Hellinger GAN (up to a constant); and (iii) as α→
∞, (22) equals infθ∈" DTV(Pr||PGθ )− 1 recovering TV-GAN
(modulo a constant). A detailed proof is in Appendix C.

Next, we present an equivalence between fα-GAN defined
using the value function in (8) and α-GAN. Let R :=
R ∪ {±∞} denote the set of extended real numbers. Two
optimization problems supv∈A g(v) and supt∈B h(t) are said to

5We note that the divergence Dfα has been referred to as Arimoto divergence
in the literature [10], [11], [53].

Fig. 5. A toy example of α-GAN, where Pr = N (−2, 0.52) (blue curve)
and the assumed initial PGθ = N (2, 0.52) (orange curve). (a) A plot of the
optimal Dω∗ (x) for α ∈ {0, 0.2, 0.5, 1, 3,∞}. As α decreases, Dω∗ becomes
increasingly less confident in its predictions until it outputs 1/2 for all x
when α → 0. Conversely, as α increases, Dω∗ becomes increasingly more
confident until it implements the Maximum Likelihood decision rule when
α→∞. (b) A plot of the generator’s corresponding loss −%α(0, Dω∗ (x)) for
α ∈ {0.2, 0.5, 1, 3}. As α decreases, the magnitude of the gradients of the loss
increases, while increasing α saturates the gradients. Early in training, if the
discriminator is very confident and outputs values close to 0 for the generated
data, the generator will not have much gradient to continue learning, resulting
in vanishing gradients. Decreasing α reduces the discriminator’s confidence
and provides more gradient for the generator to learn.

be equivalent [54], [55] if there exists a bijective function
k : A→ B such that

g(v) = h(k(v)) and h(t) = g(k−1(t)), for all v ∈ A, t ∈ B.

(25)

In other words, two optimization problems are equivalent if a
change of variable via the function k can transform one into
the other.

Theorem 4: For any α ∈ (0, 1)∪ (1,∞), let f̃α be a slightly
modified version of (23) defined as

f̃α(u) = α

α − 1

((
1 + uα

) 1
α − (1 + u)

)
, u ≥ 0, (26)

with continuous extensions at α = 1 and α = ∞. Let f̃ ∗α be
the convex conjugate of f̃α given by

f̃ ∗α (t) = α

α − 1

(
1− (1− s(t))

α−1
α

)
, (27)
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where

s(t) =
(

1 + α − 1
α

t
) α
α−1

. (28)

Let gfα : R → dom(f̃ ∗α ) be a bijective output activation
function. Then the optimization problems involved in f̃α-GAN
(using (8) with f = f̃α) and α-GAN (using (18)) are equivalent
in the sense of (25) for

g(Qw) = EX∼Pr

[
gfα

(
Qω(X)

)]

+ EX∼PGθ

[
− f̃ ∗α

(
gfα (Qω(X))

)]
(29)

with A = {Qω : X → R} and

h(Dω) = EX∼Pr

[
− %α

(
1, Dω(X)

)]

+ EX∼PGθ

[
− %α

(
0, Dω(X)

)]
(30)

with B = {Dω : X → [0, 1]} when k : A→ B is chosen as

k(v) = s(gfα (v)) =
(

1 +
(
α − 1
α

)
gfα (v)

) α
α−1

. (31)

Proof Sketch: The proof relies on a lemma that is proved in
the appendix showing that there exists a mapping between the
terms involved in the optimization of both GAN formulations.
Proof details are in Appendix D.

The following theorem generalizes the equivalence demon-
strated above between f̃α-GAN and α-GAN to an equivalence
between f -GANs (using the original value function in (7)) and
CPE loss based GANs.

Theorem 5: For any given symmetric f -divergence, the
optimization problems involved in f -GAN and the CPE loss
based GAN minimizing the same f -divergence are equivalent
under the following regularity conditions on f :

• there exists a strictly convex and differentiable CPE
(partial) loss function % such that

f (u) = sup
t∈[0,1]

−u%(t)− %(1− t) (32)

(note that this condition without the requirement of strict
convexity of % is indeed guaranteed by [42, Th. 2] for any
convex function f resulting in a symmetric divergence)
and −u%(t)−%(1− t) has a local maximum in t for every
u ∈ R+, and

• the function mapping u ∈ R+ to unique optimizer in (32)
is bijective.

Proof sketch: Observing that the inner optimization
problem in the CPE loss GAN formulation reduces to the
pointwise optimization (32) and that of the f -GAN formulation
reduces to the pointwise optimization

f (u) = sup
v∈domf ∗

uv− f ∗(v), (33)

it suffices to show that the variational forms of f in (32)
and (33) are equivalent. We do this by showing that (32) is
equivalent to the optimization problem

f (u) = sup
v∈R+

uf ′(v)−
[
vf ′(v)− f (v)

]
, (34)

which has been shown to be equivalent to (33) [56]. A detailed
proof is in Appendix E.

Remark 2: Since α-loss, %α(p) = α
α−1 (1−p

α−1
α ), p ∈ [0, 1],

is strictly convex for α ∈ (0,∞), and the function mapping
u ∈ R+ to unique optimizer in (32) with α-loss, i.e., uα

1+uα ,
is bijective, Theorem 5 implies that α-GAN is equivalent to
f̃α-GAN with f̃α defined in (26).

Remark 3: Though the CPE loss GAN and f -GAN formu-
lations are equivalent, the following aspects differentiate the
two:

• The f -GAN formulation focuses on the generator mini-
mizing an f -divergence with no explicit emphasis on the
role of the discriminator as a binary classifier in relation
to the function f . With the CPE loss GAN formulation,
we bring into the foreground the connection between the
binary classification performed by the discriminator and
the f -divergence minimization done by the generator.

• More importantly, the CPE loss function perspective
of GANs allows us to prove convergence properties
(Theorem 6), generalization error bounds (Theorem 7),
and estimation error bounds (Theorem 8) as detailed in
the following sections.

B. Convergence Guarantees for CPE Loss GANs

Building on the above one-to-one correspondence, we now
present convergence results for CPE loss GANs, including
α-GAN, thereby providing a unified perspective on the conver-
gence of a variety of f -divergences that arise when optimizing
GANs. Here again, we assume a sufficiently large number of
samples and ample discriminator capacity. In [57], Liu et al.
address the following question in the context of convergence
analysis of any GAN: For a sequence of generated distributions
(Pn), does convergence of a divergence between the generated
distribution Pn and a fixed real distribution P to the global
minimum lead to some standard notion of distributional
convergence of Pn to P? They answer this question in the
affirmative provided the sample space X is a compact metric
space.

Liu et al. [57] formally define any divergence that results
from the inner optimization of a general GAN in (4) as
an adversarial divergence [57, Definition 1], thus broadly
capturing the divergences used by a number of existing GANs,
including vanilla GAN [1], f -GAN [3], WGAN [4], and
MMD-GAN [32]. Indeed, the divergence that results from the
inner optimization of a CPE loss GAN (including α-GAN)
in (14) is also an adversarial divergence. For strict adversarial
divergences (a subclass of the adversarial divergences where
the minimizer of the divergence is uniquely the real distribu-
tion), Liu et al. [57] show that convergence of the divergence
to its global minimum implies weak convergence of the
generated distribution to the real distribution. Interestingly, this
also leads to a structural result on the class of strict adversarial
divergences [57, Figure 1 and Corollary 12] based on a notion
of relative strength between adversarial divergences. We note
that the Arimoto divergence Dfα in (24) is a strict adversarial
divergence. We briefly summarize the following terminology
from Liu et al. [57] to present our results on convergence
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properties of CPE loss GANs. Let P(X ) be the probability
simplex of distributions over X .

Definition 2 ([57, Definition 11]): A strict adversarial diver-
gence τ1 is said to be stronger than another strict adversarial
divergence τ2 (or τ2 is said to be weaker than τ1) if for
any sequence of probability distributions (Pn) and target
distribution P (both in P(X )), τ1(P‖Pn) → 0 as n → ∞
implies τ2(P‖Pn)→ 0 as n→∞. We say τ1 is equivalent to
τ2 if τ1 is both stronger and weaker than τ2.

Arjovsky et al. [4] proved that the Jensen-Shannon diver-
gence (JSD) is equivalent to the total variation distance (TVD).
Later, Liu et al. showed that the squared Hellinger distance is
equivalent to both of these divergences, meaning that all three
divergences belong to the same equivalence class (see [57,
Fig. 1]). Noticing that the squared Hellinger distance, JSD,
and TVD correspond to Arimoto divergences Dfα (·||·) for α =
1/2, α = 1, and α = ∞, respectively, it is natural to ask the
question: Are Arimoto divergences for all α > 0 equivalent?
We answer this question in the affirmative in Theorem 6. In
fact, we prove that all symmetric f -divergences, including Dfα ,
are equivalent in convergence.

Theorem 6: Let fi : [0,∞) → R be a convex function
which is continuous at 0 and strictly convex at 1 such that
fi(1) = 0, ufi( 1

u ) = fi(u), and fi(0) < ∞, for i ∈ {1, 2}. Then
for a sequence of probability distributions (Pn)n∈N ∈ P(X )

and a fixed distribution P ∈ P(X ), we have Df1(Pn||P)→ 0
as n→∞ if and only if Df2(Pn||P)→ 0 as n→∞.

Proof sketch: Note that it suffices to show that Df (·‖·)
is equivalent to DTV(·‖·) for any function f satisfying the
conditions in the theorem. To show this, we employ an elegant
result by Feldman and Österreicher [58, Corollary 1] which
gives lower and upper bounds on a symmetric f -divergence,
with the function f satisfying the conditions in the theorem
statement, in terms of TVD as

γf (DTV(P||Q)) ≤ Df (P||Q) ≤ γf (1)DTV(P||Q), (35)

for an appropriately defined well-behaved (continuous, invert-
ible, and bounded) function γf : [0, 1] → [0,∞). We use
the lower and upper bounds in (35) to show that Df (·‖·) is
stronger than DTV(·‖·), and Df (·‖·) is weaker than DTV(·‖·),
respectively. Proof details are in Appendix F.

Remark 4: We note that the proof techniques used in
proving Theorem 6 give rise to a conceptually simpler proof
of equivalence between JSD (α = 1) and TVD (α =
∞) proved earlier by Arjovsky et al. [4, Th. 2(1)], where
measure-theoretic analysis was used. In particular, our proof of
equivalence relies on the fact that TVD upper bounds JSD [2,
Th. 3]. See Appendix G.

Theorems 1 through 6 hold in the ideal setting of sufficient
samples and discriminator capacity. In practice, however, GAN
training is limited by both the number of training samples as
well as the choice of Gθ and Dω. In fact, recent results by
Arora et al. [19] show that under such limitations, convergence
in divergence does not imply convergence in distribution, and
have led to new metrics for evaluating GANs. To address
these limitations, we consider two measures to evaluate the
performance of GANs, namely generation and estimation
errors, as detailed below.

C. Generalization and Estimation Error Bounds for CPE
Loss GANs

Arora et al. [19] defined generalization in GANs as the
scenario when the divergence between the real distribution and
the generated distribution is well-captured by the divergence
between their empirical versions. In particular, a divergence
or distance6 d(·, ·) between distributions generalizes with m
training samples and error ε > 0 if, for the learned distribution
PGθ , the following holds with high probability:

∣∣∣d
(
Pr, PGθ

)
− d

(
P̂r, P̂Gθ

)∣∣∣ ≤ ε, (36)

where P̂r and P̂Gθ are the empirical versions of the real
(with m samples) and the generated (with a polynomial
number of samples) distributions, respectively. Arora et al. [19,
Lemma 1] show that the Jensen-Shannon divergence and
Wasserstein distance do not generalize with any polynomial
number of samples. However, they show that generalization
can be achieved for a new notion of divergence, the neural net
divergence, with a moderate number of training examples [19,
Th. 3.1]. To this end, they consider the following optimization
problem

inf
θ∈"

dF
(
Pr, PGθ

)
, (37)

where dF (Pr, PGθ ) is the neural net divergence defined as

dF
(
Pr, PGθ

)

= sup
ω∈$

(
EX∼Pr [φ(Dω(X))] + EX∼PGθ

[φ(1− Dω(X))]
)

− 2φ(1/2) (38)

such that the class of discriminators F = {Dω:ω ∈ $} is L-
Lipschitz with respect to the parameters ω, i.e., there exists
a constant L ≥ 1 such that for every x ∈ X , |Dω1(x) −
Dω2(x)| ≤ L||ω1 − ω2||, for all ω1,ω2 ∈ $, and the function
φ takes values in [−.,.] and is Lφ-Lipschitz. Let p be the
discriminator capacity (i.e., number of parameters) and ε > 0.
For these assumptions, in [19, Th. 3.1], Arora et al. prove
that (39) generalizes. We summarize their result as follows:
for the empirical versions P̂r and P̂Gθ of two distributions
Pr and PGθ , respectively, with at least m random samples
each, there exists a universal constant c such that when m ≥
cp.2 log (LLφp/ε)

ε2 , with probability at least 1 − exp (−p) (over
the randomness of samples),

∣∣∣dF
(
Pr, PGθ

)
− dF

(
P̂r, P̂Gθ

)∣∣∣ ≤ ε. (39)

Our first contribution is to show that we can generalize (39)
and [19, Th. 3.1] to incorporate any partial losses φ and ψ
(not just those that are symmetric). To this end, we first define
the refined neural net divergence as

d̃F
(
Pr, PGθ

)

= sup
ω∈$

(
EX∼Pr [φ(Dω(X))] + EX∼PGθ

[ψ(Dω(X))]
)

− φ(1/2)− ψ(1/2), (40)

6For consistency with other works on generalization and estimation error,
we refer to a semi-metric as a distance.
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where the discriminator class is same as the above and the
functions φ and ψ take values in [−.,.] and are Lφ- and Lψ -
Lipschitz, respectively. Note that the functions φ and ψ should
also satisfy (15) so as to respect the optimality of the uniformly
random discriminator when Pr = PGθ . The following theorem
shows that the refined neural net divergence generalizes with
a moderate number of training examples, thus extending [19,
Th. 3.1].

Theorem 7: Let P̂r and P̂Gθ be empirical versions of two
distributions Pr and PGθ , respectively, with at least m random
samples each. For ., p, L, Lφ, Lψ , ε > 0 defined above,
there exists a universal constant c such that when m ≥
cp.2 log (L max{Lφ ,Lψ }p/ε)

ε2 , we have that with probability at least
1− exp (−p) (over the randomness of samples),

∣∣∣d̃F
(
Pr, PGθ

)
− d̃F

(
P̂r, P̂Gθ

)∣∣∣ ≤ ε. (41)

The proof of Theorem 7 is provided in Appendix H.
When φ(t) = t and Dω = fω can take values in R (not
just in [0, 1]), (39) yields the so-called neural net (nn)

distance7 [19], [41], [59] given by

dFnn

(
Pr, PGθ

)
= sup
ω∈$

(
EX∼Pr

[
fω(X)

]
− EX∼PGθ

[
fω(X)

])
, (42)

where the discriminator8 and generator fω(·) and Gθ (·), respec-
tively, are neural networks. Using (42), Ji et al. [41] defined
and studied the notion of estimation error, which quantifies
the effectiveness of the generator (for a corresponding optimal
discriminator model) in learning the real distribution with lim-
ited samples. In order to define estimation error for CPE-loss
GANs (including α-GAN), we first introduce a loss-inclusive
neural net divergence9 d(%)

Fnn
to highlight the effect of the loss

on the error. For training samples Sx = {X1, . . . , Xn} and Sz =
{Z1, . . . , Zm} from Pr and PZ , respectively, we begin with the
following minimization for GAN training:

inf
θ∈"

d(%)
Fnn

(
P̂r, P̂Gθ

)
, (43)

where P̂r and P̂Gθ are the empirical real and generated
distributions estimated from Sx and Sz, respectively, and

d(%)
Fnn

(
P̂r, P̂Gθ

)

= sup
ω∈$

(
EX∼P̂r

[φ
(
Dω(X)]

)
+ EX∼P̂Gθ

[ψ
(
Dω(X)]

))

− φ(1/2)− ψ(1/2), (44)

where for brevity we henceforth use φ(·) := −%(1, ·) and
ψ(·) := −%(0, ·). As proven in Theorem 3, for % = %α and
α =∞, (45) reduces to the neural net total variation distance.

As a step towards obtaining bounds on the estimation error,
we consider the following setup, analogous to that in [41].
For x ∈ X := {x ∈ Rd : ||x||2 ≤ Bx} and z ∈ Z := {z ∈

7This term was first introduced in [19] but with a focus on a discriminator
Dω taking values in [0, 1]. Ji et al. [41], [59] generalized it to Dω = fω taking
values in R.

8In [41], fω indicates a discriminator function that takes values in R.
9We refer to this measure as a divergence since it may not be a semi-metric

for all choices of the loss %.

Rp : ||z||2 ≤ Bz}, we consider discriminators and generators
as neural network models of the form:

Dω : x $→ σ
(

wT
k rk−1(Wk−1rk−2(. . . r1(W1x)))

)
(45)

Gθ : z $→ Vlsl−1(Vl−1sl−2(. . . s1(V1z))), (46)

where wk is a parameter vector of the output layer; for i ∈
[1 : k− 1] and j ∈ [1 : l], Wi and Vj are parameter matrices;
ri(·) and sj(·) are entry-wise activation functions of layers
i and j, i.e., for a ∈ Rt, ri(a) = [ri(a1), . . . , ri(at)] and
si(a) = [si(a1), . . . , si(at)]; and σ (·) is the sigmoid function
given by σ (p) = 1/(1 + e−p) (note that σ does not appear
in the discriminator in [41, eq. (7)] as the discriminator
considered in the neural net distance is not a soft classifier
mapping to [0, 1]). We assume that each ri(·) and sj(·) are Ri-
and Sj-Lipschitz, respectively, and also that they are positive
homogeneous, i.e., ri(λp) = λri(p) and sj(λp) = λsj(p), for
any λ ≥ 0 and p ∈ R. Finally, as modelled in [41], [60], [61],
[62], we assume that the Frobenius norms of the parameter
matrices are bounded, i.e., ||Wi||F ≤ Mi, i ∈ [1:k − 1],
||wk||2 ≤ Mk, and ||Vj||F ≤ Nj, j ∈ [1:l].

We define the estimation error for a CPE loss GAN as

d(%)
Fnn

(
Pr, PG

θ̂∗

)
− inf
θ∈"

d(%)
Fnn

(
Pr, PGθ

)
, (47)

where θ̂∗ is the minimizer of (43) and present the following
upper bound on the error. We also specialize these bounds for
α-GANs, relying on the Rademacher complexity of this loss
class to do so.

Theorem 8: For the setting described above, additionally
assume that the functions φ(·) and ψ(·) are Lφ- and Lψ -
Lipschitz, respectively. Then, with probability at least 1− 2δ
over the randomness of training samples Sx = {Xi}n

i=1 and
Sz = {Zj}m

j=1, we have

d(%)
Fnn

(
Pr, PG

θ̂∗

)
− inf
θ∈"

d(%)
Fnn

(
Pr, PGθ

)

≤ LφBxUω
√

3k√
n

+ LψUωUθBz
√

3(k + l− 1)√
m

+ Uω

√
log

1
δ

(
LφBx√

2n
+ LψBzUθ√

2m

)
, (48)

where Uω := Mk
∏k−1

i=1 (MiRi) and Uθ := Nl
∏l−1

j=1(NjSj).
In particular, when this bound is specialized to the case of

α-GAN by letting φ(p) = ψ(1 − p) = α
α−1 (1 − p

α−1
α ), the

resulting bound is nearly identical to the terms in the RHS
of (48), except for substitutions Lφ ← 4CQx(α) and Lψ ←
4CQz(α), where Qx := UωBx, Qz := UωUθBz, and

Ch(α) :=





σ (h)σ (−h)

α−1
α , α ∈ (0, 1]

(
α−1

2α−1

) α−1
α α

2α−1 , α ∈ (1,∞).
(49)

Proof sketch: Our proof involves the following steps:
• Building upon the proof techniques of Ji et al. [41, Th. 1],

we bound the estimation error in terms of Rademacher
complexities of compositional function classes involving
the CPE loss function.
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• We then upper bound these Rademacher complexities
leveraging a contraction lemma for Lipschitz loss func-
tions [63, Lemma 26.9]. We remark that this differs
considerably from the way the bounds on Rademacher
complexities in [41, Corollary 1] are obtained because of
the explicit role of the loss function in our setting.

• For the case of α-GAN, we extend a result by
Sypherd et al. [9] where they showed that α-loss is
Lipschitz for a logistic model with (79). Noting that
similar to the logistic model, we also have a sigmoid in
the outer layer of the discriminator, we generalize the
preceding observation by proving that α-loss is Lipschitz
when the input is equal to a sigmoid function acting
on a neural network model. This is the reason behind
the dependence of the Lipschitz constant on the neural
network model parameters (in terms of Qx and Qz). Note
that (79) is monotonically decreasing in α, indicating
the bound saturates. However, one is not able to make
definitive statements regarding the estimation bounds for
relative values of α because the LHS in (48) is also a
function of α. Proof details are in Appendix I.

We now focus on developing lower bounds on the estimation
error. Due to the fact that oft-used techniques to obtain
min-max lower bounds on the quality of an estimator (e.g.,
LeCam’s methods, Fano’s methods, etc.) require a semi-metric
distance measure, we restrict our attention to a particular
α-GAN, namely that for α = ∞, to derive a matching
lower bound on the estimation error. We consider the loss-
inclusive neural net divergence in (44) with % = %α for α =
∞, which, for brevity, we henceforth denote as d%∞Fnn

(·, ·)
As in [41], suppose the generator’s class {Gθ }θ∈" is rich
enough such that the generator Gθ can learn the real dis-
tribution Pr and that the number m of training samples in
Sz scales faster than the number n of samples in Sx.10 Then
infθ∈" d%∞Fnn

(Pr, PGθ ) = 0, so the estimation error simplifies to

the single term d%∞Fnn
(Pr, PG

θ̂∗ ). Furthermore, the upper bound
in (48) reduces to O(c/

√
n) for some constant c (note that,

in (49), Ch(∞) = 1/4). In addition to the above assumptions,
also assume the activation functions ri for i ∈ [1:k − 1] are
either strictly increasing or ReLU. For the above setting, we
derive a matching min-max lower bound (up to a constant
multiple) on the estimation error.

Theorem 9: For the setting above, let P̂n be an estimator of
Pr learned using the training samples Sx = {Xi}n

i=1. Then,

inf
P̂n

sup
Pr∈P(X )

P
{

d%∞Fnn

(
P̂n, Pr

)
≥ C(P(X ))√

n

}
> 0.24,

where the constant C(P(X )) is given by

C(P(X )) = log(2)

20

[
σ (Mkrk−1(. . . r1(M1Bx)) (50)

−σ (Mkrk−1(. . . r1(−M1Bx))
]
.

Proof sketch: To obtain min-max lower bounds, we first
prove that d%∞Fnn

is a semi-metric. The remainder of the proof

10Since the noise distribution PZ is known, one can generate an arbitrarily
large number m of noise samples.

is similar to that of [41, Th. 2], replacing dFnn with d%∞Fnn
.

Finally, we note that the additional sigmoid activation function
after the last layer in D satisfies the monotonicity assumption
as detailed in Appendix J. A challenge that remains to be
addressed is to verify if d%αFnn

is a semi-metric for α <∞.

IV. DUAL-OBJECTIVE GANS

As illustrated in Fig. 5, tuning α < 1 provides more
gradient for the generator to learn early in training when the
discriminator more confidently classifies the generated data as
fake, alleviating vanishing gradients, and also creates a smooth
landscape for the generated data to descend towards the real
data, alleviating exploding gradients. However, tuning α < 1
may provide too large of gradients for the generator when
the generated samples approach the real samples, which can
result in too much movement of the generated data, potentially
repelling it from the real data. The following question therefore
arises: Can we combine a less confident discriminator with a
more stable generator loss? We show that we can do so by
using different objectives for the discriminator and generator,
resulting in (αD,αG)-GANs.

A. (αD,αG)-GANs

We propose a dual-objective (αD,αG)-GAN with differ-
ent objective functions for the generator and discriminator
in which the discriminator maximizes VαD(θ,ω) while the
generator minimizes VαG(θ,ω), where

Vα(θ,ω) = EX∼Pr [−%α(1, Dω(X))]

+EX∼PGθ
[−%α(0, Dω(X))], (51)

for α = αD,αG ∈ (0,∞] with %α(·, ·) given in (17). We
recover the α-GAN [7], [12] value function when αD = αG =
α. The resulting (αD,αG)-GAN is given by

sup
ω∈$

VαD(θ,ω) (52a)

inf
θ∈"

VαG(θ,ω). (52b)

We maintain the same ordering as the original min-max
GAN formulation for this non-zero sum game, wherein for a
set of chosen parameters for both players, the discriminator
plays first, followed by the generator. The following theorem
presents the conditions under which the optimal generator
learns the real distribution Pr when the discriminator set $ is
large enough.

Theorem 10: For the game in (52) with (αD,αG) ∈
(0,∞]2, given a generator Gθ , the discriminator optimiz-
ing (52a) is

Dω∗(x) = pr(x)αD

pr(x)αD+pGθ (x)αD
, x ∈ X . (53)

For this Dω∗ and the function fαD,αG : R+→ R defined as

fαD,αG(u) = αG

αG−1



u
αD

(
1− 1

αG

)
+1+1

(uαD+1)
1− 1

αG

−2
1
αG



, (54)
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(52b) simplifies to minimizing a non-negative symmetric
fαD,αG -divergence DfαD,αG

(·||·) as

inf
θ∈"

DfαD,αG

(
Pr||PGθ

)
+ αG

αG−1

(
2

1
αG−2

)
, (55)

which is minimized iff PGθ = Pr for (αD,αG) such that (αD ≤
1, αG > αD

αD+1 ) or (αD > 1, αD
2 < αG ≤ αD).

Proof sketch: We substitute the optimal discriminator
of (52a) into the objective function of (52b) and write the
resulting expression in the form

∫

X
pGθ (x)fαD,αG

(
pr(x)

pGθ (x)

)
dx+ αG

αG−1

(
2

1
αG−2

)
. (56)

We then find the conditions on αD and αG for fαD,αG to be
strictly convex so that the first term in (56) is an f -divergence.
Figure 12(a) in Appendix K illustrates the feasible (αD,αG)-
region. A detailed proof can be found in Appendix K. See
Fig. 6 for a toy example illustrating the value of tuning αD < 1
and αG ≥ 1.

Noting that α-GAN recovers various well-known GANs,
including the vanilla GAN, which is prone to saturation, the
(αD,αG)-GAN formulation using the generator objective func-
tion in (51) can similarly saturate early in training, potentially
causing vanishing gradients. We propose the following NS
alternative to the generator’s objective in (51):

VNS
αG

(θ,ω) = EX∼PGθ

[
%αG(1, Dω(X))

]
, (57)

thereby replacing (52b) with

inf
θ∈"

VNS
αG

(θ,ω). (58)

Comparing (52b) and (58), note that the additional expec-
tation term over Pr in (51) results in (52b) simplifying to
a symmetric divergence for Dω∗ in (53), whereas the single
term in (57) will result in (58) simplifying to an asymmetric
divergence. The optimal discriminator for this NS game
remains the same as in (53). The following theorem provides
the solution to (58) under the assumption that the optimal
discriminator can be attained.

Theorem 11: For the same Dω∗ in (53) and the function
f NS
αD,αG

: R+→ R defined as

f NS
αD,αG

(u) = αG

αG−1



2
1
αG
−1− u

αD

(
1− 1

αG

)

(uαD+1)
1− 1

αG



, (59)

(52b) simplifies to minimizing a non-negative asymmetric
f NS
αD,αG

-divergence Df NS
αD,αG

(·||·) as

inf
θ∈"

Df NS
αD,αG

(
Pr||PGθ

)
+ αG

αG−1

(
1−2

1
αG
−1

)
, (60)

which is minimized iff PGθ = Pr for (αD,αG) ∈ (0,∞]2 such
that αD+αG > αGαD.

The proof mimics that of Theorem 10 and is detailed
in Appendix L. Figure 12(b) in Appendix L illustrates the
feasible (αD,αG)-region; in contrast to the saturating setting
of Theorem 10, the NS setting constrains α ≤ 2 when αD =
αG = α. See Fig. 6(c) for a toy example illustrating how

tuning αD < 1 and αG ≥ 1 can also alleviate training
instabilities in the NS setting.

We note that the input to the discriminator is a random
variable X which can be viewed as being sampled from a
mixture distribution, i.e., X ∼ δPr+(1−δ)PGθ where δ ∈
(0, 1). Without loss of generality, we assume δ = 1/2 but the
analysis that follows can be generalized for arbitrary δ. We use
the Bernoulli random variable Y ∈ {0, 1} to indicate that X = x
is from the real (Y = 1) or generated (Y = 0) distributions.
Therefore, the marginal probabilities of the two classes are
PY(1) = 1−PY(0) = δ = 1/2. Thus, one can then compute
the true posterior PY|X(1|x) and its tilted version P(αD)

Y|X (1|x) as
follows:

PY|X(1|x) = pr(x)
pr(x)+pGθ (x)

, (61a)

P(αD)
Y|X (1|x) = pr(x)αD

pr(x)αD+pGθ (x)αD
, (61b)

where both expressions simplify to the optimal discriminator
of the vanilla GAN in (6) for αD = 1.

We now present a theorem to quantify precisely the effect of
tuning αD and αG. To this end, we begin by first taking a closer
look at the gradients induced by the generator’s loss during
training. To simplify our analysis, we assume that at every step
of training, the discriminator can achieve its optimum, Dω∗ .11

For any sample x = Gθ (z) generated by G, we can write the
gradient of the generator’s loss for an (αD,αG)-GAN w.r.t. its
weight vector θ as

−∂%αG(0, Dω∗(x))
∂θ

= −∂%αG(0, Dω∗(x))
∂x

× ∂x
∂θ

= −∂%αG(0, Dω∗(x))
∂Dω∗(x)

×∂Dω∗(x)
∂x

× ∂x
∂θ

. (62)

We note that while we cannot explicitly analyze the term
∂x
∂θ in (62), we assume that by using models satisfying
boundedness and Lipschitz assumptions,12 this term will not
be unbounded. We thus focus on the first two terms on the right
side of (62) for any αG. For αD = 1, from (53), we see that
in regions densely populated by the generated but not the real
data, Dω∗(x) → 0. Further, the first term in (53) is bounded
thus causing the gradient in (62) to vanish. On the other
hand, when αD < 1, Dω∗ increases (resp. decreases) in areas
denser in generated (resp. real) data, thereby providing more
gradients for G. This is clearly illustrated in Fig. 6(a) and 6(b)
and reveals how strongly dependent the optimization trajectory
traversed by G during training is on the practitioner’s choice
of (αD,αG) ∈ (0,∞]2. In fact, this holds irrespective of the
saturating or the NS (αD,αG)-GAN. In the following theorem,
we offer deeper insights into how such an optimization
trajectory is influenced by tuning αD and αG.

Theorem 12: For a given Pr and PGθ , let x be a sample
generated according to PGθ , and Dω∗ be optimal with respect
to VαD(θ,ω). Then

11We note that a related gradient analysis was considered by Shannon [56,
Sec. 3.1] for f -GANs assuming an optimal discriminator.

12These assumptions match practical settings.
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Fig. 6. (a) A plot of the optimal discriminator output Dω∗ (x) in (53) for several values of αD ≤ 1 for the same toy example as in Figure 5. Tuning αD < 1
reduces the confidence of the optimal discriminator Dω∗ . (b) A plot of the generator’s loss −%αG (0, Dω∗ (x)) for several values of (αD ≤ 1,αG ≥ 1). Tuning
αD < 1 and αG = 1 provides larger gradients for the generated data far from the real data, thereby alleviating vanishing gradients, and also provides smaller
gradients for generated data close to the real data, helping to combat exploding gradients. Tuning αG ≥ 1 yields a quasiconcave objective, further reducing
the magnitude of the gradients for generated data approaching the real data. (c) A plot of the generator’s NS loss %αG (1, Dω∗ (x)) for several values of
(αD ≤ 1,αG ≥ 1). Tuning αD < 1 and αG = 1 reduces the magnitude of the gradients for generated data far from the real data, which can help stabilize
training by decreasing sensitivity to hyperparameter initialization and alleviating model oscillation; tuning αG > 1 yields a quasiconvex generator objective,
which can potentially further improve training stability.

(a) the saturating and non-saturating gradients,
−∂%αG(0, Dω∗(x))/∂x and ∂%αG(1, Dω∗(x))/∂x, respec-
tively, demonstrate the following behavior:

−∂%αG(0, Dω∗(x))
∂x

= Cx,αD,αG

(
1

pGθ (x)
∂pGθ

∂x
− 1

pr(x)
∂pr

∂x

)
(63)

∂%αG(1, Dω∗(x))
∂x

= CNS
x,αD,αG

(
1

pGθ (x)
∂pGθ

∂x
− 1

pr(x)
∂pr

∂x

)
, (64)

where using the tilted probability P(αD)
Y|X (1|x) as written

in (61),

Cx,αD,αG := αDP(αD)
Y|X (1|x)

(
1−P(αD)

Y|X (1|x)
)1−1/αG

, (65)

CNS
x,αD,αG

:= αD

(
1−P(αD)

Y|X (1|x)
)

P(αD)
Y|X (1|x)1−1/αG; (66)

(b) the gradients in both (63) and (65) have directions that
are independent of αD and αG.

Remark 5: One can view the results in Theorem 12 above
as a one-shot (in any iteration) analysis of the gradients of
the generator’s loss, and thus, we fix PGθ . Doing so allows
us to ignore the implicit dependence on (αD,αG) of the PGθ
learned up to this iteration, thus allowing us to obtain tractable
expressions for any iteration.

A detailed proof of Theorem 12 can be found in Fig. 13
in Appendix M. Focusing first on saturating (αD,αG)-GANs,
in Appendix M, we plot Cx,αD,αG as a function of PY|X(1|x)
defined in (61) for five (αD,αG) combinations. In the (1, 1) case
(i.e., vanilla GAN), Cx,1,1 ≈ 0 for generated samples far away
from the real data (where PY|X(1|x) ≈ 0). As discussed earlier,
this optimization strategy is troublesome when the real and
generated data are fully separable, since the sample gradients
are essentially zeroed out by the scalar, leading to vanishing
gradients. To address this issue, Fig. 13(a) shows that tuning
αD below 1 (e.g., 0.6) ensures that samples most likely to

be “generated” (PY|X(1|x) ≈ 0) receive sufficient gradient for
updates that direct them closer to the real distribution.

The vanilla GAN also suffers from convergence issues since
generated samples close to the real data (when PY|X(1|x) ≈
1) receive gradients large in magnitude (Cx,1,1 ≈ 1). Ideally,
these generated samples should not be instructed to move
since they convincingly pass as real to Dω∗ . As explained in
Section II-B, an excessive gradient can push the generated
data away from the real data, which ultimately separates the
distributions and forces the GAN to restart training. Although
the (0.6, 1)-GAN in Fig. 13(a) appears to decrease Cx,αD,αG

for samples close to the real data (PY|X(1|x) ≈ 1), tuning
αG > 1 allows this gradient to converge to zero as desired
(see Fig. 6(b)).

Although tuning the saturating (αD,αG)-GAN formula-
tion away from vanilla GAN promotes a more favorable
optimization trajectory for G, this approach continues to suffer
from the problem of providing small gradients for generated
samples far from Pr. This suggests looking at the behavior
of the NS (αD,αG)-GAN formulation. Figure Fig. 13(b) in
Appendix M illustrates the relationship between the gradient
scalar CNS

x,αD,αG
and PY|X(1|x) defined in (61) for several values

of (αD,αG). In the vanilla (1, 1)-GAN case, we observe a
negative linear relationship, i.e., the samples least likely to be
real (PY|X(1|x) ≈ 0) receive large gradients (CNS

x,1,1 ≈ 1) while
the samples most likely to be real receive minimal gradients
(CNS

x,1,1 ≈ 0). While this seems desirable, unfortunately, the
vanilla GAN’s optimization strategy often renders it vulnerable
to model oscillation, a common GAN failure detailed in
Section II-B, as a result of such large gradients of the outlier
(far from real) samples causing the generated data to oscillate
around the real data modes. By tuning αD below 1, as shown in
Fig. 13(b), one can slightly increase (resp. decrease) CNS

x,αD,αG
for the generated samples close to (resp. far from) the real
modes. As a result, the generated samples are more robust
to outliers and therefore more likely to converge to the real
modes. Finally, tuning αG above 1 can further improve this
robustness. A caveat here is the fact that CNS

x,αD,αG
≈ 0 when
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PY|X(1|x) ≈ 0 can potentially be problematic since the near-
zero gradients may immobilize generated data far from the real
distribution. This is borne out in our results for several large
image datasets in Section V where choosing αG = 1 yields
the best results. The cumulative effects of tuning (αD,αG) are
further illustrated in Fig. 6(c).

B. CPE Loss Based Dual-Objective GANs

Similarly to the single-objective loss function perspective in
Section III, we can generalize the (αD,αG)-GAN formulation
to incorporate general CPE losses. To this end, we introduce
a dual-objective loss function perspective of GANs in which
the discriminator maximizes V%D(θ,ω) while the generator
minimizes V%G(θ,ω), where

V%(θ,ω) = EX∼Pr [−%(1, Dω(X))]

+EX∼PGθ
[−%(0, Dω(X))], (67)

for any CPE losses % = %D, %G. The resulting CPE loss dual-
objective GAN is given by

sup
ω∈$

V%D(θ,ω) (68a)

inf
θ∈"

V%G(θ,ω). (68b)

The CPE losses %D and %G can be completely different losses,
the same loss but with different parameter values, or the same
loss with the same parameter values, in which case the above
formulation reduces to the single-objective formulation in (14).
For example, choosing %D = %G = %α , we recover the α-
GAN formulation in (20); choosing %D = %αD and %G = %αG ,
we obtain the (αD,αG)-GAN formulation in (52). Note that
%D should satisfy the constraint in (15) so that the optimal
discriminator outputs 1/2 for any input when Pr = PGθ . We
once again maintain the same ordering as the original min-
max GAN formulation and present the conditions under which
the optimal generator minimizes a symmetric f -divergence
when the discriminator set $ is large enough in the following
proposition.

Proposition 1: Let %D and %G be symmetric CPE loss
functions with %D(1, ·) also differentiable with derivative
%′D(1, ·) and strictly convex. Then the optimal discriminator
Dω∗ optimizing (68a) satisfies the implicit equation, provided
it has a solution,

%′D(1, 1−Dω∗(x)) = pr(x)
pGθ (x)

%′D(1, Dω∗(x)), x ∈ X . (69)

If (69) does not have a solution for a particular x ∈ X , then
Dω∗(x) = 0 or Dω∗(x) = 1. Let A( pr(x)

pGθ (x) ) := Dω∗(x). For this
Dω∗ , (68b) simplifies to minimizing a symmetric f -divergence
Df (Pr||PGθ ) if the function f : R+ → R is convex, where f
is defined as

f (u) = −u%G(1, A(u))−%G(1, 1−A(u))+2%G(1, 1/2). (70)

Proof sketch: The proof involves a straightforward applica-
tion of KKT conditions when optimizing (68a) and substituting
in (68b). A detailed proof can be found in Appendix N.

As it is difficult to come up with conditions without having
the explicit forms of the losses %D and %G, Proposition 1

provides a broad outline of what the optimal strategies will
look like. The assumption of the losses being symmetric can be
relaxed, in which case the resulting f -divergence will no longer
be guaranteed to be symmetric. Theorem 10 is a special case of
Proposition 1 for %D = %αD and %G = %αG . Proposition 1 also
recovers [38, Th. 1] when %D(y, ŷ) = %CE(y, ŷ) := −y log ŷ−
(1−y) log (1−ŷ) and %G = Lα as defined in [38, Def. 3].
As another example, consider the following square loss based
CPE losses13:

%D
(
y, ŷ

)
= 1

2

[
y
(
ŷ−1

)2+(1−y)ŷ2
]

(71)

%G
(
y, ŷ

)
= −1

2

[
y
(

ŷ2−1
)
+(1−y)

((
1−ŷ

)2−1
)]

. (72)

Note that (71) and (72) are both symmetric and %D(1, ·) is both
convex (and therefore %D satisfies (15)) and differentiable with
%′D(1, ŷ) = ŷ−1. The implicit equation in (69) then becomes

(1−Dω∗(x))−1 = u(Dω∗(x)−1),

where

Dω∗(x) = u
u+1

= pr(x)
pr(x)+pGθ (x)

.

The corresponding f in (70) is f (u) = [3(1−u)]/[4(u+1)],
which is convex. Therefore, the dual-objective CPE loss GAN
using (71) and (72) minimizes a symmetric f -divergence.

C. Estimation Error for CPE Loss Dual-Objective GANs

In order to analyze what occurs in practice when both the
number of training samples and model capacity are usually
limited, we now consider the same setting as in Section III-C
with finite training samples Sx = {X1, . . . , Xn} and Sz =
{Z1, . . . , Zm} from Pr and PZ , respectively, and with neural
networks chosen as the discriminator and generator models.
The sets of samples Sx and Sz induce the empirical real and
generated distributions P̂r and P̂Gθ , respectively. A useful
quantity to evaluate the performance of GANs in this setting
is again that of the estimation error. In Section III-C, we
define estimation error for CPE loss GANs. However, such
a definition requires a common value function for both
discriminator and generator, and therefore, does not directly
apply to the dual-objective setting we consider here.

Our definition relies on the observation that estimation error
inherently captures the effectiveness of the generator (for a
corresponding optimal discriminator model) in learning with
limited samples. We formalize this intuition below.

Since CPE loss dual-objective GANs use different objective
functions for the discriminator and generator, we start by
defining the optimal discriminator ω∗ for a generator model
Gθ as

ω∗
(
Pr, PGθ

)
:= arg maxω∈$ V%D(θ,ω)

∣∣
Pr,PGθ

, (73)

where the notation |·,· allows us to make explicit the distribu-
tions used in the value function. In keeping with the literature
where the value function being minimized is referred to as
the neural net (NN) distance (since D and G are modeled

13Note that these losses were considered in [38] and were shown to result in
a special case of a shifted LSGAN minimizing a certain Jensen-f -divergence.
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as neural networks) [12], [19], [41], we define the generator’s
NN distance dω∗(Pr,PGθ ) as

dω∗
(
Pr,PGθ

)(Pr, PGθ
)

:= V%G

(
θ,ω∗(Pr, PGθ )

)∣∣
Pr,PGθ

. (74)

The resulting minimization for training the CPE-loss dual-
objective GAN using finite samples is

inf
θ∈"

d
ω∗

(
P̂r,P̂Gθ

)
(

P̂r, P̂Gθ

)
. (75)

Denoting θ̂∗ as the minimizer of (75), we define the estimation
error for CPE loss dual-objective GANs as

d
ω∗

(
Pr,PG

θ̂∗
)
(

Pr, PG
θ̂∗

)
− inf
θ∈"

dω∗
(
Pr,PGθ

)(Pr, PGθ
)
. (76)

We use the same notation as in Section III-C, detailed again
in the following for easy reference. For x ∈ X := {x ∈
Rd : ||x||2 ≤ Bx} and z ∈ Z := {z ∈ Rp : ||z||2 ≤ Bz}, we
model the discriminator and generator as k- and l-layer neural
networks, respectively, such that Dω and Gθ can be written
as:

Dω : x $→ σ
(

wT
k rk−1(Wk−1rk−2(. . . r1(W1x)))

)
(77)

Gθ : z $→ Vlsl−1(Vl−1sl−2(. . . s1(V1z))), (78)

where (i) wk is a parameter vector of the output layer; (ii) for
i ∈ [1 : k−1] and j ∈ [1 : l], Wi and Vj are parameter matrices;
(iii) ri(·) and sj(·) are entry-wise activation functions of layers
i and j, respectively, i.e., for a ∈ Rt, ri(a) = [ri(a1), . . . , ri(at)]
and si(a) = [si(a1), . . . , si(at)]; and (iv) σ (·) is the sigmoid
function given by σ (p) = 1/(1+e−p). We assume that each
ri(·) and sj(·) are Ri- and Sj-Lipschitz, respectively, and also
that they are positive homogeneous, i.e., ri(λp) = λri(p) and
sj(λp) = λsj(p), for any λ ≥ 0 and p ∈ R. Finally, as is
common in such analysis [41], [60], [61], [62], we assume that
the Frobenius norms of the parameter matrices are bounded,
i.e., ||Wi||F ≤ Mi, i ∈ [1 : k−1], ||wk||2 ≤ Mk, and ||Vj||F ≤
Nj, j ∈ [1 : l]. We now present an upper bound on (76) in the
following theorem.

Theorem 13: For the setting described above, additionally
assume that the functions φ(·) := −%G(1, ·) and ψ(·) :=
−%G(0, ·) are Lφ- and Lψ -Lipschitz, respectively. Then, with
probability at least 1−2δ over the randomness of training
samples Sx = {Xi}n

i=1 and Sz = {Zj}m
j=1, we have

d
ω∗

(
Pr,PG

θ̂∗
)
(

Pr, PG
θ̂∗

)
− inf
θ∈"

dω∗
(
Pr,PGθ

)(Pr, PGθ
)

≤ LφBxUω
√

3k√
n

+LψUωUθBz
√

3(k+l−1)√
m

Uω

√
log

1
δ

(
LφBx√

2n
+LψBzUθ√

2m

)
, (79)

where Uω := Mk
∏k−1

i=1 (MiRi) and Uθ := Nl
∏l−1

j=1(NjSj).
In particular, when specialized to the case of (αD,αG)-

GANs by letting φ(p) = ψ(1−p) = αG
αG−1 (1−p

αG−1
αG ), the

resulting bound is nearly identical to the terms in the RHS

of (79), except for substitutions Lφ ← 4CQx(αG) and Lψ ←
4CQz(αG), where Qx := UωBx, Qz := UωUθBz, and

Ch(α) :=





σ (h)σ (−h)

α−1
α , α ∈ (0, 1]

(
α−1

2α−1

) α−1
α α

2α−1 , α ∈ (1,∞).
(80)

The proof is similar to that of Theorem 8 (and also [41,
Th. 1]). We observe that (80) does not depend on %D, an artifact
of the proof techniques used, and is therefore most likely not
the tightest bound possible. See Appendix O for proof details.

V. ILLUSTRATION OF RESULTS

We illustrate the value of (αD,αG)-GAN as compared to
the vanilla GAN (i.e., the (1, 1)-GAN). Focusing on DCGAN
architectures [28], we compare against LSGANs [15], one of
the current state-of-the-art (SOTA) dual-objective approach.14

While WGANs [4] have also been proposed to address the
training instabilities, their training methodology is distinctly
different and uses a different optimizer (RMSprop), requires
gradient clipping or penalty, and does not leverage batch
normalization, all of which make meaningful comparisons
difficult.

We evaluate our approach on three datasets: (i) a synthetic
dataset generated by a two-dimensional, ring-shaped Gaussian
mixture distribution (2D-ring) [65]; (ii) the 64×64 Celeb-A
image dataset [66]; and (iii) the 112×112 LSUN Classroom
dataset [67]. For each dataset and pair of GAN objectives, we
report several metrics that encapsulate the stability of GAN
training over hundreds of random seeds. This allows us to
clearly showcase the potential for tuning (αD,αG) to obtain
stable and robust solutions for image generation.

A. 2D Gaussian Mixture Ring

The 2D-ring is an oft-used synthetic dataset for evaluating
GANs. We draw samples from a mixture of 8 equal-prior
Gaussian distributions, indexed i ∈ {1, 2, . . . , 8}, with a mean
of (cos(2π i/8), sin(2π i/8)) and variance 10−4. We generate
50,000 training and 25,000 testing samples and the same
number of 2D latent Gaussian noise vectors, where each entry
is a standard Gaussian.

Both the D and G networks have 4 fully-connected layers
with 200 and 400 units, respectively. We train for 400 epochs
with a batch size of 128, and optimize with Adam [68]
and a learning rate of 10−4 for both models. We consider
three distinct settings that differ in the objective functions
as: (i) (αD,αG)-GAN in (52); (ii) NS (αD,αG)-GAN’s
in (52a), (58); (iii) LSGAN with the 0-1 binary coding scheme
(see Appendix P for details).

For every setting listed above, we train our models on the
2D-ring dataset for 200 random state seeds, where each seed
contains different weight initializations for D and G. Ideally,
a stable method will reflect similar performance across ran-
domized initializations and also over training epochs; thus, we

14We acknowledge that LSGAN may not be SOTA for every architecture
or dataset, as shown in [64], but for reasons of fair comparisons without
regularizers, we restrict our comparisons to settings where we can evaluate
the effect of loss functions.
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Fig. 7. (a) Plot of mode coverage over epochs for (αD,αG)-GAN training with the saturating objectives in (52). Fixing αG = 1, we compare αD = 1
(vanilla GAN) with αD = 0.2. Placed above this plot are 2D visuals of the generated samples (in black) at different epochs; these show that both GANs
successfully capture the ring-like structure, but the vanilla GAN fails to maintain the ring over time. We illustrate the discriminator output in the same visual
as a heat map to show that the αD = 1 discriminator exhibits more confident predictions (tending to 0 or 1), which in turn subjects G to vanishing and
exploding gradients when its objective log(1−D) saturates as D → 0 and diverges as D → 1, respectively. This combination tends to repel the generated
data when it approaches the real data, thus freezing any significant weight update in the future. In contrast, the less confident predictions of the (0.2, 1)-GAN
create a smooth landscape for the generated output to descend towards the real data. (b) Plot of success and failure rates over 200 seeds vs. αD with αG = 1
for the saturating (αD,αG)-GAN on the 2D-ring, which underscores the stability of (αD < 1,αG)-GANs relative to vanilla GAN.

Fig. 8. Generated samples from two (αD,αG)-GANs trained with the NS
objectives in (52a), (58), as well as LSGAN. We provide 6 seeds to illustrate
the stability in performance for each GAN across multiple runs.

explore how GAN training performance for each setting varies
across seeds and epochs. Our primary performance metric is
mode coverage, defined as the number of Gaussians (0-8) that
contain a generated sample within 3 standard deviations of its
mean. A score of 8 conveys successful training, while a score
of 0 conveys a significant GAN failure; on the other hand, a
score in between 0 and 8 may be indicative of common GAN
issues, such as mode collapse or failure to converge.

For the saturating setting, the improvement in stability of
the (0.2, 1)-GAN relative to the vanilla GAN is illustrated in
Fig. 7 as detailed in the caption. Vanilla GAN fails to converge
to the true distribution 30% of the time while succeeding
only 46% of the time. In contrast, the (αD,αG)-GAN with
αD < 1 learns a more stable G due to a less confident D (see
also Fig. 7(a)). For example, the (0.3, 1)-GAN success and
failure rates improve to 87% and 2%, respectively. For the NS
setting in Fig. 8, we find that tuning αD and αG yields more
consistently stable outcomes than vanilla and LSGANs. Mode
coverage rates over 200 seeds for saturating (Tables I and II)
and NS (Table III) are in Appendix P.

B. Celeb-A & LSUN Classroom

The Celeb-A dataset [66] is a widely recognized large-scale
collection of over 200,000 celebrity headshots, encompassing

images with diverse aspect ratios, camera angles, backgrounds,
lighting conditions, and other variations. Similarly, the LSUN
Classroom dataset [67] is a subset of the comprehensive Large-
scale Scene Understanding (LSUN) dataset; it contains over
150,000 classroom images captured under diverse conditions
and with varying aspect ratios. To ensure consistent input for
the discriminator, we follow the standard practice of resizing
the images to 64×64 for Celeb-A and 112×112 for LSUN
Classroom. For both experiments, we randomly select 80%
of the images for training and leave the remaining 20% for
validation (evaluation of goodness metrics). Finally, for the
generator, for each dataset, we generate a similar 80%-20%
training-validation split of 100-dimensional latent Gaussian
noise vectors, where each entry is a standard Gaussian, for a
total matching the size of the true data.

For training, we employ the DCGAN architecture [28] that
leverages deep convolutional neural networks (CNNs) for both
D and G. In Appendix P, detailed descriptions of the D and G
architectures can be found in Tables IV and V for the Celeb-A
and LSUN Classroom datasets, respectively. Following SOTA
methods, we focus on the non-saturating setting, utilizing
appropriate objectives for vanilla GAN, (αD,αG)-GAN, and
LSGAN. We consider a variety of learning rates, ranging from
10−4 to 10−3, for Adam optimization. We evaluate our models
every 10 epochs up to a total of 100 epochs and report the
Fréchet Inception Distance (FID), an unsupervised similarity
metric between the real and generated feature distributions
extracted by InceptionNet-V3 [69]. For both datasets, we train
each combination of objective function, number of epochs, and
learning rate for 50 seeds. In the following subsections, we
empirically demonstrate the dependence of the FID on learning
rate and number of epochs for the vanilla GAN, (αD,αG)-
GAN, and LSGAN. Achieving robustness to hyperparameter
initialization is especially desirable in the unsupervised GAN
setting as the choices that facilitate steady model convergence
are not easily determined a priori.

1) Celeb-A Results: In Fig. 9(a), we examine the relation-
ship between learning rate and FID for each GAN trained
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Fig. 9. (a) Plot of Celeb-A FID scores averaged over 50 seeds vs. learning
rates for 6 different GANs, trained for 100 epochs. (b) Plot of LSUN
Classroom FID scores averaged over 50 seeds vs. learning rates for 6 different
GANs, trained for 100 epochs.

for 100 epochs on the Celeb-A dataset. When using learning
rates of 1×10−4 and 2×10−4, all GANs consistently perform
well. However, when the learning rate increases, the vanilla
(1, 1)-GAN begins to exhibit instability across the 50 seeds.
As the learning rate surpasses 5×10−4, the performance of
the vanilla GAN becomes even more erratic, underscoring the
importance of GANs being robust to the choice of learning
rate. Figure 9(a) also demonstrates that the GANs with αD < 1
perform on par with, if not better than, the SOTA LSGAN.
For instance, the (0.6, 1)-GAN consistently achieves low FIDs
across all tested learning rates.

In Fig. 10(a), for different learning rates, we compare the
dependence on the number of training epochs (hyperparam-
eter) of the vanilla (1, 1)-GAN, (0.6, 1)-GAN, and LSGAN
by plotting their FIDs every 10 epochs, up to 100 epochs,
for two similar learning rates: 5×10−4 and 6×10−4. We
discover that the vanilla (1, 1)-GAN performs significantly
worse for the higher learning rate and deteriorates over time
for both learning rates. Conversely, both the (0.6, 1)-GAN and
LSGAN consistently exhibit favorable FID performance for
both learning rates. However, the (0.6, 1)-GAN converges to
a low FID, while the FID of the LSGAN slightly increases as
training approaches 100 epochs. Finally, Fig. 10(b) displays
a grid of generated Celeb-A faces, randomly sampled over
8 seeds for three GANs trained for 100 epochs with a learning
rate of 5×10−4. Here, we observe that the faces generated by

the (0.6, 1)-GAN and LSGAN exhibit a comparable level of
quality to the rightmost column images, which are randomly
sampled from the real Celeb-A dataset. On the other hand,
the vanilla (1, 1)-GAN shows clear signs of performance
instability, as some seeds yield high-quality images while
others do not.

2) LSUN Classroom Results: In Fig. 9(b), we illustrate the
relationship between learning rate and FID for GANs trained
on the LSUN dataset for 100 epochs. In fact, when all GANs
are trained with a learning rate of 1×10−4, they consistently
deliver satisfactory performance. However, increasing it to
2×10−4 leads to instability in the vanilla (1, 1)-GAN across
50 seeds.

On the other hand, we observe that αD < 1 contributes to
stabilizing the FID across the 50 seeds even when trained with
slightly higher learning rates. In Fig. 9(b), we see that as αD
is tuned down to 0.6, the mean FIDs consistently decrease
across all tested learning rates. These lower FIDs can be
attributed to the increased stability of the network. Despite the
gains in GAN stability achieved by tuning down αD, Fig. 9
demonstrates a noticeable disparity between the best (αD,αG)-
GAN and the SOTA LSGAN. This suggests that there is still
room for improvement in generating high-dimensional images
with (αD,αG)-GANs.

In Appendix P, Fig. 14(a), we illustrate the average FID
throughout the training process for three GANs: (1, 1)-GAN,
(0.6, 1)-GAN, and LSGAN, using two different learning rates:
1×10−4 and 2×10−4. These findings validate that the vanilla
(1, 1)-GAN performs well when trained with the lower learn-
ing rate, but struggles significantly with the higher learning
rate. In contrast, the (0.6, 1)-GAN exhibits less sensitivity
to learning rate, while the LSGAN achieves nearly identical
scores for both learning rates. In Fig. 14(b), we showcase
the image quality generated by each GAN at epoch 100
with the higher learning rate. This plot highlights that the
vanilla (1, 1)-GAN frequently fails during training, whereas
the (0.6, 1)-GAN and LSGAN produce images that are more
consistent in mimicking the real distribution. Finally, we
present the FID vs. learning rate results for both datasets
in Table VI in Appendix P. This allows yet another way to
evaluate performance by comparing the percentage (out of
50 seeds) of FID scores below a desired threshold for each
dataset, as detailed in the Appendix.

VI. CONCLUSION

Building on our prior work introducing CPE loss GANs and
α-GANs, we have introduced new results on the equivalence
of CPE loss GANs and f -GANs, convergence properties of the
symmetric f -divergences induced by CPE loss GANs under
certain conditions, and the generalization and estimation error
for CPE loss GANs including α-GANs. We have introduced
a dual-objective GAN formulation, focusing in particular on
using α-loss with potentially different α values for both
players’ objectives. GANs offer an alternative to diffusion
models in being faster to train but training instabilities
stymie such advantages. In this context, our results highlight
how tuning α can not only alleviate training instabilities
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Fig. 10. (a) Log-scale plot of Celeb-A FID scores over training epochs in steps of 10 up to 100 total, for three specific (αD,αG)-GANs – (1, 1)-GAN
(vanilla), (0.6, 1)-GAN, and LSGAN– and for two similar learning rates– 5×10−4 and 6×10−4. Results show that the vanilla GAN performance is sensitive
to learning rate choice, while the other two GANs achieve consistently low FIDs. (b) Generated Celeb-A faces from the same three GANs over 8 seeds
when trained for 100 epochs with a learning rate of 5×10−4. These samples show that the vanilla (1, 1)-GAN training is sensitive to random model weight
initializations, while the other two GANs demonstrate both robustness to random weight initializations as well as realistic face generation.

but also enhance robustness to learning rates and training
epochs, hyperparameters whose optimal values are generally
not known a priori. A natural extension to our work is to define
and study generalization of dual-objective GANs. An equally
important problem is to evaluate if our observations hold more
broadly, including, when the training data is noisy [70].

While different f -divergence based GANs have been intro-
duced, no principled reasons have been proposed thus far for
choosing a specific f -divergence measure and corresponding
loss functions to optimize. Even in the more practical finite
sample and model capacity settings, different choices of
objectives, as shown earlier, lead to different neural network
divergence measures. Using tunable losses, our work has the
advantage of motivating the choice of appropriate loss func-
tions and the resulting f -divergence/neural network divergence
from the crucial viewpoint of avoiding training instabilities.
This connection between loss functions and divergences to
identify the appropriate measure of goodness can be of broader
interest both to the IT and ML communities.
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