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Abstract

Snake venom can vary both among and within species. While some groups of New World pitvipers—such as rattlesnakes—
have been well studied, very little is known about the venom of montane pitvipers (Cerrophidion) found across the Mes-
oamerican highlands. Compared to most well-studied rattlesnakes, which are widely distributed, the isolated montane
populations of Cerrophidion may facilitate unique evolutionary trajectories and venom differentiation. Here, we describe the
venom gland transcriptomes for populations of C. petlalcalensis, C. tzotzilorum, and C. godmani from Mexico, and a single
individual of C. sasai from Costa Rica. We explore gene expression variation in Cerrophidion and sequence evolution of
toxins within C. godmani specifically. Cerrophidion venom gland transcriptomes are composed primarily of snake venom
metalloproteinases, phospholipase A,s (PLA,s), and snake venom serine proteases. Cerrophidion petlalcalensis shows
little intraspecific variation; however, C. godmani and C. tzotzilorum differ significantly between geographically isolated
populations. Interestingly, intraspecific variation was mostly attributed to expression variation as we did not detect signals
of selection within C. godmani toxins. Additionally, we found PLA,-like myotoxins in all species except C. petlalcalensis,
and crotoxin-like PLA,s in the southern population of C. godmani. Our results demonstrate significant intraspecific venom
variation within C. godmani and C. tzotzilorum. The toxins of C. godmani show little evidence of directional selection where
variation in toxin sequence is consistent with evolution under a model of mutation—drift equilibrium. Cerrophidion godmani
individuals from the southern population may exhibit neurotoxic venom activity given the presence of crotoxin-like PLA,s;
however, further research is required to confirm this hypothesis.

Keywords Transcriptomics - Gene family evolution - Mutation—drift equilibrium - Selection

Resumen

El veneno de las serpientes puede variar entre y dentro de las especies. Mientras algunos grupos de viperidos del Nuevo
Mundo—como las cascabeles—han sido bien estudiadas, muy poco se sabe acerca del veneno de las nauyacas de frio (Cer-
rophidion) que se encuentran en las zonas altas de Mesoamérica. Comparadas con las extensamente estudiadas cascabeles,
que estan ampliamente distribuidas, las poblaciones de Cerrophidion, aisladas en montafias, pueden poseer trayectorias
evolutivas y diferenciacidon en su veneno unicos. En el presente trabajo, describimos el transcriptoma de las glandulas de
veneno de poblaciones de C. petlalcalensis, C. tzotzilorum, y C. godmani de México, y un individuo de C. sasai de Costa
Rica. Exploramos la variacién en la expresion de toxinas en Cerrophidion y la evolucién en las secuencias geneticas en C.
godmani especificamente. El transcriptoma de la gldndula de veneno de Cerrophidion esta compuesto principalmente de
Metaloproteinasas de Veneno de Serpiente, Fosfolipasas A, (PLA,s), y Serin Proteasas de Veneno de Serpiente. Cerrophidion
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petlalcalensis presenta poca variacion intraespecifica; sin embargo, los transcriptomas de la glandula de veneno de C.
godmani y C. tzotzilorum difieren significativamente entre poblaciones geograficamente aisladas. Curiosamente, la variacion
intraespecifica estuvo atribuida principalmente a la expresion de las toxinas ya que no encontramos sefiales de seleccion
en las toxinas de C. godmani. Adicionalmente, encontramos miotoxinas similares a PLA, en todas las especies excepto C.
petlalcalensis, y PLA,s similares a crotoxina en la poblacién surefia de C. godmani. Nuestros resultados demuestran la
presencia de variacion intraespecifica presente en el veneno de C. godmani'y C. tzotzilorum. Las toxinas de Cerrophidion
godmani muestran poca evidencia de seleccién direccional, y la variacidn en la secuencias de las toxinas es consistente
con evolucion bajo un modelo de equilibrio de mutacién-deriva. Algunos individuos de C. godmani de la poblacion del sur
potencialmente tienen un veneno neurot6xico dada la presencia de PLA,s similares a la crotoxina, sin embargo, se necesita

mas evidencia para corroborar esta hipotesis.

Introduction

Venoms have emerged as an excellent system for investigat-
ing trait evolution given their phenotype—genotype tractabil-
ity, clear contribution to fitness, and rapid rate of evolution
resulting from mutations in protein-coding regions and/or
changes in gene expression (Casewell et al. 2011, 2012,
2013; Rokyta et al. 2015b; Aird et al. 2015; Margres et al.
2017). Venom toxins can be linked to specific genes, which
facilitates the investigation of how evolutionary processes
generate genomic and corresponding phenotypic variation
(Brahma et al. 2015; Junqueira-de Azevedo and Ho 2002;
Margres et al. 2014b; Rokyta et al. 2015b, 2011). Snake ven-
oms in particular consist of 10-100 secreted toxins, many
of which are isoforms from paralogous gene duplications
within 10-20 gene families (Casewell et al. 2014; Calvete
2017). Several studies have found evidence for strong, posi-
tive directional selection in snake venom toxins (Rokyta
etal. 2013; Aird et al. 2015, 2017; Mason et al. 2020; Strick-
land et al. 2018b); however, others have shown that drift
and balancing selection might also have an important role
given a lack of differential selection between toxins and non-
toxin genes (Ochoa et al. 2020; Rautsaw et al. 2019; Schield
et al. 2022) and less selective constraint in toxins than in
nontoxins (Aird et al. 2013). These contrasting results may
reflect the influence of several key factors, such as the phy-
logenetic diversity and complex resistance mechanisms of
prey (Holding et al. 2021b; Gibbs et al. 2020), the adaptive
landscape (Rautsaw et al. 2019), or the demographic his-
tory of the species (Ochoa et al. 2020; Margres et al. 2021;
Holding et al. 2021a; Rautsaw et al. 2019; Aird et al. 2017).
Targeted examinations of specific toxin families have also
yielded insights into how genomic variation affects adap-
tive phenotypes. One example of such gene families are the
phospholipase A,s (PLA,s)—a primary component of many
pitviper venoms (Tasoulis and Isbister 2017).

The PLA,s in New World pitviper venom evolved via
gene duplication and neofunctionalization with gene loss
shaping much of the current variation in PLA, content
(Dowell et al. 2016). For example, certain species possess
a heterodimeric PLA, f-neurotoxin (herein referred to as

“crotoxin-like” PLA,) which is formed by an interaction
of an acidic and a basic subunit (Riibsamen et al. 1971).
Despite an ancient origin of this neurotoxin, the correspond-
ing genes have been lost in several lineages despite being
associated with higher lethality in prey (Mackessy 2008;
Dowell et al. 2016, 2018; Borja et al. 2018; Rokyta et al.
2015b). Most of the research on PLA, variation has been
done in rattlesnakes, specifically in the large-bodied, low-
land clade, as several species in this group exhibit intraspe-
cific variation in the presence/absence of crotoxin-like
PLA,s (Strickland et al. 2018b; Dowell et al. 2018; Margres
et al. 2021; Zancolli et al. 2019; Neri-Castro et al. 2019).
Variation in specific toxins and in venom composition more
broadly is expected to be higher among lineages with sub-
stantial population genetic structure, with high environmen-
tal variation across their distribution, and between popula-
tions with low amounts of gene flow (Ochoa et al. 2020;
Margres et al. 2017, 2019). These factors are often present
in high elevation species, however, these groups are gener-
ally not well studied.

The genus Cerrophidion comprises five species of small
montane pitvipers distributed throughout Mesoamerica: C.
petlalcalensis and C. tzotzilorum in Mexico; C. godmani
from Mexico and Guatemala; C. wilsoni primarily in Hon-
duras, Guatemala, Nicaragua, and El Salvador; and C. sasai
in Costa Rica and Panama (Campbell and Lamar 2004; Jadin
et al. 2012; Fernindez et al. 2017) (Fig. 1). Until recently,
C. godmani, C. sasai, and C. wilsoni were thought to be a
single, wide-ranging species with substantial morphologi-
cal variation, however, phylogeographic analyses revealed
dynamic biogeographic processes which have resulted in
species diversification (Jadin et al. 2012). In particular,
montane lineages of pitvipers from Middle America have
complex evolutionary histories driven by the geologic events
and climatic changes that occurred in the Pliocene and Mio-
cene (Castoe et al. 2009; Daza et al. 2010). Cerrophidion
species have likely evolved in response to several vicariant
events across well-known biogeographic barriers (Castoe
et al. 2009; Daza et al. 2010): C. sasai and C. wilsoni are
separated by the Nicaraguan Depression; C. tzotzilorum and
C. petlalcalensis are separated by the Tehuantepec Isthmus;
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Fig.1 Cerrophidion distribution in Mesoamerica. Map modified
from VenomMaps (Rautsaw et al. 2022), with the localities of sam-
ples of each species used herein. Species are represented by different
shapes, different outline colors correspond to Northern populations
of that species.*Cerrophidion wilsoni was not included in this work.
Species tree scaled with IQtree from the inferred Astral tree; support

and C. godmani is separated from C. sasai and C. wilsoni
by the Motagua—Polochic Faults (Castoe et al. 2009; Daza
et al. 2010). C. godmani and C. tzotzilorum are the only spe-
cies that are not separated by a major biogeographic barrier
(Fig 1). As a more clear understanding of their evolutionary
history emerges, we are now able to further investigate other
biological aspects of Cerrophidion.

A thorough understanding of the venom composition
of Cerrophidion is lacking; published proteomic data on
venom composition are limited to C. sasai and individuals
of C. godmani with no associated locality data that may
correspond to any one of three distinct species (Gutiér-
rez et al. 1985; Gené et al. 1989; Arni et al. 1999; Lizano
et al. 2000; Chen et al. 2004; Durban et al. 2011; Lomonte
et al. 2012, 2014). Cerrophidion sasai venom is composed
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values correspond to the Astral species tree. Node shapes correspond
with the populations in the map. Pie charts in the tips show the per-
centage of expression of the five most abundant toxin families; the
remaining toxin families are included in the category “Other.” Photo
Credit: Jason M. Jones (C. tzotzilorum)

mostly of snake venom metalloproteinases (SVMPs) and
PLA,s, inducing intravascular coagulation, hemorrhages,
and myonecrosis due to the presence of D49 and K49 type
myotoxic PLA,s (Lomonte et al. 2012). Our knowledge of C.
petlalcalensis venom is restricted to an envenomation report
(Lopez-Luna et al. 1999): the venom was described as rela-
tively potent, where localized pain and swelling of the hand
and forearm started 15 minutes post bite and lasted for three
days despite the administration of polyvalent antivenom
(Lopez-Luna et al. 1999). Cerrophidion godmani, C. tzotz-
ilorum, and C. wilsoni venom composition is unknown;
however, coagulotoxic effects from their venom have been
described (Jones et al. 2022).

Given their complex phylogeographic history, montane
distribution, and the general lack of information regarding
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Table 1 Species information for Cerrophidion individuals used in this work

Collector ID Museum ID Sex Locality Age Class SVL (cm) Nontoxin Count Toxin Count
C. godmani

CLP2359 CHFCB-0271 F Union Juarez, MX A 46.5 1957 82
CLP2360 CHFCB-0272 F Union Juarez, MX A 343 2697 82
CLP2362 CHFCB-0274 F Union Juarez, MX A 42.0 3385 85
CLP2377 CHFCB-0290 F Las Margaritas, MX A 36.3 3462 78
CLP2378 CHFCB-0291 M Las Margaritas, MX A 45.0 3188 73
CLP2388 CHFCB-0300 F Union Juarez, MX J 17.1 3362 68
Average - - - - - 2933 78
Consensus - - - - - 5424 117
C. petlalcalensis

CLP2324 CHFCB-0236 M San Andres Tenejapan, MX A 36.1 3140 63
CLP2326 CHFCB-0238 F San Andres Tenejapan, MX A 41.9 5204 65
CLP2327 CHFCB-0239 M San Andres Tenejapan, MX A 36.7 3093 65
Average - - - - - 3812 64
Consensus - - - - 5252 53
C. sasai

- LIAP244 M Las Nubes, San Jose,CR A 424 2387 52
Consensus - - - - - 1879 28
C. tzotzilorum

CLP2364 CHFCB-0276 F Rayon Mescalapa, MX A 35.5 3272 81
CLP2366 CHFCB-0278 F San Cristobal de las Casas, MX A 37.0 3120 64
CLP2383 CHFCB-0296 M San Cristobal de las Casas, MX J 21.1 3327 78
CLP2903 CHFCB-0471 F Rayon Mescalapa, MX A 40.6 2477 81
Average - - - - - 3239 76
Consensus - - - - - 4746 85

Collector ID: CLP = Christopher L. Parkinson. Museum ID: CHFCB = Coleccion Herpetoldgica Facultad de Ciencias Bioldgicas, Universidad
Juarez del Estado de Durango (UJED), Durango, Mexico, and LIAP = Laboratorio de Investigaciones en Animales Peligrosos, Instituto Clo-
domiro Picado, San José, Costa Rica. Collection locality, age class: Adult (A) and Juvenile (J), measurements: snout-vent length (SVL) for spec-
imens used herein. Nontoxin count and toxin count refer to the number of annotated contigs. Average is the mean contigs by species; Consensus

is the number of contigs in the cleaned species consensus transcriptome

venom composition and variation within Cerrophidion, we
aimed to describe their venom gland transcriptomes, determine
if there is differential toxin expression among populations, and
determine if selection is driving toxin evolution in the venom.
To do this, we collected representatives of four of the five
described Cerrophidion: six C. godmani, four C. tzotzilorum,
three C. petlalcalensis, and one C. sasai (Table 1, Fig. 1).
Based on previous proteomic work on C. sasai, we expected
to see venoms with a high content of PLA,s, SVMPs, and
snake venom serine proteases (SVSPs), including myotoxic
PLA,s (Lomonte et al. 2012). Additionally, we inferred a PLA,
gene-tree using our newly generated transcriptomic data, and
previously published sequence data (Whittington et al. 2018;

Neri-Castro et al. 2020b; Mason et al. 2020) to classify Cer-
rophidion PLA, groups and infer their evolutionary history. To
investigate potential intraspecific and ontogenetic variation,
we tested for differential expression of toxins between popula-
tions and body sizes. Last, we tested for signals of selection
in toxins, comparing toxins against nontoxins genes. If toxins
have a greater mean genetic signal of selection than nontox-
ins, then an adaptive evolution hypothesis would be supported
for Cerrophidion venom. Alternatively, comparable levels of
toxin and nontoxin divergence would suggest Cerrophidion
venom is largely impacted by drift, possibly influenced by
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Fig.2 RSEM results for the consensus transcriptomes of A C. sasai,
B. C. petlalcalensis, and C. C. tzotzilorum. In A (I) barplot of the
log ranked expression of toxin genes, (II) pie charts of the percent
expression of each toxin family average of all individuals. In B and
C, (I) barplot of the log ranked expression of toxin genes, (II) stacked
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barplots with the percent expression of each toxin family by sampled
individual, (III) pie charts of the percent expression of each toxin
family average of all individuals. Photo Credit: A R. Wayne VanDev-
ender (C. sasai), B Carlos E. Montafio-Ruvalcaba (C. petlalcalensis),
and C Ramses A. Rosales-Garcia (C. tzotzilorum)
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Fig.3 RSEM results for the A average transcriptome of all individual
of C. godmani; B average of the northern population; and C average
of the southern population. In A (I) barplot of the log ranked expres-
sion of toxin genes, (II) stacked barplots with the percent expression
of each toxin family by sampled individual, (IIT) pie chart of the

their distribution in isolated mountain ranges and low disper-
sal capability.

percent expression of each toxin family for individual populations
and for all the individuals. In B and C, (I) barplot of the log ranked
expression of toxin genes; (II) pie chart of the percent expression of
each toxin family for individual populations and for all the individu-
als. Photo Credit: Carlos E. Montafio-Ruvalcaba (C. godmani)

Results

Cerrophidion venom gland transcriptomes were dominated
by PLA,s and SVMPs, followed by bradykinin-potentiat-
ing peptides (BPPs), C-type lectins (CTLs), L-amino acid
oxidases (LAAOQO), and SVSPs. Other toxins families were
present in lower percentages (Figs. 2 and 3). Cerrophidion
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petlalcalensis transcriptomes all had largely similar toxin
composition, while C. godmani and C. tzotzilorum both
exhibited variation in toxin composition and expression
corresponding to the geographic origin of individuals.
Toxin composition inferred from the C. sasai venom tran-
scriptome was similar to the results of previous proteomic
studies (Fig 2A II; Lomonte et al. 2012). Interestingly, a
single individual of C. godmani expressed PLA,s that were
inferred, based on phylogenetic placement, to be closely
related to both subunits of the crotoxin-like PLA,s of other
pitviper genera, suggesting intraspecific polymorphism for
neurotoxic venom.

Our species tree—used to test for selection—did not
recover C. godmani as a monophyletic lineage; instead we
recovered the northern population as sister to C. tzotzilo-
rum and C. petlalcalensis (Fig. 1). This structure might be
a result of possible introgression between the sympatric
populations of northern C. godmani and C. tzotzilorum
(Fig 1), which future work may help elucidate.

Venom Gland Transcriptome Composition

Toxins were more highly expressed than nontoxins in all
species analyzed (70.83 — 87.59% of the total expression in
transcripts per million (TPM; online resource 2, Table S3,
S4, S5). For C. petlalcalensis and C. tzotzilorum, SVMPs
were the most highly expressed toxin family followed by
PLA,s and SVSPs. In comparison, C. godmani and the indi-
vidual C. sasai had higher expression of PLA,s, followed by
SVMPs and SVSPs.

Interestingly, C. godmani and C. tzotzilorum both exhib-
ited intraspecific expression variation corresponding to
geographic location. For example, PLA, expression in the
northern population of C. tzotzilorum was higher than in the
southern population (36.79% compared to 10.58%, respec-
tively), though SVMPs were the most highly expressed toxin
family in both populations (39.07% compared to 61.25%,
respectively; Fig. 3C II; online resource 1, Fig. S1). In C.
godmani, the southern population exhibited a higher expres-
sion of PLA,s compared to the northern population (44.06%
compared to 26.93%, respectively) and SVMPs were more
highly expressed in the northern population (47.61% com-
pared to 31.53%, respectively; Fig. 3 B II and C II)

PLA, phylogeny

Previous studies on New World pitvipers have character-
ized five paralogs within PLA,s: the K49 myotoxic gK
PLA,s; two basic PLA,s gB1 and gB2 (the basic subunit of
crotoxin), and two acidic PLA,s gAl and gA2 (the acidic
subunit of crotoxin) (Whittington et al. 2018). We identified
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PLA, sequences similar to the groups gK, gB1 and gAl in
most of the species, with the exception of gK PLA,s in C.
petlalcalensis, and gB1 in C. sasai (Fig. 4A). Expression of
both PLA,s related to the crotoxin-like subunits (gA2 and
gB2) occurred only in a single individual, a small female
from the southern population of C. godmani (CHFCB-0272;
Fig. 4). Expression of these PLA, subunits suggests that
some individuals in the southern population of C. godmani
may possess a neurotoxic venom. However, this hypothesis
requires isolation of the toxins and confirmation of biologi-
cal activity from the venom.

Differential Expression

To assess expression variation within a species, we tested
for significant differences in toxin expression between
geographically discrete populations using DESeq2 and
edgeR R packages (Lov et al. 2014; Robinson et al. 2010).
Cerrophidion petlalcalensis and C. sasai were excluded
from these analyses due to a lack of population-level
sampling. We found 29 toxins and 77 nontoxins differ-
entially expressed between populations of C. godmani
(Fig. 5; online resources 2, Table S12), including the toxin
families CTL (10), SVMP (10), PLA, (5), SVSP (4). The
differentially expressed PLA,s were similar to the gAl
(C._godmani_1, C._godmani_4) and gK myotoxins PLA,s
(C._godmani_26, C._godmani_41) based on our tree
(Fig. 4). Additionally, we tested whether venom expres-
sion varied by body size by using snout-vent length (SVL)
as a proxy for discrete “adult” and “juvenile” categoriza-
tion, as we lacked replicates to directly test for differences
between these groups. Four toxins and 38 nontoxins were
differentially expressed (Fig. 5), including the toxins fami-
lies CTL (1), PLA, (1), SVMPII (1), SVSP (1). All of the
differentially expressed toxins had lower expression in the
smaller individual, and the differentially expressed PLA,
grouped with the gK myotoxins (C._godmani_42). Testing
differential expression on the added expression of toxin
families, we also found that SVMPIs and SVMPIIs are
differentially expressed across SVL, with higher expres-
sion in the larger individuals (online resource 1, Fig. S2;
online resources 2, Table S13). These data suggest that
there are ontogenetic changes in the venom. At the level of
entire toxin gene families, no families were differentially
expressed by population with either method.

For C. tzotzilorum, we found 10 toxins and 42 nontoxins
differentially expressed between populations, including the
toxin families CTL (3), PLA, (1), SVMPIII (2), and SVSP
(4) (online resource 1, Fig. S3). The differentially expressed
PLA, (C._tzotzilorum_1) had the highest average expression,
and grouped with the gA1 PLA,s in our phylogeny. Only one
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«Fig.4 A Consensus maximum likelihood tree of the PLA,s in Cer-
rophidion including PLA,s used in Whittington et al. (2018), Mason
et al. (2020), Neri-Castro et al. (2020b), and from Genbank (acces-
sion numbers in online resource 1, Table S1). The Cerrophidion
PLA,s (names highlighted in blue) are numbered by the toxin’s aver-
age expression for each species. Acidic and basic PLA,s are identi-
fied by red and blue branches, respectively, based on the hypothetical
isoelectric point of the amino acid sequences. Nodes with a black dot
have > 75 bootstrap support. Cerrophidion crotoxin subunit homologs
are identified by a star (*) next to the name. B Species tree scaled
with IQtree from the inferred Astral tree; lineages with crotoxin-like
subunit homologs are purple; support values correspond to the Astral
species tree. C Amino acid alignment of the gA2 clade and the hypo-
thetical homolog from Cerrophidion, dots represent no change from
the reference sequence (C._godmani_11). Sites represented with bars
match cleavage sites identified in Whittington et al. (2018); a black
star (*) at site 5 is the key substitution known in Bothriechis, Cro-
talus, and Gloydius; a red star (*) is at the alternative cleavage site
in C. godmani based on the protein cutter tool from ExPASy server
(https://web.expasy.org/peptide_cutter/.; Gasteiger et al. 2005) (Color
figure online)

toxin and 16 nontoxins were differentially expressed across
SVL; however, DESeq?2 alone indicated that 12 toxins were
differentially expressed including the toxin families CTL (3),
PLA, (2), SVMP (5), SVSP (1), and vascular endothelial
growth factor (VEGF; 1) (online resource 2, Table S14). The
PLA, C._tzotzilorum_1 was differentially expressed for SVL.
and between populations. Testing for the added expression
of toxin families (online resources 1, Fig. S4), we found that
PLA,s were differentially expressed only by DESeq2, with
higher expression in the northern population (Fig. 2C; online
resource 2, Table S15). Across SVL, DESeq2 found hya-
luronidase (HYAL), SVMPIII, and VEGF as differentially
expressed with higher expression of HYAL and SVMPIII
in smaller individuals and higher expression of VEGF in
larger individuals.

Signatures of Selection in C. godmani

We tested for signatures of selection within C. godmani
given our sample size and geographic coverage. However,
we were unable to compare among species as identification
of orthologous toxins is difficult due to the high abundance
of paralogs in several toxin families.

Sequence Diversity

After filtering by coverage and excluding invariant genes,
we had information on 68 toxins and 4,508 nontoxins
(Table 2; online resource 2, Table S7). While the number
of variants per Kbp was similar between toxins and non-
toxins (X, = 60.42 +3.58, X, oxins = 6.77 £4.31), non-
synonymous SNPs were proportionally greater in toxins
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than nontoxins (61 and 26%, respectively; y> = 230.22, df
= 1, p < 0.01). The number of variants per Kbp (squared
root transformed for normality) was not explained by
gene type (R*><0.01, p=0.68, b=0.01); however,
the number of nonsynonymous variants per Kbp (cen-
tered ratio log transformed) was explained by gene type
(R*=0.01, p < 0.01, b =99.1) (online resource 1, Fig.
S5). We found no significant relationship between nucleo-
tide diversity and gene type (R> < 0.01, p = 0.30, b = 0.04)
(online resource 1, Fig. S7).

Test of Selection

We first used Tajima’s D to test for signatures of selection.
The mean Tajima’s D for nontoxins was significantly less
than 0 (x = —0.19 +0.78, t = —16.19, df = 4507, p < 0.01, b = 0.48),
providing evidence for either directional selec-
tion of nontoxins or population expansion after a
recent bottleneck (Fig. 6A). However, the mean Taji-
ma’s D for toxins is not significantly different from 0
(x=-0.04+0.82,t=-0.35,df =67, p=0.73). This
potentially implies that toxins are evolving along a muta-
tion—drift equilibrium or that toxins are under highly vari-
able selection pressures, which neutralizes the signal of the
mean value. However, the variance of estimates of Tajima’s
D for toxins and nontoxins is not significantly different
(F =0.89, df, =4507, df, = 67, p = 0.46). Additionally,
toxins and nontoxins are not significantly different in their
estimates of Tajima’s D (R? < 0.01, p = 0.11, b = 0.10),
suggesting that there are no differences in selection for tox-
ins and nontoxins.

We also calculated Tajima’s D independently for non-
synonymous and synonymous variants (online resource
1, Fig. S7). For both substitution classes, mean Tajima’s
D values for nontoxins and toxins were < 0. However,
only nontoxins were significantly different from O for
synonymous substitutions. For both substitution types,
toxins and nontoxins did not differ significantly (Synony-
mous R? < 0.01, p=0.21, b =0.05; Nonsynonymous
’=184,df =1,p=0.17,b=0).

Next, we calculated Fg, between the northern and
southern populations of C. godmani (Fig. 6B). The Fg;,
values were not significantly explained by the gene type
(R? <0.01, p=0.60, b=0.01). Although the differ-
ence was nonsignificant, toxin genes had a higher mean
Fgr and higher standard deviation than the nontoxin
genes(X,,oxins = 0-19 £0.21, %, ., = 0.21 + 0.26).

We used the Branch-Site Unrestricted Statisti-
cal Test for Episodic Diversification (BUSTED) model
of HyPhy to detect signals of selection (Murrell et al.
2015). This model is based on the rate of synonymous
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Fig.5 Heatmap showing the log
TPM expression of toxins iden-

tified as differentially expressed
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Table2 SNPs statistics and selection metrics. Toxins and nontoxins
with SNPs from C. godmani, the number of SNPs in total and per
Kbp (mean + standard deviation), the number/proportion of nonsyn-

CHFCB-0272

CHFCB-0274 CHFCB-0271 CHFCB-0300

onymous and synonymous variants, and the mean =+ standard devia-
tion values of nucleotide diversity (x), Tajima’s D, F¢;, and BUSTED
model likelihood ratio test (LRT)

Total Non-
synonymous

Tran- SNPs

scripts

Class SNPs/Kbp

mous

Total Synony- Nucleotide

BUSTED
(LRT)

Tajima’s D Fgp

Diversity(r)

Nontoxin 4, 508

Toxin 68 390 6.423 +3.580 236 (61%) 154 (39%

32,657 6.766 +4.308 8,563 (26%) 24,094 (74%) 0.315 +0.081

—0.187 +0.777 0.189 +0.209 0.287 +1.038

) 0.325 +0.084 —0.035+0.824 0.203 +0.255 0.638 + 1.458

and nonsynonymous variants (%) and tests for evidence
that at least one site on at least one test branch has expe-
rienced positive selection. To compare toxins against
nontoxins, we used a nonparametric Kruskal-Wallis test
as the LRT results were not normal (Fig. 6C). We found
a significant relationship between the class of genes and
the LRT (x?=11.79,df =1, p < 0.01, b = 0.54) with
the toxins having a higher mean which indicates that they
are more likely to experience selection than nontoxins
(Xpontoxins = 0.29 £ 1.04,%,,.;,c = 0.64 + 1.46). However,
only one of the toxins (SVMPIII_39) analyzed was found
to be under significant positive selection (LRT p < 0.05).

Relationship Between Expression and Sequence Evolution
in Toxins

To test for a relationship between the expression level in
toxins and the sequence divergence, we used the natural
log of the average expression of the toxins (TPM). We then
evaluated if the differentially expressed genes between
populations were under stronger selective pressures or had
higher sequence divergence. First, we performed linear
regression between the average expression and Tajima’s D.
Our models showed that Tajima’s D increased with average
expression, however, the relationship was not significant and
explained very little of the variation (R* = 0.04, p = 0.10).
Next, we tested if toxins with Tajima’s D > 0 or < 0 (i.e.,
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Fig.6 Selection plots. Top: estimates of selection using A Tajima’s
D, B F, and C Likelihood Ratio Test (LRT) for the BUSTED model
for Toxins and Nontoxins, each with the Nontoxin 95th percentile
(dotted lines) to identify outlier toxins. The toxin family and the rank
based on highest-to-lowest average expression in the transcriptome is
displayed for toxins which fall outside the 95th percentile. Bottom:

those experiencing balancing or positive selection pressures,
respectively) had different relationships with expression. In
concordance with the full analysis, toxins with Tajima’s D
< 0 show a positive trend with higher selection pressures
being exerted on lowly expressed toxins. This trend was
inverted in toxins with Tajima’s D > 0; however, neither
group was significant (Fig. 6D). Similarly, differential
expression did not predict the strength of selection in toxins
(R? < 0.01, p = 0.91) (online resource, Fig. S8). Expression
level also failed to significantly predict Fg,, but did show
a trend of increased population differentiation in the tox-
ins with higher expression (R*> = 0.05, p = 0.06) (Fig. 6E).
Differential expression between populations was also not
a significant predictor of toxin F, (R? = 0.04, p =0.10),
which suggests that changes in the expression are not corre-
lated with divergence in the sequences of the genes between
populations (online resource, Fig. S8). The nonparametric
test of the LRT and the differential expressed toxins was
significant (y? =4.76, p = 0.03); however, the LRT was
not significantly correlated with the average expression of
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Linear regressions of the Toxin’s mean expression (Average TPM)
and estimates of selection including D Tajima’s D, E Fg;, and F LRT
of the BUSTED model. For Tajima’s D, dotted lines are regressions
considering all the transcripts (center), just positive values (top) and
just negative values (bottom)

toxins (R?> = 0.01, p = 0.56) (Fig. 6F). Nucleotide diver-
sity () is not correlated with the differential expression
between populations (R? < 0.01, p = 0.72), or to the aver-
age expression of the genes (log transformed for normality;
R? =0.03, p = 0.14; online resource 1, Fig. S8). Overall,
our results suggest that there is no correlation between
expression level and signals of selection in toxins.

Selection on Individual Toxins

We used the distribution of nontoxin values as a reference
to identify individual toxins that are outside the 95th per-
centile of the nontoxins for Tajima’s D, Fg;, and BUSTED
model LRT (Fig. 6A—C). With Tajima’s D, we identified four
toxins, three with values greater than 0 which suggests bal-
ancing selection (1 VEGF, 2 SVSPs), and one with a value
less than O suggesting positive selection (SVMPI). Similarly,
we found seven toxins with significantly higher F¢; values
(1 VEGF, 3 SVMPIIIs, 3 SVSPs), and eight toxins with a
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significantly higher LRT value (3 CTLs, HYAL, 2 SVMPIs,
SVMPII, SVMPIII, SVSP). From these toxins, only three
were found across multiple methodologies (VEGF_30,
SVSP_52, SVMPIII_39).

Discussion
Venom Composition and Expression Variation

The venom of Cerrophidion is dominated by five toxin fami-
lies: SVMPs, PLA,s, SVSPs, CTLs, and BPPs (Fig. 2, 3).
These toxin families are generally found in high abundance
within the venoms of Crotalinae species (Amazonas et al.
2018; Hofmann et al. 2018; Almeida et al. 2021; Strickland
et al. 2018a; Tasoulis and Isbister 2017). The venoms of
Cerrophidion species likely have proteolytic and hemolytic
activity given the high percentages of SVMPs, as well as
myotoxic activity due to the presence of PLA,s similar to
the gK PLA,s of Crotalus (e.g., Gutiérrez et al. 1985; Gené
et al. 1989; Arni et al. 1999; Lizano et al. 2000; Chen et al.
2004; Durban et al. 2011; Lomonte et al. 2012, 2014).

We found significant intraspecific variation in toxin
expression in C. tzotzilorum (Fig. 2C), which could indi-
cate local adaptation between the northern and southern
populations (Fraser et al. 2011; Strickland et al. 2018b).
This has been observed in other pitviper species, where
rapid toxin expression evolution occurred due to local adap-
tation between mainland and island populations; however,
this was restricted to lowly expressed toxins (Margres et al.
2016). Here, we found both lowly and highly expressed tox-
ins, including the most highly expressed toxin, were dif-
ferentially expressed between populations of C. tzotzilorum
(online resource 1, Fig. S3). According to Margres et al.
(2016) the observed difference herein might be explained by
the difference in divergence time. Cerrophidion lineages are
more ancient compared to the intraspecific lineages studied
by Margres et al. (2016). Margres et al. (2014a), observed
a similar pattern to ours when looking at range-wide geo-
graphic variation in toxin expression as opposed to island vs
mainland in C. adamanteus.

Lastly, the distribution of C. tzotzilorum is relatively
small and discontinuous, which may facilitate either local
adaptation or drift in these isolated populations resulting in
the differential expression of toxins. Such local adaptation
in different geographic regions has been observed in other
species with broad distributions, such as Crotalus scutulatus
(Strickland et al. 2018b). In contrast, our toxin sequence
evolution results for C. godmani suggest that mutation—drift
could also be driving evolution in toxin differential expres-
sion between populations as it does for sequence evolution.

We similarly found that C. godmani showed significant
variation between the southern and northern populations

(Fig. 3B and C). In the northern population of C. godmani,
the PLA,s were expressed less than in the southern popula-
tion, however, the toxin with the highest expression in the
northern population was a PLA, not expressed in the south-
ern population. This toxin is an acidic PLA, (gAl) related
to PLA,s from Bothrops and sister to a clade of PLA,s
from Gloydius (Figs. 4, 5). The southern population of C.
godmani, in general, exhibited higher expression of PLA,s
than the northern population; however, this difference was
not significant for total PLA, expression. Nonetheless, there
were several PLA, isoforms differentially expressed between
the two populations. Notably, one individual (CHFCB-0272)
expressed PLA,s similar to both subunits of crotoxin-like
toxins of other genera. The remaining individuals showed
nearly no expression of these PLA,s. The venom of the
southern population also showed a large percentage of
SVMPs. The venom of CHFCB-0272 was composed of
21.60% crotoxin subunits, 25.48% other PLA,s, 26.62%
SVMPs, and 26.30% other toxins families.

Cerrophidion petlalcalensis exhibited little variation
in the composition of toxins in its venom (Fig. 2B). Our
samples came from populations in Veracruz, Mexico. New
populations have recently been discovered in Oaxaca, Mex-
ico, several kilometers south of Veracruz (Torre-Loranca
et al. 2019). We lack information regarding the venom of
these populations and additional sampling might recover
intraspecific venom variation. However, C. petlalcalensis
diverged from C. tzotzilorum in the Pliocene, probably by a
vicariant event due to the tectonic movement that removed
the highlands connections between both sides of the Isthmus
of Tehuantepec (Daza et al. 2010; Castoe et al. 2009). It is
likely that this lineage underwent a bottleneck post-diver-
gence resulting in a population with low genetic diversity
given the short branch lengths between C. petlalcalensis
individuals in our species tree. This low genetic diversity
may have resulted in largely homogeneous venom pheno-
types within this population. Samples from the newly dis-
covered population would facilitate our understanding of the
evolutionary history of the species as they would allow us
to assess the genetic diversity of the species and test for dif-
ferential expression of the toxins among populations as we
did with C. godmani and C. tzotzilorum.

The sampled individual of C. sasai differed in the per-
centages of toxin families from what has been previously
described for this species using proteomics (Fig. 2A). Here,
we found a higher expression of PLA,s and lower expression
of SVSPs than Lomonte et al. (2012). The differences might
be methodological artifacts, given that we investigated the
venom gland transcriptome and Lomonte et al. (2012) ana-
lyzed the venom directly. Transcriptome and proteome com-
parisons have variable results, with high or low correlation
depending on the methodologies used (Rokyta et al. 2015a;
Durban et al. 2011). Another potential source of variation
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might be that Lomonte et al. (2012) used pooled venom sam-
ples from several individuals and therefore profiling within
species variation in the expression of toxin families. How-
ever, given the isolated distribution of C. sasai and the low
genetic variation within the species (Sasa 1997), the venom
likely has little variation similar to C. petlalcalensis.

PLA,s in Cerrophidion

The evolution of PLA,s has been extensively studied, par-
ticularly in rattlesnakes (Glenn et al. 1994; Wooldridge et al.
2001; Mackessy 2008; Dowell et al. 2016, 2018; Whitting-
ton et al. 2018). Unique combinations of different PLA,
paralogs have been found in the venom of rattlesnakes both
between and within species, and ancestral character recon-
struction suggests that the specific arrangement is the result
of gene loss (Dowell et al. 2016, 2018). The most recent
common ancestor (MRCA) of rattlesnakes likely possessed
an expanded array of PLA, paralogs, including the two
subunits that form the crotoxin-like neurotoxins (Dowell
et al. 2016). Cerrophidion species show a high diversity
of PLA,s with unique paralog compositions based on our
phylogeny. Cerrophidion petlalcalensis has gB1 and gAl
PLA,s and lacks gK PLA,s; C. sasai has gK and gA1 PLA,s
and lacks gB1 PLA,s. Cerrophidion tzotzilorum has copies
of gAl, gB1, and gK PLA,s in both populations and differs
in the expression of the paralogs. Cerrophidion godmani
seems to have different PLA, gene composition between
populations as only the northern population has the gAl
PLA, C._godmani_4, while only the southern population
has the gA1 PLA, C._godmani_1. Additionally, the southern
population seems to be polymorphic given the presence of
the crotoxin-like subunits in CHFCB-0272, this individual
expresses all the other paralogs as well. The composition
of PLA, genes in Cerrophidion seems to have evolved as in
Crotalus, with unique arrangements originating from gene
loss. However, there are individuals of C. godmani that
express all the PLA, groups, as in the hypothetical rattle-
snake MRCA proposed by Dowell et al. (2016). This sug-
gests that the genotype with all proposed PLA, paralogs was
present in the MRCA of Cerrophidion and rattlesnakes, and
likely in the MRCA of all New World pitvipers.

The C. godmani acidic PLA,, similar to the gA2 group,
exhibits a proline in position 127 (Fig. 4C at site 5), hypoth-
esized to be the ancestral state of acidic PLA,s prior to the
evolution of the gA2 group (Whittington et al. 2018). A pro-
line in that position blocks the cleavage recognition residual
(phenylalanine) in position 126 (Keil 1992) and cleavage of
this site is necessary for the folding of a functional acidic
crotoxin subunit (Whittington et al. 2018). A substitution of
proline for other amino acids unlocks the cleavage recogni-
tion residual specific for chymotrypsin-like SVSPs (Whit-
tington et al. 2018; Keil 1992). Bothriechis, Crotalus, and
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Gloydius have a serine at position 127 in their homologs of
2A2 PLA,s and the recently discovered melanurutoxin from
Mixcoatlus melanurus has a leucine, demonstrating that
different amino acids at position 127 have the potential to
unlock this site (Neri-Castro et al. 2020b; Whittington et al.
2018) (Fig. 4C). Whether the toxins present in C. godmani
are functional as a chaperone and phospholipase activity
agonist for the basic subunit is still unknown (Radvanyi and
Bon 1982). If they are neurotoxic, this would mean that a dif-
ferent cleavage recognition residue at site 5 might facilitate
cleavage. The homolog of the acidic subunit of C. godmani
shows sequence differences upstream of position 127, with a
tryptophan and two consecutive phenylalanines at positions
124-126. This may cause local changes in secondary struc-
ture or protease recognition that may facilitate an alterna-
tive cleavage site in this homolog. According to the peptide
cutter tool from the ExPASy server (https://web.expasy.org/
peptide_cutter/; Gasteiger et al. 2005) (online resource 1,
Fig. S9), tryptophan or phenylalanine residues might act as
cleavage recognition sites, although the tryptophan at posi-
tion 124 has a higher probability of being cleaved (Fig. 4C,
red asterisk)). Additionally, this tryptophan residue is highly
solvent exposed (site-specific solvent accessible surface area
(SASA) 104.31 at position 126, online resource 2, Table S2),
which would permit attack by a protease. An alternative
hypothesis is that the acidic subunit homologs of C. godmani
have functions similar to other acidic PLA,s given that the
sequence of C. godmani_4 and the gAls from different taxa
in the same group (Gloydius and Bothrops) have tryptophan
and two phenylalanines at positions 124—126. The expres-
sion levels of the subunits support the former hypothesis
for the presence of a crotoxin-like toxin; representing 11.89
and 9.70% of the total venom expression for the acidic and
basic subunits, respectively, within CHFCB-0272. Further
research on the biological activity and on the proteomics of
the venom is needed to discover the function of these PLA,s.
Clinical records could also help to understand effects of the
venom, although snake bite reports from Mexico and Central
America usually lack a trustworthy identification of the spe-
cies involved in the envenomation (Neri-Castro et al. 2020a;
Gutiérrez 2014).

Toxin Sequence Variation and Selection

Our results suggest that toxins and nontoxins are evolving
under the same evolutionary pressures supporting a main
influence of mutation—drift equilibrium. Tajima’s D distri-
butions for toxins and nontoxins were similar with slightly
more variation in toxins. However, an F-test showed that the
variance of toxins and nontoxins do not differ significantly
(F =0.85, p = 0.13), suggesting it is unlikely that diverse
selection pressures are acting on the toxins and therefore
masking a true significant difference (Rautsaw et al. 2019).
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A pattern of toxin evolution by mutation—drift equilib-
rium has been found in other species including Bothriechis
nigroviridis, B. nubestris, Crotalus cerastes, Protobothrops
mucrosquamatus, and Sistrurus catenatus (Rautsaw et al.
2019; Aird et al. 2017; Ochoa et al. 2020; Mason et al.
2020).

Several factors might influence the evolutionary his-
tory of toxins, particularly effective population size and
diet (Ochoa et al. 2020; Holding et al. 2021b; Mason et al.
2022). In the case of C. godmani, data regarding population
sizes are lacking, though Campbell and Lamar (2004) sug-
gested they are abundant within their range. It is likely that
they form isolated populations with low gene flow given that
they inhabit high elevation, discontinuous mountain ranges.
The mean F¢; (Nontoxins = 0.181, Toxins = 0.182) suggest
moderate differentiation between populations, indicating low
gene flow at least between the populations sampled herein.
Their isolated, patchy distribution might result in smaller
effective population sizes, thereby increasing the influence
of drift in these populations and potentially masking the
effects of selection. Including more populations in future
studies might change our current interpretation as the popu-
lation genetic structure of the species is unknown. Margres
et al. (2019) found that species with more generalist diets do
not diverge in venom unless there is absence of gene flow.
Cerrophidion godmani is considered a diet generalist (Sch-
ramer et al. 2018; Campbell and Solérzano 1992), and the
mean values of Fg suggest partial differentiation between
southern and northern populations. Both toxin and nontoxin
genes show differentiation between populations but were
not significantly different from one another, suggesting that
toxins are not experiencing directional selection. Instead,
balancing selection may play a larger role in toxin differ-
entiation in this species (Margres et al. 2019). The venoms
of species with phylogenetically diverse diets evolve under
balancing selection that maintains an increased number of
toxins (Holding et al. 2021b). Our results partially support
this pattern in C. godmani, as its diet is phylogenetically
diverse and its venom could be considered complex consid-
ering the number of toxins in the consensus transcriptome (a
total of 117). However, our results do not suggest a predomi-
nant influence of balancing selection on the toxins. Instead,
toxins appear to be in mutation—drift equilibrium within C.
godmani. These results are limited by the sample size and
filtering protocols used here. Specifically, toxins that could
be experiencing directional selection in some individuals or
are new paralogs of toxin genes might have not been con-
sidered as they are not present in most of the individuals
and thus not analyzed. A population-wide study would help
to further clarify the evolutionary history of these toxins,
including genes homologous to crotoxin subunits found in

one individual. Only a small number of toxin genes seem to
be experiencing directional or balancing selection. Accord-
ing to Holding et al. (2021b), the primary toxin families
associated with more complex venom in snakes with phy-
logenetically diverse diets are PLA,s, SVMPs, and SVSPs.
Further, Schield et al. (2022) found signals of balancing
selection driving sequence evolution in PLA,s, SVMPs, and
SVSPs within and between Crotalus oreganus and Crotalus
viridis. We would expect that these families evolved by bal-
ancing selection, assuming a complex venom and a phyloge-
netically diverse diet. In Cerrophidion godmani, the toxins
subjected to balancing selection belong to the toxin families
VEGF and SVSP(2), according to Tajima’s D. Therefore, our
results do not support the balancing selection hypothesis as
more toxins appeared to be in mutation—drift equilibrium.
However, our analysis is focused only on intraspecific vari-
ation, whereas the study of Holding et al. (2021b) addressed
variation on both larger taxonomic and time scales. A more
extensive study on Neotropical pitvipers might show agree-
ment with what is known for Nearctic pitvipers, though it is
also possible that given the different evolutionary pressures
and demographic histories experienced by Nearctic and Neo-
tropical snakes, similar patterns may not be expected to be
maintained.

A few toxins—including SVMP, SVSP, and VEGF toxin
families (Fig 6A—C)—were regularly found outside of the
nontoxin’s 95 percentile distribution in our selection analy-
ses. These toxin families have a wide variety of biological
functions; however, they might be most closely associated
with hemorrhagic effects in their prey (Fox and Serrano
2005; Yamazaki et al. 2009; Jones et al. 2022). Cerrophid-
ion godmani has a hemorrhagic venom (Jones et al. 2022),
which suggests that these few toxins have key functions in
prey acquisition by causing massive tissue degradation and
internal bleeding.

Expression is not correlated with signals of selection on
toxin genes. We found a nonsignificant trend of increas-
ing values of Tajima’s D, Fg, and LRT with higher aver-
age expression in the toxins of the venom. This trend sug-
gests that highly expressed toxins are evolving by balancing
selection and toxins with low expression have more signals
of positive selection. This pattern contrasts with what was
found for Crotalus cerastes, where the lower expressed
toxins are evolving by balancing selection (Rautsaw et al.
2019). Although expression does not correlate with the sig-
nals of sequence selection there is clear expression differen-
tiation between populations in C. godmani given the number
of genes that show differential expression (Fig. 5), which
might indicate that selection in the venom is acting on levels
of expression instead of on sequence evolution.
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Conclusions

We found evidence of venom variation between and within
species: Cerrophidion petlalcalensis has a homogeneous
venom, with little variation between individuals; C. godmani
and C. tzotzilorum showed intraspecific variation in the tox-
ins present and in the expression of individual toxins. This
variation was observed between geographic populations, as
well as by body size, suggesting possible ontogenetic shifts
in the venom composition. Overall, sequence variation in
toxins and nontoxins in C. godmani was not significantly
different across multiple tests for selection. Instead, the evo-
lution of toxin genes seems to be driven by mutation—drift
equilibrium with no relationship to toxin expression. The
presence of myotoxic PLA,s gK seems to be widespread in
most Cerrophidion species, except C. petlalcalensis. Addi-
tionally, acidic and basic subunits of homologous crotoxin-
like PLA,s were discovered in one specimen of C. godmani,
which suggests that this species might have the heterodi-
meric crotoxin-like neurotoxin. These PLA,s were found
in a single, southern population individual, which suggests
there is intraspecific variation for the presence of this trait
as observed in other pitviper genera such as Crotalus. Over-
all, our combined results support the hypothesis that drift
is potentially the key evolutionary force shaping sequence
evolution in highland pitviper species.

Materials and Methods
Sample Collection

We collected six specimens of C. godmani from two popula-
tions in Mexico: two from the Central Highlands of Chiapas
(Las Margaritas), and four from the Sierra Madre de Chia-
pas, close to the border with Guatemala (Union Juarez); four
specimens of C. tzotzilorum from two populations in the
Central Highlands of Chiapas, Mexico (Rayon Mescapala
and San Cristobal de las Casas); three specimens of C. pet-
lalcalensis from San Andres Tenejapa (Veracruz, Mexico);
and one specimen of C. sasai from Las Nubes Coronado,
San Jose, Costa Rica (Fig. 1, Table 1). We extracted venom
from the individuals by allowing the snakes to bite a sterile
cup covered with parafilm. Four days after the venom extrac-
tion, we euthanized the snakes with an injection of sodium
pentobarbital (100 ’Z—;) and excised the venom glands in order

to maximize mRNA transcription (Rotenberg et al. 1971).
We preserved the glands in RNAlater at 4°C, then moved the
glands to permanent storage at —80°C. All protocols involv-
ing live snakes followed ASIH guidelines and were approved
by the Clemson University Animal Care and Use Committee
(Animal Use Protocol 2017-067).

@ Springer

cDNA Libraries Prep and Sequencing

RNA extraction and sequencing were done following Hof-
mann et al. (2018). Briefly, we diced the venom glands and
placed them in a TRIzol solution (Invitrogen). The homog-
enized mixture was transferred it to a phase-lock heavy gel
tube (5Prime). We waited until the cells were lysed, and
then isolated and purified RNA using chloroform followed
by isopropyl alcohol and ethanol precipitation. We quanti-
fied RNA using a Qubit RNA BroadRange kit, and checked
the quality of the RNA using a Bioanalyzer 2100 with an
RNA 6000 Pico Kit (Agilent Technologies). The mRNA
was isolated with NEBNext Poly(A) mRNA Magnetic Iso-
lation Module (NEB#E7490). We prepared cDNA libraries
using a NEB Next Ultra RNA Library Prep Kit for [llumina
(NEB#E7530) following the manufacturer’s recommenda-
tions. We used a fragmentation time of 13 minutes, 30 sec-
onds to achieve a target mean fragment size of 400 bp, and
14 PCR cycles for amplification of double-stranded cDNA
libraries. We quantified library yield and quality with a Bio-
analyzer 2100, and determined the total amplifiable con-
centration of cDNA using KAPA qPCR. We pooled equal
concentrations of samples and assessed the final concentra-
tion and quality of our pooled libraries with a Bioanalyzer
and with KAPA qPCR. The libraries were sequenced on
an Illumina HiSeq2500 or NovaSeq 6000 platform at the
Translational Science Laboratory in the College of Medicine
at Florida State University.

Transcriptome Assembly

We trimmed the adaptors and low-quality sequences of the
raw Illumina sequences with TrimGalore! (v0.6.6, https://
github.com/FelixKrueger/TrimGalore), set to trim reads
with a quality score lower than 5 and a length below 75
bp. We merged the forward and reverse reads with PEAR
(v0.9.6) (Zhang et al. 2014). For the subsequent analyses
we used GNU parallel 20201122 software for multiprocess
computing (Tange 2020). We used Trinity (v2.11.0) (Grab-
herr et al. 2011), SeqMan Ngen (v14) (using the Lasergene
DNAStar software package; Madison, WI, USA: https://
www.dnastar.com/t-nextgenseqman-ngen.aspx), and
Extender (Rokyta et al. 2012) to de novo assemble contigs
following the recommendations of (Holding et al. 2018). We
merged the assemblies and ran cd-hit-est (Fu et al. 2012)
with a sequence identity threshold of 1 to filter redundancy
in our combined assembly. We annotated toxin and non-
toxin sequences with ToxCodAn (Nachtigall et al. 2021), a
method that uses general Hidden Markov Models (gHMM)
to identify the toxin genes. We complemented the output of
ToxCodAn with a manual annotation of toxin sequences.


https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://www.dnastar.com/t-nextgenseqman-ngen.aspx
https://www.dnastar.com/t-nextgenseqman-ngen.aspx

Journal of Molecular Evolution (2023) 91:514-535

529

Manual annotation was done following the methodology
in (Hofmann et al. 2018). Briefly, we ran blastx (v2.10.1)
against UniProt animal venom proteins and toxins database
(https://www.uniprot.org/program/Toxins), then we used
SignalP (Petersen et al. 2011) and cd-hit-est to automati-
cally annotate the genes and extract the coding sequences
from the contigs by comparing the contigs to a database of
existing pitviper transcripts (Rokyta et al. 2013). The genes
that were not automatically annotated were manually anno-
tated using the output of blastx. Specifically, we compared
all potential open reading frames (ORF) to the blastx results
and annotated the best-matched ORF, with regard to percent
identity and sequence length, with the appropriate toxin fam-
ily. We concatenated the output of ToxCodAn and of the
manual annotation and ran cd-hit-est with a threshold of 1
to remove the redundant sequences. We ran ChimeraKiller
(https://github.com/masonaj157/ChimeraKiller) to eliminate
chimeric sequences. Briefly, reads are mapped to the anno-
tated transcriptome and transcripts with zero coverage at any
position are removed. Chimeric transcripts are then reported
by searching for a difference > 75% (-d 0.75) in the average
length of reads on either side of a given site based on the
average read size. A final manual revision was done to check
for misplaced sequences. We merged the sequences cleaned
by ChimeraKiller and ran cd-hit-est with a threshold of 0.99
to keep only one copy of each gene. We made a consensus
species transcriptome by concatenating the transcriptomes
of all individuals for each species and running cd-hit-est
with a threshold of 0.98 to remove any variants between
individuals. Additionally, we filtered sequences with internal
stop codons, no stop codons, or an incomplete translation
frame.

Expression Quantification and Differential
Expression

We used the consensus transcriptomes generated for each
species and the merged reads to calculate the expression
of the genes using RSEM (Li and Dewey 2011) with Bow-
tie2 as the aligner with default settings. We then removed
the toxins that were below the 5% percentile of average
expression to avoid including contamination from highly
expressed toxins from other samples sequenced with our
samples. We repeated the RSEM (Li and Dewey 2011)
expression analysis with the reduced data set (see online
resource 2, Table S3, S4, S5, S6). For visualization, we
took the mean transcripts per million reads (TPM) for each
toxin in a given species. Results were plotted using (R
Core Team 2020) with the plotting script included in Tox-
CodAn. Names of the toxins in the figures were set as the
toxin family and the ranking of average expression of the
toxin for the species (see online resource 2, Table S8, S9,
S10, S11). We used expected counts from RSEM and R

packages DESeq2 (Lov et al. 2014) and edgeR (Robinson
et al. 2010) to test for differences in expression between
northern and southern populations for C. godmani and for
C. tzotzilorum. Cerrophidion petlalcalensis and C. sasai
were excluded from differential expression analyses given
a lack of population-level sampling and body size varia-
tion in the samples. We used SVL to test if body size influ-
ences gene expression as a proxy for ontogenetic shifts.
Although sexual dimorphism of the venom has been found
in some species (Zelanis et al. 2012, 2016), that is not
always the case (Saviola et al. 2015; Franco-Servin et al.
2021). We did not add sex as a factor in our experimen-
tal design as we lacked of biological replicas of at least
one of the sexes in every species. For DESeq2, we used
a Wald significance test with a local fit dispersion and
used a false-discovery rate (FDR) < 0.05 as the threshold
for differentially expressed genes. For edgeR, we used a
likelihood ratio test (LRT) and, as in DESeq2, we used
a FDR < 0.05 as the significance threshold. We repeated
DESeq and edgeR test for the accumulated expression
of each gene family including all nontoxin genes as both
packages use all information to fit the dispersion. We cre-
ated heatmaps of the expression of the toxins in R with
package pheatmap (Kolde 2019) to visualize differences in
expression and differential expression among populations
or across SVL.

PLA, Phylogeny and Proteomic Alignment

To reconstruct the PLA, phylogeny for Cerrophidion, we
combined the PLA, sequence data from (Whittington et al.
2018; Neri-Castro et al. 2020b; Mason et al. 2020), and
additional PLA, sequences available in GenBank (see online
resource 2, Table S1). We extracted the annotated PLA,s
of the consensus transcriptome for each of our species and
aligned them with the other sequences using MAFFT v7.475
(Katoh and Standley 2013). We used CIAlign v1.0.10 and
trimal v1.4.rev15 to clean and trim the alignment (Tume-
scheit et al. 2020; Capella-Gutiérrez et al. 2009). As the
Python bivittatus PLA, was discarded by CIAlign we concat-
enated the sequence at the end of the cleaning and trimming
process and realigned with MAFFT. We used this alignment
as input for IQTree using ModelFinder and 1000 ultrafast
bootstrap replicates (Kalyaanamoorthy et al. 2017; Hoang
et al. 2018; Nguyen et al. 2015). The PLA,s we generated
were translated with Biopython (Cock et al. 2009) while
the PLA,s from GenBank were downloaded as amino acid
sequences. The theoretical isoelectric points were calculated
with biopython (Cock et al. 2009). The translated sequences
were aligned with omega clustal algorithm in Geneious
Prime 2020.2.4 (https://www.geneious.com/; Sievers and
Higgins 2018). The cleavage sites of the sequences similar
to the acidic subunit of crotoxin were estimated using the
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ExPASy Peptide Cutter tool (https://web.expasy.org/pepti
de_cutter/; Gasteiger et al. 2005). We modeled the struc-
ture of the homolog of the gA?2 following (Whittington et al.
2018). We used the X-ray crystal structure of the Crotoxin
from Crotalus durissus terrificus (pdb:3ROL; Faure et al.
1991) as template for modeling. The model was built using
Modeller v 10.2 (Eswar et al. 2006). We built 10 independ-
ent structures with the method slow VFTM optimization
for 500 iterations, and slow MD refinement. The refinement
was repeated 4 times. The models were evaluated using the
DOPE-HR. We choose the model with the lower DOPE-
HR score to calculate the SASA using GetArea (http://curie.
utmb.edu/getarea.html; Fraczkiewicz and Braun 1998).

SNPs Calling and Selection Analysis

We followed the methodology of Rautsaw et al. (2019) for
variant calling with our C. godmani data. We excluded the
other species for this analysis due to low sample size or
lack of population sampling. Briefly, we mapped the merged
reads to the consensus transcriptome with BWA-MEM (Li
2013). We used Picard v2.12.1 (http://broadinstitute.github.
io/picard/) to sort and index the aligned reads. We followed
GATK v3.8.1 and v4.1.9 (software.broadinstitute.org/gatk/)
SNP calling pipeline (Auwera et al. 2013); we performed
a local realignment of regions with indels, removed reads
shorter than 120 nucleotides, called variants, performed
joint genotyping, and filtered SNPs. We phased the variants
using WhatsHap v0.15 (Martin et al. 2016). We then filtered
mapped contigs with a transcript coverage of 0 for more
than 5% of total length in order to avoid partial transcripts
and poorly mapped reads. We kept genes for analysis if they
were present in at least three individuals based on the cover-
age filter and if they had at least one SNP. We additionally
removed toxins that were under the 5% percentile in the first
RSEM analysis.

We used Tajima’s D, Weir and Cockerham’s Fg;, and
Nucleotide Diversity (x) to test if toxins have more selec-
tive pressures than the nontoxin genes following (Rautsaw
et al. 2019). We used several selection metrics as some of
them can potentially be influenced by demographic history
and population structure (e.g., Tajima’s D; Nielsen 2005).
Additionally, we used the BUSTED model from HyPhy
2.5.31(MP) (Murrell et al. 2015) to test for signals of posi-
tive selection in whole genes and used the LRT results to
test for significant differences in selection between toxins
and nontoxins. First we separated nonsynonymous and
synonymous SNPs using SnpEff v.5.0 using our consen-
sus transcriptome as a reference (Cingolani et al. 2012).
We calculated the SNPs per kilobase for each gene. We use
this value to test for significant differences between toxins
and nontoxins using linear regression. We also tested if the
type of mutation (i.e., nonsynonymous or synonymous) was
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significantly associated with the type of gene (toxin or non-
toxin) with a y? test. We used vcftools v0.1.16 (Danecek
et al. 2011) to calculate the nucleotide diversity (x), Tajima’s
D per gene and per site, and Weir and Cockerham’s F'g;- com-
paring northern and southern populations. We performed
all statistical analyses in R software (R Core Team 2020).

Testing for selection with HyPhy 2.5.31(MP) (Murrell
et al. 2015) requires a species tree. To generate a phylogeny,
we recovered 3,530 single-copy BUSCO loci with BUSCO
v5.2.2 (Simao et al. 2015). Next, we aligned each locus with
MAFFT v7.475 (Katoh and Standley 2013), and cleaned the
alignments with CIAlign v1.0.10 (Tumescheit et al. 2020).
We made preliminary gene trees with IQtree using Mod-
elFinder and 1000 ultrafast bootstrap replicates (Kalyaana-
moorthy et al. 2017; Hoang et al. 2018; Nguyen et al. 2015).
We used the consensus trees and the cleaned alignments to
run TreeShrink (Mai and Mirarab 2018). TreeShrink detects
and removes outlier long branches in a collections of trees.
We recovered the output alignments from TreeShrink and
cleaned them again using CIAlign. Finally, we trimmed the
alignments with trimAl v1.4.rev15 (Capella-Gutiérrez et al.
2009). We made final gene trees with IQtree using Mod-
elFinder and 1000 ultrafast bootstrap replicates. We concat-
enated the final 2,122 gene trees with the highest likelihood,
and used ASTRAL v5.7.7 (Zhang et al. 2018) to obtain a
species tree with default settings (Fig. 1). As the branch
lengths from ASTRAL are expressed in coalescent units
and all terminal tips have the same length, we constrained
the resulting ASTRAL tree topology and re-scaled branch
lengths using IQtree. Briefly, we concatenated the BUSCO
loci present in all the individuals (306), then used a custom
script to concatenate the genes and delimit the partitions
of the concatenated alignment to check for the best model
for each gene. We used IQtree to select the better evolution
model for each partition and scale the tree generated with
Astral (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017;
Nguyen et al. 2015). We trimmed the branches of C. godm-
ani of the species tree using the ape R package (Paradis and
Schliep 2019). We chose one of the two WhatsHap phased
alleles at random for each locus and each individual as input
for the BUSTED model (HyPhy v2.5.31) using the species
tree as the reference phylogeny (Murrell et al. 2015; Pond
et al. 2020). The BUSTED models test for evidence that at
least one site on at least one test branch has experienced
diversifying selection. We analyzed 4,497 nontoxins and 68
toxins with this method; for ten nontoxins the substitution
resulted in one internal stop codon for one individual.

For nucleotide diversity, we calculated the mean z (Nei
and Li 1979) for each gene and used a linear regression to
test for significance in 7 between toxin and nontoxin genes.
To avoid the effect of the sample size driving significant
differences regardless of effect size given that the num-
ber of nontoxins is higher than the toxins, we performed
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bootstrapping by taking a random sample of the nontoxins
matching the sample size of toxins and repeated the linear
regression 1,000 times. We report the proportion of repli-
cates with p < 0.05 in the linear regression as bootstrap sup-
port. Similarly, we use linear regression and bootstrapping
to test for significant differences with Tajima’s D (Tajima
1989), and F¢; (Wright 1949) between toxins and nontox-
ins. For Tajima’s D, we ran a t-test to evaluate if the mean
value from toxins and nontoxins was different from 0; and
repeated the linear model using only synonymous SNPs.
We performed a nonparametric Kruskal-Wallis test to com-
pare toxins and nontoxins Tajima’s D for nonsynonymous
SNPs due to their nonnormal distribution. We used a non-
parametric Kruskal-Wallis test to compare the values of the
likelihood ratio test (LRT) for the BUSTED model between
toxins and nontoxins. As for the linear regression tests, we
used bootstrapping for the nonparametric tests with 1000
iterations. To identify specific toxins under selection, we
generated a null distribution from the nontoxin transcripts
and identified toxins outside the 95" percentile of the distri-
bution for Tajima’s D (two-tail), F gy (right tail), and LRT of
BUSTED model (right tail). To test if low-expression toxins
were under stronger positive or balancing selection pres-
sures, we used linear regression with average toxin expres-
sion (In average TPM) as the response variable and Tajima’s
D, Fgr, and LRT of BUSTED model, we ran a regression
for each variable. We tested positive and negative values of
Tajima’s D separately to account for potential differences in
expression related to alternate selection pressures. We used
linear regression and bootstrapping as in the previous steps.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00239-023-10115-2.
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