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Metabolism energizes all biological processes, and its tempomay importantly

influence the ecological success and evolutionary fitness of organisms.

Therefore, understanding the broad variation in metabolic rate that exists

across the living world is a fundamental challenge in biology. To further

the development of a more reliable and holistic picture of the causes of this

variation, we review several examples of how various intrinsic (biological)

and extrinsic (environmental) factors (including body size, cell size, activity

level, temperature, predation and other diverse genetic, cellular, morphologi-

cal, physiological, behavioural and ecological influences) can interactively

affect metabolic rate in synergistic or antagonistic ways. Most of the interac-

tive effects that have been documented involve body size, temperature or

both, but future research may reveal additional ‘hub factors’. Our review

highlights the complex, intimate inter-relationships between physiology

and ecology, knowledge of which can shed light on various problems in

both disciplines, including variation in physiological adaptations, life his-

tories, ecological niches and various organism-environment interactions in

ecosystems. We also discuss theoretical and practical implications of interac-

tive effects on metabolic rate and provide suggestions for future research,

including holistic system analyses at various hierarchical levels of organiz-

ation that focus on interactive proximate (functional) and ultimate

(evolutionary) causal networks.

This article is part of the theme issue ‘The evolutionary significance of

variation in metabolic rates’.

1. Introduction
Metabolism embodies the complex assembly of biochemical reactions that all

organisms use to transform environmental resources into various structures

and activities. Given that metabolism can only occur as a result of a dynamic

interaction between the internal and external environments of an organism, it

is not surprising that many kinds of intrinsic (biological) and extrinsic (external

environmental) factors can affect its tempo [1–10]. Understanding what causes

the broad variation in metabolic rate that exists in the living world is a funda-

mental challenge in biology because metabolic rate is an important indicator of

the ‘pace of life’, which can significantly influence the ecological success and

evolutionary fitness of organisms ([5,10–12]; but see [13,14]). After many dec-

ades of research, we now know much about the effects of many intrinsic and

extrinsic factors, especially body size, activity level and temperature, on meta-

bolic rate both within and among species [8,15–24]. However, most studies have

examined the effects of each of these factors individually, irrespective of the

effects of other factors. Although useful and necessary for causal analyses,

single-factor analyses essentially assume that other factors not directly analysed

have independent effects on metabolic rate. By contrast, multiple-factor ana-

lyses are increasingly showing that the effect of one factor on metabolic rate

may depend on the effects of other factors. To obtain a realistic, more complete

picture of how various factors affect metabolic rate, these interactive effects

should be identified and quantified.

© 2024 The Author(s) Published by the Royal Society. All rights reserved.
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Furthermore, an understanding of interactive effects on

metabolic rate has major theoretical and practical implications

(also see §6). For example, the influential ‘metabolic theory of

ecology’ (MTE) assumes that body size and temperature have

independent multiplicative effects on metabolic rate, and that

the mass-scaling exponent for metabolic rate is fixed at 3/4

[18]. However, as will be seen, these factors can interactively

affect metabolic rate in synergistic or antagonistic ways, and

these interactions should be incorporated into theoretical

models to improve their predictive accuracy. In addition,

many comparative studies of the effects of various environ-

mental factors on metabolic rate have assumed that they act

independently of the effect of body size. Based on this assump-

tion, the effect of body size is ‘removed’ by analysis of

covariance and other statistical methods that assume no

interaction between the effects of body size and the environ-

mental factor being considered. However, interactive effects

complicate these attempts at ‘body-size correction’ [25].

Diverse intrinsic and extrinsic factors significantly affect

metabolic rate both in relation to and independently of

body size. Recognition of these systematic, repeatable effects

has convinced many biologists that the mass-scaling expo-

nent for metabolic rate is highly malleable (as a result of

interactive effects of body size and other factors on metabolic

rate), thus undermining the once widely accepted 3/4-power

law of metabolic scaling [9]. Although the MTE is correct in

highlighting the substantial effects that body size and temp-

erature have on metabolic rate [8,15,26,27], we show that

our understanding of variation in the rates of metabolism

and other associated biological and ecological processes

will remain incomplete and even misleading until the interac-

tive effects of body size, temperature, and numerous other

intrinsic and extrinsic factors become better known and

appreciated (figure 1).

Therefore, two major purposes of this review article are to

(i) discuss how various intrinsic and extrinsic factors can

interactively cause or be associatedwith variation inmetabolic

rate both within and across species (schematically represented

in figures 1 and 2; and details with literature sources provided

in table 1), and (ii) show why these interactive effects should

be considered in theoretical models or methodological

approaches focused on the rates and (or) size dependencies

of metabolism and other biological and ecological processes

and patterns that depend on metabolic energy, such as rates

of growth, development, and reproduction at the individual

level, and size-abundance relationships at the population

and community levels. We conclude that a holistic system

view of metabolic rate, involving interactive multi-directional

functional and evolutionary causal networks, is much needed.

2. Interactive effects of intrinsic factors
Body mass is the most important intrinsic factor affecting

metabolic rate. Indeed, the rate of metabolism (R) has often

been well described by the power function R = aM
b, where a

is the scaling coefficient (or antilog of the intercept in a log-

linear plot), M is body mass, and b is the scaling exponent

(slope in a log-linear plot) [238,239]. Therefore, most interac-

tive effects between intrinsic factors on metabolic rate

involve body mass. They include significant effects of taxo-

nomic affinity, cell size (including cellular mode of growth),

genome size, genotype, gender (sex), activity level, mode of

locomotion, mode of thermoregulation, growth rate, life-

history stage, body shape, food processing (specific dynamic

action), reproductive state, reproductive strategy, molt-cycle

phase, body composition and social behaviour on the body-

mass scaling exponent (b) for metabolic rate (see table 1).

Other interactive effects of intrinsic factors on metabolic rate

include colony size and connectedness [117], gender and

reproductive effort [118] and trinary interactions among

body size, genotype and life-history stage [43].
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Figure 1. Schematic depiction of interactive effects of body size, temperature, and other intrinsic and extrinsic factors on metabolic rate. Body size and temperature
are pictured prominently because not only are they the most influential intrinsic and extrinsic factors, respectively, but also these factors are most often involved in
multifactorial interactive effects. Other intrinsic factors include genotype, sex, body shape and composition, activity level, developmental stage, thermoregulatory
mode, reproductive state and rate and cellular mode of growth. Other extrinsic abiotic factors include salinity, acidity (CO2 levels), oxygen supply, water availability,
light intensity, season, captivity and habitat. Other extrinsic biotic factors include food organisms, predators and parasites. More details are provided in the text and
table 1.
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Hypothetical mechanisms underlying many of the various

interactive effects of body size and other intrinsic factors on

metabolic rate are described in table 1. The most important

mechanisms appear to involve (i) geometric constraints on

resource supply and metabolic waste removal, as related to

surface area (SA) to volume (V) ratios at both the cellular

and organismal levels, (ii) effects of various resource-demand-

ing processes on metabolic rate, and (iii) the relative

proportions of the body that consist of tissues with high

versus low metabolic rates. These effects can be viewed in

the context of two interrelated theoretical frameworks, the

‘metabolic-level boundaries hypothesis’ (MLBH) [23,24] and

the ‘contextual multimodal theory’ (CMT) of metabolic

scaling [8,27].

According to the MLBH, how metabolic rate (R) relates to

body mass (M) (i.e. its scaling exponent b) depends on the

reproductive state (e.g. [103,148–150])

reproductive strategy (e.g. [151])

molt cycle phase (e.g. [152])

social behaviour (e.g. [8])

activity level (e.g. [20–24,37,104–116])

growth rate (e.g. [20,46,119–128])

locomotion mode (e.g. [2,23])

taxonomic affinity (e.g. [1,9,20,23,25,34–37,41,64,72,92,93])

body composition (e.g. [8,49,50,72,91,153–158])

genotype (e.g. [32,95–98])

cell size or cellular mode of growth (e.g. [24,38–42,44,93,94])

life-history stage (e.g. [20,32,40,47–50,66,91,123,126,129–147])

interactive effects

of intrinsic factors

ecological life style  

pelagic versus benthic (e.g. [20,24,34,40,92,93])

food habits (e.g. [2,4,72,175–177])

habitat/microhabitat (e.g. [4,20,24,156,178–182])

captivity (e.g. [183])

geographical location (e.g. [180,184–191])

abiotic

environmental

factors
 

air versus water (e.g. [235–240])

salinity (e.g. [69,70,226])

water supply (e.g. [231])

oxygen supply (e.g. [24,66,227–230])

light intensity (e.g. [232,233])

multiple

extrinsic factors
temperature and pH (e.g. [218,262])

temperature and oxygen (e.g. [56,167])

temperature and salinity (e.g. [226])

temperature and nutrition (e.g. [243])

pH (CO2) (e.g. [218,225])

pollution (e.g. [201])

day/night  (e.g. [107,108,234])

genotype and life-history stage (e.g. [32])

food processing (e.g. [36])

body shape (e.g. [45–48,147])

genome size (e.g. [41,44])

gender (e.g. [51,99–103])

temperature (e.g. [20,24,33,34,

61–64,160,168,194,203–224])

predators (e.g. [119–125])

parasites (e.g. [241])

food quantity/quality (e.g.

[121,168,202,242–250]) 

season (e.g. [192–203]) 

interactive effects of

intrinsic and extrinsic factors

body size

cell size (e.g. [65])

genotype (e.g. [258])

activity level (e.g. [24,61,259,261])

salinity (e.g. [160–163])

latitude (e.g. [58,63,172,173])

food supply (e.g. [168,169])

microplastics (e.g. [171])

toxicants (e.g. [170])

pH (CO2) (e.g. [164,165])

altitude (e.g. [59])

temperature (e.g. [251])

light intensity (e.g. [233])

oxygen (e.g. [66])

life history stage and

extrinsic factors 

salinity, body size and activity level (e.g. [69,70])

light and predation (e.g. [60])

body size and genotype (e.g. [95])

body size and activity level (e.g. [24,61])

body size and thermoregulatory

mode (e.g. [64]) 

temperature

interactive effects of

extrinsic factors

colony size and connectedness (e.g. [30])

gender and reproductive effort (e.g. [31])

oxygen supply (e.g. [66,161,166,167])

ecological life style (e.g. [174])

biotic environmental

factors

temperature and predation (e.g. [67,68])

temperature and

intrinsic factors

phylogenetic affinity (e.g. [263,264])

multiple intrinsic

factors

mode of thermoregulation (e.g. [1,20,23,24,64,72,117,118])   

behaviour and thermoregulatory mode (e.g. [159])

light and air versus water (e.g. [235])

colony composition and ration level (e.g. [257])

metabolic

rate

growth rate and ration level (e.g. [252–254])

behaviour and extrinsic factors (e.g. [255,256])

Figure 2. Examples of various types of interactive effects between intrinsic factors, extrinsic factors, and both on metabolic rate (documented by indicated refer-
ences: for more details, also table 1). Interactive effects involving body mass and other intrinsic and extrinsic factors are represented by blue lines. Interactive effects
involving temperature and other intrinsic and extrinsic factors are represented by red lines. Other joint effects of intrinsic and extrinsic factors on metabolic rate are
indicated by purple lines. Dashed lines designate multiple examples of a specific class of interactive effects.
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Ta
bl
e
1.

(C
on
tin
ue
d.
)

in
te
ra
ct
iv
e
ef
fe
ct
s
of

in
tr
in
si
c
fa
ct
or
s

ty
pe

di
re
ct
io
n
of

in
te
ra
ct
iv
e

ef
fe
ct
a

un
de
rl
yi
ng

m
ec
ha
ni
sm

se
le
ct
ed

so
ur
ce
s

bo
dy

siz
e
an
d
re
pr
od
uc
tiv
e
sta
te

va
ria
bl
e

on
to
ge
ne
tic

m
as
s-
sc
ali
ng

ex
po
ne
nt
s
fo
rm

et
ab
ol
ism

m
ay
be

alt
er
ed

by
m
et
ab
ol
ic
re
qu
ire
m
en
ts
fo
r
re
pr
od
uc
tio
n,
in
clu
di
ng

eg
gs

[5
3,
10
6–
10
8]

bo
dy

siz
e
an
d
re
pr
od
uc
tiv
e

str
at
eg
y

ne
ga
tiv
e

in
eu
th
er
ian

m
am
m
als
,t
he

m
as
s-
sc
ali
ng

of
m
et
ab
ol
ic
ra
te
is
ste
ep
er
in
sp
ec
ies

w
ith

lit
te
r
siz
es
=
1,
th
an

th
os
e
w
ith

lit
te
r
siz
es
>
1

[1
09
]

bo
dy

siz
e
an
d
m
ol
t
cy
cle

ph
as
e

va
ria
bl
e

th
e
m
as
s-
sc
ali
ng

ex
po
ne
nt
fo
rm

et
ab
ol
ic
ra
te
va
rie
s
w
ith

m
ol
t
cy
cle

ph
as
e
in
a
sn
ak
e

[1
10
]

bo
dy

siz
e
an
d
bo
dy

co
m
po
sit
io
n

us
ua
lly

ne
ga
tiv
e

in
tra
-
an
d
in
te
r-s
pe
cifi
c
m
as
s-
sc
ali
ng

ex
po
ne
nt
s
fo
rr
es
tin
g
m
et
ab
ol
ism

m
ay
de
pe
nd

on
m
as
s-
re
lat
ed

ch
an
ge
s
in
bo
dy

co
m
po
sit
io
n

(e
.g
.d
ec
re
as
es
in
re
lat
ive

m
as
se
s
of
or
ga
ns
/ti
ss
ue
s
w
ith

hi
gh

m
et
ab
ol
ic
co
sts
,i
nc
lu
di
ng

br
ain
,h
ea
rt,
liv
er
an
d
kid
ne
ys
,b
ut

in
cre
as
es
in
re
lat
ive

m
as
se
s
of
m
et
ab
ol
ica
lly

in
ex
pe
ns
ive

tis
su
es
,s
uc
h
as
fa
t,
co
nn
ec
tiv
e,
sk
ele
ta
la
nd

re
sti
ng

m
us
cle

tis
su
es
)

[8
,3
4,
82
,8
3,
85
,1
11
–

11
6]

bo
dy

siz
e
an
d
so
cia
lb
eh
av
io
ur

va
ria
bl
e

hu
dd
lin
g
be
ha
vio
ur
alt
er
st
he
m
as
s-s
ca
lin
g
of
re
sti
ng

m
et
ab
oli
cr
at
e
in
sm
all
m
am
m
als

be
ca
us
e
hu
dd
le
su
rfa
ce
ar
ea
pr
im
ar
ily
de
te
rm
in
es
he
at

los
sa
nd

th
us
co
m
pe
ns
at
or
y
m
et
ab
oli
ch
ea
tp
ro
du
cti
on
,r
at
he
rt
ha
n
in
di
vid
ua
ls
ur
fac
e
ar
ea

[8
]

bo
dy

siz
e,
ge
no
ty
pe

an
d
lif
e-

hi
sto
ry
sta
ge

va
ria
bl
e

on
to
ge
ne
tic

sh
ift
s
in
th
e
m
as
s-
sc
ali
ng

of
m
et
ab
ol
ism

va
ry
w
ith

ge
no
ty
pe

in
Dr
os
op
hi
la
,a
pp
ar
en
tly

ow
in
g
to
va
ria
bl
e
de
ve
lo
pm

en
ta
l

tim
in
g
in
sw
itc
hi
ng

fro
m
an
ae
ro
bi
c
to
ae
ro
bi
c
AT
P
pr
od
uc
tio
n

[4
3]

co
lo
ny

siz
e
an
d
co
nn
ec
te
dn
es
s

ne
ga
tiv
e

zo
id
co
nn
ec
te
dn
es
s
in
cre
as
es
m
et
ab
ol
ic
ra
te
m
or
e
in
sm
all

th
an

lar
ge
ra
sc
id
ian

co
lo
ni
es
.T
he

m
as
s-
sc
ali
ng

ex
po
ne
nt
is
ne
ar
1
in

un
co
nn
ec
te
d
co
lo
ni
es
,b
ut
les
s
th
an

1
(0
.8
0)
in
co
nn
ec
te
d
co
lo
ni
es
,p
os
sib
ly
ow
in
g
to
in
te
ra
cti
ve
ef
fe
cts

am
on
g
th
e
zo
oi
ds

[1
17
]

ge
nd
er
an
d
re
pr
od
uc
tiv
e
ef
fo
rt

po
sit
ive

fo
rf
em
ale
s

re
pr
od
uc
tiv
e
ef
fo
rt
in
cre
as
es
m
et
ab
ol
ic
ra
te
in
fe
m
ale
,b
ut
no
t
m
ale

sn
ak
es
(T
om
od
on

do
rs
at
us
),
pr
es
um

ab
ly
be
ca
us
e
of
th
e
hi
gh

en
er
gy

co
st
of
eg
g
pr
od
uc
tio
n

[1
18
]

be
ha
vio
ur
an
d
th
er
m
or
eg
ul
at
or
y

m
od
e

str
on
ge
r
in
ec
to
th
er
m
s

re
lat
io
ns
hi
ps
be
tw
ee
n
m
et
ab
ol
ic
ra
te
an
d
be
ha
vio
ur
al
tra
its

ar
e
ge
ne
ra
lly

str
on
ge
ri
n
ec
to
th
er
m
s
th
an

en
do
th
er
m
s

[1
19
]

in
te
ra
ct
iv
e
ef
fe
ct
s
of

ex
tr
in
si
c
fa
ct
or
s

ty
pe

di
re
ct
io
n
of

in
te
ra
ct
iv
e

ef
fe
ct
a

un
de
rl
yi
ng

m
ec
ha
ni
sm

se
le
ct
ed

so
ur
ce
s

te
m
pe
ra
tu
re
an
d
sa
lin
ity

ne
ga
tiv
e
or
co
m
pl
ex

th
er
m
al
re
sp
on
se
of
m
et
ab
ol
ic
ra
te
de
cre
as
es
(o
r
sh
ow
s
co
m
pl
ex
re
lat
io
ns
hi
ps
)
w
ith

in
cre
as
in
g
sa
lin
ity
.H
ig
he
r
te
m
pe
ra
tu
re
sp
ee
ds
up

m
et
ab
ol
ism

,

w
he
re
as
hi
gh
er
sa
lin
ity

re
du
ce
s
os
m
or
eg
ul
at
or
y
m
et
ab
ol
ic
de
m
an
d
in
m
ar
in
e
or
ga
ni
sm
s.
Ho
w
ev
er
,h
yp
er
sa
lin
e
co
nd
iti
on
s
m
ay
in
cre
as
e
m
et
ab
ol
ic

co
sts

in
fre
sh
w
at
er
/e
stu
ar
in
e
or
ga
ni
sm
s

[1
20
–
12
3]

te
m
pe
ra
tu
re
an
d
pH

(C
O 2
)

va
ria
bl
e
(sp
ec
ies
-s
pe
cifi
c)

co
m
bi
ne
d
ef
fe
cts

of
te
m
pe
ra
tu
re
an
d
ac
id
ifi
ca
tio
n
(C
O 2

lev
els
)
va
ry
w
ith

sp
ec
ies

fo
ru
nk
no
w
n
re
as
on
s

[1
24
,1
25
] (C
on
tin
ue
d.
)
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Ta
bl
e
1.

(C
on
tin
ue
d.
)

in
te
ra
ct
iv
e
ef
fe
ct
s
of

ex
tr
in
si
c
fa
ct
or
s

ty
pe

di
re
ct
io
n
of

in
te
ra
ct
iv
e

ef
fe
ct
a

un
de
rl
yi
ng

m
ec
ha
ni
sm

se
le
ct
ed

so
ur
ce
s

te
m
pe
ra
tu
re
an
d
ox
yg
en

su
pp
ly

po
sit
ive

th
er
m
al
re
sp
on
se
of
m
et
ab
ol
ic
ra
te
in
cre
as
es
w
ith

in
cre
as
in
g
ox
yg
en

su
pp
ly,

pe
rh
ap
s
be
ca
us
e
it
ca
n
be

ex
pr
es
se
d
m
or
e
fre
ely

w
he
n
hi
gh
-te
m
pe
ra
tu
re

ca
us
in
g
hy
po
xia

in
w
at
er
is
pr
ev
en
te
d.
Ho
w
ev
er
,t
em
pe
ra
tu
re
ac
cli
m
at
io
n
ca
n
m
iti
ga
te
ef
fe
cts

of
hy
po
xia

on
m
et
ab
ol
ic
ra
te

[8
4,
12
1,
12
6,
12
7]

te
m
pe
ra
tu
re
an
d
fo
od

su
pp
ly

co
m
pl
ex

th
er
m
al
se
ns
iti
vit
y
of
m
et
ab
ol
ism

va
rie
s
w
ith

fo
od

su
pp
ly
in
co
m
pl
ex
w
ay
s

[1
28
,1
29
]

te
m
pe
ra
tu
re
an
d
to
xic
an
ts

co
m
pl
ex

th
er
m
al
se
ns
iti
vit
y
of
m
et
ab
ol
ic
ra
te
in
a
m
ot
h
de
pe
nd
ed

on
an

in
se
cti
cid
e
tre
at
m
en
t
w
he
n
ac
cli
m
at
ed

at
22
°C
,b
ut
no
t
w
he
n
ac
cli
m
at
ed

at
28
°C

[1
30
]

te
m
pe
ra
tu
re
an
d

m
icr
op
las
tic
s

co
m
pl
ex

in
an

aq
ua
tic

am
ph
ip
od
,t
em
pe
ra
tu
re
ef
fe
cts

ar
e
po
sit
ive

at
lo
w
m
icr
op
las
tic

co
nc
en
tra
tio
n,
bu
t
ne
ga
tiv
e
at
hi
gh

m
icr
op
las
tic

co
nc
en
tra
tio
n,
fo
r

un
kn
ow
n
re
as
on
s

[1
31
]

te
m
pe
ra
tu
re
an
d
lat
itu
de

po
sit
ive

(lo
w
to
hi
gh

lat
itu
de
)

hi
gh
-la
tit
ud
e
po
pu
lat
io
ns
in
re
lat
ive
ly
co
ol
ha
bi
ta
ts
te
nd

to
sh
ow

m
or
e
th
er
m
al
se
ns
iti
vit
y
of
m
et
ab
ol
ic
ra
te
th
an

th
at
of
lo
w
lat
itu
de

po
pu
lat
io
ns
in

w
ar
m
er
ha
bi
ta
ts

[1
32
–
13
5]

te
m
pe
ra
tu
re
an
d
alt
itu
de

po
sit
ive

(lo
w
to
hi
gh

alt
itu
de
)

a
hi
gh
-a
lti
tu
de

po
pu
lat
io
n
of
th
e
tse
tse

fl
y
Gl
os
si
na

pa
lli
di
pe
s
in
a
co
ol
ha
bi
ta
t
sh
ow
ed

hi
gh
er
te
m
pe
ra
tu
re
se
ns
iti
vit
y
of
m
et
ab
ol
ic
ra
te
th
an

di
d
lo
w
-

alt
itu
de

po
pu
lat
io
ns
in
w
ar
m
er
ha
bi
ta
ts

[1
36
]

te
m
pe
ra
tu
re
an
d

ec
ol
og
ica
ll
ife

sty
le

co
m
pl
ex

in
va
siv
e
cra
yfi
sh
sh
ow

hi
gh
er
m
et
ab
ol
ic
ra
te
s
at
w
ar
m
te
m
pe
ra
tu
re
s,
bu
t
lo
w
er
m
et
ab
ol
ic
ra
te
s
at
co
ol
er
te
m
pe
ra
tu
re
s
th
an

do
na
tiv
e
cra
yfi
sh

[1
37
]

lig
ht
an
d
pr
ed
at
or
cu
es

po
sit
ive

or
ne
ga
tiv
e

m
et
ab
ol
ic
ra
te
of
an

aq
ua
tic

am
ph
ip
od

ch
an
ge
s
in
re
sp
on
se
to
fi
sh
pr
ed
at
or
cu
es
in
lig
ht
,b
ut
no
t
in
da
rk

[1
38
]

in
te
ra
ct
iv
e
ef
fe
ct
s
of

in
tr
in
si
c
an
d
ex
tr
in
si
c
fa
ct
or
s

ty
pe

di
re
ct
io
n
of

in
te
ra
ct
iv
e
ef
fe
ct
a

un
de
rl
yi
ng

m
ec
ha
ni
sm

se
le
ct
ed

so
ur
ce
s

bo
dy

si
ze

an
d
ec
ol
og
ic
al
lif
e
st
yl
e

pe
lag
ic
ve
rsu
s
be
nt
hi
c

po
sit
ive

or
ne
ga
tiv
e
(co
m
pa
rin
g

pe
lag
ic
sp
ec
ies

to
be
nt
hi
c
sp
ec
ies
)

pe
lag
ic
in
ve
rte
br
at
e/
pr
ot
ist
sp
ec
ies

(o
r
lif
e-
sta
ge
s)
te
nd

to
sh
ow

ste
ep
er
m
et
ab
ol
ic
sc
ali
ng

th
an

do
re
lat
ed

be
nt
hi
c

sp
ec
ies

(o
rl
ife
-st
ag
es
),
po
ss
ib
ly
be
ca
us
e
of
ag
e-
an
d
siz
e-
sp
ec
ifi
c
di
ffe
re
nc
es
in
lo
co
m
ot
or
co
sts
,c
ell
ul
ar
m
od
e
of

gr
ow
th
,o
r
pr
ed
at
io
n-
ca
us
ed

ra
te
s
of
m
or
ta
lit
y,
gr
ow
th
an
d
re
pr
od
uc
tio
n.
Op
po
sit
e
pa
tte
rn
s
ar
e
sh
ow
n
fo
rt
ele
os
t

fi
sh
es
,p
os
sib
ly
ow
in
g,
at
lea
st
in
pa
rt,
to
th
eir

les
se
r
vu
ln
er
ab
ilit
y
to
pr
ed
at
io
n
(a
ss
oc
iat
ed

w
ith

th
eir

lar
ge
rb
od
y
siz
e

an
d
m
or
e
ra
pi
d
es
ca
pe

m
ov
em
en
ts)
,a
nd

to
th
eir

us
in
g
sw
im
-b
lad
de
r
su
pp
or
te
d
bu
oy
an
cy
to
av
oi
d
ad
de
d
en
er
gy

co
sts

of
lo
co
m
ot
io
n
in
op
en

w
at
er

[2
0,
24
,2
8,
35
,3
6,
39
]

fo
od

ha
bi
ts

co
m
pl
ex

te
rm
ite
s,
bi
rd
s
an
d
m
am
m
als

w
ith

di
ffe
re
nt
fo
od

ha
bi
ts
ex
hi
bi
t
di
ffe
re
nt
m
et
ab
ol
ic
sc
ali
ng

re
lat
io
ns
hi
ps
.I
nv
er
te
br
at
e-

ea
tin
g
m
am
m
als

sh
ow

sh
all
ow
er
m
et
ab
ol
ic
sc
ali
ng

th
an

ve
rte
br
at
e-
ea
tin
g
m
am
m
als
,p
er
ha
ps
be
ca
us
e
lar
ge

m
am
m
als

ca
nn
ot
su
sta
in
a
hi
gh

m
et
ab
ol
ism

on
a
di
et
of
sm
all

in
ve
rte
br
at
es

[2
,4
,3
4,
13
9–
14
1] (C

on
tin
ue
d.
)
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Ta
bl
e
1.

(C
on
tin
ue
d.
)

in
te
ra
ct
iv
e
ef
fe
ct
s
of

in
tr
in
si
c
an
d
ex
tr
in
si
c
fa
ct
or
s

ty
pe

di
re
ct
io
n
of

in
te
ra
ct
iv
e
ef
fe
ct
a

un
de
rl
yi
ng

m
ec
ha
ni
sm

se
le
ct
ed

so
ur
ce
s

ha
bi
ta
t/m

icr
oh
ab
ita
t

co
m
pl
ex

in
te
rsp
ec
ifi
c
m
et
ab
ol
ic
sc
ali
ng

va
rie
s
w
ith

ty
pe

of
ha
bi
ta
t
or
m
icr
oh
ab
ita
t.
St
ee
pe
r
m
as
s-
sc
ali
ng

of
m
et
ab
ol
ic
ra
te
in
bi
rd
s

an
d
m
am
m
als

fro
m
xe
ric

ve
rsu
s
m
es
ic
ha
bi
ta
ts,

su
bt
id
al
ve
rsu
s
in
te
rti
da
lm

ar
in
e
sn
ail
s,
an
d
bu
rro
w
in
g
ve
rsu
s
no
n-

bu
rro
w
in
g
te
rre
str
ial

ea
rth
w
or
m
s
an
d
m
ar
in
e
cru
sta
ce
an
s
m
ay
be

ex
pl
ain
ed

by
th
e
M
LB
H,
w
he
re
a
hi
gh
er
m
as
s-

sc
ali
ng

ex
po
ne
nt
is
as
so
cia
te
d
w
ith

a
lo
w
er
m
et
ab
ol
ic
lev
el
[2
3,
24
]

[4
,2
0,
24
,1
14
,1
42
–
14
6]

bo
dy

siz
e
an
d
ca
pt
ivi
ty

ne
ga
tiv
e

in
bi
rd
s,
sm
all

sp
ec
ies

up
re
gu
lat
e
th
eir

m
et
ab
ol
ism

in
ca
pt
ivi
ty
,w

he
re
as
lar
ge

sp
ec
ies

do
w
nr
eg
ul
at
e
th
eir

m
et
ab
ol
ism

,

po
ss
ib
ly
in
as
so
cia
tio
n
w
ith

th
e
fo
od

qu
an
tit
y
an
d/
or
qu
ali
ty
of
fe
re
d
in
ca
pt
ivi
ty

[1
47
]

bo
dy

siz
e
an
d
ge
og
ra
ph
ica
ll
oc
at
io
n

(la
tit
ud
e
an
d
alt
itu
de
)

va
ria
bl
e

m
as
s-
sc
ali
ng

of
w
ho
le-
bo
dy

m
et
ab
ol
ism

de
pe
nd
s
on

ge
og
ra
ph
ica
ll
oc
at
io
n.
Sc
ali
ng

ex
po
ne
nt
s
te
nd

to
be

hi
gh
er
in

co
ol
er
en
vir
on
m
en
ts,

w
hi
ch
m
ay
be

pa
rtl
y
ow
in
g
to
sh
ift
s
in
th
e
re
lat
ive

in
fl
ue
nc
e
of
vo
lu
m
e-
ve
rsu
s
su
rfa
ce
ar
ea
-

re
lat
ed

m
et
ab
ol
ic
pr
oc
es
se
s,
as
pr
ed
ict
ed

by
th
e
M
LB
H
[2
3,
24
].
Ho
w
ev
er
,e
xp
on
en
ts
be
low

tw
o-
th
ird
s
in
w
ar
m

en
vir
on
m
en
ts
re
qu
ire

fu
rth
er
ex
pl
an
at
io
n

[1
44
,1
48
–
15
5]

bo
dy

siz
e
an
d
se
as
on

va
ria
bl
e

m
et
ab
ol
ic
sc
ali
ng

m
ay
va
ry
w
ith

se
as
on
,p
os
sib
ly
be
ca
us
e
of
ch
an
ge
s
in
siz
e-
sp
ec
ifi
c
pr
od
uc
tio
n
co
sts

(o
w
in
g
to

ch
an
gi
ng

ra
te
s
of
gr
ow
th
an
d
re
pr
od
uc
tio
n)
or
ac
tiv
ity

lev
els

[1
56
–
16
7]

bo
dy

si
ze

an
d
ab
io
ti
c
en
vi
ro
nm

en
ta
l
fa
ct
or
s

te
m
pe
ra
tu
re

ne
ga
tiv
e
fo
rr
es
tin
g,
bu
t
co
ul
d
be

po
sit
ive

fo
ra
cti
ve
m
et
ab
ol
ic
ra
te

m
as
s-
sc
ali
ng

ex
po
ne
nt
s
fo
r
m
et
ab
ol
ism

te
nd

to
de
cre
as
e
w
ith

in
cre
as
in
g
te
m
pe
ra
tu
re
,w

hi
ch
m
ay
be

ow
in
g
to
sh
ift
s
in

th
e
re
lat
ive

in
fl
ue
nc
e
of
vo
lu
m
e-
ve
rsu
s
su
rfa
ce
ar
ea
-re
lat
ed

m
et
ab
ol
ic
pr
oc
es
se
s,
as
pr
ed
ict
ed

by
th
e
M
LB
H
[2
3,
24
].

Ot
he
r
pa
tte
rn
s
m
ay
be

th
e
re
su
lt
of
in
te
ra
cti
ve
in
fl
ue
nc
es
of
ac
tiv
ity

lev
el
or
gr
ow
th
ra
te
[2
3,
61
]

[2
0,
24
,2
8,
33
,1
20
,1
28
,1
33
,

15
8,
16
7–
19
1]

pH
(C
O 2
)

po
sit
ive

(n
eg
at
ive
)

m
as
s-
sc
ali
ng

ex
po
ne
nt
s
fo
r
m
et
ab
ol
ism

in
aq
ua
tic

an
im
als

te
nd

to
de
cre
as
e
w
ith

de
cre
as
in
g
pH

(o
r
in
cre
as
in
g
CO

2),

w
hi
ch
m
ay
be

ow
in
g
to
th
e
m
et
ab
ol
ism

of
lar
ge

in
di
vid
ua
ls
be
in
g
m
or
e
se
ns
iti
ve
to
in
cre
as
ed

ac
id
ity

th
an

th
at
of

sm
all

in
di
vid
ua
ls

[1
85
,1
92
]

sa
lin
ity

va
ria
bl
e
(si
ze
-s
pe
cifi
c)

ef
fe
cts

of
de
cre
as
ed

sa
lin
ity

on
m
et
ab
ol
ic
ra
te
va
rie
s
w
ith

bo
dy

siz
e,
po
ss
ib
ly,

at
lea
st
in
so
m
e
ca
se
s,
ow
in
g
to
siz
e-

sp
ec
ifi
c
co
sts

of
io
ni
c
re
gu
lat
io
n
th
at
va
ry
w
ith

bo
dy

su
rfa
ce
ar
ea
to
vo
lu
m
e
ra
tio
s

[1
93
–
19
5]

ox
yg
en

su
pp
ly

va
ria
bl
e
(si
ze
-s
pe
cifi
c)

th
e
m
as
s-
sc
ali
ng

ex
po
ne
nt
s
fo
rm

et
ab
ol
ic
ra
te
m
ay
sh
ow

a
po
sit
ive
,n
eg
at
ive

or
hu
m
pe
d
re
lat
io
ns
hi
p
w
ith

in
cre
as
in
g

ox
yg
en

su
pp
ly.

Th
e
m
et
ab
ol
ism

of
re
lat
ive
ly
lar
ge

an
im
als

w
ith

re
lat
ive
ly
low

su
rfa
ce
ar
ea
to
vo
lu
m
e
ra
tio
s
m
ay
be

m
or
e
af
fe
cte
d
by

hy
po
xia

th
an

th
at
of
sm
all
er
or
ga
ni
sm
s.
Siz
e-
sp
ec
ifi
c
va
ria
tio
n
in
ae
ro
bi
c
an
d
an
ae
ro
bi
c
m
et
ab
ol
ism

m
ay
als
o
be

im
po
rta
nt

[2
4,
84
,1
96
–
19
9]

w
at
er
su
pp
ly

co
m
pl
ex

th
e
m
as
s-
sc
ali
ng

ex
po
ne
nt
s
fo
rp
ho
to
sy
nt
he
tic

ra
te
in
tw
o
pl
an
t
sp
ec
ies

va
rie
d
w
ith

w
at
er
su
pp
ly

[2
00
]

lig
ht
in
te
ns
ity

ne
ga
tiv
e

in
aq
ua
tic

an
im
als
,l
ig
ht
in
cre
as
es
th
e
m
et
ab
ol
ic
ra
te
of
sm
all

in
di
vid
ua
ls
m
or
e
th
an

th
at
of
lar
ge

in
di
vid
ua
ls

[2
01
,2
02
]

(C
on
tin
ue
d.
)
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Ta
bl
e
1.

(C
on
tin
ue
d.
)

in
te
ra
ct
iv
e
ef
fe
ct
s
of

in
tr
in
si
c
an
d
ex
tr
in
si
c
fa
ct
or
s

ty
pe

di
re
ct
io
n
of

in
te
ra
ct
iv
e
ef
fe
ct
a

un
de
rl
yi
ng

m
ec
ha
ni
sm

se
le
ct
ed

so
ur
ce
s

da
y/
ni
gh
t

ne
ga
tiv
e

in
sa
nd
y
be
ac
h
am
ph
ip
od
s
an
d
iso
po
ds
,t
he

m
as
s-
sc
ali
ng

ex
po
ne
nt
fo
r
m
et
ab
ol
ic
ra
te
is
gr
ea
te
rd
ur
in
g
ni
gh
t
(a
cti
ve

tim
e)
th
an

da
y
(re
sti
ng

tim
e)

[5
7,
58
,2
03
]

po
llu
tio
n

ne
ga
tiv
e

po
llu
tio
n
ca
us
es
a
gr
ea
te
rd
ec
re
as
e
in
m
et
ab
ol
ic
ra
te
in
sm
all

ve
rsu
s
lar
ge

bi
va
lve
s

[1
65
]

ex
po
su
re
to
air

ve
rsu
s
w
at
er

va
ria
bl
e
(si
ze
-s
pe
cifi
c)

in
aq
ua
tic
/in
te
rti
da
la
ni
m
als
,t
he

m
as
s-
sc
ali
ng

ex
po
ne
nt
s
fo
rm

et
ab
ol
ic
ra
te
m
ay
in
cre
as
e
or
de
cre
as
e
fro
m
w
at
er
to
air
,

po
ss
ib
ly
as
a
fu
nc
tio
n
of
re
lat
ive

ad
ap
ta
tio
n
to
te
rre
str
ial

ve
rsu
s
aq
ua
tic

lif
e,
an
d
th
us
th
e
re
lat
ive

ef
fe
cti
ve
ne
ss
of

re
sp
ira
tio
n
in
air

ve
rsu
s
wa
te
r

[2
04
–
20
9]

bo
dy

si
ze

an
d
bi
ot
ic
en
vi
ro
nm

en
ta
l
fa
ct
or
s

pr
ed
at
io
n

va
ria
bl
e
(si
ze
-s
pe
cifi
c)

in
an

aq
ua
tic

am
ph
ip
od
,t
he

pr
es
en
ce
of
fi
sh
pr
ed
at
or
s
ca
us
ed

th
e
m
et
ab
ol
ic
ra
te
of
re
lat
ive
ly
lar
ge

ad
ul
ts
to
de
cre
as
e,

bu
t
to
in
cre
as
e
or
sta
y
th
e
sa
m
e
in
sm
all
er
ju
ve
ni
les

[7
0,
76
]

pa
ra
sit
es

ne
ga
tiv
e

pa
ra
sit
ic
in
fe
cti
on
s
re
du
ce
th
e
m
et
ab
ol
ic
ra
te
of
lar
ge

sn
ail
s
m
or
e
th
an

th
at
of
sm
all

sn
ail
s

[2
10
]

fo
od

qu
an
tit
y/
qu
ali
ty

va
ria
bl
e
(si
ze
-s
pe
cifi
c)

ef
fe
cts

of
fo
od

qu
an
tit
y
or
qu
ali
ty
on

m
et
ab
ol
ic
ra
te
de
pe
nd

on
bo
dy

siz
e

[7
2,
12
8,
16
6,
21
1–
21
9]

lif
e-
hi
st
or
y
st
ag
e
an
d
ex
tr
in
si
c
fa
ct
or
s

te
m
pe
ra
tu
re

co
m
pl
ex

ef
fe
cts

of
te
m
pe
ra
tu
re
on

m
et
ab
ol
ic
ra
te
de
pe
nd

on
lif
e-
hi
sto
ry
sta
ge

[2
20
]

ox
yg
en

va
ria
bl
e
(a
ge
-s
pe
cifi
c)

se
ns
iti
vit
y
of
m
et
ab
ol
ic
ra
te
to
hy
po
xia

va
rie
s
w
ith

de
ve
lo
pm

en
ta
l(
lif
e-
hi
sto
ry
)
sta
ge

[8
4]

lig
ht
in
te
ns
ity

va
ria
bl
e
(a
ge
-s
pe
cifi
c)

se
ns
iti
vit
y
of
m
et
ab
ol
ic
ra
te
to
lig
ht
va
rie
s
w
ith

de
ve
lo
pm

en
ta
l(
lif
e-
hi
sto
ry
)
sta
ge

[2
02
]

gr
ow
th
ra
te
an
d
ex
tri
ns
ic
fa
cto
rs

ra
tio
n
lev
el

po
sit
ive

m
et
ab
ol
ic
ra
te
an
d
gr
ow
th
ra
te
ar
e
po
sit
ive
ly
co
rre
lat
ed

at
re
lat
ive
ly
hi
gh
,b
ut
no
t
lo
w
ra
tio
n
lev
els

[2
21
–
22
3]

be
ha
vio
ur
an
d
ex
tri
ns
ic
fa
cto
rs

va
ria
bl
e

re
lat
io
ns
hi
ps
be
tw
ee
n
m
et
ab
ol
ic
ra
te
an
d
be
ha
vio
ur
al
tra
its

va
ry
w
ith

te
m
pe
ra
tu
re
,h
yp
ox
ia,

fo
od

su
pp
ly,

co
ns
pe
cifi
c

de
ns
ity
,c
ov
er
,w

at
er
ve
lo
cit
y,
an
d
se
as
on

[2
24
,2
25
]

co
lo
ny

co
m
po
si
ti
on

an
d
ex
tr
in
si
c
fa
ct
or
s

ra
tio
n
lev
el

m
et
ab
ol
ic
ra
te
of
ho
ne
yb
ee
s
is
in
te
ra
cti
ve
ly
af
fe
cte
d
by

co
lo
ny

co
m
po
sit
io
n
an
d
re
so
ur
ce
lev
el

[2
26
]

te
m
pe
ra
tu
re
an
d
in
tr
in
si
c
fa
ct
or
s

ge
no
ty
pe

va
ria
bl
e
(g
en
ot
yp
e-
sp
ec
ifi
c)

te
m
pe
ra
tu
re
se
ns
iti
vit
y
of
m
et
ab
ol
ic
ra
te
va
rie
s
w
ith

ge
no
ty
pe
.I
n
a
bu
tte
rfl
y,
th
e
m
et
ab
ol
ism

-te
m
pe
ra
tu
re
re
lat
io
ns
hi
p
is

po
sit
ive

fo
rh
om
oz
yg
ot
es
an
d
ne
ga
tiv
e
fo
rh
et
er
oz
yg
ot
es

[2
27
]

ce
ll
siz
e

va
ria
bl
e
(ce
ll-
siz
e-
sp
ec
ifi
c)

in
cre
as
in
g
te
m
pe
ra
tu
re
in
cre
as
es
m
et
ab
ol
ic
ra
te
m
or
e
in
fi
sh
es
w
ith

sm
all

ve
rsu
s
lar
ge

ce
lls
,p
ro
ba
bl
y
be
ca
us
e
of
su
rfa
ce

ar
ea
to
vo
lu
m
e
co
ns
tra
in
ts
at
th
e
ce
llu
lar

lev
el

[2
28
]

ac
tiv
ity

lev
el

va
ria
bl
e

ef
fe
cts

of
te
m
pe
ra
tu
re
on

m
et
ab
ol
ic
ra
te
va
ry
w
ith

ac
tiv
ity

lev
el
an
d
vic
e
ve
rsa

[2
4,
16
9,
22
9–
23
1] (C
on
tin
ue
d.
)

royalsocietypublishing.org/journal/rstb
Phil.

Trans.
R.
Soc.

B
379:20220489

8

 D
o

w
n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

8
 J

an
u
ar

y
 2

0
2
4
 



Ta
bl
e
1.

(C
on
tin
ue
d.
)

in
te
ra
ct
iv
e
ef
fe
ct
s
of

in
tr
in
si
c
an
d
ex
tr
in
si
c
fa
ct
or
s

ty
pe

di
re
ct
io
n
of

in
te
ra
ct
iv
e
ef
fe
ct
a

un
de
rl
yi
ng

m
ec
ha
ni
sm

se
le
ct
ed

so
ur
ce
s

bo
dy

si
ze

an
d
m
ul
ti
pl
e
in
te
ra
ct
in
g
ex
tr
in
si
c
fa
ct
or
s

te
m
pe
ra
tu
re
an
d
pr
ed
at
io
n

va
ria
bl
e
(si
ze
-s
pe
cifi
c)

fi
sh
pr
ed
at
io
n
cu
es
/re
gi
m
e
af
fe
ct
ho
w
te
m
pe
ra
tu
re
in
fl
ue
nc
es
th
e
m
as
s-
sc
ali
ng

of
m
et
ab
ol
ic
ra
te
in
aq
ua
tic

am
ph
ip
od
s.

Th
is
in
te
ra
cti
ve
ef
fe
ct
m
ay
be

th
e
re
su
lt
of
di
ffe
re
nc
es
in
siz
e
(a
ge
)-s
pe
cifi
c
m
or
ta
lit
y
(a
nd

as
so
cia
te
d
siz
e-
sc
ali
ng

of

m
et
ab
ol
ica
lly

ex
pe
ns
ive

gr
ow
th
an
d
be
ha
vio
ur
al
ac
tiv
ity
)
be
tw
ee
n
ha
bi
ta
ts
w
ith

an
d
w
ith
ou
t
vis
ua
lly

hu
nt
in
g
fi
sh

pr
ed
at
or
s

[2
32
,2
33
]

te
m
pe
ra
tu
re
an
d
pH

va
ria
bl
e
(sp
ec
ies
-s
pe
cifi
c)

te
m
pe
ra
tu
re
ef
fe
cts

on
th
e
m
as
s-
sc
ali
ng

of
m
et
ab
ol
ic
ra
te
in
aq
ua
tic

an
im
als

de
pe
nd

on
pH
,p
os
sib
ly
ow
in
g
to
siz
e-

sp
ec
ifi
c
en
er
gy

co
sts

of
str
es
s
re
sp
on
se
s
to
ac
id
ity

[1
85
,2
34
]

te
m
pe
ra
tu
re
an
d
ox
yg
en

co
m
pl
ex

de
ve
lo
pi
ng

ze
br
afi
sh
sh
ow

co
m
pl
ex
in
te
ra
cti
on
s
be
tw
ee
n
ac
ut
e
an
d
ch
ro
ni
c
ef
fe
cts

of
te
m
pe
ra
tu
re
an
d
hy
po
xia

on

m
et
ab
ol
ic
ra
te
an
d
its

sc
ali
ng

w
ith

bo
dy

m
as
s.
La
rg
er
pr
ot
ist
s
sh
ow

a
gr
ea
te
ri
nc
re
as
e
in
m
et
ab
ol
ic
ra
te
w
ith

in
cre
as
ed

ox
yg
en

su
pp
ly,

bu
t
les
se
r
in
cre
as
e
in
m
et
ab
ol
ic
ra
te
w
ith

in
cre
as
in
g
te
m
pe
ra
tu
re
th
an

do
sm
all
er
pr
ot
ist
s

[1
27
,2
35
]

te
m
pe
ra
tu
re
an
d
sa
lin
ity

va
ria
bl
e
(sp
ec
ies
-s
pe
cifi
c)

te
m
pe
ra
tu
re
ef
fe
cts

on
m
as
s-
sc
ali
ng

of
m
et
ab
ol
ic
ra
te
in
aq
ua
tic

an
im
als

de
pe
nd

on
sa
lin
ity
,p
os
sib
ly
ow
in
g
to
siz
e-

sp
ec
ifi
c
en
er
gy

co
sts

of
io
ni
c
(o
sm
ot
ic)

re
gu
lat
io
n

[1
95
]

te
m
pe
ra
tu
re
an
d
nu
tri
tio
n

ne
ga
tiv
e

te
m
pe
ra
tu
re
ef
fe
cts

on
m
as
s-
sc
ali
ng

of
m
et
ab
ol
ic
ra
te
m
ay
de
pe
nd

on
nu
tri
tio
n.
In
a
m
ar
in
e
iso
po
d,
sta
rv
at
io
n

su
pp
re
ss
ed

th
e
m
et
ab
ol
ism

of
sm
all

in
di
vid
ua
ls
m
or
e
th
an

th
at
of
lar
ge

in
di
vid
ua
ls,
es
pe
cia
lly

at
hi
gh

te
m
pe
ra
tu
re
s

[2
12
]

te
m
pe
ra
tu
re
an
d
ex
po
su
re
to
air

ve
rsu
s
w
at
er

va
ria
bl
e

in
in
te
rti
da
la
ni
m
als
,t
em
pe
ra
tu
re
ef
fe
cts

on
m
as
s-
sc
ali
ng

of
m
et
ab
ol
ic
ra
te
m
ay
de
pe
nd

on
w
he
th
er
re
sp
ira
tio
n
is
in
air

or
w
at
er

[2
04
]

te
m
pe
ra
tu
re
an
d
ph
ylo
ge
ne
tic

af
fi
ni
ty

va
ria
bl
e

th
er
m
al
re
sp
on
se
s
of
m
et
ab
ol
ic
ra
te
m
ay
va
ry
am
on
g
sp
ec
ies

an
d
hi
gh
er
ta
xa

[2
36
,2
37
]

te
m
pe
ra
tu
re
an
d
m
ul
ti
pl
e
in
te
ra
ct
in
g
in
tr
in
si
c
fa
ct
or
s

bo
dy

siz
e
an
d
ac
tiv
ity

lev
el

va
ria
bl
e

te
m
pe
ra
tu
re
ef
fe
cts

on
th
e
m
as
s-
sc
ali
ng

of
m
et
ab
ol
ic
ra
te
m
ay
va
ry
w
ith

ac
tiv
ity

lev
el.

In
cre
as
ed

te
m
pe
ra
tu
re
te
nd
s
to

ca
us
e
th
e
m
as
s-
sc
ali
ng

ex
po
ne
nt
fo
rr
es
tin
g
m
et
ab
ol
ic
ra
te
to
de
cre
as
e,
bu
t
if
in
cre
as
ed

te
m
pe
ra
tu
re
ca
us
es
in
cre
as
es

in
be
ha
vio
ur
al
ac
tiv
ity
,t
he

m
et
ab
ol
ic
sc
ali
ng

ex
po
ne
nt
m
ay
in
cre
as
e,
as
pr
ed
ict
ed

by
th
e
M
LB
H
[2
3,
24
].
Al
so
,a
t
low

te
m
pe
ra
tu
re
s,
in
cre
as
ed

ac
tiv
ity

m
ay
ca
us
e
les
s
ch
an
ge

in
th
e
m
et
ab
ol
ic
sc
ali
ng

ex
po
ne
nt
th
an

th
at
se
en

at
hi
gh

te
m
pe
ra
tu
re
s

[2
4,
16
9]

bo
dy

siz
e
an
d
th
er
m
or
eg
ul
at
or
y

m
od
e

ne
ga
tiv
e
(e
cto
th
er
m
s)
po
sit
ive

(e
nd
ot
he
rm
s)

te
m
pe
ra
tu
re
ef
fe
cts

on
th
e
m
as
s-
sc
ali
ng

ex
po
ne
nt
fo
r
m
et
ab
ol
ic
ra
te
de
pe
nd

on
th
er
m
or
eg
ul
at
or
y
str
at
eg
y
(e
cto
th
er
m
y

ve
rsu
s
en
do
th
er
m
y)

[3
3]

bo
dy

siz
e
an
d
ge
no
ty
pe

co
m
pl
ex

te
m
pe
ra
tu
re
ef
fe
cts

on
th
e
m
as
s-
sc
ali
ng

of
m
et
ab
ol
ic
ra
te
de
pe
nd

on
ge
no
ty
pe

(b
an
de
d
ve
rsu
s
un
ba
nd
ed

m
or
ph
s)
of
a

te
rre
str
ial

sn
ail

[4
4]

(C
on
tin
ue
d.
)
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intensity of R or its ‘metabolic level’ (L), which is a measure of

the elevation of ametabolic scaling relationship [23]. L depends

on the intensity of various resource-demanding processes, such

as growth, reproduction, thermoregulation, locomotion and

food processing. In isomorphic organisms with similar body

shapes and compositions, the scaling exponent b is predicted

to vary between two-thirds and 1, depending on L. For resting

metabolic rates (RMRs), when LRMR is high (as in high-energy

endothermic birds and mammals), SA-related metabolic pro-

cesses related to resource supply and/or metabolic waste

removal (including heat dissipation) should predominate,

thus causing b to approach two-thirds, as often observed

[21,23,24,28,29,168]. However, when LRMR is low and not lim-

ited by SA-related resource supply or metabolic waste

removal (as in low-energy ectothermic organisms and during

diapause, torpor, or hibernation), V-related metabolic pro-

cesses involving tissue maintenance should predominate,

thus causing b to approach 1, as often observed

[21,23,24,28,29,168]. Furthermore, for active metabolic rates

(AMRs), when LAMR is high as a result of heightened V-related

resource-demanding processes, such as growth, locomotion

and food-processing (specific dynamic action) that appear to

involve metabolic processes pervading many or all of the

tissues of the body, b should approach 1, as again often

observed [21–24,30]. Overall, for both RMRs and AMRs, the

MLBH predicts a concave upward relationship between b

and L, as observed in chitons, insects, fishes, birds and mam-

mals [21,23,24,31]. Therefore, the MLBH can help explain

several of the interactive effects on metabolic rate that involve

body size, including the modulating effects of activity level,

mode of locomotion, mode of thermoregulation, growth rate,

food processing and reproductive state (table 1).

The CMT, which embraces the MLBH, includes four

major modal mechanisms: SA-related fluxes of resources and

wastes (including heat), physical constraints of internal resource

transport on resource supply, body composition and various

processes affecting resource demand [8,27]. The effects of cell

size and cellular mode of growth on the body-mass scaling

exponent b can be explained in terms of geometric constraints

of cellular SA/V ratios on resource uptake and transport.

According to the cell-size theory of metabolic scaling, if

growth in size during ontogeny or evolution is mainly owing

to increases in cell size, b should be near two-thirds, whereas

if growth in size is mainly owing to increases in cell number

(thus maintaining a constant ratio of cellular SA to body V), b

should be near 1. If growth in size is owing to increases in

both cell size and number, then b should be between two-

thirds and 1. Evidence for these predicted patterns has been

provided by [32,37–40]. Furthermore, the effects of genome

size (which is highly correlated with cell size: reviewed in

[240]) on b can also be explained by cell-size theory [32,39,41].

Geometric constraints related to SA/V ratios can also

explain how body shape interacts with body size to influence

metabolic rate. Growth primarily in one or two of the longest

dimensions (elongation and flattening, respectively) allows

SA/V ratios to remain constant (rather than declining as

M-1/3, as observed with isomorphic growth), thus permitting

the mass-scaling exponent for metabolic rate to approach 1,

as observed in several pelagic skin-breathing invertebrates

[69,80,105]. By contrast, growth primarily in the shortest

dimension (thickening), as occurs during the early develop-

ment of very slender American eels (Anguilla rostrata), is

related to b values lower than two-thirds [81].Ta
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In addition, changes in body composition (among other

factors) can help explain why the mass-scaling exponent (b)

for metabolic rate may change with developmental (life-

history) stage. Shifts in the relative masses of tissues with

high versus low metabolic rates can significantly alter how

metabolic rate relates to body size [8,82,83]. Differences in

size-specific body composition may also help explain some

cases where the metabolic scaling exponent b differs between

the sexes (as in humans [48]).

3. Interactive effects of extrinsic factors
Temperature is the most important extrinsic factor affecting

metabolic rate. Indeed, the effect of temperature on the rate

of metabolism and other biological processes has often been

well described by the exponential van’t Hoff-Arrhenius func-

tion e−E/kT (where E is the apparent activation energy, k is

Boltzmann’s constant and T is temperature in Kelvin), or

by equivalent Arrhenius plots [17,18,241–243] or other math-

ematical coefficients [15,244]. However, as also seen for the

body-mass scaling of metabolic rate (see §2), the temperature

scaling of metabolic rate is highly malleable, as revealed by

significant effects of salinity, pH (CO2), oxygen supply, food

supply, toxicants, microplastics, latitude, altitude and eco-

logical lifestyle on the temperature sensitivity of metabolic

rate (table 1).

Many of these interactive effects involve increased resource

availability (thus facilitating temperature-related increases

in metabolic rate), heightened metabolic costs of specific

biological processes, or metabolic acclimation/adaptation

in environments with different temperature regimes (also

table 1). For example, increased oxygen supply, especially in

water, may allow metabolic rate to increase more easily

with increased temperature, without harmful effects of hypoxia

(though interactive effects of temperature and oxygen on meta-

bolic rate can be complex [235] and deserve further investigation

[245]). Increased food supplymaysimilarlypermit greater scope

of change inmetabolic rate in response to increased temperature.

In addition, stressful impacts of extreme salinity or pH, or the

presence of harmful toxicants and microplastics may heighten

metabolic costs related to specific biological processes, such as

ionoregulation, osmoregulation or tissue repair, thus altering

temperature responses ofmetabolic rate. Furthermore, enhanced

temperature responses ofmetabolic rate exhibitedby conspecific

organisms fromhigher latitudes or altitudesmay be the result of

metabolic acclimation/adaptation to cooler environments

(see [132,136] and other references in table 1).

Light and predator cues also have interactive effects on

metabolic rate. In light, fish predator cues significantly alter

the metabolic rates of aquatic amphipod crustaceans, but not

in the dark [138]. This interaction makes adaptive sense,

because amphipods are more vulnerable to predation by

visually hunting fishes when it is light, than when it is dark.

4. Interactive effects of intrinsic and
extrinsic factors

Given the importance of bodymass and temperature T in influ-

encing metabolic rate (as discussed in §§2 and 3), it is not

surprising that interactions between these two ‘hub factors’

are among the most common examples of interactive effects

of intrinsic and extrinsic factors on metabolic rate. Numerous

studies have shown that the mass-scaling exponent b of

metabolic rate varies significantly with T (reviewed in

[20,24,27,169]). In plants and resting ectothermic animals, b

often decreases with increasing T, presumably because of the

increasing influence of SA-related metabolic processes at high

L, as predicted by the MLBH ([24,28,133,169,170] and other

references cited in table 1). By contrast, in actively growing

or moving ectothermic animals, b may increase with increas-

ing T, or show other patterns of covariation with T [24,169].

In addition, although cold exposure often causes b to increase

in ectothermic animals (approaching 1, owing to the increas-

ing influence of tissue V-related metabolic processes), the

opposite occurs in endothermic birds and mammals, where b

approaches 0.5, which approximates the scaling exponent

for thermal conductance [33]. Other extrinsic effects on b,

such as those owing to geographical location, may also be

explained by temperature effects on b. According to the

MLBH, metabolic scaling relationships exhibited by popu-

lations of ectotherms at cooler latitudes and altitudes should

have lower L values, and thus higher b values, as often

observed (see table 1).

Temperature effects on metabolic rate may also be altered

by various intrinsic factors, such as genotype, cell size and

activity level, independently of body size. For example,

increasing temperature increases metabolic rate more in

fishes with small versus large cells, probably because of

SA/V constraints at the cellular level [228].

Other examples of interactive effects of intrinsic and

extrinsic factors on metabolic rate include significant effects

of pelagic versus benthic life styles, food habits, habitat/

microhabitat, captivity, season, pH (CO2), salinity, oxygen

supply, water supply, light intensity, day versus night,

pollution, exposure to air versus water, predation, parasites

and food quantity/quality on the mass-scaling exponent (b)

for metabolic rate (table 1). Mechanisms involved in these

interactive effects may include size-related geometric (SA/V)

constraints on resource uptake and waste removal, or

size-related variation in the effects of different food quantity/

quality or of various resource-demanding biological processes.

For example, according to theMLBH, some habitat/microhabi-

tat effects on b may be explained by differences in the relative

influence of SA- versus V-related metabolic processes, which

are a function of metabolic level (L). In particular, when L

increases (and SA-related metabolic processes are expected

to become more important), as observed with transitions

from xeric to mesic habitats, subtidal to intertidal microhabi-

tats, and burrowing to non-burrowing habits, b decreases, as

predicted (also see [8]). Other extrinsic effects on b, such as

effects of season, day versus night, and pelagic versus benthic

life styles have been attributed to size-related differences in the

metabolic costs of various resource-demanding processes, such

as growth, reproduction and behavioural activity.

Life-history stage may also interact with various extrinsic

factors, such as temperature, oxygen and light intensity,

to affect metabolic rate. Apparently, the metabolic rates of

different life-history stages show different sensitivities to

warming, hypoxia and increased light intensity (table 1). For

example, in intertidal porcelain crabs (Petrolisthes laevigatus),

the metabolic rate of adults varies less in response to hypoxia

than does that of earlier life-history stages. These differences

have been attributed to greater homeostatic regulatory ability

in more mature crabs [84].
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Three-factor interactive effects have also been documented.

For example, extrinsic factors such as predation, pH (CO2), sal-

inity, nutrition and exposure to air versus water canmodify the

effect of temperature on the mass-scaling exponent (b) for

metabolic rate (table 1). In particular, fish predator cues or habi-

tat regime significantly alter the effect of temperature on the

mass-scaling exponent (b) of freshwater amphipods, appar-

ently because of ontogenetic shifts in metabolically expensive

processes such as growth and behavioural activity, ultimately

caused by differences in size (age)-specific mortality between

habitats with and without fish predators [232,233]. Salinity

also affects how the mass-scaling of metabolic rate varies

with activity level in freshwater fishes [193,194].

5. Overview of interactive effects and their
mechanistic causes

Most of the interactive effects documented in our review

involve two factors. Relatively few involve three factors; and

we are not aware of any examples involving four-factor inter-

active effects. The challenges of testing for three- or four-factor

interactive effects are daunting. However, such studies may

allow us to gain a better understanding of how various factors

realistically affect the metabolic rate of organisms in nature,

where complex networks of ecological interactions occur.

For example, the effect of temperature on the mass-depen-

dence of metabolic rate in aquatic amphipods is completely

the opposite depending on whether fish predators or their

chemical cues are present or absent [232,233].

Althoughwe have identified body size and temperature as

‘hub factors’, further research may reveal that other intrinsic

and extrinsic factors, such as cell size, activity level, life-history

stage and resource (food and oxygen) availability, have

sufficiently general influences on metabolic rate to be called

hub factors, as well. Cell size (and its correlate genome size)

may importantly influence metabolic rate in multiple ways,

including via geometric (SA/V) constraints on cellular

resource supply and effects of cell-size-related cellular

processes and composition on resource demand [39,246].

Activity level has profound influences on resource demand

that influence variation in metabolic rate, both with and inde-

pendently of body size [19–24,169]. The influence of many

intrinsic and extrinsic factors can vary significantly with life-

history (developmental) stage. Ontogenetic changes in various

intrinsic factors, such as body shape/composition, the cellular

mode of growth, anaerobic versus aerobic mode of metab-

olism, and rates of energy-demanding growth, reproduction,

thermoregulation and behavioural activity can profoundly

affect organismal metabolic rate and its scaling with body

size (table 1). In addition, the metabolic rate of early ontogen-

etic stages may be affected more/less by extrinsic factors,

such as temperature, oxygen availability and light intensity,

than are later ontogenetic stages (see table 1). Therefore, it is

important that experimental and comparative studies of bio-

logical and environmental effects on metabolic rate consider

not just adults, but also immature life stages [10]. Since meta-

bolic rate is fuelled by environmental resources, resource

quantity/quality is also a critical factor that should be given

increased attention (e.g. [34,247–252]). Laboratory studies of

individual and species variation in metabolic rate that are

based on ad libitum food conditions may not well represent

the natural conditions that organisms routinely face.

Finally, although hypothetical mechanisms for several

interactive effects have been identified (table 1), we still know

little about the mechanisms underlying many other interactive

effects (e.g. interactive effects of body size with genotype,

gender and reproductive strategy, of temperature with geno-

type, acidity and toxicants, and of life-history stage with

temperature, oxygen supply and light intensity). Moreover,

the hypothetical mechanisms that have been identified are

based mostly on proximate functional causes, which may

vary between major habitats and life-styles (e.g. aquatic

versus terrestrial species [22,169]). We still have much to

learn about the ultimate evolutionary causes for some interac-

tive effects, especially those involving interactive effects of

body size with phylogenetic affinity, ecological life style, life-

history stage, reproductive strategy and exposure to predators,

of temperature with latitude, altitude, ecological life style and

phylogenetic affinity, and of life-history stage with various

extrinsic factors. Exploring the relative roles of biological

regulation, adaptive evolution and genetic/developmental/

physical constraints in causing interactive effects on metabolic

rate represents a new, exciting frontier of research.

6. Theoretical and practical implications
Recognition of interactive effects on metabolic rate has

important theoretical and practical implications. For example,

theoretical models based on the 3/4-power law of metabolic

scaling, or the independent effects of only one or two major

factors (e.g. body size and temperature, as in the MTE)

require modification, so that they may more realistically

predict and explain variation of the rate of metabolism

and other metabolically dependent biological processes in

nature. Our review reaffirms the importance of variation

in body size and temperature in causing variation in meta-

bolic rate, but also shows that many other intrinsic and

extrinsic factors interact with these factors and each other in

substantial ways to affect metabolic rate (figures 1 and 2,

table 1). To explain these effects, multi-mechanistic models

that embrace various contingent effects should receive

increased attention, as has been promoted by several investi-

gators with respect to the diversity of metabolic rate and its

scaling with body size (e.g. [1,8,9,27,34,253–256]).

Our review highlights the complex, intimate interrelation-

ships between physiology and ecology, knowledge of which

should increase our understanding of various phenomena

in both disciplines. Knowing how various intrinsic and extrin-

sic factors interactively affect the metabolic rate of organisms

may enhance our understanding of not only why organisms

exhibit diverse physiological adaptations in different environ-

ments but also how their metabolic physiology may have

shaped their life histories, ecological niches, and interactions

with various abiotic and biotic environmental factors in

ecosystems (also see [257–259]). For example, limited genetic

variation, evolvability and/or phenotypic plasticity of

metabolic rate may potentially limit the niche space and

geographical range of a species (e.g. [260–262]).

Important practical applications of a knowledge of perva-

sive interactive effects on metabolic rate include (i) devising

better ways to ‘correct’ for effects of body size and tempera-

ture on rates of metabolism and other biological processes

in comparative analyses, (ii) making more realistic predic-

tions of effects of climate change on organisms and
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ecological systems, (iii) improving our understanding of how

various factors affect size-abundance relationships in popu-

lations and communities, and (iv) refining estimations of

drug dosages in humans and animals of different age. Poss-

ible methods for including interactive effects between body

size and various intrinsic and extrinsic factors in comparative

analyses that attempt to correct for the effects of body size on

metabolic rate and other traits, have been reviewed by [25].

Studies that attempt to correct for effects of temperature

on metabolic rate should also consider interactive effects.

Including interactive effects of various intrinsic and extrinsic

factors would also improve efforts to link physiological

measurements with organismal performance in natural

environments. In particular, predictions of how organisms,

populations and communities respond to climate change

would be made more realistic and reliable by including

interactive effects. This view is supported by the many

studies showing interactive effects between temperature and

several other factors on metabolic rate (table 1). In addition,

predictions of size–abundance relationships in populations

and communities could be made more accurate by consider-

ing interactive multi-factor effects on size-metabolism

relationships that are thought to underlie size-abundance

relationships, at least in part. Lastly, the accuracy of dosage

levels for drugs administered to humans and animals could

be improved by considering interactive effects between

body size and life-history stage on metabolic rate. Mass-

scaling relationships for metabolic rate (and similarly rates

of drug clearance) differ significantly between children

( juveniles) and adults [8,82,85,263,264].

7. Conclusion and prospects
We conclude that a holistic system view of metabolic rate,

involving interactive multi-directional causal networks, is

much needed. Metabolic rate is a ‘hub trait’ (or ‘super-trait’

[259]) with body size and temperature being major influential

‘hub factors’ that are, in turn, affected by many other intrinsic

and extrinsic factors, such as cell size, activity level, life-

history stage, the supply and demand for various kinds of

resources (including food and oxygen), ecological life style,

habitat and various biotic and abiotic environmental factors

(figures 1 and 2). Holistic system analyses of metabolic rate

should include interactive proximate and ultimate mechan-

isms operating at multiple hierarchical levels of biological

organization. As a result, our understanding of how and

why metabolic rate varies so much among organisms in

nature should be much improved.
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