
Automated Lane Changing through Learning-Based Control: An
Experimental Study*

Won Yong Ha1, Sayan Chakraborty1, Yujie Yu1, Samin Ghasemi1 and Zhong-Ping Jiang1

Abstract— This paper presents a learning-based methodology
for developing an optimal lane-changing control policy for a
Remote Controlled (RC) car using real-time sensor data. The
RC car is equipped with sensors including GPS, IMU devices,
and a camera integrated in an Nvidia Jetson AGX Xavier board.
By a novel Adaptive Dynamic Programming (ADP) algorithm,
our RC car is capable of learning the optimal lane-changing
strategies based on the real-time processed measurement from
the sensors. The experimental outcomes show that our learning-
based control algorithm can be effectively implemented, adapt
to parameter changes, and complete the lane changing tasks in
a short learning time with satisfactory performance.

I. INTRODUCTION

Autonomous driving is widely regarded as having the
potential to revolutionize transportation systems and reduce
traffic accidents caused by improper human driving behaviors
[1], [2], [3]. Typically, autonomous vehicles use a variety of
sensors to detect other vehicles, pedestrians, and obstacles
around them [4], [5] and make decisions on vehicles’ move-
ment [6]. Also, lane-following and lane-changing are impor-
tant topics in the autonomous driving, and a reliable control
strategy supported by theoretical analysis and experimental
validation is needed.

The existing lane-changing methods can be classified
into three categories: trajectory planning [7], [8], factory
assessment-based methods [9], and learning-based methods
[7], [10], [11], [12]. The classical approaches to trajectory
planning rely on optimization methods to generate a non-
linear program, considering vehicle dynamics and obstacle
avoidance requirements. Besides, the emerging technology
of environmental sensing and vehicle-to-vehicle (V2V) com-
munication, vehicle-to-infrastructure (V2I) communication
enables the cooperative trajectory planning of lane changes
for connected and automated vehicles (CAVs) to improve
the efficiency and stability of traffic [7]. In [8], Wang et al.
propose a Deep Q-Network (DQN) algorithm with rule-based
constraints for lane change. Through the combination of
high-level lateral control and low-level longitudinal trajectory
planning, a safe and efficient lane change behavior can be
achieved. With the appropriate setting of the states and
rewards, the trained agent completes the lane changing tasks
in a real-world-like simulator.

However, the uncertainties of vehicle dynamics are not
considered in the above methods, which can cause the

*This work has been supported in part by the NSF grants CNS- 2148309
and CNS-2227153.

1Control and Networks Lab, Department of Electrical and Computer
Engineering, New York University, 370 Jay Street, Brooklyn, NY 11201,
U.S.A. Email: wh784@nyu.edu

degradation of driving performance, for example, occurrence
of unsafe driving distance, in practice. To overcome this
issue, factory assessment-based methods usually adopt the
following two steps to guarantee driving safety: 1) assess
the benefit, safety, and tolerance of the current driving state,
2) find a sequential actions based on the factory assessment
rules to maintain safety. Liu et al. of [9] have established
an autonomous lane-changing method considering benefits,
safety, and tolerance based on driver’s habits. They also
collect data using Next Generation SIMulation Fact Sheet
(NGSIM) and demonstrate the performance of their algo-
rithms through computer simulation experiments [13].

A limitation of the above methods is that only expert
knowledge is utilized to generate rule-based decisions. Due
to the complexity of real traffic and road conditions, the
feasibility of the model needs to be further validated. Data-
driven methods, for example, reinforcement learning, do not
rely on the knowledge of prescribed models, but instead, try
to learn the optimal decisions through the interactions with
the environment. In [10], Xie et al. propose a data-driven
lane-changing method based on deep learning, combining
Deep Belief Network (DBN) and Long Short-Term Memory
(LSTM) neural network to make lane-changing decisions
based on the relative position of the neighboring vehicles
in the target lane. The authors of [5] have proposed a hybrid
neural network to predict lane changing behavior. The data-
driven methods are usually lack of theoretical analysis due to
the unknown learning mechanism, instead, adaptive dynamic
programming, which is developed from the optimal control
theory but requires no knowledge of models, is recently
developed for different control tasks with rigorous theoretical
guarantees [14].

Liu et al. and Cui et al have built controllers using ADP
method to lane changing [15], [16]. While the efficacy of
ADP algorithms has been validated via simulation results,
there is still a gap between theory and practice. This is
because there can be multiple sources of uncertainties in
data collection and system modeling. The ADP algorithms
will be more convincing when they can be implemented and
validated in a high-fidelity semi-physical experiments.

To validate its effectiveness, we implement the optimal
data-driven controller for lane-changing and conduct experi-
ments by building an RC car that is similar to real car. Using
an RC car allows us to collect data mimicking autonomous
driving of a full-size vehicle, while dramatically lowering
experimental costs, conducting short experiments, and more
importantly reducing the safety concern of field experiments.

The rest of this paper is structured as follows: Section II

2023 IEEE 26th International Conference on
Intelligent Transportation Systems (ITSC)
24-28 September 2023. Bilbao, Bizkaia, Spain

979-8-3503-9946-2/23/$31.00 ©2023 IEEE 4215

20
23

 IE
EE

 2
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
te

lli
ge

nt
 T

ra
ns

po
rt

at
io

n
Sy

st
em

s (
IT

SC
) |

 9
79

-8
-3

50
3-

99
46

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IT

SC
57

77
7.

20
23

.1
04

22
05

3

Authorized licensed use limited to: New York University. Downloaded on March 31,2024 at 01:13:53 UTC from IEEE Xplore. Restrictions apply.

describes the data-driven control design. Section III presents
our experimental preparation and performance analysis of the
designed learning-based control algorithm for lane changing.
Finally, section IV closes the paper with concluding remarks.

Notations: Throughout this paper, Z+ denotes the
set of non-negative integers, ∥.∥ represents the spec-
tral norm of matrices, σ(W) is the complex spectrum
of W, ⊗ indicates the Kronecker product, vec(T) =[
tT
1 , t

T
2 , · · · , tT

m
]T with ti ∈ Rr being the columns of T ∈

Rr×m. For a symmetric matrix P ∈ Rm×m, vecs(P) =
[p11,2p12, · · · ,2p1m, p22,2p23, · · · ,2p(m−1)m, pmm]

T

∈ R(1/2)m(m+1), for a column vector v ∈ Rn, vecv(v) =
[v2

1,v1v2, · · · ,v1vn,v2
2,v2v3, · · · ,vn−1vn,v2

n]
T ∈ R(1/2)n(n+1). In

is the identity matrix of dimension n.

II. DATA-DRIVEN CONTROLLER DESIGN

A. Preliminaries results

Consider the following discrete-time linear system:

xk+1 = Axk +Buk, (1)

where xk ∈Rn is the state, uk ∈Rm is the control input, A ∈
Rn×n, B∈Rn×m. It is assumed that that system is stabilizable.
In order to reduce the state deviations and control effort, we
seek to design a linear optimal control law of the form:

uk =−Kxk, (2)

that can minimize the following cost function:

min
u

J =
∞

∑
k=0

(xT
k Qxk +uT

k Ruk), (3)

where Q = QT ≥ 0, R = RT > 0, and (A,
√

Q) is observable.
If A, B are completely known, the solution to the above-
mentioned problem is well known and can be found by solv-
ing the following discrete-time algebraic Riccati equation:

AT PA−P+Q−AT PB(R+BT PB)−1BT PA = 0. (4)

By the assumptions mentioned above, Eq. (4) has an unique
solution P∗ = P∗T ≥ 0. Then, the optimal feedback gain K∗
can be determined as follows:

K∗ = (R+BT P∗B)−1BT P∗A. (5)

Note that, (4) is nonlinear in P. Thus, it is usually difficult
to directly solve (4) especially for high-dimensional systems.
A model-based policy interation (PI) technique to solve (4)
was presented in [17] and is reproduced in Algorithm 1. Note
that A j = A−BK j in Algorithm 1.

B. Data-driven formulation

Here, we present an online data-driven learning-based
controller design strategy that does not assume the exact
knowledge of the system matrices A and B. Consider the
modified system equation as follows:

xk+1 = A jxk +B(uk +K jxk). (8)

Algorithm 1 Model-based PI
1: Select a stabilizing control policy K0 such that A−BK0

is a Schur matrix. Initialize j← 0. Select a sufficiently
small constant ε > 0.

2: repeat
3: Policy Evaluation (Solve for P j from):

AT
j P jA j−P j +Q+KT

j RK j = 0. (6)

4: Policy Improvement:

K j+1 = (R+BT P jB)−1BT P jA. (7)

5: j← j+1.
6: until ∥P j−P j−1∥< ε .

Along the trajectories of (8), one can obtain that

xT
k+1P jxk+1−xT

k P jxk

=
[
A jxk +B(uk +K jxk)

]T P j
[
A jxk +B(uk +K jxk)

]
−xT

k P jxk. (9)

Then, using (6) we have:

xT
k+1P jxk+1−xT

k P jxk +xT
k Q jxk

= 2xT
k AT P jBuk +2xT

k AT P jBK jxk−xT
k KT

j BT P jBK jxk

+uT
k BT P jBuk (10)

where Q j =Q+KT
j RK j. Now, by the property of Kronecker

product that vec(XYZ) = (ZT ⊗X)vec(Y), we have:[
(xT

k+1⊗xT
k+1)− (xT

k ⊗xT
k)
]
vec(P j)+(xT

k ⊗xT
k)vec(Q j)

=
[
2(xT

k ⊗uT
k)+2(xT

k ⊗xT
k)(In⊗KT

j)
]
vec(BT P jA)+[

− (K jxk)
T ⊗ (K jxk)

T +(uT
k ⊗uT

k)
]
vec(BT P jB). (11)

Collecting the data for the time sequence k0 < k1 < · · ·<
ks, we get

ΨΨΨ jθθθ j =−Ix,xvec(Q j), (12)

where ΨΨΨ j =

[
∆∆∆x,x,−2Ix,u − 2Ix,x(In ⊗KT

j), Ĩx,x − Iu,u

]
,

θθθ j =

[
vecs(P j)

T ,vec(BT P jA)T ,vecs(BT P jB)T
]T

, ∆∆∆x,x =[
vecv(xk0+1) − vecv(xk0), · · · ,vecv(xks) − vecv(xks−1)

]T

∈

Rs×n(n+1)/2, Ix,x =

[
(xk0 ⊗xk0), · · · ,(xks ⊗xks)

]T

∈ Rs×n2
,

Ĩx,x =

[
vecv(K jxk0), · · · ,vecv(K jxks)

]T

∈ Rs×m(m+1)/2,

Ix,u =

[
xk0 ⊗uk0 , · · · ,xks ⊗uks

]T

∈ Rs×mn,

Iu,u =

[
vecv(uk0), · · · ,vecv(uks)

]T

∈ Rs×m(m+1)/2.

Assumption 2.1: There exists a s∗ ∈ Z+ such that for all
s > s∗:

rank([Ix,x,Ix,u,Iu,u]) =
n(n+1)

2
+nm+

m(m+1)
2

. (13)

4216

Authorized licensed use limited to: New York University. Downloaded on March 31,2024 at 01:13:53 UTC from IEEE Xplore. Restrictions apply.

Remark 1: A choice of s∗ ≥ n(n+1)
2 + nm + m(m+1)

2 to
guarantee the feasibility of (13).

Remark 2: Under Assumption 2.1, ΨΨΨ j has full column
rank for all j ∈ Z+ [14].

Algorithm 2 Model-Free PI
1: Employ uk = −K0xk + ηηηk as the input on the time

interval [k0, ks], where K0 is an initial stabilizing control
gain and ηηηk is the exploration/probing noise.

2: Compute ∆∆∆x,x,Ix,x,Ix,u,Iu,u until the rank condition in
(13) is satisfied. Let j = 0.

3: Solve for θθθ j from (12). Then, K j+1 = (R +
BT P jB)−1BT P jA.

4: Let j← j+1 and repeat Step 3 until ∥P j−P j−1∥ ≤ ε0
for j≥ 1, where the constant ε0 > 0 is a predefined small
threshold.

Remark 3: Note that (13) is like persistent of excitation
in adaptive control. Like other ADP algorithms, an explo-
ration/probing noise is added to the input to satisfy (13) [14].

III. EXPERIMENTS

A. Car Model

We build a compact car model to analyze and validate the
performance of algorithm designed for lane change. In fact,
the car model is designed not only for lane-changing but also
for lane-following. The car model is attached several sensors
such as GPS, IMU, and camera to collect as much data as
and possible. An Nvidia Jetson AGX Xavier board, small,
lightweight computer, is deployed to our car model while
having the ability to process the data created by sensors in
real-time. Therefore, suitable sensors for the experiment and
computational module are carefully selected to be compatible
with the experimental platform.

Our car model uses Traxxas Inc’s TRX-4 RC as its base
body. The TRX-4 car has high power, delicate steering angle
adjustment, and various additional parts such as differential
gears are built-in so that it works close to an actual car [18].
And the TRX-4 can control all the attached motors with
PWM signals. The total weight of sensors (GPS, IMU, and
camera: 0.21kg), computers (Jetson board: 0.27kg), batteries
(1.1kg), etc (0.53kg), which we must attach to the car, is over
2.1kg. The TRX-4 can perform delicate movements even
after attaching all of these parts and produce a trajectory
similar to a real car.

TABLE I
SENSOR SPECIFICATIONS

Sensor Brand Purpose
GPS Marvelmind Indoor GPS Location
IMU Marvelmind Indoor GPS Orientation

Camera NexiGo N980P Vision

The hardware of our car model is connected shown in
Fig. 1. We use Marvelmind’s Indoor GPS devices, which
has GPS and IMU sensors to collect real-time car position

Fig. 1. The diagram above shows the hardware connection of the car model
through the flow of data. The Jetson board receives data from multiple
sensors in real-time and can process the necessary data.

and orientation data. Marvelmind’s Indoor GPS has an error
of ±2cm and has a significant data disturbance due to nearby
obstruction [19]. Therefore, we use two beacons to minimize
data errors in GPS and improve data accuracy. Also, we use a
Kalman filter to reduce the noise of the IMU sensor [20]. The
error of the IMU sensor is highly dependent on the frequency
and location of the beacon. Therefore, filtering is necessary to
reduce high-pitching errors. We also use wide-angle camera
to detect the lane for the lane-following algorithm. All the
sensors specification are shown table I.

The car model uses Nvidia’s Jetson AGX Xavier for
computing and vccollecting data from all sensors [21]. The
Jetson board receives all data using UDP packages, which
processes the necessary data and discards the unrelated data
[22]. All sensors are designed to send data to the Jetson
board even if it is not currently needed, making it easy
to ensure the integrity of data. PWM signals control the
steering and acceleration of the TRX-4. Therefore, to obtain
the steering angle and speed we need, the Jetson board must
generate a PWM signal and send it to the motor. However,
the PWM signal to operate the TRX-4 steering servomotor
requires 2.5W , and the Jetson board’s own PWM generator
cannot give enough power to operate it. Therefore, we should
use an external PWM generator that gives higher power by
connecting the external battery.

The PCA9685 board is utilized to solve this power prob-
lem. First, connect PCA9685 with the Jetson board using the
I2C interface to communicate. And then PCA9685 connects
to external batteries with 5V 0.5A in order to provide
enough power to control the servomotor. The acceleration
motor is already connected to its external battery, so the
speed can be controlled by sending only PWM signals to
meet PWM frequency conditions specified by the motor.
Although we can use Jetson board’s own PWM generator
to control the acceleration motor, we only use PCA9685
because using PCA9685 and Jetson board’s PWM generator
simultaneously can cause data collisions in the I2C interface.
Also, to simplify the PWM controlling software, we connect
the acceleration motor to the PCA9685 board[23]. Table II
shows the specification of motors attached to our car model
through PCA9685 board.

We also connect the joystick to the car model to manually
control it to enhance the convenience of the experiment.
Joystick is connected by wireless communication because car
modules must be entirely wireless connected to conduct con-

4217

Authorized licensed use limited to: New York University. Downloaded on March 31,2024 at 01:13:53 UTC from IEEE Xplore. Restrictions apply.

TABLE II

TRX-4 CONTROLLABLE MOTOR SPECIFICATION

Motor Type Purpose Power PWM Frequency

Servomotor Steering Angle 91W 60
OGRC Motor 550 Acceleration 2.5W 60

Fig. 2. The diagram above is the software system of the car model and the
flow of data. The figure shows that all data is processed on the Jetson board.
Therefore, several data processing and computation programs continue to
operate simultaneously.

venient experiments without being restricted by cables. The

joystick we use is Logitech Inc’s G29 Driving Force Racing

Wheel. This joystick is a wheel specialized in automobile

simulation and has similar functions to actual automobile

driving. In addition, several programmable buttons are at-

tached to the wheel, so various functions, such as starting

autonomous driving, going backward, and so on, can be

executed without a keyboard, increasing convenience in the

experiment.

The central processing unit of our car model is the Ndivia’s

Jetson AGX Xavier Board, a high-end compact computer.

For reducing the sensor’s latency and raising scalability, the

sensors are directly connected to the Jetson board by serial

ports. Fig. 2 shows the whole procedure on the Jetson board.

The Jetson board has three programs running simultaneously.

Motor-Servo-Controller controls all the motors: acceleration

motor and servomotor. This program only uses the car’s

steering angle, velocity, and driving type as parameters to

move the car. All parameter data are accepted as UDP

package type. In addition, the Motor-Servo-Controller only

receives the desired values of parameters. In other words,

it does not share any of result with Lane-Changing or

Fig. 3. The car model with all the hardware. Each piece of hardware is
powered by a battery and is located in consideration of maximum safety,
depending on its weight.

Fig. 4. Basic algorithmic structure of the autonomous driving. Each
algorithm should be able to apply the result value to the motor only when
certain conditions are met.

Fig. 5. The figure shows the desirable movement of the experiments. Our
ultimate goal is to reach the target lane stably. Therefore, the value we need
to measure is the shortest distance from the target car and the target lane,
x1, and the orientation of the target car, x3.

Lane-Following. Motor-Servo-Controller is written in C++

to easily combine with a driver that fits the PCA9685.

Lane-Changing and Lane-Following are programs that

contain algorithms which yield the direction and velocity

of the car [24], [25]. Each program receives data from

the desired sensor as parameters for the algorithm through

serial ports. After processing the data through algorithm,

the result (steering angle, speed, and driver type), send

through localhost address with assigned port number to

Motor-Servo-Controller. At this time, the driving mode is

used to distinguish the transmission data of each program; for

example, steering angle and speed made by Lane-Changing

has a driving mode of 1, and the case of Lane-Following is

2. Then, Motor-Servo-Controller recognizes the driving way

by the driving mode. The detail of driving mode is shown

in table III.

TABLE III

DRIVING TYPE SPECIFICATION

Driving Type Purpose Steering Range Speed Range

0 No data 90 0 (m/sec)
1 Lane changing 60∼ 120 −0.3∼ 0.3
2 Lane following 60∼ 120 0.5

Fig. 3 is the car model that we used in the experiment.

The body size is 50cm, 24cm, and 26cm in width, length,

and height, respectively. In addition, the maximum steering

angle is ±35 degrees. For the safety of our experiments,

we limited the steering angle to within 30 degrees because

any higher steering angle may lead the wheel to touch the

body frame. The motor has a maximum output of 46W
and a maximum speed of 15km/h. The car’s speed can

4218

Fig. 6. Training and testing experiments are conducted in the same environment. Units for x1, x2, x3, and x4 are cm, cm/sec, radian, and radian/sec,
respectively. The gray line is each experiment raw data and the red line represents the average value of the 10 experiments. The training part is until
time-step 100, and then testing part. K vs Trial graph shows the K value after the training part in each experiment. The Steering Angle vs Time Step graph
shows the actual steering angle that was calculated by the proposed algorithm.

maintain until approximately 80% of the battery. Hence, the
experiments must have constant battery life above 80%.

The lane-changing algorithm of our car model collects data
during the first 100 time-step (1 time-step = 0.083sec) to
find the near-optimal K. In addition, when lane changing is
completed, the car immediately executes the lane-following
algorithm to induce continuous movement of the car. There-
fore, the overall flow of data is the same as Fig. 4.

B. Experiments Environment
We have developed a two-lane road section in our lab for

the purpose of experiments. The total length of the road is
4.5m, and the width of each lane is 0.3m. As shown in Fig. 5,
there are four vehicles presented in the environment, where
RC car denotes the remote controlled car, LT denotes the
leader in the target lane, LC denotes the leader in the current
lane, FT denotes the follower in the target lane, SFT (t),
SLT (t), SLC(t) are the safety distances. In Fig. 5, x1 denotes
the distance of the center of gravity of the RC car from
the center line of the target lane, x3 denotes the orientation
error of the RC car with respect to the road. The aim is that
the RC car moves from the current lane to the target lane
avoiding collision with the surrounding vehicles. The lane-
change decision-making algorithm used in this work can be
found in [26]. In this work, the RC car state vector is assumed
to be x = [x1,x2,x3,x4], where x2 is defined as the change in
x1 and x4 is defined as the change in x3. The control input
uk to the RC car is the steering wheel angle denoted as δk.
The details on the lateral dynamic model of RC car can be
found in [27].

We aim at learning a data-driven optimal controller to
compute δk such that the RC car can successfully perform a
lane change maneuver from the current lane to the target lane.

Also, the safety from the surrounding vehicles is ensured by
our proposed algorithms. We use data-driven Algorithm 2
to compute the optimal δk, where the data matrices in
Algorithm 2 are formed by collecting real-time RC car state
(xk) and input (δk) data. The initial stabilizing gain in Algo-
rithm 2 is given as K0 = [0.0047,−0.0447,2.0002,0.0002].
The weight matrices are chosen as Q = I4, and R = I1. The
exploration noise ηηηk is chosen as sum of sinusoidal waves.

C. Result and Analysis

In this section, we discuss the obtained experimental
results for the RC car lane change. During the learning phase,
we have implemented the initial stabilizing controller gain
K0 to compute the steering angle δ0k = −K0xk +ηηηk. This
steering angle input is used as the control input to the RC car
to collect data for 100 time-steps such that the rank condition
in (13) holds. The training data {xk,δk}100

k=0 were collected
by using the GPS sensors mounted on the RC car.

This section shows and analyzes the values and results
obtained through experiment. We perform 10 experiments
with the RC car to validate our proposed methodology. The
mean values of x1, x2, x3, and x4 is denoted with red color
plots in Fig. 6. For each experiment, we collect 100 data
samples that is used for learning the optimal control gain for
that experiment run. The training phase is marked complete
when the optimal control gain is learned. After training, the
RC car moves back to the starting position for the testing
phase. For each experiment run, it is clear from Fig. 6 for
the testing phase that, when the trained K is used by the
RC car to perform a lane change the states of the RC car
converges to zero. This implies that the lane change has been
successful for each experiment run. Thus, the RC car could

4219

Authorized licensed use limited to: New York University. Downloaded on March 31,2024 at 01:13:53 UTC from IEEE Xplore. Restrictions apply.

learn optimal control policy for a lane change maneuver in
real-time using sensor data.

As evident from the K vs Trial plot in Fig. 6, the trained
K obtained for each experiment run is approximately the
same, where K0, K1, K2, and K3 are the entries of the control
gain vector K. The small variations of each K is possible
because of the sensor noise. This shows the robustness of the
proposed data-driven algorithm to noisy sensor data. For each
experiment run, it was found that the RC car could perform
smoother lane-changing maneuvers using the learned K. Our
experimental research has shown that, through trials and
learning, the car manages to learn a good estimate of the
optimal control policy K from data as shown in table IV.

TABLE IV
INITIAL AND TRAINED K COMPARISON

K0 K1 K2 K3

Initial K0 0.0047 −0.0447 2.0002 0.0002
Average Trained K 0.0053 −0.0339 1.933 0.9558

IV. CONCLUSIONS

In this study, we have presented a novel learning-based
methodology for developing an optimal lane-changing con-
trol policy for an RC car using real-time sensor data. Our
approach involves outfitting the RC car with a suite of
sophisticated instruments, including GPS, IMU devices, a
camera, and a Jetson board. Moreover, to ensure the accuracy
and efficiency of our methodology, we equip the surrounding
RC car with sensors (GPS, IMU devices and a camera). By
processing real-time data from these sources, our RC car can
compute the optimal lane-changing control policy online. We
have implemented our algorithm on the Jetson board, which
is expertly connected to the sensors. This optimal learning-
based control approach utilizes the real-time data received
from the sensors to compute the optimal lane-changing
policy with exceptional accuracy. By utilizing an RC car, we
are able to gather data that emulates the autonomous driving
of full-size vehicles, resulting in significant reductions in
experimental expenses, shorter experiment duration, and,
most importantly, decreased safety risks associated with
field experiments. We also demonstrate that our data-driven
algorithm works successfully in automotive models using
actual sensors. However, we have performed experiments in a
laboratory environment. In the future, we plan on performing
experimental studies in realistic environments.

ACKNOWLEDGMENT

We would like to thank Tong Liu for his constructive
comments on our manuscript.

REFERENCES

[1] Y. Ma, Z. Wang, H. Yang, and L. Yang, “Artificial intelligence
applications in the development of autonomous vehicles: A survey,”
IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 315–329,
2020.

[2] J.-F. Bonnefon, The car that knew too much: can a Machine be moral?
MIT Press, 2021.

[3] Y. Dou, F. Yan, and D. Feng, “Lane changing prediction at highway
lane drops using support vector machine and artificial neural network
classifiers,” in 2016 IEEE International Conference on Advanced
Intelligent Mechatronics (AIM). IEEE, 2016, pp. 901–906.

[4] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor
and sensor fusion technology in autonomous vehicles: A review,”
Sensors, vol. 21, no. 6, p. 2140, 2021.

[5] H. Min, X. Wu, C. Cheng, and X. Zhao, “Kinematic and dynamic
vehicle model-assisted global positioning method for autonomous ve-
hicles with low-cost gps/camera/in-vehicle sensors,” Sensors, vol. 19,
no. 24, p. 5430, 2019.

[6] M. Huang, M. Zhao, P. Parikh, Y. Wang, K. Ozbay, and Z.-P. Jiang,
“Reinforcement learning for vision-based lateral control of a self-
driving car,” in 2019 IEEE 15th International Conference on Control
and Automation (ICCA). IEEE, 2019, pp. 1126–1131.

[7] T. Li, J. Wu, C.-Y. Chan, M. Liu, C. Zhu, W. Lu, and K. Hu, “A
cooperative lane change model for connected and automated vehicles,”
IEEE Access, vol. 8, pp. 54 940–54 951, 2020.

[8] J. Wang, Q. Zhang, D. Zhao, and Y. Chen, “Lane change decision-
making through deep reinforcement learning with rule-based con-
straints,” in 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2019, pp. 1–6.

[9] Y. Liu, X. Wang, L. Li, S. Cheng, and Z. Chen, “A novel lane change
decision-making model of autonomous vehicle based on support vector
machine,” IEEE Access, vol. 7, pp. 26 543–26 550, 2019.

[10] D.-F. Xie, Z.-Z. Fang, B. Jia, and Z. He, “A data-driven lane-changing
model based on deep learning,” Transportation Research Part C:
Emerging Technologies, vol. 106, pp. 41–60, 2019.

[11] X. Gu, Y. Han, and J. Yu, “A novel lane-changing decision model
for autonomous vehicles based on deep autoencoder network and
xgboost,” IEEE Access, vol. 8, pp. 9846–9863, 2020.

[12] L. Tang, H. Wang, W. Zhang, Z. Mei, and L. Li, “Driver lane change
intention recognition of intelligent vehicle based on long short-term
memory network,” IEEE Access, vol. 8, pp. 136 898–136 905, 2020.

[13] D. of Transportation USA, “The next generation simulation pro-
grams,” 2016, http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.
[Accessed: (2023-05-27)].

[14] Z.-P. Jiang, Bian, Tao, and W. Gao, “Learning-based control: A tutorial
and some recent results,” Foundations and Trends® in Systems and
Control, vol. 8, no. 3, pp. 176–284, 2020.

[15] T. Liu, L. Cui, B. Pang, and Z.-P. Jiang, “Data-driven adaptive optimal
control of mixed-traffic connected vehicles in a ring road,” in 2021
60th IEEE Conference on Decision and Control (CDC). IEEE, 2021,
pp. 77–82.

[16] ——, “Learning-based control of multiple connected vehicles
in the mixed traffic by adaptive dynamic programming,” IFAC-
PapersOnLine, vol. 54, no. 14, pp. 370–375, 2021.

[17] G. Hewer, “An iterative technique for the computation of the steady
state gains for the discrete optimal regulator,” IEEE Transactions on
Automatic Control, vol. 16, no. 4, pp. 382–384, 1971.

[18] L. Traxxas, “The new traxxas summit 16.8 v electric extreme terrain
monster truck,” 2008.

[19] M. Robotics, “Marvelmind indoor navigation system operating man-
ual,” 2023.

[20] R. V. Vitali, R. S. McGinnis, and N. C. Perkins, “Robust error-state
kalman filter for estimating imu orientation,” IEEE Sensors Journal,
vol. 21, no. 3, pp. 3561–3569, 2020.

[21] Nvidia, “Nvidia jetson agx xavier developer kit manual,” 2019.
[22] W. Stevens and G. Wright, TCP/IP Illustrated: The protocols, ser.

Addison-Wesley professional computing series. Addison-Wesley,
1994. [Online]. Available: https://books.google.co.kr/books?id=-
btNds68w84C

[23] B. Earl, “Adafruit pca9685 16-channel servo driver,” 2023.
[24] A. S. Rathore, “Lane detection for autonomous vehicles using opencv

library,” International Research Journal of Engineering and Technol-
ogy, vol. 6, no. 1, pp. 1326–1332, 2019.

[25] T. Liu, L. Cui, B. Pang, and Z.-P. Jiang, “A unified framework for
data-driven optimal control of connected vehicles in mixed traffic,”
IEEE Transactions on Intelligent Vehicles, 2023.

[26] S. Chakraborty, L. Cui, K. Ozbay, and Z.-P. Jiang, “Automated lane
changing control in mixed traffic: An adaptive dynamic programming
approach,” in 2022 IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2022, pp. 1823–1828.

[27] R. Rajamani, Vehicle dynamics and control. Springer Science &
Business Media, 2011.

4220

Authorized licensed use limited to: New York University. Downloaded on March 31,2024 at 01:13:53 UTC from IEEE Xplore. Restrictions apply.

