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A B S T R A C T 

Observations of gravitational waves emitted by merging compact binaries hav e pro vided tantalizing hints about stellar 
astrophysics, cosmology, and fundamental physics. Ho we ver, the physical parameters describing the systems (mass, spin, 
distance) used to extract these inferences about the Universe are subject to large uncertainties. The most widely used method of 
performing these analyses requires performing many Monte Carlo integrals to marginalize over the uncertainty in the properties 
of the individual binaries and the surv e y selection bias. These Monte Carlo integrals are subject to fundamental statistical 
uncertainties. Previous treatments of this statistical uncertainty have focused on ensuring that the precision of the inferred 

inference is unaf fected; ho we v er, these works hav e ne glected the question of whether sufficient accuracy can also be achieved. 
In this work, we provide a practical exploration of the impact of uncertainty in our analyses and provide a suggested framework 

for verifying that astrophysical inferences made with the gra vitational-wa ve transient catalogue are accurate. Applying our 
framework to models used by the LIGO–Virgo–KAGRA collaboration and in the wider literature, we find that Monte Carlo 

uncertainty in estimating the surv e y selection bias is the limiting factor in our ability to probe narrow population models and 

this will rapidly grow more problematic as the size of the observed population increases. 

Key w ords: gravitational w aves – methods: data analysis – methods: statistical. 
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 INTRODUCTION  

sing data from the first three observing runs of Advanced LIGO 

LIGO Scientific Collaboration 2015 ) and Advanced Virgo (Acer- 
ese et al. 2015 ), ≈70 signals from the merger of compact binary
ystems have been identified (The LIGO Scientific Collaboration, 
he Virgo Collaboration & The KAGRA Collaboration 2021c ), 
long with a few tens of less significant additional candidate events 
Nitz et al. 2023 ; Olsen et al. 2022 ). While indi vidual observ ations
f compact binary mergers provide insights into astrophysics and 
osmology, maximizing the physical resolving power using the 
atalogue of gra vitational-wa ve transients requires analysing the 
ntire population as a hierarchical Bayesian inference problem. Due 
o computational constraints, these analyses are performed using a 

ultistage process to calculate the population-level likelihood (see 
.g. Mandel, Farr & Gair 2019 ; Thrane & Talbot 2019 ; The LIGO
cientific Collaboration, The Virgo Collaboration & The KAGRA 

ollaboration 2021d ; Vitale et al. 2022 ). 
First, segments of data that are likely to contain gra vitational-wa ve

ignals are identified by search pipelines (e.g. Allen et al. 2012 ).
hese pipelines are only sensitive to the loudest signals and so the
bserved sample is biased in fa v our of nearby high-mass binaries
 E-mail: colm.talbot@ligo.org 
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ith black hole angular momenta (‘spins’) aligned with the orbital 
ngular momentum (Campanelli, Lousto & Zlochower 2006 ). This 
election bias is typically accounted for by estimating the fraction 
f binaries that we expect to observe using simulated ‘injection’ 
ampaigns. 

Next, the strain data from gra vitational-wa ve detectors containing 
he observed transients are analysed with a fiducial reference model 
or the population (often referred to as the fiducial prior distribution)
n order to obtain samples from the fiducial posterior probability 
istribution for the parameters (masses, spins, etc.) of each binary. 
hile the fiducial prior distribution impacts the fiducial posterior, it 

s typically chosen to a v oid imprinting astrophysical assumptions on
he results. For example, binaries are assumed to be distributed ho-

ogeneously and isotropically throughout the Universe. The fiducial 
odel for black hole masses is usually uniform in the mass of each

lack hole and uniform in spin magnitude and isotropic in direction.
In the final stage, these fiducial samples are importance sam- 

led (‘reweighted’) using a parametrized model for the underlying 
opulation to compute the likelihood for the observed data given 
opulation-level parameters (e.g. the maximum allowed black hole 
ass) marginalized o v er the per-event parameters. For each model

or the underlying population, the fraction of observable binaries is 
lso estimated using importance sampling on the injected signals 
rom the first stage (e.g. Finn & Chernoff 1993 ; Loredo 2004 ; Farr
t al. 2015 ). 

http://orcid.org/0000-0003-2053-5582
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The importance sampling step is an example of using Monte Carlo
ummation to approximate an integral and as such comes with some
ntrinsic uncertainty that enters the analysis as a source of systematic
rror. Typically, this uncertainty is ignored when performing the
nalysis; ho we ver, in recent years several attempts have been made
o quantify this uncertainty and theoretically moti v ated heuristics
ave been proposed to estimate and (hopefully) mitigate its impact
Farr 2019 ; Essick & Farr 2022 ). In this work, we perform a data-
riven analysis of the potential systematic uncertainties from our
se of Monte Carlo integration. We note that while we apply our
ormalism to the problem of population inference for gravitational-
ave astronomy, it is widely applicable to any context in which an

pproximate estimator of the true likelihood is used in a Bayesian
nalysis. 

The remainder of this paper is structured as follows. In the next
ection, we describe how uncertainty appears in our estimate of the
opulation likelihood through Monte Carlo integration and suggest
 set of convergence criteria. In Section 3 , we analyse a simple
oy model to examine the impact of uncertainty on the accuracy of
nference. Using this, we establish a threshold beyond which we
xpect our results to be significantly biased. Following this, we take
 range of models previously considered for population analyses and
uantify the uncertainty in these results in Section 4 . Finally, we
rovide a closing discussion. 

 UNCERTAINTY  IN  THE  POPULATION  

IKELIHOOD  APPROXIMATION  

he likelihood function typically employed for an analysis of a
opulation of N observed systems with source-dependent selection
ffects can be written as (see e.g. Mandel et al. 2019 ; Thrane &
albot 2019 ; Vitale et al. 2022 , for details) 

 ( { d i }| � ) ∝ 

N ∏ 

i 

L ( d i | � ) 

P det ( � ) 
. (1) 

ere, { d i } are the data containing the observed signals (indexed by
 ). In the context of gra vitational-wa ve astronomy, these are strain
ata recorded by gra vitational-wa ve interferometers. The selection
unction P det is the fraction of all signals that would be observed for a
opulation described by population hyperparameters � . We note that
his likelihood has been marginalized o v er the o v erall rate of ev ents
assuming a uniform-in-log rate prior) and the parameters describing
ach of the individual systems. 

Each of the terms L ( d i | � ) and P det ( � ) is computed by marginal-
zing o v er θ , the ≈15 parameters describing the individual binaries,
nd many more describing the noise properties of the interferometers:

 ( d i | � ) = 

∫ 
dθp( d i , θ | � ) = 

∫ 
dθL ( d i | θ ) p( θ | � ) (2) 

 det ( � ) = 

∫ 
d d 

∫ 
d θp( d , θ | � ) � ( ρ( d ) − ρ∗) (3) 

= 

∫ 
d d 

∫ 
d θL ( d | θ ) p( θ | � ) � ( ρ( d ) − ρ∗) . (4) 

n both expressions, we have expanded the joint distribution for
he observed data and signal parameters into the population model
 ( θ | � ) and the likelihood of observing data given single-event
arameters L ( d| θ ). The inte gral o v er d in the expression for P det 

s o v er all of the data collected by the instrument, while the d i 
epresents the data around the time of a specific observed signal.
he final term is a Heaviside step function for the detection statistic

e.g. signal-to-noise ratio or false alarm rate) ρ with threshold ρ∗. In
NRAS 526, 3495–3503 (2023) 
rder to minimize the cost of performing the analysis, these integrals
re commonly computed using Monte Carlo estimators using some
eference set of samples from the fiducial posterior distribution. We
enote the estimator of quantity x as ˆ x . As a specific example, the
stimator of the log-likelihood (equation 1 ) is 

ln ˆ L ( { d i }| � ) = 

( 

N ∑ 

i 

ln ˆ L ( d i | � ) 

) 

− N ln ˆ P det ( � ) . (5) 

In practice, these estimates are calculated using Monte Carlo
ntegration: 

 = 

∫ 
dxf ( x ) p( x ) ≡ 〈 f 〉 p( x) , (6) 

ˆ 
 = 

1 

M 

j= M ∑ 

x j ∼p( x) 

f ( x j ) . (7) 

ere, ˆ I is the estimator of the integral I and M is the number of
amples in the Monte Carlo integral. We note that p ( x ) is a normalized
robability distribution and f ( x ) is an arbitrary function of parameters
 . Every Monte Carlo has an intrinsic statistical uncertainty 

2 
I = 

1 

M 

[〈 f 2 〉p( x) −
〈
f 〉 2 p( x) 

] ≡ 1 

M 

σ̄ 2 
I . (8) 

e define the quantity σ̄ 2 
I as the intrinsic variance between the

roposal distribution p ( x ) and the target distribution f ( x ) p ( x ). In
eneral, the uncertainty in a Monte Carlo integral will be minimized
y choosing p ( x ) and f ( x ) to minimize σ̄I . For example, for most
ra vitational-wa ve population analyses (including this work), we
hoose 

 ( θ ) ∼ p( θ | � ) 

p( θ | ∅ ) 
, p( θ ) ∼ L ( d| θ ) p( θ | ∅ ) , 

here p( θ | ∅ ) is the fiducial prior distribution. Ho we ver, in some
ases it is beneficial to define (e.g. Wysocki, Lange & O’Shaughnessy
019 ; Golomb & Talbot 2022b ) f ( θ ) ∼ L ( d| θ ), p ( θ ) ∼ p ( θ | � ).
e also note that the variance scales inversely with the number

f samples. A final quantity related to Monte Carlo integrals that
e will need is the ef fecti ve number of independent samples (Kish
995 ) 

 eff = M 

〈 f 〉 2 p( x) 

〈 f 2 〉 p( x) 
. (9) 

n Farr ( 2019 ), the author demonstrates that for small values of n eff a
aussian approximation to the likelihood uncertainty breaks down.

n previous works (e.g. Farr 2019 ; The LIGO Scientific Collaboration
t al. 2021d ), n eff has been used to assess the convergence of
he likelihood estimator and to impose data-dependent cuts on
he allowed parameter space. We prefer to work directly with the
stimated variance and include n eff here just to compare with previous
ork. 
Since we assume that the reference samples used in each of the
onte Carlo integrals are independent, the variance in the estimate

f the population (log-)likelihood is 

2 
ln ˆ L 

( � ) = 

N ∑ 

i 

σ 2 
ln ˆ L i 

( � ) + N 
2 σ 2 

sel ( � ) . (10) 

e note that the contribution to the total variance from the selection
unction grows quadratically with the population size, as Var( Nx ) =
 
2 Var( x ). 
Assuming the individual observations are independent and identi-

ally distributed draws from the underlying population, we recast this
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xpression in terms of an a verage per -observation uncertainty σ obs to 
ore clearly see the dependence of both terms with the population 

ize 

2 
ln ˆ L 

( � ) = Nσ 2 
obs ( � ) + N 

2 σ 2 
sel ( � ) . (11) 

e have explicitly retained the dependence of this variance on the 
yperparameters. We justify the assumption that σ obs does not vary 
ith time in Section 4.1 . 
Since we are predominantly interested in differences in log- 

ikelihood for points with significant posterior support, we need to 
imit the error in the difference of log-likelihood estimators, � ln ˆ L . 
n general, the errors will not be independent, and so we calculate
he variance in this quantity σ 2 

� ln ˆ L 
as defined in equation (A11) 

n Essick & Farr ( 2022 ). We assume the error in the estimator of
he log-likelihood is Gaussian distributed as the contribution to the 
opulation log-likelihood from the per-event terms is the sum of N
ndependently and identically distributed estimators and so by the 
entral limit theorem follows a normal distribution and in the high 
f fecti ve-sample size limit the selection function term also follows a
ormal distribution (Farr 2019 ) We therefore write σ 2 

� ln L 
= σ 2 

� ln ˆ L 
. 

If the uncertainties in the estimators are uncorrelated with � , 
e will have σ 2 

� ln ˆ L 
= σ 2 

ln ˆ L 
. In Essick & Farr ( 2022 ), the authors

emonstrate that under certain conditions the variance in likelihood 
ifferences in ‘local neighbourhoods’ a v oids the worst-case scaling 
n equation ( 11 ) and rather find that 

2 
� ln ˆ L 

= σ 2 
obs ( � ) + Nσ 2 

sel ( � ) (12) 

or a simple example model due to correlation of the Monte Carlo
rrors between points with significant posterior support. It is unclear 
 priori when the local neighbourhood approximation is valid, in this
ork, we numerically test whether this scaling holds for the specific 

ase of inferring the population properties of merging binary black 
ole systems. 

.1 Uncertainty as a draw from a Gaussian process 

o build an understanding of the impact of uncertainty, we assert
hat the estimated difference in log-likelihood is a fair draw from
he Gaussian process with mean function � ln L and (potentially 
on-stationary) kernel function 	( � , � 

′ ) 

 ln ˆ L ( { d i }| �, � 
′ ) ∼ GP ( � ln L ( { d i }| �, � 

′ ) , 	( �, � 
′ )) . (13) 

ere, 	( �, � 
′ ) = σ 2 

� ln L 
is the 2 D -dimensional covariance matrix,

here D is the dimensionality of the population model. In practice, 
e do not have access to the true kernel function, and so we approx-

mate it using a numerical covariance matrix using the covariance 
etween the likelihood estimator at each pair of points we consider. 
pecifically, we construct the approximate kernel by numerically 
alculating 

( �, � 
′ ) = σ 2 

� ln ˆ L 
(14) 

ollowing equation (A11) in Essick & Farr ( 2022 ). We will use this
uantity to estimate the average variance over the posterior for the 
yperparameters 

〈
� ln ˆ L 

〉 ≡
∫ 

d � 

∫ 
d � 

′ p ( � |{ d i } ) p ( � 
′ |{ d i } ) 	( �, � 

′ ) (15) 

≈ 1 

K 
2 

k= K ∑ 

k= 1 

k ′ = K ∑ 

k ′ = 1 

	( � k , � k ′ ) (16) 

 k ∼ p( � |{ d i } ) . (17) 
e note that this is the average of the covariance matrix weighted by
he posterior support. 

This is a slightly different statistic than the one considered in
ssick & Farr ( 2022 ), where the authors replace the inte gral o v er � 

′ 

ith a fixed value at the mean of the hyperposterior 

¯
 = 

∫ 
d�p( � |{ d i } ) �. 

hile the simpler expression used in Essick & Farr ( 2022 ) likely
roduces comparable results for posterior distributions with Gaus- 
ian uncertainties, for posteriors with more complex shapes, e.g. 
ultimodality or curving degeneracies, the mean of the posterior 

s not in general representative of points with significant posterior 
upport. In contrast, the full integral over � , � 

′ ensures that we
ccurately represent the variance between all pairs of points with 
osterior support. 

 HOW  UNCERTAIN  CAN  WE  BE?  

efore turning to real examples, we first moti v ate an acceptable
evel of uncertainty in the log-likelihood estimator. Specifically, we 
ant to know a threshold value of 〈 � ln ˆ L 〉 abo v e which we expect

o see significant biases. To test this, we consider a simple one-
imensional problem where the true posterior distribution is a unit 
ormal distribution. To verify that the threshold is independent of the
tructure of the covariance matrix, we perform this experiment with 
our analytical kernel functions: a block-diagonal kernel where each 
lock is fully correlated with a random number of blocks, a Mat ́ern
ernel with ν = 5/2 and random correlation length, a completely 
ncorrelated kernel, and a completely correlated kernel. We find that 
he result is independent of the kernel choice. 

For 4800 iterations, we choose a covariance matrix using one of
ur kernels with a random value of 〈 � ln ˆ L 〉 drawn logarithmically
etween [10 −2 , 20]. For each covariance matrix, we draw 100
ealizations from the covariance matrix 	( � , � 

′ ) to generate biased
osterior probability distributions. For each of these realizations, 
e compute the fraction f of the posterior support below a random
oint drawn from the true posterior. If there is no bias, f should
ollow a uniform distribution in [0, 1]. We, therefore, compute a
 value comparing the 100 values of f to the uniform distribution. In
ig. 1 , we show a two-dimensional histogram of the result of this
umerical experiment. We see that when 〈 � ln ˆ L 〉 � 1, the p value 

re uniformly distributed indicating unbiased reco v ery. Ho we ver, 
s the magnitude of the uncertainty rises, the distribution of p value 

ke ws heavily to wards small p value . As a final quantitative test, we
ompare the distribution of p value in each bin of 〈 � ln ˆ L 〉 to compute
 combined p value . We see that the combined p value is very small for
 � ln ˆ L 〉 � 1. We will therefore use 〈 � ln ˆ L 〉 � 1 as our heuristic
hreshold for significant bias. 

 HOW  UNCERTAIN  ARE  WE?  

e now turn to a tangible example of uncertainty in the infer-
nce performed on the population of binary black hole mergers 
bserved during the first three observing runs of Advanced LIGO 

nd Advanced Virgo with a false alarm rate of less than one per
ear. The analyses performed in The LIGO Scientific Collaboration 
t al. ( 2021d ) imposed cuts on the convergence of the Monte
arlo integrals that implicitly limit the variance in the likelihood 

o a v oid spurious features in the posteriors. All analyses in that work
mposed a condition first proposed in Farr ( 2019 ) demanding that
or the selection function n eff > 4 N . Some models also enforced the
MNRAS 526, 3495–3503 (2023) 
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M

Figure 1. p value versus uncertainty in difference in log-likelihood averaged 
o v er the posterior distribution ( 〈 � ln ˆ L 〉 ). For unbiased analyses at a given 
value of 〈 � ln ˆ L 〉 , we expect p value to follow a uniform distribution in [0, 
1]. The upper panel shows a combined p value for all the points in the 
histogram falling within that range of 〈 � ln ˆ L 〉 . We note that this is satisfied 
for 〈 � ln ˆ L 〉 � 1; ho we ver, when the uncertainty is larger than that v alue, the 
analysis is biased on average. 
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Figure 2. The per-event contribution to the likelihood covariance averaged 
o v er the posterior support for our population hyperparameters. We divide 
the events by the year of the observation, approximately corresponding to 
different observing runs of Advanced LIGO/Advanced Virgo. We note that 
there is no obvious trend with time, indicating that we can reliably consider 
the average uncertainty σ 2 

obs = 〈 σ 2 
i 〉 (shown by the dashed grey line). 
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ondition that each marginalization o v er the single event posteriors
ad n eff > N . We consider one of the models that applied both
onvergence conditions. 

We compute the uncertainty in the estimated likelihood for one
f the models used in the latest LIGO–Virgo–KAGRA analysis.
pecifically, we use the PowerLaw + Peak mass model (Tal-
ot & Thrane 2018 ), Default spin model (Talbot & Thrane 2017 ;
ysocki et al. 2019 ), and power-law redshift model (Fishbach,
olz & Farr 2018 ). For our default analysis configuration, we use the

ame 4278 per-event posterior samples (The LIGO Scientific Col-
aboration, The Virgo Collaboration & The KAGRA Collaboration
021a ) and injection set (The LIGO Scientific Collaboration, The
irgo Collaboration & The KAGRA Collaboration 2021b ) used in

he equi v alent analysis in The LIGO Scientific Collaboration et al.
 2021d ) and do not apply any constraints on the convergence of the

onte Carlo integrals. 
For all of our analyses, we sample the population posterior using

he nestle (Barbary 2016 ) nested sampling package as imple-
ented in Bilby (Ashton et al. 2019 ). We use GWPopulation

Talbot et al. 2019 ) to compute the likelihood function. We use the
ame prior distributions as in The LIGO Scientific Collaboration
t al. ( 2021d ). For each of the posterior samples, we e v aluate the
ncertainty in each of the 70 Monte Carlo inte grals involv ed (one for
ach event and the selection function integral). 

.1 Evolution of σ obs 

e begin by testing our assumption that rewriting the total variance in
erms of the a verage per -e vent v ariance σ obs is reliable. One method
n which this could break down is if the average uncertainty changes
s the sensitivities of the observatories impro v e. In Fig. 2 , we show
he average contribution to the covariance over the posterior for
he hyperparameters for each event ordered by observation date.
he different colours correspond to events observed in different
ears. There is no obvious trend over time which validates our
pproximation of σ 2 

obs = 〈 σ 2 
i 〉 . We show this value with the dashed

rey line. The event with the largest contribution to the uncertainty is
NRAS 526, 3495–3503 (2023) 
W190517, which has masses consistent with the excess at ∼ 35 M 

nd large inferred spins. 

.2 Scaling with the population size 

n order to estimate the scaling of the uncertainty with the size of the
atalogue, we randomly sample observations from the total catalogue
o simulate smaller catalogues and scale the uncertainty on the
election function appropriately . Specifically , we consider catalogues
ith increments of 5 events from 5 to 65 and all 69 ev ents. F or each

atalogue size, we sample from the hyperposterior and compute the
verage variance in the estimated differences of log-likelihood values
 v er the posterior samples 〈 � ln ˆ L 〉 . We do not apply any of the ad
oc restrictions on Monte Carlo integral convergence proposed in
arr ( 2019 ) and The LIGO Scientific Collaboration et al. ( 2021d )
nd described abo v e in these analyses. We fit a simple model to
he uncertainty coming from the per-event terms and the selection
unction to obtain fits for the contribution from the indi vidual e vents
nd the sensitivity. The model for the total variance is 

 � ln ˆ L 〉 = σ 2 
obs N 

a + σ 2 
sel N 

b . (18) 

ere, we emphasize that � ln L is proportional to the variance in the
stimator and not the standard deviation. We note that equation ( 11 )
mplies a = 1, b = 2 while if the assumptions from Essick & Farr
 2022 ) hold we will have a = 0, b = 1. We perform this calculation for
oth the mean variance and the mean co variance o v er the posterior
upport. 

In Fig. 3 , we show the total uncertainty (blue) along with the
ontributions from the per-event terms (orange) and the selection
unction (green) as a function of the number of events with the
olid curves. The dashed-coloured curves show projections for larger
opulations based on the analytical fit. The dashed grey lines indicate
he number of events in each of the first three gra vitational-wa ve
ransient catalogues and the gre y-shaded re gion shows a plausible
ange of observations we may expect after the upcoming fourth
ra vitational-wa ve observing run (Petrov et al. 2022 ; Weizmann
iendrebeogo et al. 2023 ). The purple-shaded region shows where,
euristically, we may expect to see noticeable biases, following the
riteria developed in Section 3 . 

We find that in practice, the scaling of the uncertainty lies between
he best-case scenario from Farr ( 2019 ) and Essick & Farr ( 2022 ) and
he worst-case scenario in equation ( 11 ). Specifically, we find a =
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Figure 3. Scaling of the uncertainty in the log-likelihood averaged over 
the full posterior support with the population size for a simple parametric 
population model. The dashed vertical lines show the number of confident 
binary black hole events in the gra vitational-wa ve transient catalogue at the 
time of publication of GWTC-1 (Abbott et al. 2019a ), GWTC-2 (Abbott 
et al. 2021a ), and GWTC-3 (The LIGO Scientific Collaboration et al. 2021c ). 
The grey filled region indicates the projected number of binary black hole 
observations during the next observing run of the international gravitational- 
wave detector network (Petrov et al. 2022 ; Weizmann Kiendrebeogo et al. 
2023 ). The purple shaded region indicates heuristic values for when the 
uncertainty in the likelihood is likely to cause noticeable bias in the 
analysis. The solid curves show the empirically obtained uncertainties and 
the dashed curves are extrapolations based on the power-law fit to the per- 
event contribution (orange) and the contribution from the selection function 
(green). The total uncertainty is shown in blue. 
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Figure 4. The same a Fig. 3 but with a more flexible model. We note that the 
same general features are present; ho we ver, for this model, the uncertainty 
grows much more rapidly with population size. 

Figure 5. The scaling of the average variance in the log-likelihood with the 
number of events per Monte Carlo integral. The solid blue, dashed orange, and 
dash–dotted green curves show the results using the full likelihood, selection 
function only, and per-observation terms, respectively. In the top panel, we 
show the variance. In the bottom panel, we show the normalized variance 
divided the number of samples per integral. As expected, these quantities 
scale inversely with the number of samples. 
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.7, b = 1.6. The dominant source of uncertainty is from estimating
he selection function when the population is larger than ≈10 events. 

e note that for populations larger than ≈40 events, the uncertainty 
s consistently in the purple-shaded region. This is consistent with the 
act that ad hoc cuts on the prior space or Monte Carlo convergence
ere needed to a v oid significant biases in Abbott et al. ( 2021b ). 
To test if this scaling depends on the functional form used to fit

he population, we repeat the abo v e calculation with a more flexible
odel for the primary mass and spin parameters. Specifically, we 

ake the e xponential-spline-modulated power-la w mass distribution 
rom Edelman et al. ( 2022 ) and the exponential-spline model for
lack hole spin magnitudes and tilt angles from Golomb & Talbot 
 2022a ). For the mass distribution, we use 10 spline nodes spaced
ogarithmically between [2 , 100] M 
 and for the spin parameters 
e take six nodes equally spaced o v er the rele v ant domain. For all

pline nodes, our prior on the amplitudes is a unit normal distribution,
xcept for the endpoints for the mass distribution that are fixed to
ero. 

In Fig. 4 , we show the same as Fig. 3 with this more flexible
odel. We see that the average covariance in both the per-event 

nd selection function terms grows more rapidly in this case than 
or the simpler model ( a = 1.0, b = 1.9). The more extreme scaling
ay be due to the greater flexibility of the spline model causing the

local neighbourhood’ assumption of Essick & Farr ( 2022 ) to be less
ppropriate. 

.3 Scaling with the size of Monte Carlo integrals 

aving established numerically how the size of the uncertainty 
n the likelihood estimates varies with the size of the population 
nd configuration settings, we turn to how the number of samples 
er Monte Carlo integral impacts the uncertainty for this concrete 
xample. To address this, we repeat the uncertainty calculation for 
he PowerLaw + Peak and Default configuration abo v e ten 
imes, once using all of the available samples, once with half of the
amples, one-third of the samples, etc., down to one-tenth of the
amples. 

In Fig. 5 , we show the mean variance o v er the posterior distribution
s a function of the number of samples per Monte Carlo integral in the
pper panel. The solid blue, dashed orange, and dash–dotted green 
urves show the results using the full likelihood, selection function 
nly, and per-observation terms, respectively. In the lower panel, we 
how the variance scaled by the number of samples in the integral
uch that it will be constant if the uncertainty scales linearly with the
umber of samples. We observe that the variance is consistent with
caling inversely with the number of samples. 

.4 Impact on the inferred astrophysical distributions 

o study the impact of the convergence-moti v ated prior cuts and bias
n likelihood estimates, we consider four analysis configurations: 

(i) LVK. The first configuration is the same one used in the LIGO–
irgo–KAGRA analysis in The LIGO Scientific Collaboration et al. 
 2021d ). This analysis used ∼4 × 10 4 found injections to estimate
MNRAS 526, 3495–3503 (2023) 
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Table 1. Hyperparameters for the injection sets used in each of the analysis configurations we consider 
as described in Section 4 . We additionally list the average variance in the difference between estimated 
likelihood values. 

N injections α m max m min δm μm σm λ 〈 � ln ˆ L 〉 
LVK 4 × 10 4 2 100 2 0 – – 0 0.63 
No convergence 4 × 10 4 2 100 2 0 – – 0 5.06 
Tailored 4 × 10 4 3.5 105 3 6 33 5 0.04 1.24 
More injections 8 × 10 5 1 100 2 0 – – 0 0.50 
No injections 0 – – – – – – – 0.42 
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Figure 6. The inferred spin magnitude (top) and primary mass (bottom) 
distributions for a range of analysis configurations. The solid curves show 

the mean inferred distribution and the shaded regions show the 90 per cent 
symmetric credible interval. The blue curves show the results presented in 
The LIGO Scientific Collaboration et al. ( 2021d ). In orange, we show results 
obtained using the same input samples but without performing the ad hoc 
constraints on the number of ef fecti ve samples per Monte Carlo integral. In 
red, we show the results when using more found injections to compute the 
selection function. In purple, we show the results obtained when neglecting 
the selection function, we note that in this case, we do not show the inferred 
mass distribution as that is significantly biased by neglecting selection effects. 
In grey, we show the results obtained using our tailored injection set. 
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he selection function, and 4278 fiducial posterior samples were used
or each event. Specifically, we use the posterior samples released
n The LIGO Scientific Collaboration et al. ( 2021a ) and the set
f sensitivity injections that combine injections co v ering the first
hree observing runs of Advanced LIGO/Advanced Virgo (The LIGO
cientific Collaboration et al. 2021b ). For this configuration, there is

he prior cut on n eff for each of the Monte Carlo integrals as described
t the beginning of this section. 

(ii) No convergence. The second configuration repeats the analysis
rom The LIGO Scientific Collaboration et al. ( 2021d ) but remo v es
he prior constraints on n eff in each Monte Carlo integral. 

(iii) Tailored injections. We replace the injection set released by
he LVK, we use synthetic injections drawn using a mass distribution
hat more closely matches the observed distribution. Specifically, we
et the mass distribution using the PowerLaw + Peak model
sing the parameters in Table 1 . Since the proposal distribution for
ur Monte Carlo integral more closely matches the target distribution,
e expect this injection set to lead to smaller uncertainties with the

ame number of found injections. 
(iv) More injections. Rather than using the ∼4 × 10 4 found

njections used in The LIGO Scientific Collaboration et al. ( 2021d ),
e use the ∼8 × 10 5 synthetic found injections used in Golomb &
albot ( 2022a ) in order to reduce the uncertainty in the estimate of

he selection function. While this uses many more injections, we
ote that the underlying distribution of signals is different than for
he LVK configuration. 

(v) No injections. Rather than using the ∼4 × 10 4 found injections
sed in The LIGO Scientific Collaboration et al. ( 2021d ), we ignore
he impact of selection effects completely. This will reduce the
ncertainty in the estimated likelihoods at the cost of only estimat-
ng the observed distribution and not the underlying astrophysical
istribution. 

For both cases where we use synthetic injection sets, we do
ot repeat the full injection and reco v ery using a matched-filter
earch pipeline due to the large associated computational cost.
nstead, we threshold the simulated signals on the optimal signal-
o-noise ratio of the injected signal in Gaussian noise with PSDs
atching the detector sensitivity during O3 rather than the false-

larm rate (The LIGO Scientific Collaboration et al. 2021c ; The
IGO Scientific Collaboration, The Virgo Collaboration & The
AGRA Collaboration 2022 ). We anticipate that this difference
etween the detection thresholds does not significantly bias the
nferred mass and spin distributions (e.g. Abbott et al. 2019b , 2021b ;
he LIGO Scientific Collaboration et al. 2021d ; Golomb & Talbot
022a ; Essick 2023 ). 
In Table 1 , we summarize the population hyperparameters describ-

ng the mass distribution used for each injection set. Additionally, we
how 〈 � ln ˆ L 〉 computed o v er the respective posterior distributions
or the hyperparameters. We find that the no convergence case
learly surpasses our threshold. The tailored injection set reduces
NRAS 526, 3495–3503 (2023) 
he variance by ≈4 × by more closely matching the true underlying
istrib ution b ut is still in the re gime where we e xpect to see some
ias. For the other cases 〈 � ln ˆ L 〉 < 1 and so, we would expect the
esults to be unimpacted by Monte Carlo convergence. 

In Fig. 6 , we show the inferred distribution for spin magnitude
top panel) and primary mass (lower panel) with our five analysis
onfigurations. We note that the no injections configuration is
xcluded for the primary mass distribution as that distribution is
trongly biased by not accounting for selection effects. The solid
ines indicate the mean inferred distributions and the dashed curves
nclose the 90 per cent uncertainty region. While the uncertainties
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Figure 7. Comparison of statistical and systematic uncertainties in our 
inference of the distribution of black hole spin magnitude a . The solid 
curves show the PPD for three of the analysis configurations described in 
Section 4 . The dotted curves show the 5th and 95th percentiles of our statistical 
uncertainty for the lo west v ariance analysis ( no injections ). The orange and 
green dashed curves show the 5th and 95th percentiles of the additional 
systematic uncertainty from estimating the selection function. We note that for 
the more injections case the systematic uncertainty is much smaller than the 
statistical. Ho we ver, for the no convergence case the systematic uncertainty 
is comparable to the statistical. 
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f all of the results agree within their error bars there are visible
ifferences between the inferred results. Specifically, we find that for 
oth parameters, the width of the peak at a ≈ 0.2 and m 1 ≈ 35 M 
 are
roadest for the result that imposes cuts on the prior based on Monte
arlo convergence (blue) and narrowest for the analysis that has the 

argest average uncertainties (orange) with the analyses with reduced 
ncertainty (grey, red, purple) lying in between. This indicates that 
or commonly used analysis configurations, the inferred shape of 
eatures in the distribution of black hole mass and spin are notably
mpacted by uncertainty in the estimate of the likelihood. 

We note that the inferred spin magnitude distributions for the more 
njections and no injections configurations are the most consistent. 
his would be the expected outcome if the impact of the spin
agnitude on the selection function is small and the uncertainty 

n the likelihood estimates is small. We thus infer that the larger
njection set is sufficient to remo v e the bias present when using the
ound injections released by the LIGO–Virgo–KAGRA collabora- 
ion. While the cuts on the number of ef fecti ve samples in each

onte Carlo integral in the LVK configuration control the average 
ncertainty in the likelihood estimates, the cuts have a visible impact 
n the inferred distributions. 

.5 Result differences are explainable due to Monte Carlo 
ncertainty 

he posterior predictive distribution (PPD) for the binary parameters 
s defined as 

( θ |{ d} ) = 

∫ 
d�p ( θ | � ) p ( � |{ d} ) ≈ 1 

N 

N ∑ 

� i ∼p( � |{ d} ) 
p ( θ | � i ) . (19) 

n Fig. 6 , the solid curves show the PPD using our different analysis
et-ups (solid curves). While the curves are visibly different, we 
ish to know whether the differences can be explained as the result of

tatistical fluctuations expected due to the uncertainty in our estimator 
f the likelihood. 
Our aim is to estimate the range of different PPDs we might

xpect to measure given the PPD with no systematic uncertainty and 
 covariance 	( � , � 

′ ). In the absence of a ground truth, we take
he no injections case as our reference analysis as it has the lowest
ncertainty estimator of the likelihood and neglect the impact of the 
er-ev ent inte grals as all analyses use the same set of samples for
ach event. 

We begin by taking the samples � i ∼ p ( � | { d } ) for the reference
ase. We then construct the covariance matrix by numerically 
alculating the covariance between the likelihood estimates for every 
air of posterior samples. Using this covariance matrix, we generate 
eights for each of the samples δ ∼ N (0 , 	( �, � 

′ )). Finally, we
ompute the PPD using these weights as 

ˆ  ( θ |{ d} ) = 

〈 δ( � i ) p( θ | � i ) 〉 � i ∼p( � |{ d} ) 
〈 δ( � i ) 〉 � i ∼p( � |{ d} ) 

. (20) 

y repeating this many times, we can construct the 90 per cent
redible interval for the systematic error. 

In Fig. 7 , we show the same PPDs for the no injections , no
onver gence , and mor e injections configurations and the statistical
ncertainty for the no injections configuration (dotted curves) as 
n Fig. 6 . The estimated systematic uncertainty is shown by the
ashed curves. We note that in both cases, the PPDs with our specific
ealization are entirely consistent with the systematic uncertainty 
egion indicating that the differences in the PPDs can be fully
xplained by Monte Carlo uncertainty. For the no convergence case, 
he estimated systematic uncertainty is comparable to the statistical 
ncertainty. One limitation of our method is that the realizations 
annot deviate outside the set of samples used for importance 
ampling and so cannot accurately resolve cases where the systematic 
ncertainty is larger than the statistical uncertainty in the posterior. 

 CONCLUSIONS  

ften when performing Bayesian inference, we cannot calculate 
he true likelihood function, but rather a computationally tractable 
pproximation. F or e xample, the use of Monte Carlo inte gration
o approximate marginal likelihoods is widespread in population 
nference in gra vitational-wa ve astronomy and beyond. Ho we ver, 
ften, the uncertainty associated with these finite numerical integrals 
s neglected. We specifically examine the requirement of performing 
nbiased population inference on binary black holes with Monte 
arlo integrals used to marginalize over the parameters of the 

ndi vidual sources. Pre vious work has claimed that as the size of
he population increases, keeping the allowed uncertainty in each 
arginal likelihood constant (e.g. the number of samples used in each
onte Carlo integral does not have to increase with the population

ize) is sufficient for precise inference of the population parameters 
Essick & Farr 2022 ). 

In this work, through a series of numerical experiments, we demon- 
trated that for models widely used to characterize the population of
erging black hole binaries, this scaling is insufficient and the actual

caling depends on the functional form chosen to fit the distribution.
ailing to use a larger number of samples per Monte Carlo integral
ill result in an increasingly significant bias in the reco v ery of the
opulation as the number of observations grows. We recommend that 
he calculations described in this work be routinely performed for 
ny population analysis to identify cases where the inference may be
mpacted by Monte Carlo uncertainty. We provide scripts to e v aluate
his in the accompanying code release. 

By considering a model routinely employed to characterize the 
istribution of masses and spins of merging compact binaries, we 
ound that the uncertainty in the likelihoods estimated as part of
opulation inference on the gra vitational-wa ve transient catalogue 
MNRAS 526, 3495–3503 (2023) 
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s sufficient to lead to noticeable bias with the current size of the
ra vitational-wa ve transient catalogue. Additionally, by examining
he impact of the specific choice of input samples and convergence
equirements, we observed changes in the width of features in the
istribution of black hole masses and spin magnitudes. While the
ifferences observed here are within the statistical uncertainties,
ore significant biases have been observed when using more flexible
odels, e.g. appendix B of Golomb & Talbot ( 2022a ). 
The results presented in this work are somewhat in conflict with the

esults from Essick & Farr ( 2022 ). One difference between this work
nd theirs is that in Essick & Farr ( 2022 ) the authors only consider
opulation models where the uncertainties on each measurement
re smaller than the width of the population. In contrast, in many
f the models considered here, including the models for the black
ole mass and spin, the individual measurements are broader than
he underlying population model. The spin magnitudes of individual
lack holes are very poorly measured, and so the individual posterior
istributions are inevitably broader than the population for the
ajority of systems. For black hole masses, one might think that the

otal population model is broader than individual measurements; very
ew black holes are consistent with masses ranging from 5 to 80 M 
.
o we ver, the rele v ant quantity is not the whole domain of the
odel, but rather change in the population model o v er the individual

v ent posterior support. F or ev ents intersecting the Gaussian peak
t ∼35 M 
, the uncertainty in the mass is almost al w ays larger than
he preferred width of 1 –5 M 
. We defer detailed investigations into
hether this is a rele v ant dif ference to future work. 
In the next observing runs, we can conserv ati v ely e xpect the size

f the observed population to double or triple (Petrov et al. 2022 ).
ith a population of this size, we can expect that if we continue

o use the same number of samples per Monte Carlo integral, the
ariance in the log-likelihood will reach ∼4–10 and we will be in
anger of making severely biased inferences. In order to a v oid this,
e will either need to use dramatically more samples in our Monte
arlo integrals or consider novel approaches. 
There are a number of questions posed by our results that should

e explored in future work. In Section 4 , we found an approximate
caling for the growth of the uncertainty with the population size;
eveloping a theoretical understanding of this scaling may pro v e
nstructive in developing improved methods to deal with large pop-
lations. Ensuring accurate estimation of the population likelihood
s an increasingly complex task as the population size increases, and
o we will require increasingly sophisticated methods. 

As shown in Section 4 , a simple method to reduce the uncertainty
n Monte Carlo integrals is to reduce the divergence between the
nitial model and the target model. Fortunately, as the size of the
opulation grows, we can use our existing knowledge to generate
nitial models that well approximate the true distribution, e.g. by
rawing our injections to determine the surv e y sensitivity by our
est estimate of the true population. Additionally, one can recast the
onte Carlo integral using continuous representations of the per-

vent likelihoods in order to minimize the uncertainty, e.g. Wysocki
t al. ( 2019 ) and Golomb & Talbot ( 2022b ). Finally, one can limit
he analysis to only consider slowly varying source models, e.g. by
mposing smoothing priors on the population model (Callister &
 arr 2023 ; Edelman, F arr & Doctor 2023 ). Ho we ver, this can lead to
issing any sharp features in the distribution. 
Each of these impro v ements is likely to fail eventually, and new
ethods will be needed. One possibility is to remo v e the Monte
arlo integral to determine the selection function and instead directly
odel the observed distribution of compact binaries. If desired, the

strophysical distribution can then be obtained as a post-processing
NRAS 526, 3495–3503 (2023) 
tage using continuous estimates of the selection function such as
hose in e.g. Veske et al. ( 2021 ) and Talbot & Thrane ( 2022 ).
imilar approaches have been proposed for analyses of online
olling data (e.g. Elliott & Valliant 2017 ; Liu, Scholtus & De Waal
022 ). Since the contribution of the uncertainty from estimating the
election function grows most rapidly with population size, this will
ignificantly alleviate bias in the inferred distribution. 

While we considered uncertainties in the likelihood function
sed for gra vitational-wa ve population inference, our analysis holds
or any problem where there are parameter-dependent biases in
alculating likelihoods. For example, when characterizing individual
ompact binary coalescences, there are a number of sources of bias in
he likelihood function, including waveform systematics (P ̈urrer &
aster 2020 ), detector calibration uncertainty (Payne et al. 2020 ;
itale et al. 2021 ), and likelihood acceleration methods (Smith et al.
016 ; Leslie, Dai & Pratten 2021 ; Morisaki 2021 ). While the specific
esults in Section 4 will not be rele v ant to these cases, the general
xpressions in Sections 2.1 and 3 are rele v ant. 
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