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ARTICLE INFO ABSTRACT

Keywords: We initiate the study of fairness among classes of agents in online bipartite matching where there
Fair diViSiO“. is a given set of offline vertices (aka agents) and another set of vertices (aka items) that arrive
Online algorithms online and must be matched irrevocably upon arrival. In this setting, agents are partitioned into

Social welfare

Matching classes and the matching is required to be fair with respect to the classes. We adapt popular

fairness notions (e.g. envy-freeness, proportionality, and maximin share) and their relaxations to
this setting and study deterministic algorithms for matching indivisible items (leading to integral
matchings) and for matching divisible items (leading to fractional matchings). For matching
indivisible items, we propose an adaptive-priority-based algorithm, MATCH-AND-SHIFT, prove
that it achieves !/2-approximation of both class envy-freeness up to one item and class maximin
share fairness, and show that each guarantee is tight. For matching divisible items, we design a
water-filling-based algorithm, EQUAL-FILLING, that achieves (1 —!/.)-approximation of class envy-
freeness and class proportionality; we prove 1 —1/. to be tight for class proportionality and establish
a 3/s upper bound on class envy-freeness. Finally, we discuss several challenges in designing
randomized algorithms that achieve reasonable fairness approximation ratios. Nonetheless, we
build upon EQUAL-FILLING to design a randomized algorithm for matching indivisible items,
EQUAL-FILLING-OCS, which achieves 0.593-approximation of class proportionality.

1. Introduction

The one-sided matching problem is a fundamental subject within economics and computation that deals with the matching of
a set of items to a set of agents. Its primary objective is to ensure desirable normative properties such as economic efficiency and
fairness. The advent of Internet economics along with the introduction of novel marketplaces has posed new challenges in designing
desirable solutions for which, as noted by Moulin [42], “we need division rules that are both transparent and agreeable, in other words,
fair.” A wide array of these applications are inherently online, that is, items (or goods) arrive in an online fashion, and need to be
matched immediately and irrevocably to the participating agents: consider the examples of allocating advertisement slots to Internet
advertisers [41], assigning packets to output ports in switch routing [3], distributing food donations among nonprofit charitable
organizations [36], and matching riders to drivers in ridesharing platforms [6].
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Fig. 1. An adversarial instance where CEF1 cannot be achieved together with non-wastefulness.

Over the past few decades, a large body of literature—within the field of online algorithm design—is devoted to the study of
online bipartite matching problems. Their primary goal is to satisfy some notion of economic efficiency—e.g. maximizing the size of
the final matching—with no knowledge of which items will arrive in the future and in what order. Algorithms designed for this
problem are judged by their competitive ratio, which is the worst-case approximation ratio of the size of the matching produced to
the maximum possible size in hindsight. It is well known that the best deterministic algorithm can only achieve a ! /2-approximation
of this efficiency goal, e.g., by using a greedy algorithm to get a maximal matching. Notably, the seminal work of Karp et al. [33]
provides a randomized algorithm called RANKING with the best possible (1 — !/.)-approximation.

While the literature offers online algorithms with optimal efficiency guarantees, little work has been done in ensuring that these
algorithms treat agents, or rather, classes of agents fairly. Consider the example of a food bank that wishes to distribute the donated
items among nonprofit organizations and homeless shelters. The perishable food items donated to the food bank must be assigned
upon their arrival. How should an online matching algorithm distribute these donations to the nonprofits and shelters in such a
manner that the communities they serve are treated equitably?

Class fairness We initiate the study of class fairness in online matching, where a set of items arriving online must be assigned to
agents who are partitioned into known classes and each agent can receive at most one item, with the goal of achieving fairness among
classes. Agents either like an item (value 1) or don’t like it (value 0). We adapt classical notions from the fair division literature that
typically apply to individual agents—such as envy-freeness (EF), proportionality (Prop), and maximin share guarantee (MMS)—to classes
of agents. Our extensions ensure that different classes are treated fairly, regardless of their sizes (e.g., in the food bank example above,
different communities are treated equally, even if some have many more organizations serving them).

In the standard fair division model, the impossibility of achieving envy-freeness has motivated relaxations such as envy-freeness
up to one item (EF1), which can be guaranteed [37]. When applied to classes, our class envy-freeness up to one item (CEF1) requires
that envy of any class towards another class to be eliminated after the removal of at most one item that is matched to an agent within
the envied class. When all items are available up front, it is known that CEF1 can be achieved without unnecessarily throwing away
items [9].! Can it still be achieved in the online setting?

Impossibility of CEF1 in online matching First, note that “class-awareness” is necessary for any algorithm; otherwise an algorithm that
is blind to the class information may violate CEF1 by assigning two arriving items to the same class, when there is another class that
likes both items. Unfortunately, a slightly larger example shows that even class-aware online algorithms cannot always achieve CEF1.

Example 1. Consider the example in Fig. 1, in which six agents are partitioned into two classes N| = {a;,a,,a3} and N, = {b{, b,, b3 }.
The value of each class for a matching is the sum of the values that its agents receive (we formally define the valuations in Section 2).
Four items arrive sequentially in the order (0;,0,,03,04). An edge indicates that an agent likes an item; thick edges indicate the
matching. Assume that we do not wish to throw away any item as long as there is an unmatched agent who likes it. For i € {1,2,3},
item o; is liked by agents a; and b;. The first item o, can be matched to either a; or b; without loss of generality, suppose it is
matched to a; € N|. When o, arrives, it must be matched to b, € N, in order to satisfy CEF1. The third item o5 can again be matched
to either of a3 and b5; without loss of generality, suppose it is matched to b3 € N,. Now, o, arrives, and it is liked only by a; (who
is already matched) and b; (who is unmatched). The algorithm must assign it to b, due to non-wastefulness, which leaves class N,
envious of class N,, even if we ignore any one of the items assigned to N,. Note that since each agent receives at most one item,
every individual agent’s envy towards another individual agent can be eliminated by the removal of one item.

Given this impossibility, we seek online matching algorithms that achieve the fairness notions approximately, often in conjunction
with approximate efficiency guarantees. We aim to answer the following theoretical questions:

Can we design deterministic algorithms for matching indivisible or divisible items that achieve approximate class fairness while adhering
to efficiency requirements? And, can we surpass their guarantees by using randomization?

1 We later formalize the latter restriction as non-wastefulness (NW). This is required because CEF1, on its own, can be achieved vacuously via an empty matching
by throwing away all the items.
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Table 1
The summary of our results on deterministic algorithms for matching indivisible and divisible items. Each algorithm
achieves its three guarantees simultaneously, while the upper bound holds for any algorithm, separately for each

guarantee.
Indivisible Divisible
Fairness Algorithm Upper Bound Fairness Algorithm Upper Bound
a-CEF1 + NW 1/2 (Algorithm 1) 1/ a-CEF + NW 1- i (Algorithm 2) 3/a
a-CMMS 1/ (Algorithm 1) 1/ a-CPROP 1- 1 (Algorithm2) -1
a-USW 1/> (Algorithm 1) 15 a-USW 1/> (Algorithm 2) 1-1

1.1. Our results

Our first contribution (Section 2) is developing a detailed mathematical framework in which we adapt classical fairness concepts
to online matching. We consider two types of online matching models, one with indivisible items, wherein an item must be matched
in its entirety to a single agent, and one with divisible items, wherein an item may be fractionally divided between multiple agents.

For both settings, we design online algorithms that achieve approximate fairness and efficiency guarantees, and also provide
upper bounds on the approximations that can be achieved by any online algorithm. Our algorithms satisfy non-wastefulness, which
implies ! /2-approximation of the optimal utilitarian social welfare (USW); the utilitarian social welfare, i.e., the sum of agent utilities,
is effectively the size of the matching. Specifically, we make the following contributions (summarized in Table 1).

« Indivisible matching: For indivisible items, we develop a deterministic algorithm, MATCH-AND-SHIFT, that simultaneously
achieves non-wastefulness, !/2-CEF1, !/2-CMMS, and !/2-USW (Theorem 1). The algorithm uses an adaptive priority queue over
classes, in which a class is shifted to the end of the queue immediately upon receiving an item. Further, we prove that no
deterministic algorithm can achieve any of a-CEF1 (subject to non-wastefulness), a-CMMS, or a-USW, for any « > !/> (Theorem 2),
establishing our algorithm to be simultaneously optimal for each guarantee.

Divisible matching: For divisible items, we improve the above bounds via a different algorithm, EQUAL-FILLING. This algorithm
divides items equally between the classes, but uses water-filling to divide the portion of an item assigned to a class between
the agents in that class. This algorithm simultaneously achieves non-wastefulness, (1 — !/)-CEF, (1 — !/)-CPROP, and !/>-USW
(Theorem 3). Further, no deterministic algorithm can achieve a-CEF for any a > 3/4, or a-USW for any a« > 1 — /e, and (1 —
1/e)-CPROP is tight (Theorem 4).

Randomized algorithms: Finally, we propose a randomized algorithm, EQUAL-FILLING-OCS, for matching indivisible algorithms
that breaks the !/> barrier. We run a variant of EQUAL-FILLING to obtain a guiding divisible matching, and round it into an
indivisible matching using a technique called online correlated selection (OCS). We prove that it is simultaneously 0.593-CPROP
and !/2-USW (Theorem 5).

1.2. Related work

In this section, we provide an extended review of the related literature on online matching, fair division, and fairness issues in
online matching.

Online matching We refer readers to Mehta [40] for a survey of the vast literature on online matching, and summarize some results
that are the most related to this paper. The RANKING algorithm of Karp et al. [33] assigns each item in its entirety; in our model, this
corresponds to a randomized algorithm for matching indivisible items that achieves (1 —!/e)-USW. The case of divisible items is often
called fractional online matching in the matching literature.” For this, Kalyanasundaram and Pruhs [31] gave a deterministic (1 —!/)-
competitive algorithm, which achieves (1 — 1/e)-USW in our framework; different papers refer to this algorithm as Balance, Water-
filling, or Water-level. The RANKING algorithm and its analysis were generalized to the vertex-weighted case by Aggarwal et al. [1].
Feldman et al. [20] introduced the free disposal model of edge-weighted online matching and gave a (1 — !/e)-competitive algorithm
for divisible items. The series of works by Fahrbach et al. [19], Shin and An [46], Gao et al. [21], and Blanc and Charikar [11] led to
the state-of-the-art 0.536-competitive algorithm for edge-weighted online matching with indivisible items. These works developed a
new technique called online correlated selection which we also use in this paper.

The literature also considers stochastic models of online matching problems to break the 1 —!/. barrier. Mahdian and Yan [39] and
Karande et al. [32] showed that the competitive ratio of RANKING is between 0.696 and 0.727 if online vertices arrive by a random
order. Huang et al. [29] introduced a variant of RANKING that breaks the 1 — !/. barrier in vertex-weighted online matching under
random-order arrivals; the ratio was further improved to 0.668 [30]. If items are drawn from a distribution known to the algorithm,
it is called online stochastic matching [20]. The best known competitive ratios for unweighted and vertex-weighted online stochastic
matching are 0.711 and 0.700, respectively [28].

2 Tt is closely related to another model called online h-matching in which each offline agent may be matched up to b times. Since the algorithms and analyses are
usually interchangeable in these two models, we phrase both models as the case of divisible items.
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Fair division There is a rich body of literature on fair allocation of indivisible or divisible items. A common assumption in most fair
division studies is that there is no constraint on how many items each agent can receive, and agents receive increasing value when
receiving more items.

In this literature, envy-freeness and proportionality (and approximations thereof) have been used as the primary criteria of fairness.
For divisible items, an allocation satisfying both envy-freeness and an economic efficiency notion called Pareto optimality is known
to exist [47] and can be computed via convex programming when agents have additive valuations [18]. For indivisible items, two
relaxations of envy-freeness are commonly studied: envy-freeness up to one item (EF1) [37] and maximin share fairness (MMS) [14].
An EF1 allocation is guaranteed to exist with monotone valuations [37], and can be achieved together with Pareto optimality when
agents have additive valuations [16]. On the other hand, MMS allocations are not guaranteed to exist, even for additive valuations,
though constant factor approximation algorithms [22,35,23] and ordinal approximations [25,26] exist and can be computed in
polynomial time.

Our problem can be seen as a fair division problem by considering each class to be a meta-agent; the value of this meta-agent
for a bundle of items is the maximum total value obtained by matching the items to the agents in the class, which induces OXS
valuations [43] (these are not additive). Benabbou et al. [8] studied a model similar to ours in the offline setting, and observed that
the EF1 algorithm of Lipton et al. [37] may result in a wasteful allocation; nevertheless, they showed that an allocation satisfying EF1
and non-wastefulness exists and can be computed in polynomial time. Subsequent papers [9,4,7] considered a more general class of
submodular valuations with dichotomous marginals and proved that EF1 and optimal USW can be achieved together; Barman and
Verma [7] proved a similar result for MMS and optimal USW.

Fairness in online matching Our paper is also related to the growing line of work on online fair division [2,10,5,50,48], but a majority
of this work focuses on additive valuations, and hence, their techniques do not apply to our matching setting. Several recent papers
are concerned with group fairness in online matching [38,44]. Ma et al. [38] studied a stochastic setting wherein the agents arrive
online (as opposed to the items in our model), following an independent Poisson process with known homogeneous rate; the objective
is to maximize the minimum ratio of the number of agents served to the number of agents in each group. Sankar et al. [44] studied
an online matching problem where the items arrive online. Here, the items are grouped into classes (as opposed to the agents in
our model), and each agent specifies capacity constraints, which they referred to as group fairness constraints, restricting the number
of items from each class that can be assigned to the agent. Due to these crucial differences between their models and ours, their
techniques and results do not overlap with ours.

2. Model

For t € N, define [t] = {1,...,t}. First, let us introduce an offline version of our model and the solution concepts we seek. Later,
we will discuss the online model and algorithms in that model.

Consider a bipartite graph G = (N, M, E), where N represents a set of vertices called agents, M a set of vertices called items,
and E the set of edges. We say that agent a likes item o if a is adjacent to o, i.e., (a,0) € E. The set of agents N is partitioned into k
known classes Ny,..., Ny so that N;n N; = for all i # j and Uf.‘:lNi = N. For simplicity, we refer to class N, simply as class i.

Matching We consider the cases of divisible items (where each item can be matched to multiple agents fractionally) and indivisible
items (where each item must be matched to a single agent integrally). A (divisible) matching is a matrix X = (x, ,),en oem € [0, VM
satisfying ).y X,, < 1 for each item 0 € M, and Y ., X, , < 1 for each agent a € N. We say that matching X is indivisible if
X,, € {0,1} for each agent a € N and item o € M. Given a matching X, we say that agent a is saturated if ), ., x,, =1, and item
o is fully assigned if 3,y x,, = 1.

For a matching X, we write Y (X) = ()¢ N, Xa0)ielkl.oem @S the matrix containing the total fraction of each item assigned to
agents in each class. Let Y;(X) denote the row of Y (X) corresponding to class i. For an indivisible matching X, we may abuse the
notation and use Y;(X) to refer to the set of items matched to agents in class i, i.e., { 0€ M |x,,=1forsomea€ N, } We may omit
the argument X from Y (X) and Y;(X) if it is clear from the context.

Class valuations The value derived by agent a from matching X is V,(X) = ¥ cps:(a0)ek Xaor We define the value of class i from
matching X as the utilitarian social welfare of the agents in class i under matching X, denoted V;(X) =} cn. Vo(X).

In order to define fairness at the level of classes, we need to also define how much hypothetical value agents’ in class i could derive
from the items matched to agents in another class j. However, it is not obvious how one should define this value because it depends
on how the items matched to agents in N; would be matched to agents in N; in this hypothetical scenario. Following [8], we use the
following optimistic valuations.

Given a vector y = (y,),ep € [0, 11M representing fractions of different items, the optimistic valuation V.*(y) of class i for y is
the size of the maximum fractional matching between the agents of N; and y; namely, V;*(y) is given by the optimal value of the
following LP:

max ZaEN,- ZoeM:(a,o)EE xa,O
St Yaen, Xao < Yo YoeM,

ZOEM xa,o < 1 Vae Ni’
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>0 VYae N;,0eEM.

a,0 =

For S C M, let 5 € {0,1}™ denote the incidence vector such that ef =1ifo€ .S and ef = 0 otherwise; we may write Vi*(es ) as
V*(S) for ease of notation. For an integral vector y, it is known that there is an integral optimal solution to the above LP (see, e.g.,
Section 5 of [34]); thus, V;*(S) coincides with the maximum size of an integral matching between S and the agents in N,.

2.1. Solution concepts

We consider classical fairness notions from the fair division literature and extend these notions to ensure fairness between classes
of agents.
(Approximate) class envy-freeness. Envy-freeness between individual agents demands that every agent values the resources al-
located to her at least as much as she values the resources allocated to another agent. When applied to classes, we compare the
value V;(X) derived by class i for its matched items with class i’s optimistic valuation for the items matched to another class j, i.e.
V*(Y;(X)). Note that this results in a strong class envy-freeness notion: even if, hypothetically, class i were to be matched to the items
currently matched to class j under X in an optimal manner, they would still not be any happier overall.

Definition 1 (Class envy-freeness). A matching X is a-class envy-free (a-CEF) if for all classes i,j € [k], Vi(X) > a - Vi*(Yj(X )). When
a =1, we simply refer to it as class envy-freeness (CEF).

It is impossible to achieve a-CEF with an indivisible matching for any a« > 0 in general, e.g., consider when one desirable item has
to be allocated among two classes. Hence, we consider the following relaxation of CEF for integral matchings.

Definition 2 (Class envy-freeness up to one item). An integral matching X is a-class envy-free up to one item (a-CEF1) if for every pair
of classes i, j € [k], either Y, (X)= @ or there exists an item o € Y;(X) such that V(X)) > «a - VI.*(YJ-(X)\ {0}). When a = 1, we simply
refer to it as class envy-freeness up to one item (CEF1).

We remark that CEF1 is called type-wise EF1 (TEF1) by [8]; we use the terminology “class” instead of “type” because letting
agents of the same “type” have different incident edges may be confusing.

(Approximate) class proportionality and maximin share fairness. Another classical fairness concept is proportionality. In the
traditional fair division model where agent valuations are additive, proportionality is typically stated as requiring that each agent
receives value that is at least !/»-th of her value for the set of all items, where n is the number of agents. This can be equivalently
viewed as demanding that each agent receives at least the maximum value she can receive from the worst bundle among all fractional
partitions of the items into n bundles. We use the latter version as the appropriate definition of proportionality in our model. We
define the proportional share of class i as

prop; = max min Vi{Y;(X)),
where X is the set of (divisible) matchings of the set of items M to the set of agents N.

Definition 3 (Class proportionality). We say that matching X is a-class proportional (a-CPROP) if for every class i € [k], V;(X) >
a - prop;. When a = 1, we simply refer to it as class proportionality (CPROP).

As in the case with class envy-freeness, class proportionality is impossible to guarantee via indivisible matchings. Nevertheless, we
can naturally relax the notion of proportionality by only taking into account indivisible matchings in the definition of proportional
share above. Formally, the maximin share of class i is defined as

P= in V*(Y;(X)),
mms; = max min V; ¥;(X))
where 7 is the set of indivisible matchings of the set of items M to the set of agents N.

Definition 4 (Class maximin share fairness). We say that matching X is a-class maximin share fair (a-CMMS) if for every class i € [k],
Vi(X) > a - mms;. When a = 1, we simply refer to it as class maximin share fairness (CMMS).

Efficiency. We consider two notions of efficiency. Non-wastefulness demands each item to be fully assigned, unless all the agents who
like it are saturated.

Definition 5 (Non-wastefulness). We say that matching X is non-wasteful (NW) if there is no pair of agent a and item o such that (i)
o is allocated to a (i.e., x,, > 0) but a does not like o, or (ii) a likes o, a is not saturated (i.e., ZO,E M Xao < 1), and o is not fully
assigned (i.e., ) oy Xu 0 < 1).
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Fig. 2. Class envy-freeness (CEF), non-wastefulness (NW), and utilitarian social welfare approximation (USW): an empty matching is CEF1 but wasteful; wiggly lines
show a CEF1 and NW matching; thick lines indicate a CEF1 and 1-USW matching.

A more quantitative notion of efficiency is the utilitarian social welfare, which, in our context, is the size of the (divisible) matching.
Note that this is the classical objective that the literature on online matching optimizes, in the absence of any fairness constraints.

Definition 6 (Utilitarian social welfare). The utilitarian social welfare (USW) of a matching X is given by usw(X) =
YueN LoeM :(ao)ck Xao- We say that a divisible (resp., indivisible) matching X is a-USW if usw(X) > « - usw(X*) for all divisi-
ble (resp., indivisible) matchings X*. When a = 1, we refer to X as the USW-optimal matching.

The following is a known relation between non-wasteful and maximum matchings in both divisible and indivisible cases.
Proposition 1. Every non-wasteful (divisible or indivisible) matching is ! />-USW.
Proof. Let X* be a matching maximizing the utilitarian social welfare. Without loss of generality, we can pick X* to be integral.®

Let X be any non-wasteful (divisible or indivisible) matching. By non-wastefulness, for every (a,0) € E, we have Y o'eM Xao =101
Y sen Xat o = 1. Then, we have

usw(X)= Y 1

(a,0€E:x} =1

< ) Y Xew + D X

(a,0€E:x} ,=1 \o'eM adeN
<Y D xagt DD Xy =20 usW(X),
aeN deM 0EM deN

where the second transition holds because X is non-wasteful, and the third transition holds because X* is an indivisible matching
(e, ifx;, =1,x* =1, and (a,0)# (d’,0"), then a # @’ and o0 # o'). This proves that X is !2-USW. []

Let us illustrate the above concepts of fairness and efficiency using examples.

Example 2. Consider the example given in Fig. 2, where there are four items (o, 0,, 03, and o4), agents a; and a, belong to one
class, and agents b, and b, belong to another class. An edge between an agent and an item indicates that the agent likes the item;
thick and wiggly lines indicate matchings. An empty matching is class envy-free (CEF) but wasteful. The wiggly lines show a CEF1
and non-wasteful matching. Finally, thick lines show a matching that achieves CEF1 along with optimal utilitarian social welfare.

2.2. Online model

Let us now introduce our online model. In this model, the items in M arrive one-by-one in an arbitrary order. We refer to the step
in which item o € M arrives as step o.

When item o arrives, all agents reveal whether or not they like the item. In other words, the edges incident to item o are revealed
in graph G. At this point, an online algorithm must make an immediate and irrevocable decision to “match” the item to the agents
in N, i.e., set the values of (x,,),cy. We consider algorithms which set these values deterministically.

For the algorithms we design, we prove that they achieve the desired guarantees (approximate CEF, CEF1, CPROP, CMMS, USW,
or non-wastefulness) at every step. However, a key property of our algorithms is that they do not need to know in advance the number
of items that will arrive, which means that proving the desired guarantees at the end implies that they hold at every step. In contrast,
our upper bounds (impossibility results) will hold even if the desired guarantees are required to hold only at the end.

3 To see this, note that maximizing the utilitarian social welfare is equivalent to the LP that maximizes Y,y ¥ enr:@ock Xao Under X € P i= { X € [0, 1] |
Yeen Xap 1, Yoe M and ¥ .\ x,, < 1, Ya € N }. Since the matrix defining the constraints is totally unimodular, there is an integral matching that maximizes the
utilitarian social welfare.
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ALGORITHM 1: MATCH-AND-SHIFT.

1 Fix a priority ordering over classes, 7 = (7, ..., ;)
2 when item 0 € M arrives do
3 fori=1to k do
Let N, , be the set of unmatched agents a € N, such that (a,0) € E
if N, , #0 then
Arbitrarily match o to an agentin N, ,
T (T s Ty Ty e s T ;)

break

©® N o U »

Definition 7. For a € (0, 1], a deterministic online algorithm for matching divisible or indivisible items is a-CEF (resp., a-CEF1,
a-CPROP, a-CMMS, a-USW, or NW) if it produces an a-CEF (resp., a-CEF1, a-CPROP, a-CMMS, a-USW, or NW) matching when all
items have arrived.

Because CMMS and CPROP place only a lower bound on the utility of every agent, there is no tension between them and non-
wastefulness. Any algorithm achieving an approximation of these notions can be made non-wasteful without losing the said fairness
approximation.

Proposition 2. For a € (0, 1], if there is a deterministic online algorithm satisfying a-CMMS (resp., a-CPROP), then there is a non-wasteful
deterministic online algorithm satisfying a-CMMS (resp., a-CPROP). This holds for matching both divisible and indivisible items.

Proof. Let us first consider indivisible items. Let A be any deterministic online algorithm that may be wasteful. Consider a non-
wasteful version of it, denoted as A’, that works as follows. It runs A in the background and treats A’s output as an advice. Importantly,
A keeps its own internal state and is oblivious to the actual matching decisions made by A’. For an item o, suppose that A matches
o to agent a. Algorithm A’ would follow A’s advice and match o to a if a is not yet matched, and would otherwise match o to any
unmatched agent who likes item o.

By definition, A’ is non-wasteful. Further, we can prove by induction over the steps that the set of agents matched by A’ is a superset
of the set of agents matched by A. Since CMMS is a monotone property (i.e., increasing agent values preserves its approximation),
A’ achieves at least as good an approximation of CMMS as A does.

For divisible items, the same proof works for CPROP, except A’ now gives a fraction of o to each agent a that is the minimum of
the fraction of o matched to a under the advice given by A and the remaining capacity of a in the current matching maintained by

A. O
3. Deterministic algorithms for indivisible items

We start by focusing on deterministic algorithms for matching indivisible items. We study possible approximations of two fairness
concepts, CEF1 and CMMS, along with efficiency guarantees in terms of non-wastefulness and the utilitarian social welfare. When
matching indivisible items, CEF1 may seem trivial to achieve: only match an item to some agent in some class if this preserves CEF1,
and discard the item otherwise. However, this algorithm may ‘waste’ too many items and lose significant efficiency.* Example 1
illustrated that CEF1 and non-wastefulness are incompatible in the online setting.® In this light, for arbitrary classes, it is natural to
ask what approximation of CEF1 can be achieved subject to non-wastefulness.

3.1. Algorithm MATCH-AND-SHIFT

One way to achieve approximate CEF1 is to ensure a balanced treatment of all classes by providing them approximately equal
‘opportunity’ for receiving an item. This approach is inspired by the well-studied Round-Robin algorithm in fair division [16] and its
widely-adopted cousin, Draft, that is used in sports for selecting players [12,13] or assigning courses to college students [15].

However, running such algorithms naively in our online setting, where not all items are available upfront, can be problematic: if
we do a round-robin over classes, a class can be disadvantaged if the item arriving in its turn is not liked by any unmatched agent
in the class. Further, non-wastefulness requires that any arriving item be matched as long as there is an unsaturated agent who likes
it, even if this agent does not belong to the class whose turn it is. Keeping these observations in mind, we design MATCH-AND-SHIFT
(Algorithm 1), which provides equal treatment to the different classes while achieving non-wastefulness.

Algorithm description Fix an arbitrary priority ordering = = (7, 7,, ..., ;) over the k classes, where 7, is the class with the highest
priority. Upon arrival of each item, pick the first class N, in the priority ordering that contains an unmatched agent who likes the

4 In fact, discarding all items—an empty matching—is vacuously class envy-free.
5 In Appendix A.1, we show that this incompatibility holds even after weakening the CEF1 requirement to account for ‘pessimistic’ valuations, i.e., when each class
evaluates the items matched to another class through a minimum-cardinality maximal matching.
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item. Match the item to any unmatched agent—there may be several such agents—in N, who likes the item. Update the priority
ordering 7= by moving class z; to the end.

The following theorem establishes approximate fairness and efficiency guarantees of MATCH-AND-SHIFT; later, in Theorem 2, we
prove that these guarantees are tight.

Theorem 1. For deterministic matching of indivisible items, MATCH-AND-SHIFT (Algorithm 1) satisfies non-wastefulness, '/>-CEF1,
1/>-CMMS, and ! />-USW.

Proof. Let X be the matching returned by the algorithm.

NW & !/2-USW. Non-wastefulness of X follows immediately from the description of the algorithm: at each step, the arriving item
is matched to an agent who likes it whenever such an agent exists. Because X is non-wasteful, due to Proposition 1 it also satisfies
1/5-USW.
Now, we turn our attention to the fairness guarantees. Recall that for each i € [k], ¥; denotes the set of items matched to agents in
class i. Fix any class i. Let t = |Y;| denote the number of items matched to the agents in class i under X. Due to non-wastefulness, we
have V;(X) =t.
1/2-CEF1. Consider any class j € [k]\ {i}. Let Yj* cY; be the set of items matched to class j that are liked by at least one unmatched
agent in class i. The claim immediately holds when Yj* =@J: in this case, the optimistic value of class i for Y, is Vi*(Yj) <t=Vi(X),
implying that X satisfies CEF for i. Thus, we assume that at least one item in Y; is liked by at least one unmatched agent of class i.
By construction of the algorithm, we have |Y*| <t + 1. This is because every time class j receives an item in Y/* (that is liked by
an agent in class i who remains unmatched till the end, and, therefore, is unmatched at the time of the item’s arrival), class j must
have a higher priority than class i. Hence, the algorithm must match an item to class i before it can match another item in Y* to class
j. Thus, |Yj*| <1+ 1Y;| =t+ 1. Fix an arbitrary item o € Y]* CY;. We claim that V*(Y; \ {o}) < 2¢, which establishes the !/>-CEF1
claim. Note that the r matched agents in class i can derive a maximum total utility of ¢ from these items. Further, the total utility that
the unmatched agents in class i can derive from these items is upper bounded by |Yj* \ {o} | <t. Hence, V*(Y; \ {o}) <2t.

1/-CMMS. Assume for contradiction that ¢ = V;(X) < (!/2) - mms;. Because mms; is an integer, this implies 2¢ + 1 < mms;. Let
(81,5, ...,S,) be a maximin partition of the items for class i such that VI* (&) j) > mms; for every j € [k]. By our assumption, we
have Vl.*(S D =z2t+1 for every j € [k]. For each j € [k], we let S denote the set of items in S; that are liked by at least one
unmatched agent in class i. Note that V;*(S;) <7+ |S;.‘ |: the r matched agents in class i can derive total utility at most ¢, and the
unmatched agents can derive total utility at most |.S7|.

Recall that |Y;| =t and we have already established |Yj*| <t+1 for every class j € [k]\ {i}. Further, by non-wastefulness, none of
the unmatched agents of class i likes any item in M \ Uhe[k] Y},. Thus, we have | Uje[k] Sj*.‘l N U(Uje[k]\(i) Yj*)| <t+(k—=D(@E+1),
meaning that there exists some & € [k] such that |.S Zl < t. Thus, we have Vl* (S)) <2t <2t+1, a contradiction. []

Before we turn to proving these guarantees to be the best possible in our online setting, we remark that in the offline setting,
it is known that (exact) CEF1 and NW can be achieved simultaneously [8]. However, whether they can be achieved together with
a-CMMS, for any a > 0, is an interesting open question.

3.2. Impossibility results

In this section, we show that each of the fairness and efficiency guarantees achieved by MATCH-AND-SHIFT (Theorem 1) is tight;
no deterministic online algorithm for matching indivisible items can achieve a better approximation. Note that our CEF1 upper bound
is subject to non-wastefulness because an algorithm can trivially achieve CEF1 by throwing away every item. The constructions are
based on creating instances in which a subset of agents in one class gets saturated early on, rendering the class envious of another
class at the end since all the remaining items can only be matched to the agents in that other class.

Theorem 2. No deterministic online algorithm for matching indivisible items can achieve any of the following guarantees:

+ «a-CEF1 for any a > !/> and non-wastefulness,
+ a-CMMS for any a > /2,
« a-USW for any a > 1/2.

Proof. We argue each impossibility result separately.

CEF1 and NW. Consider Example 1 in the introduction. Specifically, there are two classes N| = {a;,a,,a3} and N, = {b;,b,,b3}.
For 1 <i <3, the i-th item o; is liked by g; and b;. Consider any deterministic online algorithm satisfying non-wastefulness. If the
algorithm assigns all three items to the same class, it is only 0-CEF1. Otherwise, assume without loss of generality that 2 items go to
class 2. Let the next item be only liked by the matched agent in class 1 and the unmatched agent in class 2, as in Fig. 1. The algorithm
(without loss of generality) ends up matching Y, = {02, 03, 04} toclass2and Y| = {0 1 } to class 1. One can check that V}*(¥, \ {o}) =2
for any o € Y,, whereas V(X) = 1, implying that the algorithm cannot achieve ¢-CEF1 for any a > 1/2.
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CMMS. We will prove that no deterministic online algorithm satisfying non-wastefulness can achieve a-CMMS for any a > ! /2. Propo-
sition 2 implies that no deterministic algorithm, regardless of whether it satisfies non-wastefulness, can guarantee a-CMMS for any
a>1).

Since we have assumed non-wastefulness, we can repeat the construction used above for the CEF1 upper bound. Consider the
same example again, and consider the partition the items into ()71 = {01 , 02} ,)N’z = {03, 04}). Note that V* ()N’l) =V ()72) =2, implying
that the maximin share of class 1 is mms; > 2. Since the value derived by class 1 is V;(X) = 1, we see that the algorithm cannot
achieve a-CMMS for any a > /2.

USW. Note that the USW guarantee does not depend on the class structure; hence, the well-known upper bound of ! /> on the approx-
imation of a maximum matching by any deterministic algorithm carries over to our model, and implies the desired !/2-USW upper
bound. []

Following Theorem 2, a natural question is whether there is any way to circumvent this impossibility result. We show that two
such approaches do not work, demonstrating robustness of Theorem 2.

Remark 1 (Reshuffling items within each class cannot help.). One idea is to only require the online algorithm to match each item to a
class, and allow every class to optimally distribute the items matched to it among its members at the end. This effectively increases
the utility of class i from V;(X) to V;*(Y;). However, in Example 1 used for the CEF1 and CMMS upper bounds in the proof above, the
matching produced already assigns items optimally within each class (i.e., satisfies V;(X) = V;*(Y;) for each class i). Hence, reshuffling
items at the end cannot improve the value any further. This shows that we must use randomization when deciding which class should
receive an item in order to achieve a better approximation.

Remark 2. Another natural direction is to weaken the requirements in Theorem 2. In our online setting, there is a weakening of
our a-CMMS guarantee that also makes sense. Instead of computing the MMS values by partitioning the set of all items, we can
first observe the matching X produced by an algorithm and then compute the MMS values by having each class partition only the
set of items allocated under X. This produces smaller (or equal) values, making this CMMS with respect to allocated items a weaker
requirement than our CMMS with respect to all items.

MATCH-AND-SHIFT achieves a !/2-approximation of the stronger requirement. In contrast, the proof of Theorem 2 shows that no
non-wasteful® algorithm can achieve (!/2 + ¢€)-approximation of even the weaker requirement, for any € > 0, because all items are
allocated in our construction.

4. Deterministic algorithms for divisible items

We now turn our attention to online matching of divisible items. First, we design an algorithm that simultaneously achieves non-
wastefulness, (1 —!/e)-CEF, (1 —1/.)-CPROP, and !/>-USW. Later, we prove upper bounds on the approximation ratio of each guarantee
that hold for any algorithm.

4.1. Algorithm EQUAL-FILLING

We propose an algorithm, EQUAL-FILLING (presented as Algorithm 2), that divides items equally at the class level and performs
water-filling to further divide the items assigned to each class between the agents in that class. Recall that our model has a capacity
constraint: ), s X, , < 1 for each agent a. Agent a is saturated if 3 ., x,, = 1, and unsaturated otherwise.

When item o arrives, EQUAL-FILLING continuously splits the item equally among classes with at least one unsaturated agent who
likes the item.” At the end of this process, each class either receives the same fraction g, of the item, or has all of its agents who
like item o saturated. This computation is performed in Line 8 of Algorithm 2. Then, to divide the fraction of item o assigned to each
class i within its members, we conduct water-filling among the members who like o, which continuously prioritizes agents with the
lowest utility. At the end of this process, each member who likes item o either receives the same final utility y; , or is saturated. This
computation is performed in Line 12 of Algorithm 2.

Theorem 3. For deterministic matching of divisible items, EQUAL-FILLING (Algorithm 2) satisfies non-wastefulness, (1 — 1/.)-CEF, (1 —
1/e)-CPROP, and !/>-USW.

Proof. We prove that EQUAL-FILLING satisfies each of the desirable properties.
NW. Non-wastefulness follows by the algorithm’s definition.

1/2-USW. This is implied by non-wastefulness (Proposition 1).

6 Seeking the weaker requirement makes sense only with non-wastefulness since the empty matching vacuously satisfies it.
7 We do not yet need to know how the fraction of item o assigned to a class is divided between its members; we can simply keep track of the total remaining capacity
of the agents in the class who like the item.
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ALGORITHM 2: EQUAL-FILLING.

1 Initialize X = (x,,),en 0epm SO that x,, =0 for every agent a and item o
2 Initialize Y = (¥;,)ic(x) 0em SO that y; , =0 for every class i and item o
3 when item 0 € M arrives do

4 /*class-phase*/
5 Let N, denote the set of neighbors of item o in class i, i.e., N;,={a € N, : (a,0) € E}
6 Define the demand of each class i € [k] as d;, = X, ,cny (1 = Xy cps Xaor)
7 Find the largest f, < 1 satisfying ¥, ,, min{f,.d;,} < 1
8 Set y;, =min{f,,d, ,} for each i € [k]
9 fori=1to k do
10 /*individual-phase*/
11 Find the largest y; , < | satisfying >,y max {y,-’,, —Yem xﬂ.a,,O} <Vio
12 Set X,, =max {y,, — Xyep Xar 0} forallae N,

agent 1
agent 2 !
S LT
= T ]
agent n 10 E 1
0 01 0 0 0, 1

Fig. 3. The illustrative picture of auxiliary function f () for a class i with n agents, sorted in ascending order of their values for the allocation. Each agent i corresponds
to a rectangle defined by interval [0,6;] on the x-axis, and interval [n —i,n —i + 1] on the y-axis. fng f(z)dz and Y, min(9, Y ., x,,) are two different ways to
express the shaded area. The former integrates the height over interval [0, 6] on the x-axis, while the latter sums the width over [0, n] on the y-axis.

(1 —1/e)-CEF. Consider two arbitrary classes i and j. We want to prove that class i’s value for its matching is at least 1 — % times its
optimistic value for class j’s matching, i.e., V;(X) > (1 = /o) - V;*(Y)).

For 6 € [0,1], let f(0) denote the number of agents in class i who have value (“water level”) at least 6 each under X. Let N,(6)
be the set of these f(0) agents and N,(G) = N; \ N,(6). One can check that for any 6 € [0, 1], /00 f(z)dz= ZaeNi min(6, ZoeM Xg.0)-
See Fig. 3.

Let us now rewrite both V;(X) and Vi*(Yj) in terms of f(y). Plugging in 6 = 1 above, we see that the total value of the agents in
class i is given by

1
VI-(X)=/f(Z)dz.
0

Next, fix an arbitrary ¢ € (0, 1]. In order to upper bound V;*(Y;), we consider the value derived from Y; by the agents in N,(6)
and those in ﬁi(a).

Since agents in Ni(G) remain unsaturated till the end, for every item o liked by any such agent, the fraction y, , of the item given
to class i must be at least as much as the fraction y; , of it given to class j. Further, the portion given to class i must be assigned to
agents who, at the time of the assignment, had value less than 6. Hence, the total fraction of items given to class j that are liked by
at least one agent in Ni(O), is upper bounded by the total fraction of all items allocated to some agent in class i when its value was
less than 6. The number of agents in class i who got any allocation at value 0 < z < 0 is f(z) by definition. Thus, the total fraction of
item allocated to class i at value at most @ is /09 f(z)dz. As discussed, this upper bounds the contribution of the agents in ﬁ,-(é') to
V)

Further, note that the f(0) agents in N,(6) contribute at most 1 each to Vl‘(Y/) Combining with the last observation, the optimistic
value of class i for the items assigned to class j satisfies

0

Vl.*(Yj)s/f(z)dz+f(0), VO<6<1.
0

Multiplying the above inequality by ¢?~! and integrating over 8 € (0, 1], we get:
1
(-

10
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— e@—l I/I* (Yj )do
2
0

o1 / f(z)dz+ f(0)] do
=0

VA

oL~ &\,_ Do~ _ L~ _

(4
1 1

f(@ /e9_1d9 dz+/e9-‘f(0)do

=z 0=0
1

(1—e*") f(2)dz + / el f(z)dz

z=0

Z

z

=/f(Z)dZ=V,-(X),
z=0
where the third transition follows from breaking the integral over the two terms and exchanging the order of integrals in the first
part; and during the fourth transition, we rename the index from 6 to z in the second part.
(1 —1/e)-CPROP. Consider an arbitrary class i. We want to prove that class i’s value for the matching is at least 1 — !/c times its
proportignal share, i.e., V;(X) > (1 — !/e) - prop;. Consider an arbitrary divisible partition of the items Y, consisting of non-negative
vectors Y; = (¥ ,)oen for i € [k] satisfying 3,4, ;, = 1 for each 0 € M. It suffices to prove that:

kvo0z(1-2) ¥ v,
JEIK]

Recall that f(6) denotes the number of agents in class i who have value at least § under X, N;(0) is the set of these /() agents,
and N,(8) = N, \ N,(0). Fix an arbitrary 6 € (0, 1].

Since the agents in Ni(a) remain unsaturated till the end, for each item o liked by at least one such agent, the algorithm gives
Yio = 1/k fraction of the item to class i (but not necessarily to the agents in F,-(H)). Further, as argued above, this portion of the item
must be assigned to the agents in the class who, at the time of the assignment, have value less than 6. Hence, the total number of
items liked by at least one agent in ﬁ[(ﬂ), which is an upper bound on the contribution of these agents to Y, Jelk] V,* ()71- ), is at most
k[ f(z)dz.

Also, each of f(#) many agents in N;(#) can contribute a value of at most 1 to V,* ()71-) for each j € [k]. Hence, the total contribution
of these agents to Zje[k] Vl.*()N’j) is at most k - f(0).

Combining the two observations, we get that

0
Z V,.*()N’j)sk- /f(z)dz+f(6) , Vo<oO<l1.
jelk) 0

Multiplying the inequality by e?~!, integrating over @ € [0, 1], and following the same steps as in the (1 — !/)-CEF proof above,
we have:

1
(-3 V,.*(?,-><k~/f(z)dz=k-v,-<X>,
e
jelkl a

as needed. []
4.2. Impossibility results

Our goal in this section is to provide upper bounds on the fairness and efficiency guarantees that hold for any deterministic online

algorithm for matching divisible items. We prove that the (1 —!/.)-CPROP guarantee achieved by EQUAL-FILLING is tight, and establish
a weaker upper bound on CEF and USW.

Theorem 4. No deterministic online algorithm for matching divisible items can achieve any of the following guarantees:
« a-CEF for any a > 3/+ and non-wastefulness,
* a-CPROP forany a > 1 -1/,
« a-USW for any a > 1 —1/e.

11
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Proof. We argue each impossibility separately.

CEF and NW. Consider any deterministic online algorithm that satisfies non-wastefulness. Consider an instance that consists of two
classes, Ny = {a;,a,,a3} and N, = {by,b,, b3}, and four items oy, 0,, 05,04 arriving in that order. We denote by X the matching that
will be produced by the algorithm on this instance.

Agents a|, a,, b, and b, like the first two items o; and 0,. By non-wastefulness, the algorithm must fully divide o; and o, between
{ay,a,,b;,b,}. Without loss of generality, suppose that the total fraction of these items assigned to class N is at least the total fraction
assigned to class N,, i.e., ) N, de{ol,gz} XaoZ Db N, Do {0102} Xbor Further, we assume, without loss of generality, that agent b,
obtains at least as much total fraction of these items as agent b, i.e., ) {01.07) Xbyo = Do {0107} Xby0® Finally, all agents of class N
as well as agent b, like the remaining two items o3 and o,; agents b, and b3 do not like them. We will prove that V,(X) < (3/4) - V;(Yl ).

First, we show that V,(X) < 3/2. Observe that the value derived by b, under X is at most ! /2. This holds because the total fraction
of 0; and o, assigned to b, is at most !/2 by the assumptions above, and the agent does not like items o3 and o,4. Further, agent b,
does not like any of the items. Thus, the total value class N, can achieve under X is V,(X) <1+ 1/2=3/.

Next, we show that 1/2*(Y1) > 2. Note that N| must receive a total fraction of at least 1 from each of {0,0,} and {o03,0,}. Since b,
likes every item in {0;,0,} and b, likes every item in {03,04}, class N, can optimistically derive a total value of at least 2 by assigning
Y,,, and Y, , fractions of o; and o, to b, (capped by 1), and Y} ,, and Y} , fractions of o3 and o, to b, (capped by 1).

This shows that the algorithm does not achieve a-CEF for any a > 3/4.

USW. Note that the utilitarian social welfare is simply the size of the (divisible) matching, which is independent of the class infor-
mation. Hence, the 1 — !/ upper bound on USW follows from the classical 1 — !/ upper bound on the competitive ratio of any online
divisible matching algorithm; see, e.g., the work of Kalyanasundaram and Pruhs [31].

CPROP. Consider an instance of a single class. In this case, the proportional share of the class coincides with the value usw(X*) of
a USW-optimal matching X*. Thus, the 1 —!/. upper bound on CPROP approximation follows from the 1 —!/. upper bound on USW
approximation. []

Remark 3. Similar to Remark 2, one may wonder what we can say about a weaker notion of proportionality with respect to only the
allocated items, i.e., if the proportional share of each class is defined on the divisible matchings of the allocated items (instead of all
items). In Proposition 10, we show that the upper bound of 1 — !/. continues to hold even for this weaker version. However, unlike
in the case of indivisible items, this does not follow from the proof above (which considers an instance with a single class, for which,
trivially, the weaker version is exactly satisfied). The proof of this proposition is much more intricate.

While EQUAL-FILLING achieves the optimal 1 —!/e approximation of CPROP, its guarantees with respect to CEF and USW identified
in Theorem 3 are weaker than the upper bounds in Theorem 4. One might wonder if this is simply because our analysis in Theorem 3
is loose. We show that this is not the case. Hence, future work must focus either on proving better upper bounds, or on designing
new algorithms which might surpass EQUAL-FILLING.

Proposition 3. EQUAL-FILLING does not achieve arny of the following guarantees:

* a-CEF for any constant a > 1 —1/e,
+ a-CPROP for any constant a > 1 —1/e,
« a-USW for any constant a > /2.

Proof. The fact that Algorithm 2 cannot achieve a-CPROP for a > 1 — !/ immediately follows from Theorem 4.
For each of the fairness or efficiency guarantees, we provide an instance for which Algorithm 2 cannot achieve the corresponding
bound.

CEF. Suppose towards a contradiction that EQUAL-FILLING achieves a-CEF for some constant « > 1 — !/.. Let n be a positive integer
such that @ > %(1 =1/ + % This means that & - 2n>n- (1 —1/) + 5.

Consider the following instance with two classes N| = {4y, 4, ...,a,} and N, = {a],d}, ..., @, }. There are 2nitems 0;,0/,0,,0),...,
on,o;. There are n rounds: in round ¢ € [n], item o, arrives, followed immediately by item o’ Each agent a’ (i € [2n]) likes every
item. Each agent g; (i € [n]) likes the items o, and o) with # =1,2,...,i; namely, agent a, hkes the items ol,o agent a, likes items
01,0’1,02,0’2, and so on.

Note that since N, has 2n agents who like all 2» items, for each item, there is at least one agent in N, who is not saturated and
likes that item. Thus, until the agents in N; who like o, and 0] are fully saturated, the equal-filling algorithm splits the item into

halves among the two classes. The algorithm assigns the amount 5~ of {o;,0; '} to each agent in N2 On the other hand, it a531gns the

amount W of o, and o] to each agent i of class N; with i > 1; for example, agent aj receives — Lof {ol, }; agent a, receives - L of

{ol,o } and — — of {02,0 }; agent a; receives — Lof {ol, I — 1 of {02,0 }, and — of {03,0 IS and SO on.
Let X denote the matchmg returned by Algorlthm 2. We will estabhsh that V; (X <=1 / e)V*(Yz) First, it is not difficult to see
that under X, class N, is assigned to exactly 1 for each item set of {o,,ot} (t € [n]). Thus, VI*(YZ) >n. Now, let t* =n — [g]. It can

be easily checked by the integral test that Z:; —o s between 1 — % and 1. Thus, after the algorithm assigns o, +5,o;* the set

—t +5’

12
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N, becomes empty, i.e., there is no agent in N; who is not saturated and likes new items o, ol for t > t* + 5. Thus, the value V;(X)
derived by class N; from X is at most t* + 5. However, this means that

VI(X)SZ*+5<(1—l)n+5<a~2n<a-Vl*(Y2),
e

a contradiction.

USW. Suppose towards a contradiction that EQUAL-FILLING achieves a-USW for some constant « > % Let n be a positive integer such

1 1
that a > 3 + i)

Consider n + 1 classes: There are n classes N i each of which consists of a single agent ¢ J for j=1,2,...,n. The last class N,
consists of n agents {ay,a,,...,a,}. There are 2n items: n red items r,r,,...,r, and n blue items b, b,, ..., b,. Each red item is liked
by every agent. Each blue item b, is liked by the single agent ¢; in N;. Now the instance admits a perfect matching of size 2n that
matches every agent c; for i € [n] to the blue item b; and the remaining » agents in N, arbitrarily to the remaining » red items.

Now suppose that the items arrive in the order of r,r,, ...,r,, b, b, ..., b,. For each red item r; (i € [n]), the equal-filling algorithm

This means that « - 2n > n + #

assigns an equal amount n]? of fractions among the n + 1 classes. Thus, after the algorithms match the last red item r,, the total

amount of fractions each class N; for i € [n+ 1] has received is ﬁ For each blue item b; (i € [n]), the equal-filling algorithm assigns

an amount of ﬁ to the agent ¢; in N, since ¢; is the only agent who likes the blue item b; but has already been saturated up to #
Thus, the utilitarian social welfare of the resulting matching X is given as follows:

™-

n
n n
V. iX)+V, X=El+ =n+ .
(X + Vi (X) & Tl T

i=1

By the choice of n, we have n + # < « - 2n, meaning that EQUAL-FILLING does not achieve a-USW. Thus, we obtain a contradic-
tion. []

5. Randomized algorithms for indivisible items

In this section, we explore randomized algorithms and analyze their expected fairness guarantees. The fairness notions defined in
Section 2 can be naturally extended to those for randomized algorithms as follows.

Definition 8. For @ € (0, 1], a randomized online algorithm for matching indivisible items is

+ a-CEF if, when all items have arrived, it produces a matching X such that for every pair of classes i, € [k], E[V;(X)] > « -
E[V*(Y;(X)]%;

+ a-CPROP if, when all items have arrived, it produces a matching X such that for every class i € [k], E[V;(X)] > a - prop;; and

+ a-USW if, when all items have arrived, it produces a matching X such that E[usw(X)] > « - usw(X ™), where X* is a matching
with the highest utilitarian social welfare and E[usw(X)]1 =3 ey Zoem:@o)ck El*aol-

Recall from Section 3 that for indivisible items, no deterministic online algorithm can achieve a-CMMS for any a > !/2. When
moving to randomized algorithms, one can naturally hope to approximate CPROP instead of CMMS because the value to a class is
evaluated in expectation. However, a priori it is not clear whether a randomized algorithm can achieve a-CPROP for any a > 1/2.

By applying a recently introduced rounding technique, called Online Correlated Selection (OCS) [19], to the divisible matching given
by EQUAL-FILLING (Algorithm 2), we are able to design a randomized algorithm for indivisible items that achieves 0.593-CPROP.

We start by introducing a recent result about OCS that forms the backbone of our approach.

Lemma 1 (cf.,, Gao et al. 21). There is a polynomial-time online algorithm which works as follows. In each step, it takes as input a non-
negative vector (X, ,) e n for some o € M satisfying . .. n X,, < 1 and selects an agent a with positive X, ,. Further, by the end, each agent
a is selected at least once with probability at least:

pE)=1—-exp <—§a K &2) ,

where X, =Y s X0

Technically, such an algorithm is called (multi-way) semi-OCS instead of OCS. But the nomenclature is unimportant for our
application, so we will call it OCS for brevity, and refer interested readers to the works of Fahrbach et al. [19] and Gao et al. [21]
for a detailed comparison.

How good is the guarantee in Lemma 1? For comparison, consider the simpler independent randomized rounding algorithm, which,
upon receiving the vector (X, ,),cn, selects each agent a with probability X, ,, independently of the rounding outcomes in the previous

8 X is a random variable that corresponds to a matching returned by the algorithm, and thus, the expectation is over the randomness of the algorithm.
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ALGORITHM 3: EQUAL-FILLING-OCS.

1 Initialize an empty indivisible matching X = (X, ,)sen 0em

2 Initialize an empty divisible matching X= (Xp0)aeN oM

3 Maintain a class-level divisible matching ¥ = (5, , = O)ietkroen Such that y,, =¥y X,
4 when item 0o € M arrives do

5 /*class-phase divisible matching*/

6 For each class i, let N, , be the set of agents in class i who like item o
7 Let k, be the number of classes i such that N, , #

8 Lety,, = ki for each of these k, classes

9 /*individual-phase divisible matching*/
10 for each class i with y; ,> 0 do

11 Find y, such that Y, max(y, —X,,0)=5,,

12 Let X, , =max(y, — X,,0) forallae N, ,

13 /*indivisible matching rounded by OCS*/

14 Send (X, ,),ey to the OGS in Lemma 1 and let it select an agent a*

15 Match o to a* if a* is not yet matched, and to an arbitrary unmatched neighbor (if any) otherwise

steps. By the end, each agent a is selected at least once with probability 1 — [T cp (1 =%,,) = 1 —exp(—= X, cps X,,0) = 1 —exp(=X,,).
Readers can verify that using this weaker bound in the proof of Theorem 5 only yields ! /2-CPROP. The improved guarantee in Lemma 1
is critical for achieving an approximation better than !/.

Our algorithm, EQUAL-FILLING-OCS (presented as Algorithm 3), runs a variant of EQUAL-FILLING in the background to get a
guiding divisible matching X = (X4.0)aen oepr- The only difference is that unlike EQUAL-FILLING, this variant does not cap the value
(total fraction of all items) assigned to an agent at 1. This is because the algorithm will perform rounding to compute an indivisible
matching, and by Lemma 1, the probability that an agent a is matched depends on the value X, of the agent in the divisible matching
in such a manner that even reaching a value of 1 would not guarantee being matched with certainty.

Upon receiving a new item o, the algorithm first continues running this variant of EQUAL-FILLING to obtain the guiding division
(X40)aen (Lines 5-12), and then lets OCS select an agent a* accordingly (Line 14). If the selected agent a* is not yet matched, the
algorithm matches item o to this agent. If a* is already matched, the algorithm matches item o to an arbitrary unmatched agent who
likes it, and discards the item if there is no such agent (Line 15).

Theorem 5. For randomized matching of indivisible items, EQUAL-FILLING-OCS (Algorithm 3) satisfies non-wastefulness, 0.593-CPROP,
and ! 2-USW.

Proof. Non-wastefulness is clear from Line 15 of Algorithm 3. Proposition 1 implies !/2-USW. Hence, we focus on the interesting
0.593-CPROP guarantee.

Fix an arbitrary class i. The first part of the analysis bounds the proportional value of class i using the guiding divisible matching
X. This part is almost verbatim to its counterpart in the proof of Theorem 3, except we do not bound the value threshold 6 by 1. We
include this part to be self-contained.

For 6 > 0, let f(0) denote the number of agents in class i who have value at least § under X. Let N ;(0) denote the set of these
£(6) agents, and let N,(8) = N, \ N,(6).

Fix any 0 > 0. For each item o liked by at least one agent in Nl.(a), Algorithm 3 assigns a fraction y; , > !/k, to class i in the guiding
divisible matching (but not necessarily to the agents in ﬁ,— (6)). Further, any agent in N, receiving a positive share of item o must have
value less than 0 right after receiving it. Hence, the total number of items liked by at least one agent in ﬁ,— (@) is at most k /00 f(z)dz.

On the other hand, the total value that agents in N,(6) can obtain from any set of items is at most f(0) (at most 1 per agent).

Therefore, for any divisible partition of the items, denoted by non-negative vectors ¥; = (1.0)0em for i € [k] such that 37, )?,_U =1
for each 0 € M, we have:

0
Z Vi) <k: /f(z)dz+f(9) , V6>0.
jelk) A

This implies that the proportional share of i is bounded by:

0
prop; < / f(2)dz+ f(0), V6>0. @
0

Next, we lower bound the expected value of class i for the randomized indivisible matching X. OCS ensures that for each agent
a in class i, its probability of being matched is at least p(x,). Hence, the expected value of class i for X is:

14
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EV,(X)12 Y p&,) (Lemma 1)
aEN;
=- / p(0)df(0) (definition of f(8))
0
= / P(0)f(6)do . (integration by parts, p(0) = f(co) = 0)
0

Multiplying inequality (1) by non-negative coefficients c(8) (to be determined later), and integrating over 6 > 0 gives that:

[+

propi-/c(e)de
0

oo 0
S/C(G) /f(z)dz+f(0) dé
0 0

oo oo

6
= / c(6) / f(z)dz d6 + / c(0)f(6)do
0

0 0

o oo

/ / c(0)dd +c(2) | f(2)dz,

0 z

where, during the last transition, we exchange the order of integrals in the first part and change the index from 6 to z in the second
part.
We choose ¢(9) = —e f(;x’ P (y)e™ dy, so that fz°° ¢(0)df + c(z) = p/(z) for all z > 0. Hence, we get that:

[+ 0

prop; - / c(0)do < /P’(Z)f(Z) dz <E[V;(X)].
0 0
The theorem then follows by numerically calculating the integral:

oo

/c(e)de ~0.5936 > 0.593.
0
This concludes the proof of the theorem. []

In the next subsection, we briefly discuss other randomized algorithms and their obstacles in achieving better than !/> approxi-
mation to CPROP. We also present a randomized algorithm based on the classical RANKING algorithm, which achieves (1 — !/)-CEF.
While it achieves this guarantee non-vacuously (i.e., it does not simply return the empty matching), it still violates non-wastefulness.
It would be interesting to analyze its efficiency.

5.1. Discussion on other randomized algorithms

Readers familiar with the online matching literature may wonder why can’t we use the Ranking algorithm of Karp et al. [33] to
decide how to match items within each class, and combine it with some fair class-level matching approach. While we believe this is an
interesting direction for future research, there is a concrete technical difficulty in analyzing such algorithms. Naturally, the class-level
matching must take into account which agents are already matched to previous items. This means that the realization of randomness
used by Ranking within some class i will influence what items are allocated to the class!

How about applying Ranking directly, ignoring how agents are partitioned into classes? While this approach circumvents the
above challenge, it fails on two classes with lopsided sizes. In the extreme, consider a class with only one agent, and another class
with n>> 1 agents, and only one item. The second class will get the item with probability # while the first class gets it only with
probability ﬁ

Finally, we observe that it is necessary to have randomness in both the class-level matching and the individual-level matching, in
order to exploit the power of randomized algorithms.

Proposition 4. If an algorithm assigns deterministically at the class-level, it is at best %—CPROP.
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Proof. Consider two classes Ny = {a;,a,,a3} and N, = {b;,b,,b3}. For 1 <i <3, the i-th item is liked by a; and b,. If the algorithm
assigns all three items to the same class, it is only 0-CPROP. Otherwise, assume without loss of generality that 2 items go to class 2.
Let the next item be only liked by the matched agent in class 1 and the unmatched agent in class 2, as in Fig. 1. The algorithm is then
at best %—CPROP. O

Proposition 5. If an algorithm assigns deterministically within each class, it is at best %—CPROP.

Proof. It becomes apparent when we consider a single class. The proposition then reduces to the fact that deterministic online
matching algorithms are at best %-competitive. We can extend this hard instance to k classes by making k copies of the class and
each item. [

5.2. Discussion on randomized algorithms and CEF

As discussed in the last subsection, if the class-level matching depends on which agents are already matched, i.e., if it is adaptive
to the realization of randomness in the agent-level matching, then the realization of randomness in an online algorithm, e.g., Ranking,
within each class would affect what items get assigned to the class. How about using a class-level matching algorithm that is oblivious
to the randomness in the agent-level matching? Although such algorithms must violate non-wastefulness in general, we find an
algorithm that isn’t blatantly wasteful and looks interesting enough to be a stepping stone towards stronger algorithms in future
works.

We call this algorithm EQUAL-RANKING. For each item, it randomly assigns the item to a class with at least one agent who likes
the item. Within each class, it runs a separate Ranking algorithm to match items to agents therein.

Proposition 6. Given an online indivisible instance, EQUAL-RANKING guarantees (1 — !/.)-CEF.

Proof. Consider any class i and any other class j. Let y; = (3;,)oear € {0, 1} be the vector that represents the subset of items assigned
to i by EQUAL-RANKING at the class-level, regardless of whether such items can be matched to each agent who likes them. Define
y; similarly. Note that both y; and y; are random variables that depend on the class-level random assignments of items. Finally, let
X = (Xg0)aen oenmr € {0, 1}V*M be the matrix that represents the matching by EQUAL-RANKING. We seek to prove that:

ELV;C01> (1= /) EIV (5] -

Conditioned on the subset of items assigned to i, i.e., y;, the Ranking algorithm ensures that (see, e.g., Karp et al. [33]):

EV;(X) |y >0 =1V ().

It remains to show that:

EIV;* ()] > EIV ()] -

Define j; be such that y;, = y;, if class i has at least one agent who likes item o, and §;, = 0 otherwise. By definition Vi ) = V@ )
and therefore it suffices to prove:

EIV (vl Z EIV ()] .

Note that for any item o, EQUAL-RANKING ensures that the probability that y;, = 1 is greater than or equal to the probability
that y;, = 0. Further, the assignment of items at the class-level are independent. Hence we get that random variable y; stochastically
dominates ;. The above inequality now follows by the monotonicity of V;*. []

6. Conclusion and future directions

Our work introduces the novel framework of class fairness in online matching. We derive bounds on approximate fairness and
efficiency guarantees that deterministic and randomized online algorithms can achieve in this framework for matching divisible and
indivisible items, and leave open a number of exciting open questions. For example, can a deterministic algorithm for matching
divisible items achieve a CEF approximation together with non-wastefulness better than 1 —!/.? (We conjecture the answer to be no.)
Can it achieve any reasonable CEF or CPROP approximation together with a USW approximation better than !/2 (ideally, 1 —1/c)?
Can a randomized algorithm for matching indivisible items achieve any reasonable CEF approximation together with either non-
wastefulness or a USW approximation?

More broadly, our basic framework paves the road for interesting extensions. For example, one can allow agents to have non-
binary values for the items, consider class fairness notions that give more importance to bigger classes, consider both agents and
items arriving online [27], study weaker adversarial models, or consider stochastic instead of adversarial arrivals.

Furthermore, in our model, we assume that each agent belongs to exactly one class. However, in practice, individuals may belong
to multiple categories, such as gender and ethnic groups. It would be interesting to explore fairness notions similar to ours when
agents are allowed to be part of multiple groups.
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Appendix A. Omitted material from Section 3
A.1. Pessimal class envy-freeness

One may wonder whether relaxing the way each class measures its hypothetical value for a set of items could help alleviating
the incompatibility between class envy-freeness and non-wastefulness. We show that even if each class considers a pessimistic value
for a set of items (in other words, considers worst-case scenario for matching the items), the clash between envy-freeness and non-
wastefulness persists.

Given a vector y = (y,),em € {0, 1}M representing a set of items, the pessimistic valuation Vie(y) of class i for y is the value of a
minimum-cardinality maximal matching between the agents of N; and the set {o € M | y, =1}. This problem has shown to be NP-hard
for graphs with maximum degree 3 and k-regular bipartite graphs for k > 3 [17,49].

We compare the value V;(X) derived by class i from matching X with class i’s pessimistic valuation for the items matched to
another class j, i.e. Vie(Yj(X)).

Definition 9 (Pessimal class envy-freeness). A matching X is a-pessimal class envy-free (a-PEF) if for every pair of classes i, € [k],
ViX)za- Vie(Yj(X )). When a = 1, we simply refer to it as pessimal class envy-freeness (PEF).

Similar to its optimistic counterpart, CEF, a PEF matching may not always exist. Therefore, we consider the following relaxation
of PEF for integral matchings.

Definition 10 (Pessimal class envy-freeness up to one item). An integral matching X is a-pessimal class envy-free up to one item (a-PEF1)
if for every pair of classes i, j € [k], either Y;(X)= @ or there exists an item o € Y;(X) such that V;(X) >« Vl.e(Yj(X) \ {0}). When
a =1, we simply refer to it as class envy-freeness up to one item (PEF1).

It is easy to verify that PEF1 is weaker than CEF1. Intuitively, a class values its matching compared to the items assigned to another
class if it has a pessimistic view of the items arrival and matched items, should the items were exchanged. Clearly, a CEF matching
is also PEF, and similarly CEF1 implies PEF1.

Example 3. In the example given in Fig. A.4, there are two classes N| = {a;,a,} and N, = {b;,b,}. The bold edges indicate the
matched items. This matching is not CEF, since class N; envies class N, should it able to optimally match items o, and o5 within its
members. However, the same matching is PEF because class N, considers a pessimal matching of the same items, that is 0; and o5,
where item o, is matched to a; upon its arrival, and thus, 0; remains unmatched (Since there is no edge from a, to o03).

The following proposition strengthens our previous results on the incompatibility between non-wastefulness and CEF1 by showing
that non-wastefulness remains incompatible with a weaker fairness notion of PEF1.
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Fig. A.4. An allocation that is PEF but not CEF. The red group pessimally considers the worst-case matching of items o, and o; with the value of 1. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

k agents k agents k agents
—_——
TTclass 1T T class 2 HINQEETy ey
_________ S o G s ol el o
tvpel __il_tvpe2 i Ltypek=1
S —

k items k items k items

Fig. A.5. A CEF1+NW matching that does not imply any approximation for CMMS.

Proposition 7. No deterministic algorithm for matching indivisible items can guarantee non-wastefulness and PEF1.

Proof. Consider the example given in Fig. 1. It is easy to verify that the matching is non-wasteful. However, in this scenario the
pessimal value of class N, for the items assigned to the class N, is 3, implying that the matching is not PEF1. []

A.2. Relationships between CEF1 and CMMS

For fair division with additive valuations, Segal-Halevi and Suksompong [45] proved that, subject to allocating every item, EF1
is equivalent to MMS. In contrast, in our model neither implies even an approximation of the other.

Proposition 8 (CEF1+NW % CMMS). Given an indivisible instance, a CEF14+NW matching does not imply any a-CMMS for any a > 0.

Proof. We construct an instance for which a a-CEF1+NW matching with a« = 1 gives only a 0-CMMS approximation.

Suppose there are k classes N, N, ..., N,. Each N; for i € [k — 1] consists of k agents. The last class N consists of k — 1 agents
a,ay,...,a,_;. There are k(k — 1) items that are partitioned into k — 1 subsets Cy,C,, ..., Cy_;. For j € [k — 1], C; consists of k items,
01,0y, --- 0, €ach of which is referred to as a type j item. For each j € [k — 1], every agent in class N; likes every item in C;. For
class N, each agent a; for j € [k — 1] likes every item in C;. For example, agent a, likes k items 0),0,5, ..., 0y, but does not like
none of the other items.

Now, consider a matching X that gives no item to class N, and matches arbitrarily each of the k items in C; to one of the k agents
in each class N; for j € [k — 1] (as illustrated in Fig. A.5). Since each of the k(k — 1) items are fully assigned to an agent who likes it,
the matching X is clearly non-wasteful. Further, this matching is CEF1. In fact, all classes except N, receive a perfect matching and
are not envious of any other class. Also, for j € [k — 1], there is at most one agent a ;in Ny who likes an item in C e Thus, class N,
is not envious for more than one item since Vk* (¥;) <1 for any j € [k — 1]. Thus, the matching is CEF1.

In contrast, consider a partition (L, L,, ..., L;) of the items where L, = {0,],0,5,...,0;;_, } for each i € [k]. Observe that for each
i=1,2,...,k, each agent a; in N, likes exactly one item 0; inL;ie,L;Nn C; = {oij} for j € [k — 1]. This means that there is a perfect
matching of size k — 1 between N and the items of each L;, yielding Vl*(Ll-) > k—1 for i € [k]. We thus establish that mms; > k — 1.
Given that class N;’s value for X is V;(X) =0, X provides 0-CMMS approximation, which proves the claim. []

Proposition 9 (CMMS # CEF1+NW). Given an indivisible instance, a CMMS matching does not imply a-CEF1 for any a > 0.

Proof. Consider an instance with k classes each with k agents. There are k — 1 items liked by every agent in each class. A matching
that assigns all k — 1 of items to a single class, say N, satisfies CMMS. This is because the CMMS value for each class is obtained
by partitioning the k — 1 items into k bundles, yielding mms; =0 for i = 1,2,..., k. However, this matching is not CEF1 (nor any «
approximation of it for « > 0) because every class values the matching assigned to N; as k — 1 while only receiving 0 valuation. []
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Appendix B. Omitted material from Section 4
B.1. Proportionality with respect to allocate items

Our objective of this section is to show that (1 — !/e)-bound is tight even for CPROP with respect to the allocated items. Formally,
we define the proportional share of class i with respect to a set .S of items as
S : *
> = V(Y (X)).
prop;’ = max_min V; ¥;(X))
where X(.S) is the set of (divisible) matchings of the set of items S to the set of agents N. For a € (0, 1], we say that matching X is
a-class proportional (a-CPROP) with respect to a set .S of items if for every class i € [k], V(X)) > a- propf . For @ € (0, 1], a deterministic
online algorithm for matching divisible items is a-class proportional (a-CPROP) with respect to the allocated items if when all items have
arrived, it produces a matching that is a-class proportional with respect to the items that have been fully assigned by the algorithm.

Proposition 10. No deterministic algorithm for matching divisible items satisfies a-CPROP with respect to the allocated items for any a >

l - 1/8.

Proof. We will prove that no deterministic online algorithm satisfying non-wastefulness can achieve a-CPROP with respect to the
allocated items for any a > 1 —!/e. By the proof of Proposition 2, this implies that no deterministic algorithm can guarantee a-CPROP
with respect to the allocated items for any a > 1 — /..

Take any non-wasteful algorithm for divisible item allocation and consider the following adversarial instance. There are two
classes of 3n agents each,

* N, ={ay,...,a,.dy,....,d,} and
. _ / / ! !’
N, = {al,‘..,an,dl,...,d%}.

We call the agents d|, ... ,dz,,,di, ,d’n dummy agents. There are 2n items, labeled o; and o] for i € [n].
The construction of the instance works in rounds as follows.

+ We start with =1, R? ={ay,a,,...,a,}, and Rg = {a’l,a’z, ..ad ).

* Inround 7, item o, arrives, followed immediately by item o/. Both these items are liked by agents in R’l‘1 and R’z‘].

+ Let V'(a) denote the value that agent a derives at the end of round ¢ when the algorithm finishes allocating both items. Find the
lowest valuation agent in each class. WLOG, say a, € argmin,, R V'(a) and a] € argmin ;. R Vi(d'). Set R} « R’l‘1 \ {a},

R« R\ {d)},and 1 <1 +1.

We stop this process after the first round #* such that at the end of that round every agent in R’l* and every agent in R’; is fully
saturated.

Without loss of generality, assume that at the end of round ¢*, the total value of agents in N, is at most the total value of agents
in N,, i.e, ZaeNl V™ (a) < Za,eNz V™ (). For shorthand, let us denote V'(A) = Y uea V'(a) for a set of agents A.

Then, the remaining 2(n — t*) items that arrive are liked by agents in N, U R’l*. Note that by non-wastefulness and by the fact that
N, contains 2n dummy agents, the 2(n — t*) items are fully assigned to some agent.

We claim the following properties at the end of round 7*.

« The agents n — t* agents in R’l* and the n — t* agents in R’; are all fully saturated.
VNS, V(N 21— 1.
« t*<(1-1/e)- n (in particular, the process will stop after no more than » rounds).

The first claim follows immediately due to the definition of #*. For the second claim, note that the total value of both classes after
t rounds must be at most 2¢ since only 2¢ items have arrived. Also, the total value of both classes after t rounds must be at least
2(t — 1); this is because the tth round only happens if some agent in R’l‘1 U R’z‘1 was not fully saturated after r — 1 rounds, and since
this agent was part of R’l/ U R’2’ for all ' <t — 1, non-wastefulness implies that the algorithm must have assigned the 2(¢ — 1) items
from the first r — 1 rounds fully. These two claims, along with the convention that V(N D< 148 (N,) implies the second claim.

Before we prove the third claim, we show why these claims imply the desired bound on the envy ratio. At the end of the algorithm,
the total value of class N; is at most #* because of the second claim and the fact that they do not receive any items from the last
2(n —t*) items (as all agents in R’]* are saturated after round *).

In contrast, the proportional fair share propf of class N with respect to the allocated items .S is at least n — 1. Note that all the
items except for o,. and o;* are fully assigned. Thus, M \ {o,*,o;*} C §. Further, consider two sets Py = {0}, ...,0p_1,0441,-..,0,}

and P, = {o’l, ,o;t],a;*ﬂ, ...,0l}. From Py, the t* — 1 items 0;,0,,...,0,,_; can be matched to r* — 1 agents a;,ay,...,4,,_, and
the remaining n — t*— items can be matched to n —r* agents in R‘l*. Similarly, from P,, * — 1 items o’l , 0’2, s o;*_ , can be matched to
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t* agents a’1 , a’2, ,a;*_ , and the remaining  — ¢* items can be matched to n — t* agents in R’l*. Thus, propf > n — 1. From the third
claim, if Vj(X) > a - propf, then (1 — 1/e)n > a(n — 1), meaning that (1 — l/e)ﬁ >a.

Finally, we show that r* < (1 — 1/e) - n. To see this, we first show that after ¢ rounds,

2t 2t-1) 2-1
VIIN \RD+V' (N, \R)S =+ —— 2+ .+ —=——.
(NIA R+ VN, \ 2)\n-'- n—1 * n—t+1

For the base case, note that after the first round, V' !(a;)+ V! (a’l) < 2/n follows from the pigeonhole principle. Suppose this claim
holds after t — 1 rounds. Then, after round ¢, we have
20— (VHN\ RED + VU, \ RS
n—tr+1 '
Adding VU N\ RTH +VUN, \ RS = VIIN A\ RTH + VN, \ RS to both sides, we obtain

Via)+V'(a) <

VNI \ R+ V(N \ R) <
2t n—t

T e T NARTD VTN A RTD)

Using the induction hypothesis, we get the desired result. Consider the smallest 7 such that

2?—2—<2+M+...+#>>2(n—t)
n n—1 n—t+1

Note that the process must stop at ¢* < 7. This is because the total value of both classes after 7 round is at least 27 — 2, but the value
to the removed agents is at most the expression in the brackets. Hence, the remaining allocation must have saturated the remaining
2(n—1) agents. After simple algebra, we can see that the left hand side is equal to 2 - (n—1) - (H,, — H,,_;) — 2. If this is at least 2(n — 1),
then H, — H,_; > 1+ 1/(n—1). The smallest 7 when this is satisfied is roughly (1 — 1/e) - n+o(n). []
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