
Introduction to the Minitrack Software Sustainability: Strategies for
Long-Lasting and Usable Software

Maytal Dahan
Texas Advanced Computing Center,
The University of Texas at Austin

maytal@tacc.utexas.edu

Joe Stubbs
Texas Advanced Computing Center,
The University of Texas at Austin

jstubbs@tacc.utexas.edu

Sandra Gesing
San Diego Supercomputer Center
University of California, San Diego

ssgesing@ucucsd.edu

Abstract

In an era where software plays a pivotal role in shaping
technology landscapes, ensuring usabile, long-lasting
and reproducible software is one that spans various
domains of science and significant investment of
research funding across the US, Europe, U.K, and
elsewhere. Ensuring the longevity and resilience of
software systems is of paramount importance for
fostering innovation, maintaining functionality, and
mitigating the environmental impact of constant
technological evolution. The three concepts —
usability, sustainability and reproducibility are
interconnected with each other and cover a wide range
of application areas. They affect all layers of the
software process – from enabling reproducing
experiments via an easy user interface to using
containerization for application portability. This
minitrack serves as a comprehensive exploration of
diverse topics within the realm of software
sustainability, encompassing intricate scenarios like
containerization, strategies for enduring software
solutions, usability and user interface considerations, as
well as addressing challenges in data curation and
provenance.

1. Introduction

The three concepts usability, sustainability and
reproducibility are interconnected with each other and
cover a wide range of application areas. They affect all
layers of the software process - from enabling
reproducing experiments via an easy user interface to
using containerization for application portability. Such
concepts are also relevant in the building of Science
Gateways (also known as virtual laboratories or virtual
research environments), which by definition serve
communities with end-to-end solutions tailored

specifically to their needs. Software survivability
involves a wide scope that can potentially include the
following topics:

● Web-based solutions (web sites, science
gateways, virtual labs, etc.)

● Application Programming Interfaces (APIs)
● Computational and Data-Intensive Workflows
● Novel approaches in containerization
● Sustainability practices in software

development
● System architectures for testing and

continuous integration
● Emerging best practices in Machine Learning

software
● Best practices and Key Success Factors for

usability, survivability and reproducibility

This minitrack, Software Sustainability: Research on
Usability, Maintainability, and Reproducabiliy
minitrack introduces the wide variety of accepted
papers to HICSS-57. It focused on the broad spectrum
of submissions that deal with complex scenarios such
as containerization, strategies for long-lasting software,
usability and user interface issues, handling data
curation and provenance and more.

2. Accepted Papers

The minitrack received three papers with an
excellent breadth of topics from a literature review of
sustainability to understanding the open source
landscape in the data science domain.. We accepted
two papers to this minitrack that introduce the
following topics:

● Researching a study design in using
open-source natural language processing
(NLP) models and what characteristics

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 7675
URI: https://hdl.handle.net/10125/107309
978-0-9981331-7-1
(CC BY-NC-ND 4.0)



determine the success or popularity of a
model.

● Researches the idea behind combining the
techniques of eye tracking/cognition with
software trustworthiness and reusability to
quantitatively analyze the general fit and finish
of code. The paper described an interesting
framework for assessing code quality through
eye-tracking and testing various types of
manipulation to determine the effects of these
mechanisms on how suitable software
developers found the code to be for reuse.

One paper selected for this minitrack,
“Understanding Open-Source NLP Artifact Adoption
Through Information Systems Success Factors”, delves
into the integration of natural language processing
(NLP) artifacts within the realm of Open-Source
Software (OSS), employing the DeLone and McLean
Information Systems Success Model—a framework
widely recognized for evaluating the success of
information systems. Through a nuanced examination
of system quality, information quality, and task types,
the research seeks to discern the distinct influences on
adoption concerning analysis and generation tasks.
Drawing upon data sourced from Hugging Face, the
study posits that system quality exerts a more
pronounced impact on adoption in the context of
analysis tasks, while information quality plays a more
significant role in the adoption of generation tasks.
These findings contribute to an enhanced
comprehension of OSS success, particularly within the
domain of NLP.

Lastly the authors of the paper, “Effects of Coding
Norm Violations on Visual Effort, Trustworthiness
Perceptions, and Reuse Intentions” assert that the
escalating demand for automated systems and novel
programming applications has intensified the quest
for efficient strategies in computer code creation.

Practices such as code reuse and writing reusable
code, proven to enhance efficiency in the code
creation process, is garnering significant interest.
This paper explores the factors influencing a
programmer's perception of code trustworthiness,
identified through cognitive task analysis as
performance, reputation, and transparency of the
code. Performance is gauged by the code's ability to
meet project objectives, reputation involves external
assessments, and transparency encompasses code
understandability, readability, and organization.
Leveraging eye-tracking data, this study examines
how introduced errors in code readability and
organization, as well as alterations in the code
source's stated reputation, impact a programmer's
trustworthiness perceptions and reuse intentions. By
analyzing eye movements during code review tasks,
the research aims to infer visual effort, explore
variations in eye movements based on code
violations, and replicate effects observed in previous
studies. The study sheds light on the driving forces
behind attention capture during the code review
process, contributing valuable insights into code
trustworthiness and reusability.

3. Conclusion

These papers show a range of applications and
impact of software sustainability in production and
research software. They cover crucial aspects such as
reproducibility and cultural approaches. We hope you
will join us for interesting presentations and lively
discussions on software sustainability, reproducibility,
challenges, and solutions for our evolving landscape.
We aim at continuing with this minitrack in the future
at HICSS and encourage authors to contribute their
research and viewpoints on software sustainability with
its many facets and areas.

Page 7676


