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Abstract: 2D layered metal-organic frameworks (MOFs) are a
new class of multifunctional materials that can provide electri-
cal conductivity on top of the conventional structural charac-
teristics of MOFs, offering potential applications in electron-
ics and optics. Here, for the first time, we employ Machine
Learning (ML) techniques to predict the thermodynamic sta-
bility and electronic properties of layered electrically conductive
(EC) MOFs, bypassing expensive ab initio calculations for the
design and discovery of new materials. Proper feature engi-
neering is a very important factor in utilizing ML models for
such purposes. Here, we show that a combination of elemental
features, using generic statistical reduction methods and crys-
tal structure information curated from the recently introduced
EC-MOF database, leads to a reasonable prediction of the ther-
modynamic and electronic properties of EC MOFs. We utilize
these features in training a diverse range of ML classifiers and
regressors. Evaluating the performance of these different mod-
els, we show that an ensemble learning approach in the form of
stacking ML models can lead to higher accuracy and more reli-
ability on the predictive power of ML to be employed in future
MOF research.

1. Introduction

Technological advancements in recent years, along with
geopolitical scarcity of resources, impose the need for the
design and synthesis of complex multifunctional materi-
als. Perpetual miniaturization of electronic devices, for
example, has called for a transition from pure metal oxide
semiconductors to hybrid organic-inorganic materials that
can bring additional properties and complementary func-
tionalities to the table. Due to their exceptionally large
surface area, high porosity, and abundant void space, metal-
organic frameworks (MOFs) have emerged as a new class
of such multifunctional materials with applications in gas
adsorption, separation, water treatment, and heterogeneous
catalysis.1–5 The advent of electrically-conductive (EC)
MOFs in 20126 expanded the horizons of MOF research to
electronics including their utilization as electrode materials
in batteries7 and supercapacitors8 as well as chemiresistive
sensors.9 Nevertheless, the chemical versatility of MOFs,
which is the result of the self-assembly of molecular build-
ing blocks via strong coordinative bonds,10 has led to an
increasingly large number of reported MOFs on a regular
basis.11 The unlimited and underexplored MOF universe
makes the classical trial-and-error approach impractical for
the design and discovery of targeted materials.

High-throughput screening (HTS) is a valuable tool for
discovering targeted materials from existing databases, of-
ten through implementing quantum mechanical calculations.

Multiple such databases exist for MOFs, e.g., CoRE MOF
database,12 hypothetical MOF database,13 and EC-MOF
database.14 The latter has been developed very recently to
assist the design and discovery of low-dimensional EC MOFs
for use in next-generation electronic devices. EC-MOF is the
only database dedicated to potentially conductive MOFs,
which provides not only the DFT-minimized structures but
also other relevant DFT-calculated properties of 1072 bulk
and monolayer systems. This collection allows searching, for
example, for a thermally stable metallic or semiconductor
MOF for a desired application in an HT manner. However,
currently, the EC-MOF database provides HTS opportuni-
ties only for 2D layered planar single-metal node EC MOFs.
Expanding it to other classes, while desirable for a thorough
EC MOF discovery, will inevitably lead to astronomical com-
putational expenses due to the sheer number of potential
EC MOFs,15 and their intricate structures, which require
careful benchmarking and care.16–19 Hence, an imperative
need arises for a more efficient and simplified methodology
to compute and screen properties across various classes of
EC MOFs.

Employing big data analysis and constructing predic-
tive models through the application of machine learning
(ML)20,21 techniques is certainly an option worth exploring
for this purpose. ML techniques have attracted much at-
tention in screening conventional 3D MOFs for various pur-
poses, including gas adsorption and storage,22–28 however,
their application for predicting the electronic properties of
conductive MOFs is fewer and far between. In 2018, He et
al.29 applied ML techniques for identifying metallic MOF
crystal structures for the first time. Due to the absence of a
dedicated database for EC MOFs at the time, they trained
four different ML algorithms using ∼ 52, 300 inorganic ma-
terials from the Open Quantum Materials Database30 and
used them to screen 2,932 3D structures in CoRE MOF
database, identifying six metallic crystal structures. Fol-
lowing DFT calculations on the selected MOFs revealed an
accuracy of 67% for their transfer learning approach. In
2021, Rosen et al.31 introduced the QMOF database con-
taining quantum-mechanical properties of 14,000 experimen-
tally synthesized crystal structures. DFT-calculated band
gaps showed an insulator nature for most of the structures,
with a band gap peak around 2.9 eV, and a semi-conductor
nature for a smaller subset of MOFs containing open-shell
metal centers, with a band gap peak around 0.9 eV. By train-
ing different ML models on DFT-calculated band gaps using
descriptors derived from the un-relaxed experimental crystal
structures, they were able to predict band gap values with
the Mean Absolute Error (MAE) as low as 0.274 eV using
crystal graph convolutional neural network32 (CGCNN).31

The introduction of the QMOF database presented the re-
search community with the opportunity to develop and eval-
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Figure 1. The overall schematics of the methodology employed in this work. A diverse set of linear, tree, and ensemble ML models takes
DFT data from the EC-MOF database and statistical GSRM features as inputs. The trained model is then used for both classification
and regression purposes.

uate novel ML algorithms to reduce the need for otherwise
expensive DFT calculations. Very recently, Cao et al.33 and
Kang et al.34 utilized the pre-training Transformer architec-
ture,35 to develop MOFormer and MOFTransformer, respec-
tively, and used them to predict DFT band gaps gathered in
the QMOF database among other properties. MOFormer,
which only relies on a text string representation of MOFs,
introduced as MOFid,36 predicted band gaps with an MAE
of 0.387 eV, which is considerably higher than the original
CGCNN training by Rosen et al. The reason is the lack
of information about the chemical environment of atoms in
MOFormer. Pre-training by CGCNN to encode crystal data
only slightly improved the performance of MOFormer, with
an MAE of 0.367 eV. This, however, does not diminish the
importance of predicting properties of interest using only a
text string, which circumvents the need for obtaining 3D
structures. On the other hand, MOFTransformer, which
was pre-trained on one million hypothetical MOFs and then
fine-tuned by training on a smaller number of 5,000-20,000
MOFs, slightly outperformed CGCNN in predicting DFT
band gaps.34

Compared to conventional 3D MOFs, developing and
applying ML techniques to predict the intrinsic properties
of 2D EC MOFs is a challenging task. Not only does the
system size and number of chemical species increase the
training time exponentially, but also the intricate nature
of their structures, which includes weak van der Waals
interactions between the layers, makes this even more chal-
lenging. Furthermore, due to the high conductivity of the
π-stacked layers, they show no or small band gaps ranging
from 0 to ∼0.9 eV values calculated at the DFT level.14

This makes the classification of EC MOFs or accurate pre-
diction of their band gaps even more formidable. Here, we
pursue targeted EC MOF design by employing ML predic-
tion models trained using a combination of DFT data from
our EC-MOF database and the generic statistical reduction

methods (GSRM),37 Figure 1. We conduct a thorough in-
vestigation using diverse traditional ML algorithms for the
purpose of both classification, i.e., identifying metallic vs.
semiconductor EC MOFs, and regression, i.e., calculating
formation energies and electronic band gaps. Our results
show that all employed ML models perform better in pre-
dicting structural and electronic properties when the DFT
data from the EC-MOF database are utilized. Furthermore,
we demonstrate that the ML property prediction can be
considerably improved following a model stacking strategy.
In the remainder of this work, we first provide the details
of our ML training and, specifically, feature engineering on
monolayer systems collected from the EC-MOF database.
In section 3, we present the predicted properties from dif-
ferent individual ML models as well as stacked models for
classification and regression tasks. Section 4 outlines future
directions and concluding remarks.

2. Methodology

Feature engineering

To train an accurate ML model for specific purposes, it is
critical to first find the appropriate features that sufficiently
and adequately describe the studied systems so that the
targetted properties can be reasonably deduced.15 In this
work, we create features and representations to utilize ML
models in predicting metallicity, band gap values (Eg), and
formation energies (Ef ) of the 2D MOFs in the EC-MOF
database. The schematic representation of different steps of
our property prediction strategy is shown in Figure 1. First,
we apply generic statistical reduction methods (GSRM)37

to create representations of the unit cells based on elemental
properties as shown in the Supporting Information (SI), Ta-
ble S1. GSRM can generate representations regardless of the
size or the elemental diversity of unit cells. A total number
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of 17 elemental properties is selected, and 5 statistic quan-
tities (standard mean, geometric mean, standard deviation,
maximum value, and minimum value) are calculated for each
of the properties.38 Although it had been shown before that
GSRM features perform well in predicting metallicity for
inorganic materials with small unit cells,38 they may not be
sufficient for EC MOFs which contain more than 100 atoms
per unit cell. Therefore, we complement GSRM features
with the crystal structure information extracted from our
EC-MOF database, Figure 1. A total number of 8 database
features are curated, including six lattice parameters (a, b,
c, α, β, and γ), cell volume, and total number of atoms in
the unit cell. Additionally, a series of new features related
to the electrical conductivity properties are created which
are not a part of the published database. These features
include bond ratios among different atoms, the total number
of bonds, the distance between nearest metal atoms, and
the number of d electrons; more details can be found in the
SI, Section S1. As a result, the training set employed here
consists of 102 columns of GSRM+Database (GD) features.
These features are used to train various ML models for
predicting target properties, including metallicity, class 0
for metal and class 1 for semiconductor, Eg, and Ef values,
Figure 1. In predicting thermodynamic stability, we utilized
a special feature engineering process called factor analysis.
This method is able to reduce a large number of variables
into a smaller number of factors while the variations of the
whole data set are preserved. A series of tests between the
number of factors and the coefficient of determination (R2)
during training is implemented. As a result, in predicting
Ef values, the 102 feature columns are reduced to 50 new
components to maximize the training score, R2. Then, the
50 components are kept consistent in all ML regressors for
Ef .

ML training based on the generated features

The data set used in this work is comprised of a matrix
of 524 mono-layer structures from the EC-MOF database
times 102 features for each system. It should be noted that
the 102 columns of features are not in the same order of
magnitude; for example, a feature like a row in the periodic
table is a single digit, but another feature like the melting
point could be up to three digits. Thus, features should be
appropriately scaled into a reasonable range to eliminate
any bias induced by different units or magnitudes. A data
set of the target properties also consists of 524 rows accord-
ing to the number of mono-layer structures and three target
properties, metallicity (0 or 1), which is a classification task,
and predicting Eg and Ef values, which is a regression task.
The ratio of training/test set is set to 90%/10% to get a
better training performance. In each case of training, var-
ious ML models are tested in order to investigate the best
model for the specific task. It should be noted that there is
no universal ML model for all the materials and properties.
This highlights the importance of benchmarking different
classes of ML models, i.e., linear, tree, and ensemble, as
shown in Figure 1, for a new class of materials like 2D EC
MOFs considered in this work. A 10-fold cross-validation
(CV) test is adopted in all models for the training set. The
model with the best performance is re-trained using the
whole data set and is used for predictions related to hypo-
thetical structures. Implementation of ML is carried out
using the scikit-learn package (version 1.2.2).39 The random

state in all cases is set to 1 for reproducible results.

3. Results and Discussion

Thermodynamic stability of EC MOFs: Predic-
tion of formation energies

Formation energy (Ef ), which is an important indicator
of the thermodynamic stability of the material and one of
the most sought-after parameters for prediction,40,41 can be
computed using the following equation

Ef = Etot −
1

N

N∑
i=1

xiµi (1)

where Etot is the calculated total energy of the material, N is
the total number of atoms with xi and µi being the number
and chemical potential of element i in the system. A nega-
tive value of Ef indicates a stable crystal structure, while a
positive value will be an indicator of thermodynamic insta-
bility. The 2D crystal structures gathered in the EC-MOF
database are composed of 13 different π-conjugated ligands
coordinated to eight different metal ions with +2 oxidation
states (Mn, Fe, Co, Ni, Cu, Zn, Pd, and Pt) via three pos-
sible functional groups (-NH, -O, and -S).14 The DFT Ef

values of all bulk and mono-layer structures are calculated
at the level of Perdew-Burke-Ernzenhof (PBE) functional42

with Grimme’s damped D3 dispersion correction.43 Hub-
bard U parameters44 are adopted for a better description of
the d and f electrons. Details of our DFT calculations can
be found in Ref. 14. 96.06% of the bulk and 92.75% of the
mono-layer structures in the EC-MOF database have neg-
ative Ef s. Overall, in each linker family, regardless of the
metal type, EC MOFs with -NH functional groups possess
the most negative Ef s, i.e., higher thermodynamic stability,
whereas the ones with -S functional groups possess the least
negative or, in some cases, even positive values.14

Using the DFT calculated Ef values of mono-layers in
the EC-MOF database as target properties, we train a di-
verse collection of regressors among linear models, tree mod-
els, and ensemble models, as well as a few commonly em-
ployed complex models, to predict the thermodynamic sta-
bility of EC MOFs. For the linear regression models, we used
Ridge Regressor (RR), Linear Regression (LIR), Passive Ag-
gressive Regressor (PAR), and Stochastic Gradient Descent
(SGD). These models utilize linear decision boundaries for
regression and, obviously, are well-suited for linear prob-
lems. Our tree models include Extra Tree Regressor (ETR)
and Random Forest Regressor (RFR), which leverage tree
structures to model non-linear relationships, providing great
flexibility in capturing the complex relationship between the
data. Ensemble models include Gradient Boosted Decision
Trees Regressor (GBR), Bagging Regressor (BR), and Ad-
aBoost Regressor (ABR). These models are employed as
they are suitable for processing data with highly non-linear
and complex structures. Additionally, widely used models
such as Support Vector Machine Regressor (SVR), k-Nearest
Neighbors Regressor (KNR), and Neural Network Regressor
(NNR) have been tested due to their demonstrated great
performance in diverse ML tasks before. For every model,
optimal settings listed in the SI, Table S3, are chosen based
on the mean training accuracy of the 10-fold CV.

Supervised regression is employed to predict the forma-
tion energy of the mono-layer EC MOFs. To avoid the un-
balanced weight of different features, a pre-process of scaling
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Figure 2. Parity plots of ML predicted Ef values vs. DFT calculated ones as obtained from different classes of regressors with the

number of points located in one bin indicated by the color bar on the left. Coefficient of determination (R2) in training (blue hexagonal
bins) and test sets (red circles) for RR (a), LIR (b), SGD (c), PAR (d), SVR (e), KNR (f), NNR (g), RFR (h), ETR (i), GBR (j), BR
(k) and ABR (l). The unit for Ef and MAEs is eV/atom. All models are trained based on GD features, i.e., elemental features from
GSRM, together with crystal structure information from the EC-MOF database.

the data is implemented as dividing the data by the maxi-
mum value of the column (x/|Max|) so that all data drops
into a reasonable range, [−1, 1] without changing the spar-
sity. As stated in the section on “Feature engineering”, an
extra process of factor analysis is implemented to maximize
the training score. Factor analysis method, which is a simple
linear generative model with Gaussian latent variables,45 is
adopted for this purpose.

Figure 2 demonstrates the parity plots of the ML pre-
dicted Ef values vs. the reference DFT calculated ones
as obtained from different classes of regressors using GD
features, which contain both elemental and structural in-
formation. Predicted points are represented by cumulative
hexa-bins in blue for the training set and in red for the test
set. The number of points located in one bin is indicated
by the color bar on the left. The coefficient of determi-
nation (R2) for both training and the test set, as well as
the mean absolute error (MAE) for the test set, is given
for each model. All plots show a nearly linear relationship
between DFT-calculated Ef values and their ML-predicted
ones. Three out of the four linear regression models (RR,
LIR, and SGD) perform best in this task with a test set
R2 of ≥ 0.95 and an MAE as low as 0.026 eV/atom. The
remaining linear model PAR, although it performs poorer
than the other three, still shows a good R2 of ≥ 0.90 and a
relatively low MAE of 0.047 eV/atom. Similarly, the ETR
and RFR tree models produce an excellent test set R2 of
≥ 0.95 and an MAE as low as 0.026 eV/atom. The ensem-
ble regressors show a varied behavior with the test set R2

covering a range from 0.86 in ABR to 0.94 in GBR. Among
the three commonly used regressors, only NNR has as high
an accuracy as linear and tree models, while SVR and kNR
show the lowest test set R2 of 0.73 and 0.75 among the
studied models.

A discussion on feature importance

Overall, the high test set R2 values and low test set MAE
values obtained in most of the ML models can be credited to
the created GD features that properly describe the systems
and distinguish the differences among them. To investi-
gate the importance of the chemical composition features in
GSRM vs. the crystal structure features curated from the
EC-MOF database in predicting the thermodynamic stabil-
ity of EC MOFs, all models were trained using the GSRM
features only. A complete comparison between training/test
set R2 and MAE values of the ML models trained with
GD vs. GSRM features are presented in the SI, Table S5,
and S6. Utilizing GSRM features only, one can produce
a maximum R2 value of ∼0.85 for the three linear models
(RR, LIR, and SGD) as well as the tree model RFR and the
commonly-used model NNR. The rest of the models show an
average R2 value of ∼0.56 with the lowest value of 0.27 cal-
culated for the ensemble model ABR. Generally, ML models
trained on GSRM features show a lower R2 and a higher
MAE than those trained on GD features. This emphasizes
the importance of including crystal structure information
for creating predictive ML models for the thermodynamic
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Figure 3. Accuracy and standard deviation of the tested ML classification models using GSRM+Database (GD) features (dark blue)
and GSRM features only (yellow). The accuracy is defined as the percentage of the correctly predicted metallic structures in the entire
training set with respect to the reference DFT data. The standard deviation is shown as error bars.

properties of EC MOFs.

Electrical conductivity nature of EC MOFs

For the classification of EC MOFs as metallic and semi-
conductors, we evaluated the performance of linear Ridge
Classification (RC), Logistic Regression (LR), Gaussian Pro-
cess Classification (GPC), and Stochastic Gradient Descent
(SGD). Tree models include Decision Trees classifier (DTC),
Extra Tree classifier (ETC), and Random Forest Classifier
(RFC). Finally, the ensemble models considered in this work
include the Bagging Classifier (BC) and Gradient Boosted
Decision Trees Classifier (GBC). As before, commonly used
Support Vector Machine Classifier (SVC), k-Nearest Neigh-
bors classifier (KNC), and Neural Network Classifier (NNC)
were also adopted to test their performance. For every
model, the optimal setting listed in the SI, Table S4, is
chosen based on the mean training accuracy of the 10-fold
CV. The scaling process is implemented as before. By ob-
serving the distribution of the whole data set, there are 165
metallic MOFs and 359 semiconductors, indicating a slightly
imbalanced distribution. An over-sampling strategy, adap-
tive synthetic sampling, is adopted to balance the training
set and avoid any bias from the imbalanced distribution.46

This is done using the imbalanced-learn package.47 The
over-sampling strategy results in a near-even ratio of 337
metallic and 319 semiconductor structures.

While half of the bulk layered structures in the EC-MOF
database show a metallic character, nano-structuration leads
to creation of semiconductors with narrow band gaps of up
to ≤ 0.9 eV.14 Figure 3 shows the accuracy of all chosen
classifiers, trained on GD or GSRM features, in determining
the metallic nature of EC MOFs with respect to the DFT
reference data. The standard deviation (SD) among 10
folds of the CV process is calculated and represented as an
error bar for each ML model. As can be seen, all trained
classifiers show an accuracy of higher than 50% compared
to the DFT classification in the EC-MOF database. Over-
all, training using GD features shows an accuracy range of
56% (in BC) to 80% (in KNC and ETC). These values are
only slightly higher than the accuracy achieved by training
ML models using GSRM features, which is 53% (in BC) to
79% (in KNC). Trained ML models based on GD features
generally have slightly smaller errors than the GSRM ones.

Overall, the similar accuracy achieved by utilizing GD or
GSRM features shows that the chemical composition has
a more pronounced effect on inducing electronic properties
than the crystal structure. However, one should remember
that training and prediction are carried out for mono-layer
EC MOFs here. In the case of a bulk layered system, the
π − π interaction between layers creates a dominant charge
transfer pathway, drastically affecting the nature of electri-
cal conductivity in EC MOFs. Hence, the GD features are
still recommended over GSRM for reaching a universally
reliable ML prediction. The results of the classification of
the test set were not satisfactory with any of the trained ML
models. Hence, extra measures, as explained in the next
section, should be taken to increase the accuracy and create
a predictive tool for practical applications.

Stacking ML models to create a predictive tool

To create a predictive ML tool, we adopt a form of en-
semble learning approach, which entails stacking different
ML classifiers to construct the final model. This idea was
first reported in 1992 under the name stacking generaliza-
tion.48 Once some first-level classifiers are trained using
the corresponding training set, a set of predictions can be
collected from these basic classifiers. Based on this pre-
dicted set of properties along with the original training set,
a second-level classifier will be trained, which is expected
to have better performance than all first-level classifiers.
Such a process also reduces biases and avoids overfitting.
Hence, we expect a better performance from the stacking
approach than the statistical multivoting used before,38

which reached an accuracy of 67% in the classification of 3D
EC MOFs to metallic and nonmetallic structures.

Here, we evaluate the performance of four distinct stack-
ing models (SC) in predicting the electrically conductive na-
ture of 2D MOFs. Initially, we combine RC, KNC, GBC, and
NNC models (SC1) to ensure model diversity and adaptabil-
ity. Among the four classifiers, RC can handle linear prob-
lems well and contributes to lightweight SC. KNC, GBC,
and NNC are, respectively, grounded in distance metrics,
gradient boosting decision trees, and multilayer perception
algorithms. It is worth checking to see whether stacking
these different classes can deal with diverse problems more
effectively. The accuracy results are reported in Figure 4 for
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Figure 4. Performance of different combinations of stacking classifiers in training and test sets.

both training and test sets based on GD features, or GSRM
features only. With 76% accuracy in classifying the training
set using GD features, SC1 does not show an improvement
over its constituent models RC, KNC, NNC, and GBC, each
showing 68%, 80%, 78%, and 78% accuracy, respectively. On
the other hand, the SC1 model using GD features reaches
an underwhelming accuracy of 67% in classifying the test
set as metallic or semiconductor. Finally, SC1 shows a high
standard deviation for the training set; see the error bars in
Figure 4.

The second SC model that we explore is based on com-
bining the SGD, ETC, and SVC classifiers (SC2). ETC and
SVC are tailored for non-linear scenarios, while SGD is used
to handle linear problems. Stacking these three classifiers
enhances the robustness of the model, while the inclusion of
SVC augments its performance in high-dimensional spaces.
As shown in Figure 4, SC2 provides an accuracy of 82%
for the training set, which is similar to the accuracy of its
non-linear constituents, i.e., 80% for ETC and 79% for SVC
and considerably improved upon its liner component, i.e.,
65%. Most importantly, it shows a good accuracy of 80% for
the test set, which is 23% higher than what SC1 achieved.
The standard deviation is considerably lower than the SC1.
Overall, these results show the robustness of the SC2 model
compared to the SC1.

To achieve even higher accuracies, we combined three
ensemble models, GBC, RFC, and BC (SC3). This stacking
leads to an increase of the training accuracy to 93%, which is
the highest among the three SC models at the expense of the
highest standard deviation as well. It is a stark improvement
in comparison to the BC model, which produced an under-
whelming accuracy of 56% by itself. Similar to SC2, SC3
reaches a good accuracy of 80% for the test set. Overall, the
results of stacking up till now emphasize that our data rela-
tionships are mainly non-linear in high-dimensional space,
and it is difficult for linear models to effectively capture the
complex nature of the data set. To describe high-latitude
nonlinear relationships more effectively, we include SVC,
ETC, RFC, and DTC in the fourth SC model (SC4). We

expect that SC4 will ensure not only the robustness of the
model but also the diversity of the algorithm to better han-
dle complex data relationships. Figure 4 shows that with
SC4, the training accuracy reaches 100% regardless of the
choice of input features, whether it be GD features or GSRM
alone. However, the performance on the test set differs in
that the SC trained by GD features results in 88% accuracy
compared to the 82% of the SC trained on GSRM features
only. Overall, we show that stacking different ML models
is a formidable strategy for creating a predictive tool for
discerning the electrical conductivity nature of EC MOFs,
even in the face of a database with a moderate size.

Prediction of electronic band gaps

After the classification of EC MOFs based on their metal-
licity, we use different ML models to predict the band gap
values (Eg) of the semiconductor materials. Eg values are
significantly important descriptors to be determined for
semiconductors as they affect the charge transport mecha-
nism and the overall electrical conductivity of the material.
We enforce positive Eg values by assigning “Positive” key-
word as “True”, if applicable. Notably, the range of DFT-
calculated Eg distribution among mono-layer structures
from the EC-MOF database is relatively narrow, i.e., less
than 1 eV with ∼60% of all mono-layer structures having Eg

values less than 0.3 eV. Considering the accuracy of DFT
calculations with common functionals is ∼ 2 − 3 kcal/mol
(∼ 0.087− 0.130 eV/particle),49 it is unnecessary (or rather
meaningless) for the regression model to be perfectly linear
between the ML predicted values and DFT reference data.
In this case, the MAE is a more appropriate evaluator of
regression tasks, which is an unambiguous measurement of
the average error magnitude. The optimal settings for ML
training, reported in the SI Table S5, are chosen accord-
ing to the MAE in eV for training and test sets. The 359
semiconductors form another 359 × 102 training matrix for
regression models. The same scaling process as the clas-
sification task is implemented to avoid possible bias. The
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Table 1. Metrics and scoring in predicting band gap values for the mono-layer structures in the EC-MOF database.

Trainig MAE (eV) Test MAE (eV) Training R2 Test R2

SR1 0.031 0.065 0.905 0.515
SR2 0.027 0.068 0.919 0.482
SR3 0.029 0.065 0.909 0.541

MAE of training and test sets among all tested regressors,
as well as the coefficients of determination R2, are reported
in the SI, Table S8. The best regressor concluded from the
table is ETR with 0.069/0.063 eV MAEs and 0.511/0.542
R2 values for training/test sets, respectively. The R2 values
of all other regressors are much lower than 0.5, even zero in
some cases, which indicates a weak learning rate and pre-
dictive ability in such tasks. Hence, to have a reliable tool,
regardless of the type of ML model, we restore the strategy
of stacking ML models for predicting the very small Egs in
EC MOFs.

Firstly, we choose the single regressors with the highest
R2 in training. These include ETR, RFR, GBR, BR, and
ABR (SR1 in Table 1), which have an average R2 of 0.45
in training. The performance during training is greatly
improved, with an R2 of 0.905, showing better learning
ability of the stacking regressor (SR). The test score reaches
0.515 with an MAE of 0.065 eV. Considering the limits
of DFT in evaluating band gaps, as mentioned before, as
well as experimentally measured values, which can vary by
several tenths of an electronvolt, an MAE of less than 0.1
eV is very promising for predicting hypothetical EC MOF
band gaps. Secondly, we adopt different types of regres-
sors, including RR (a linear model), SVR (a support vector
machine model), KNR (a nearest-neighbor model), NNR (a
neural network), and GBR (a tree model). The results are
collected as SR2 in Table 1. The first four regressors have
an underwhelming average R2 value of 0.137 in training,
while the last one scores 0.474. SR2 reaches an R2 value of
0.919 in training and 0.482 in the test set, which is a drastic
improvement over its constituent models. Similar to SR1,
it shows a very promising MAE of 0.068 eV for deciphering
structure-function relationships in future EC MOF studies.
The last SR model, SR3, comprises three linear models, LR,
RR, and PAR, which are by no means promising regres-
sors based on their individual performances, i.e., they have
scored as low as zero in training or test set and produced
the highest MAEs individually. Surprisingly, SR3 gives the
highest training R2, 0.966, and a comparative R2 in the test
set, 0.504. Such improvement in the case of the unproduc-
tive single regressors serves to recognize the prowess of the
stacking strategy.

Property predictions for a hypothetical MOF

Implementing ML within the database is the first step in
validating the effectiveness of the created features and ML
models for future investigations on EC MOFs. Naturally,
the final step is to implement the developed ML models to
predict important target properties of hypothetical systems
without the need for expensive DFT calculations. To inves-
tigate whether the ML models used here are transferable
to the MOFs not included in the EC-MOF database, we
create a class of hypothetical MOFs based on the organic
linker depicted in Figure 5. This organic linker is a modified
form of 1,4,5,8,9,12-hexaazatriphenylene (HAT) linker that
has already been used to synthesize EC MOFs in 2022.50

Figure 5. The structures of the hypothetical organic linker (a)
and the hypothetical MOFs (b). The pink spheres represent dif-
ferent functional groups, -O, -NH, and -S, while the blue spheres
represent Mn, Fe, Co, Ni, Cu, Zn, Pd, and Pt metal nodes, all in
+2 oxidation states.

The pink spheres represent functional groups, -O, -NH, and
-S, while the blue spheres represent Mn, Fe, Co, Ni, Cu,
Zn, Pd, and Pt metal nodes, all in +2 oxidation states.
We utilize Crystal Structure Producer (CrySP) developed
in our previous study14 to survey all possible combinations
among the building blocks. As a result, a total of 24 hypo-
thetical EC MOFs are built. For the input features of the
hypothetical MOFs, 102 columns of features are generated
in the same manner as mentioned before based on the op-
timized structures. Metallicity, Eg, and Ef are our target
properties. The best-trained models, SC4, SR2, and SGD
regressor, are chosen to make predictions on metallicity,
Eg and Ef , respectively. The SC classifier predicts that
among the 24 hypothetical MOFs, six are metallic, and 18
are semiconductor systems. We carried out reference DFT
calculations via an HTS approach where one metallic and 23
semiconductor MOFs were found. As a result, the accuracy
of metallicity classification was found to be 79%. Figure 6
shows the Eg values of the hypothetical MOFs obtained
from the SR2 as well as Ef values predicted by the SGD
regressor, both trained using the GD features. As can be
seen from the color bar, the ML predicted Eg values range
from 0 to 0.230 eV. For comparison, the DFT calculated
results are also shown alongside the predicted results by the
ML models. Details of DFT calculations are available in
the SI, section S5. The MAE of the ML predictions is 0.102
eV, which is still within the accuracy of DFT calculations,
indicating the acceptable transferability of our ML models.
Regarding the formation energies, Ef values of all hypothet-
ical structures were predicted by SGD regressor using the
same dimensional reduction procedure as mentioned before.
The MAE of Ef prediction was found to be 0.087 eV/atom.
The pattern of formation energies among different func-
tional groups deduced from the ML predicted Ef values is
that systems with imino and thio groups correspond to the
most and least stable MOFs, respectively. Such a pattern
is also confirmed by the DFT calculations here. It is worth
mentioning that this is the same pattern as reported for
the EC-MOF database. Overall, these results show that we
can predict the properties of hypothetical structures using
our created GD features and ML models with acceptable
accuracy and without extra DFT calculations.
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Figure 6. Comparison of band gap values (a) and formation ener-
gies (b) of hypothetical MOFs calculated by DFT and ML models.

4. Concluding Remarks

In this article, for the first time, we explored the appli-
cation of ML techniques for predicting different properties
of less explored 2D layered EC MOFs. With a focus on the
importance of feature engineering, we combined elemental
features from GSRM with DFT-calculated crystal structure
properties gathered in the EC-MOF database, collectively
coined GD features. This recently developed database,
which is the first of its kind, contains the geometries as
well as structural and electronic properties of 1057 bulk and
mono-layer EC MOFs. Using the created GD features for
mono-layer systems, three machine learning (ML) tasks, i.e.,
classification of metallicity as well as prediction of Eg and
Ef values, are carried out with multiple ML models. Over-
all, the GD features universally improved the performance
of all tested ML models. Even though the GSRM features
alone perform well in predicting the electronic properties of
monolayer systems, they cannot be generalized to bulk ma-
terials where electronic properties will be drastically affected
by the interlayer van der Waals interactions. As such, GD
features are overall recommended for achieving universally
good predictive performances for a range of different prop-
erties. We have also explored the strategy of stacking ML
models to create a more reliable predictive tool. The results
show high accuracy for metallicity classification, with the
stacking classifiers producing an accuracy of up to 100% for
the training set and 88% for the test set. The mean absolute
errors (MAE) of ML predicted Eg values of less than 0.07 eV
for the test set are smaller than the accuracy limit of DFT
calculations. The R2 values of Ef predicting are higher
than 0.95 in both training and test sets for most of the
ML models. All the results indicate that by integrating the
features from the database and GSRM, accurate predictions
of electronic and energetic properties can be achieved using
a limited amount of data and simple ML models compared
to other more complex models, such as convolutional neural
networks. Additionally, 24 hypothetical MOFs are built
and are subjected to the best ML models to predict target
properties. The trained ML models show promising trans-
ferability to the MOFs that are not part of the EC-MOF
database and were not introduced in the training process.
This proof of concept paves the way for the application of
ML models as promising tools for future accelerated EC
MOF design and discovery.

Future work should be directed toward improving the
transferability of the ML models. This can be pursued via
(i) enhanced feature engineering so a specific ML model
shows excellent performance for predicting a full spectrum

of structural, electronic, and optical properties; or (ii) in-
clusion of bulk structures in the training set which needs
further feature creations for describing interlayer chemistry.

Supporting Information Available

The details of feature generations and the parameters uti-
lized in training ML models are available in the supporting
information accompanying this manuscript. DFT-calculated
properties of EC MOFs can be found in our online EC-MOF
database at https://ec-mof.njit.edu.
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