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Metabolism energizes all biological processes, and its tempo may importantly
influence the ecological success and evolutionary fitness of organisms.
Therefore, understanding the broad variation in metabolic rate that exists
across the living world is a fundamental challenge in biology. To further
the development of a more reliable and holistic picture of the causes of this
variation, we review several examples of how various intrinsic (biological)
and extrinsic (environmental) factors (including body size, cell size, activity
level, temperature, predation and other diverse genetic, cellular, morphologi-
cal, physiological, behavioural and ecological influences) can interactively
affect metabolic rate in synergistic or antagonistic ways. Most of the interac-
tive effects that have been documented involve body size, temperature or
both, but future research may reveal additional ‘hub factors’. Our review
highlights the complex, intimate inter-relationships between physiology
and ecology, knowledge of which can shed light on various problems in
both disciplines, including variation in physiological adaptations, life his-
tories, ecological niches and various organism-environment interactions in
ecosystems. We also discuss theoretical and practical implications of interac-
tive effects on metabolic rate and provide suggestions for future research,
including holistic system analyses at various hierarchical levels of organiz-
ation that focus on interactive proximate (functional) and ultimate
(evolutionary) causal networks.

This article is part of the theme issue ‘The evolutionary significance of
variation in metabolic rates’.

1. Introduction

Metabolism embodies the complex assembly of biochemical reactions that all
organisms use to transform environmental resources into various structures
and activities. Given that metabolism can only occur as a result of a dynamic
interaction between the internal and external environments of an organism, it
is not surprising that many kinds of intrinsic (biological) and extrinsic (external
environmental) factors can affect its tempo [1-10]. Understanding what causes
the broad variation in metabolic rate that exists in the living world is a funda-
mental challenge in biology because metabolic rate is an important indicator of
the ‘pace of life’, which can significantly influence the ecological success and
evolutionary fitness of organisms ([5,10-12]; but see [13,14]). After many dec-
ades of research, we now know much about the effects of many intrinsic and
extrinsic factors, especially body size, activity level and temperature, on meta-
bolic rate both within and among species [8,15-24]. However, most studies have
examined the effects of each of these factors individually, irrespective of the
effects of other factors. Although useful and necessary for causal analyses,
single-factor analyses essentially assume that other factors not directly analysed
have independent effects on metabolic rate. By contrast, multiple-factor ana-
lyses are increasingly showing that the effect of one factor on metabolic rate
may depend on the effects of other factors. To obtain a realistic, more complete
picture of how various factors affect metabolic rate, these interactive effects
should be identified and quantified.

© 2024 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Schematic depiction of interactive effects of body size, temperature, and other intrinsic and extrinsic factors on metabolic rate. Body size and temperature
are pictured prominently because not only are they the most influential intrinsic and extrinsic factors, respectively, but also these factors are most often involved in
multifactorial interactive effects. Other intrinsic factors include genotype, sex, body shape and composition, activity level, developmental stage, thermoregulatory
mode, reproductive state and rate and cellular mode of growth. Other extrinsic abiotic factors include salinity, acidity (CO, levels), oxygen supply, water availability,
light intensity, season, captivity and habitat. Other extrinsic biotic factors include food organisms, predators and parasites. More details are provided in the text and

table 1.

Furthermore, an understanding of interactive effects on
metabolic rate has major theoretical and practical implications
(also see §6). For example, the influential ‘metabolic theory of
ecology’ (MTE) assumes that body size and temperature have
independent multiplicative effects on metabolic rate, and that
the mass-scaling exponent for metabolic rate is fixed at 3/4
[18]. However, as will be seen, these factors can interactively
affect metabolic rate in synergistic or antagonistic ways, and
these interactions should be incorporated into theoretical
models to improve their predictive accuracy. In addition,
many comparative studies of the effects of various environ-
mental factors on metabolic rate have assumed that they act
independently of the effect of body size. Based on this assump-
tion, the effect of body size is ‘removed’ by analysis of
covariance and other statistical methods that assume no
interaction between the effects of body size and the environ-
mental factor being considered. However, interactive effects
complicate these attempts at ‘body-size correction’ [25].

Diverse intrinsic and extrinsic factors significantly affect
metabolic rate both in relation to and independently of
body size. Recognition of these systematic, repeatable effects
has convinced many biologists that the mass-scaling expo-
nent for metabolic rate is highly malleable (as a result of
interactive effects of body size and other factors on metabolic
rate), thus undermining the once widely accepted 3/4-power
law of metabolic scaling [9]. Although the MTE is correct in
highlighting the substantial effects that body size and temp-
erature have on metabolic rate [8,15,26,27], we show that
our understanding of variation in the rates of metabolism
and other associated biological and ecological processes
will remain incomplete and even misleading until the interac-
tive effects of body size, temperature, and numerous other
intrinsic and extrinsic factors become better known and
appreciated (figure 1).

Therefore, two major purposes of this review article are to
(i) discuss how various intrinsic and extrinsic factors can

interactively cause or be associated with variation in metabolic
rate both within and across species (schematically represented
in figures 1 and 2; and details with literature sources provided
in table 1), and (ii) show why these interactive effects should
be considered in theoretical models or methodological
approaches focused on the rates and (or) size dependencies
of metabolism and other biological and ecological processes
and patterns that depend on metabolic energy, such as rates
of growth, development, and reproduction at the individual
level, and size-abundance relationships at the population
and community levels. We conclude that a holistic system
view of metabolic rate, involving interactive multi-directional
functional and evolutionary causal networks, is much needed.

Body mass is the most important intrinsic factor affecting
metabolic rate. Indeed, the rate of metabolism (R) has often
been well described by the power function R =aM", where a
is the scaling coefficient (or antilog of the intercept in a log-
linear plot), M is body mass, and b is the scaling exponent
(slope in a log-linear plot) [238,239]. Therefore, most interac-
tive effects between intrinsic factors on metabolic rate
involve body mass. They include significant effects of taxo-
nomic affinity, cell size (including cellular mode of growth),
genome size, genotype, gender (sex), activity level, mode of
locomotion, mode of thermoregulation, growth rate, life-
history stage, body shape, food processing (specific dynamic
action), reproductive state, reproductive strategy, molt-cycle
phase, body composition and social behaviour on the body-
mass scaling exponent (b) for metabolic rate (see table 1).
Other interactive effects of intrinsic factors on metabolic rate
include colony size and connectedness [117], gender and
reproductive effort [118] and trinary interactions among
body size, genotype and life-history stage [43].
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Figure 2. Examples of various types of interactive effects between intrinsic factors, extrinsic factors, and both on metabolic rate (documented by indicated refer-
ences: for more details, also table 1). Interactive effects involving body mass and other intrinsic and extrinsic factors are represented by blue lines. Interactive effects
involving temperature and other intrinsic and extrinsic factors are represented by red lines. Other joint effects of intrinsic and extrinsic factors on metabolic rate are
indicated by purple lines. Dashed lines designate multiple examples of a specific class of interactive effects.

Hypothetical mechanisms underlying many of the various
interactive effects of body size and other intrinsic factors on
metabolic rate are described in table 1. The most important
mechanisms appear to involve (i) geometric constraints on
resource supply and metabolic waste removal, as related to
surface area (SA) to volume (V) ratios at both the cellular
and organismal levels, (ii) effects of various resource-demand-
ing processes on metabolic rate, and (iii) the relative

proportions of the body that consist of tissues with high
versus low metabolic rates. These effects can be viewed in
the context of two interrelated theoretical frameworks, the
‘metabolic-level boundaries hypothesis’ (MLBH) [23,24] and
the ‘contextual multimodal theory” (CMT) of metabolic
scaling [8,27].

According to the MLBH, how metabolic rate (R) relates to
body mass (M) (i.e. its scaling exponent b) depends on the
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(Continued.)

Table 1.

interactive effects of intrinsic and extrinsic factors

selected sources
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direction of interactive effect®

. .[1.93.,1.94]. ....

salinity affects how the mass-scaling of metabolic rate changes with activity level

salinity and multiple interacting intrinsic factors

variable

body size and activity level

*Positive effects are synergistic, whereas negative effects are antagonistic.

intensity of R or its ‘metabolic level’ (L), which is a measure of
the elevation of a metabolic scaling relationship [23]. L depends
on the intensity of various resource-demanding processes, such
as growth, reproduction, thermoregulation, locomotion and
food processing. In isomorphic organisms with similar body
shapes and compositions, the scaling exponent b is predicted
to vary between two-thirds and 1, depending on L. For resting
metabolic rates (RMRs), when Lgyr is high (as in high-energy
endothermic birds and mammals), SA-related metabolic pro-
cesses related to resource supply and/or metabolic waste
removal (including heat dissipation) should predominate,
thus causing b to approach two-thirds, as often observed
[21,23,24,28,29,168]. However, when Lgyr is low and not lim-
ited by SA-related resource supply or metabolic waste
removal (as in low-energy ectothermic organisms and during
diapause, torpor, or hibernation), V-related metabolic pro-
cesses involving tissue maintenance should predominate,
thus causing b to approach 1, as often observed
[21,23,24,28,29,168]. Furthermore, for active metabolic rates
(AMRs), when Lawr is high as a result of heightened V-related
resource-demanding processes, such as growth, locomotion
and food-processing (specific dynamic action) that appear to
involve metabolic processes pervading many or all of the
tissues of the body, b should approach 1, as again often
observed [21-24,30]. Overall, for both RMRs and AMRs, the
MLBH predicts a concave upward relationship between b
and L, as observed in chitons, insects, fishes, birds and mam-
mals [21,23,24,31]. Therefore, the MLBH can help explain
several of the interactive effects on metabolic rate that involve
body size, including the modulating effects of activity level,
mode of locomotion, mode of thermoregulation, growth rate,
food processing and reproductive state (table 1).

The CMT, which embraces the MLBH, includes four
major modal mechanisms: SA-related fluxes of resources and
wastes (including heat), physical constraints of internal resource
transport on resource supply, body composition and various
processes affecting resource demand [8,27]. The effects of cell
size and cellular mode of growth on the body-mass scaling
exponent b can be explained in terms of geometric constraints
of cellular SA/V ratios on resource uptake and transport.
According to the cell-size theory of metabolic scaling, if
growth in size during ontogeny or evolution is mainly owing
to increases in cell size, b should be near two-thirds, whereas
if growth in size is mainly owing to increases in cell number
(thus maintaining a constant ratio of cellular SA to body V), b
should be near 1. If growth in size is owing to increases in
both cell size and number, then b should be between two-
thirds and 1. Evidence for these predicted patterns has been
provided by [32,37-40]. Furthermore, the effects of genome
size (which is highly correlated with cell size: reviewed in
[240]) on b can also be explained by cell-size theory [32,39,41].

Geometric constraints related to SA/V ratios can also
explain how body shape interacts with body size to influence
metabolic rate. Growth primarily in one or two of the longest
dimensions (elongation and flattening, respectively) allows
SA/V ratios to remain constant (rather than declining as
M5, as observed with isomorphic growth), thus permitting
the mass-scaling exponent for metabolic rate to approach 1,
as observed in several pelagic skin-breathing invertebrates
[69,80,105]. By contrast, growth primarily in the shortest
dimension (thickening), as occurs during the early develop-
ment of very slender American eels (Anguilla rostrata), is
related to b values lower than two-thirds [81].
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In addition, changes in body composition (among other
factors) can help explain why the mass-scaling exponent (b)
for metabolic rate may change with developmental (life-
history) stage. Shifts in the relative masses of tissues with
high versus low metabolic rates can significantly alter how
metabolic rate relates to body size [8,82,83]. Differences in
size-specific body composition may also help explain some
cases where the metabolic scaling exponent b differs between
the sexes (as in humans [48]).

Temperature is the most important extrinsic factor affecting
metabolic rate. Indeed, the effect of temperature on the rate
of metabolism and other biological processes has often been
well described by the exponential van’t Hoff-Arrhenius func-
tion e /¥T (where E is the apparent activation energy, k is
Boltzmann’s constant and T is temperature in Kelvin), or
by equivalent Arrhenius plots [17,18,241-243] or other math-
ematical coefficients [15,244]. However, as also seen for the
body-mass scaling of metabolic rate (see §2), the temperature
scaling of metabolic rate is highly malleable, as revealed by
significant effects of salinity, pH (CO,), oxygen supply, food
supply, toxicants, microplastics, latitude, altitude and eco-
logical lifestyle on the temperature sensitivity of metabolic
rate (table 1).

Many of these interactive effects involve increased resource
availability (thus facilitating temperature-related increases
in metabolic rate), heightened metabolic costs of specific
biological processes, or metabolic acclimation/adaptation
in environments with different temperature regimes (also
table 1). For example, increased oxygen supply, especially in
water, may allow metabolic rate to increase more easily
with increased temperature, without harmful effects of hypoxia
(though interactive effects of temperature and oxygen on meta-
bolic rate can be complex [235] and deserve further investigation
[245]). Increased food supply may similarly permit greater scope
of change in metabolic rate in response to increased temperature.
In addition, stressful impacts of extreme salinity or pH, or the
presence of harmful toxicants and microplastics may heighten
metabolic costs related to specific biological processes, such as
ionoregulation, osmoregulation or tissue repair, thus altering
temperature responses of metabolic rate. Furthermore, enhanced
temperature responses of metabolic rate exhibited by conspecific
organisms from higher latitudes or altitudes may be the result of
metabolic acclimation/adaptation to cooler environments
(see [132,136] and other references in table 1).

Light and predator cues also have interactive effects on
metabolic rate. In light, fish predator cues significantly alter
the metabolic rates of aquatic amphipod crustaceans, but not
in the dark [138]. This interaction makes adaptive sense,
because amphipods are more vulnerable to predation by
visually hunting fishes when it is light, than when it is dark.

Given the importance of body mass and temperature T in influ-
encing metabolic rate (as discussed in §§2 and 3), it is not
surprising that interactions between these two ‘hub factors’
are among the most common examples of interactive effects

of intrinsic and extrinsic factors on metabolic rate. Numerous m

studies have shown that the mass-scaling exponent b of
metabolic rate varies significantly with T (reviewed in
[20,24,27,169]). In plants and resting ectothermic animals, b
often decreases with increasing T, presumably because of the
increasing influence of SA-related metabolic processes at high
L, as predicted by the MLBH ([24,28,133,169,170] and other
references cited in table 1). By contrast, in actively growing
or moving ectothermic animals, b may increase with increas-
ing T, or show other patterns of covariation with T [24,169].
In addition, although cold exposure often causes b to increase
in ectothermic animals (approaching 1, owing to the increas-
ing influence of tissue V-related metabolic processes), the
opposite occurs in endothermic birds and mammals, where b
approaches 0.5, which approximates the scaling exponent
for thermal conductance [33]. Other extrinsic effects on b,
such as those owing to geographical location, may also be
explained by temperature effects on b. According to the
MLBH, metabolic scaling relationships exhibited by popu-
lations of ectotherms at cooler latitudes and altitudes should
have lower L values, and thus higher b values, as often
observed (see table 1).

Temperature effects on metabolic rate may also be altered
by various intrinsic factors, such as genotype, cell size and
activity level, independently of body size. For example,
increasing temperature increases metabolic rate more in
fishes with small versus large cells, probably because of
SA/V constraints at the cellular level [228].

Other examples of interactive effects of intrinsic and
extrinsic factors on metabolic rate include significant effects
of pelagic versus benthic life styles, food habits, habitat/
microhabitat, captivity, season, pH (CO,), salinity, oxygen
supply, water supply, light intensity, day versus night,
pollution, exposure to air versus water, predation, parasites
and food quantity/quality on the mass-scaling exponent (b)
for metabolic rate (table 1). Mechanisms involved in these
interactive effects may include size-related geometric (SA/V)
constraints on resource uptake and waste removal, or
size-related variation in the effects of different food quantity/
quality or of various resource-demanding biological processes.
For example, according to the MLBH, some habitat/microhabi-
tat effects on b may be explained by differences in the relative
influence of SA- versus V-related metabolic processes, which
are a function of metabolic level (L). In particular, when L
increases (and SA-related metabolic processes are expected
to become more important), as observed with transitions
from xeric to mesic habitats, subtidal to intertidal microhabi-
tats, and burrowing to non-burrowing habits, b decreases, as
predicted (also see [8]). Other extrinsic effects on b, such as
effects of season, day versus night, and pelagic versus benthic
life styles have been attributed to size-related differences in the
metabolic costs of various resource-demanding processes, such
as growth, reproduction and behavioural activity.

Life-history stage may also interact with various extrinsic
factors, such as temperature, oxygen and light intensity,
to affect metabolic rate. Apparently, the metabolic rates of
different life-history stages show different sensitivities to
warming, hypoxia and increased light intensity (table 1). For
example, in intertidal porcelain crabs (Petrolisthes laevigatus),
the metabolic rate of adults varies less in response to hypoxia
than does that of earlier life-history stages. These differences
have been attributed to greater homeostatic regulatory ability
in more mature crabs [84].
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Three-factor interactive effects have also been documented.
For example, extrinsic factors such as predation, pH (CO,), sal-
inity, nutrition and exposure to air versus water can modify the
effect of temperature on the mass-scaling exponent (b) for
metabolic rate (table 1). In particular, fish predator cues or habi-
tat regime significantly alter the effect of temperature on the
mass-scaling exponent (b) of freshwater amphipods, appar-
ently because of ontogenetic shifts in metabolically expensive
processes such as growth and behavioural activity, ultimately
caused by differences in size (age)-specific mortality between
habitats with and without fish predators [232,233]. Salinity
also affects how the mass-scaling of metabolic rate varies
with activity level in freshwater fishes [193,194].

5. Overview of interactive effects and their
mechanistic causes

Most of the interactive effects documented in our review
involve two factors. Relatively few involve three factors; and
we are not aware of any examples involving four-factor inter-
active effects. The challenges of testing for three- or four-factor
interactive effects are daunting. However, such studies may
allow us to gain a better understanding of how various factors
realistically affect the metabolic rate of organisms in nature,
where complex networks of ecological interactions occur.
For example, the effect of temperature on the mass-depen-
dence of metabolic rate in aquatic amphipods is completely
the opposite depending on whether fish predators or their
chemical cues are present or absent [232,233].

Although we have identified body size and temperature as
‘hub factors’, further research may reveal that other intrinsic
and extrinsic factors, such as cell size, activity level, life-history
stage and resource (food and oxygen) availability, have
sufficiently general influences on metabolic rate to be called
hub factors, as well. Cell size (and its correlate genome size)
may importantly influence metabolic rate in multiple ways,
including via geometric (SA/V) constraints on cellular
resource supply and effects of cell-size-related cellular
processes and composition on resource demand [39,246].
Activity level has profound influences on resource demand
that influence variation in metabolic rate, both with and inde-
pendently of body size [19-24,169]. The influence of many
intrinsic and extrinsic factors can vary significantly with life-
history (developmental) stage. Ontogenetic changes in various
intrinsic factors, such as body shape/composition, the cellular
mode of growth, anaerobic versus aerobic mode of metab-
olism, and rates of energy-demanding growth, reproduction,
thermoregulation and behavioural activity can profoundly
affect organismal metabolic rate and its scaling with body
size (table 1). In addition, the metabolic rate of early ontogen-
etic stages may be affected more/less by extrinsic factors,
such as temperature, oxygen availability and light intensity,
than are later ontogenetic stages (see table 1). Therefore, it is
important that experimental and comparative studies of bio-
logical and environmental effects on metabolic rate consider
not just adults, but also immature life stages [10]. Since meta-
bolic rate is fuelled by environmental resources, resource
quantity/quality is also a critical factor that should be given
increased attention (e.g. [34,247-252]). Laboratory studies of
individual and species variation in metabolic rate that are
based on ad libitum food conditions may not well represent
the natural conditions that organisms routinely face.

Finally, although hypothetical mechanisms for several
interactive effects have been identified (table 1), we still know
little about the mechanisms underlying many other interactive
effects (e.g. interactive effects of body size with genotype,
gender and reproductive strategy, of temperature with geno-
type, acidity and toxicants, and of life-history stage with
temperature, oxygen supply and light intensity). Moreover,
the hypothetical mechanisms that have been identified are
based mostly on proximate functional causes, which may
vary between major habitats and life-styles (e.g. aquatic
versus terrestrial species [22,169]). We still have much to
learn about the ultimate evolutionary causes for some interac-
tive effects, especially those involving interactive effects of
body size with phylogenetic affinity, ecological life style, life-
history stage, reproductive strategy and exposure to predators,
of temperature with latitude, altitude, ecological life style and
phylogenetic affinity, and of life-history stage with various
extrinsic factors. Exploring the relative roles of biological
regulation, adaptive evolution and genetic/developmental/
physical constraints in causing interactive effects on metabolic
rate represents a new, exciting frontier of research.

6. Theoretical and practical implications

Recognition of interactive effects on metabolic rate has
important theoretical and practical implications. For example,
theoretical models based on the 3/4-power law of metabolic
scaling, or the independent effects of only one or two major
factors (e.g. body size and temperature, as in the MTE)
require modification, so that they may more realistically
predict and explain variation of the rate of metabolism
and other metabolically dependent biological processes in
nature. Our review reaffirms the importance of variation
in body size and temperature in causing variation in meta-
bolic rate, but also shows that many other intrinsic and
extrinsic factors interact with these factors and each other in
substantial ways to affect metabolic rate (figures 1 and 2,
table 1). To explain these effects, multi-mechanistic models
that embrace various contingent effects should receive
increased attention, as has been promoted by several investi-
gators with respect to the diversity of metabolic rate and its
scaling with body size (e.g. [1,8,9,27,34,253-256]).

Our review highlights the complex, intimate interrelation-
ships between physiology and ecology, knowledge of which
should increase our understanding of various phenomena
in both disciplines. Knowing how various intrinsic and extrin-
sic factors interactively affect the metabolic rate of organisms
may enhance our understanding of not only why organisms
exhibit diverse physiological adaptations in different environ-
ments but also how their metabolic physiology may have
shaped their life histories, ecological niches, and interactions
with various abiotic and biotic environmental factors in
ecosystems (also see [257-259]). For example, limited genetic
variation, evolvability and/or phenotypic plasticity of
metabolic rate may potentially limit the niche space and
geographical range of a species (e.g. [260-262]).

Important practical applications of a knowledge of perva-
sive interactive effects on metabolic rate include (i) devising
better ways to ‘correct’ for effects of body size and tempera-
ture on rates of metabolism and other biological processes
in comparative analyses, (ii) making more realistic predic-
tions of effects of climate change on organisms and
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ecological systems, (iii) improving our understanding of how
various factors affect size-abundance relationships in popu-
lations and communities, and (iv) refining estimations of
drug dosages in humans and animals of different age. Poss-
ible methods for including interactive effects between body
size and various intrinsic and extrinsic factors in comparative
analyses that attempt to correct for the effects of body size on
metabolic rate and other traits, have been reviewed by [25].
Studies that attempt to correct for effects of temperature
on metabolic rate should also consider interactive effects.
Including interactive effects of various intrinsic and extrinsic
factors would also improve efforts to link physiological
measurements with organismal performance in natural
environments. In particular, predictions of how organisms,
populations and communities respond to climate change
would be made more realistic and reliable by including
interactive effects. This view is supported by the many
studies showing interactive effects between temperature and
several other factors on metabolic rate (table 1). In addition,
predictions of size-abundance relationships in populations
and communities could be made more accurate by consider-
ing interactive multi-factor effects on size-metabolism
relationships that are thought to underlie size-abundance
relationships, at least in part. Lastly, the accuracy of dosage
levels for drugs administered to humans and animals could
be improved by considering interactive effects between
body size and life-history stage on metabolic rate. Mass-
scaling relationships for metabolic rate (and similarly rates
of drug clearance) differ significantly between children
(juveniles) and adults [8,82,85,263,264].

We conclude that a holistic system view of metabolic rate,
involving interactive multi-directional causal networks, is
much needed. Metabolic rate is a ‘hub trait’ (or ‘super-trait’
[259]) with body size and temperature being major influential
‘hub factors’ that are, in turn, affected by many other intrinsic
and extrinsic factors, such as cell size, activity level, life-
history stage, the supply and demand for various kinds of
resources (including food and oxygen), ecological life style,
habitat and various biotic and abiotic environmental factors
(figures 1 and 2). Holistic system analyses of metabolic rate
should include interactive proximate and ultimate mechan-
isms operating at multiple hierarchical levels of biological
organization. As a result, our understanding of how and
why metabolic rate varies so much among organisms in
nature should be much improved.
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