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ABSTRACT

Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar
astrophysics, cosmology, and fundamental physics. However, the physical parameters describing the systems (mass, spin,
distance) used to extract these inferences about the Universe are subject to large uncertainties. The most widely used method of
performing these analyses requires performing many Monte Carlo integrals to marginalize over the uncertainty in the properties
of the individual binaries and the survey selection bias. These Monte Carlo integrals are subject to fundamental statistical
uncertainties. Previous treatments of this statistical uncertainty have focused on ensuring that the precision of the inferred
inference is unaffected; however, these works have neglected the question of whether sufficient accuracy can also be achieved.
In this work, we provide a practical exploration of the impact of uncertainty in our analyses and provide a suggested framework
for verifying that astrophysical inferences made with the gravitational-wave transient catalogue are accurate. Applying our
framework to models used by the LIGO-Virgo—-KAGRA collaboration and in the wider literature, we find that Monte Carlo
uncertainty in estimating the survey selection bias is the limiting factor in our ability to probe narrow population models and

this will rapidly grow more problematic as the size of the observed population increases.
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1 INTRODUCTION

Using data from the first three observing runs of Advanced LIGO
(LIGO Scientific Collaboration 2015) and Advanced Virgo (Acer-
nese et al. 2015), ~70 signals from the merger of compact binary
systems have been identified (The LIGO Scientific Collaboration,
The Virgo Collaboration & The KAGRA Collaboration 2021c),
along with a few tens of less significant additional candidate events
(Nitz et al. 2023; Olsen et al. 2022). While individual observations
of compact binary mergers provide insights into astrophysics and
cosmology, maximizing the physical resolving power using the
catalogue of gravitational-wave transients requires analysing the
entire population as a hierarchical Bayesian inference problem. Due
to computational constraints, these analyses are performed using a
multistage process to calculate the population-level likelihood (see
e.g. Mandel, Farr & Gair 2019; Thrane & Talbot 2019; The LIGO
Scientific Collaboration, The Virgo Collaboration & The KAGRA
Collaboration 2021d; Vitale et al. 2022).

First, segments of data that are likely to contain gravitational-wave
signals are identified by search pipelines (e.g. Allen et al. 2012).
These pipelines are only sensitive to the loudest signals and so the
observed sample is biased in favour of nearby high-mass binaries
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with black hole angular momenta (‘spins’) aligned with the orbital
angular momentum (Campanelli, Lousto & Zlochower 2006). This
selection bias is typically accounted for by estimating the fraction
of binaries that we expect to observe using simulated ‘injection’
campaigns.

Next, the strain data from gravitational-wave detectors containing
the observed transients are analysed with a fiducial reference model
for the population (often referred to as the fiducial prior distribution)
in order to obtain samples from the fiducial posterior probability
distribution for the parameters (masses, spins, etc.) of each binary.
While the fiducial prior distribution impacts the fiducial posterior, it
is typically chosen to avoid imprinting astrophysical assumptions on
the results. For example, binaries are assumed to be distributed ho-
mogeneously and isotropically throughout the Universe. The fiducial
model for black hole masses is usually uniform in the mass of each
black hole and uniform in spin magnitude and isotropic in direction.

In the final stage, these fiducial samples are importance sam-
pled (‘reweighted’) using a parametrized model for the underlying
population to compute the likelihood for the observed data given
population-level parameters (e.g. the maximum allowed black hole
mass) marginalized over the per-event parameters. For each model
for the underlying population, the fraction of observable binaries is
also estimated using importance sampling on the injected signals
from the first stage (e.g. Finn & Chernoff 1993; Loredo 2004; Farr
et al. 2015).
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The importance sampling step is an example of using Monte Carlo
summation to approximate an integral and as such comes with some
intrinsic uncertainty that enters the analysis as a source of systematic
error. Typically, this uncertainty is ignored when performing the
analysis; however, in recent years several attempts have been made
to quantify this uncertainty and theoretically motivated heuristics
have been proposed to estimate and (hopefully) mitigate its impact
(Farr 2019; Essick & Farr 2022). In this work, we perform a data-
driven analysis of the potential systematic uncertainties from our
use of Monte Carlo integration. We note that while we apply our
formalism to the problem of population inference for gravitational-
wave astronomy, it is widely applicable to any context in which an
approximate estimator of the true likelihood is used in a Bayesian
analysis.

The remainder of this paper is structured as follows. In the next
section, we describe how uncertainty appears in our estimate of the
population likelihood through Monte Carlo integration and suggest
a set of convergence criteria. In Section 3, we analyse a simple
toy model to examine the impact of uncertainty on the accuracy of
inference. Using this, we establish a threshold beyond which we
expect our results to be significantly biased. Following this, we take
arange of models previously considered for population analyses and
quantify the uncertainty in these results in Section 4. Finally, we
provide a closing discussion.

2 UNCERTAINTY IN THE POPULATION
LIKELIHOOD APPROXIMATION

The likelihood function typically employed for an analysis of a
population of N observed systems with source-dependent selection
effects can be written as (see e.g. Mandel et al. 2019; Thrane &
Talbot 2019; Vitale et al. 2022, for details)

N

Ldd}a) o [ ]
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Here, {d;} are the data containing the observed signals (indexed by
i). In the context of gravitational-wave astronomy, these are strain
data recorded by gravitational-wave interferometers. The selection
function Py is the fraction of all signals that would be observed for a
population described by population hyperparameters A. We note that
this likelihood has been marginalized over the overall rate of events
(assuming a uniform-in-log rate prior) and the parameters describing
each of the individual systems.

Each of the terms £(d;|A) and Pye(A) is computed by marginal-
izing over 6, the ~15 parameters describing the individual binaries,
and many more describing the noise properties of the interferometers:

LA = / d6p(d;. 0]A) = / d6.L(d,16)p(6]A) @
Paa(A) = / dd / d6p(d. 01O (o(d) — p.) 3)
- / dd / d6.L(d19)p(O1 M)O(p(d) — po). 4

In both expressions, we have expanded the joint distribution for
the observed data and signal parameters into the population model
p(@|A) and the likelihood of observing data given single-event
parameters L£(d|0). The integral over d in the expression for Py
is over all of the data collected by the instrument, while the d;
represents the data around the time of a specific observed signal.
The final term is a Heaviside step function for the detection statistic
(e.g. signal-to-noise ratio or false alarm rate) p with threshold p.. In
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order to minimize the cost of performing the analysis, these integrals
are commonly computed using Monte Carlo estimators using some
reference set of samples from the fiducial posterior distribution. We
denote the estimator of quantity x as £. As a specific example, the
estimator of the log-likelihood (equation 1) is

N
In £({d;}|A) = (Z In £(d; |A)> — Nln Pye(A). ®)

In practice, these estimates are calculated using Monte Carlo
integration:

I = /dxf(x)p(x) = () pw)» ©
i ’i“ 7
B ﬁ xj~p(x) f(xj) ( )

Here, [ is the estimator of the integral  and M is the number of
samples in the Monte Carlo integral. We note that p(x) is a normalized
probability distribution and f{x) is an arbitrary function of parameters
x. Every Monte Carlo has an intrinsic statistical uncertainty
1 1

of = 57 [ D=l = 3707 ®)
We define the quantity 67 as the intrinsic variance between the
proposal distribution p(x) and the target distribution flx)p(x). In
general, the uncertainty in a Monte Carlo integral will be minimized
by choosing p(x) and f(x) to minimize &;. For example, for most
gravitational-wave population analyses (including this work), we
choose

£(0) ~ P(9|A)7
p(0|2)
where p(0|9) is the fiducial prior distribution. However, in some
cases it is beneficial to define (e.g. Wysocki, Lange & O’ Shaughnessy
2019; Golomb & Talbot 2022b) f(0) ~ L(d|0), p(8) ~ p(6|A).
We also note that the variance scales inversely with the number
of samples. A final quantity related to Monte Carlo integrals that

we will need is the effective number of independent samples (Kish
1995)

p@) ~ L(d|0)p6]2),

(f)i(x)
(fz)p(x) '

In Farr (2019), the author demonstrates that for small values of n.g a
Gaussian approximation to the likelihood uncertainty breaks down.
In previous works (e.g. Farr 2019; The LIGO Scientific Collaboration
et al. 2021d), n.s has been used to assess the convergence of
the likelihood estimator and to impose data-dependent cuts on
the allowed parameter space. We prefer to work directly with the
estimated variance and include ns here just to compare with previous
work.

Since we assume that the reference samples used in each of the
Monte Carlo integrals are independent, the variance in the estimate
of the population (log-)likelihood is

©))

negr = M

N
op (M) = op 1 (M) + N6 (A). (10)

We note that the contribution to the total variance from the selection
function grows quadratically with the population size, as Var(Nx) =
N*Var(x).

Assuming the individual observations are independent and identi-
cally distributed draws from the underlying population, we recast this
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expression in terms of an average per-observation uncertainty o gps to
more clearly see the dependence of both terms with the population
size

op (A = Nog (A) + N2og(A). (11)

obs sel

We have explicitly retained the dependence of this variance on the
hyperparameters. We justify the assumption that o o, does not vary
with time in Section 4.1.

Since we are predominantly interested in differences in log-
likelihood for points with significant posterior support, we need to
limit the error in the difference of log-likelihood estimators, A In £.
In general, the errors will not be independent, and so we calculate
the variance in this quantity 02 1z s defined in equation (A1l)
in Essick & Farr (2022). We assume the error in the estimator of
the log-likelihood is Gaussian distributed as the contribution to the
population log-likelihood from the per-event terms is the sum of N
independently and identically distributed estimators and so by the
central limit theorem follows a normal distribution and in the high
effective-sample size limit the selection function term also follows a
normal distribution (Farr 2019) We therefore write 03, » = O’z s
If the uncertainties in the estimators are uncorrelated with A,
we will have oi]n £= alzn - In Essick & Farr (2022), the authors
demonstrate that under certain conditions the variance in likelihood
differences in ‘local neighbourhoods’ avoids the worst-case scaling
in equation (11) and rather find that

Op i = Oans(A) + Nog(A) (12)

for a simple example model due to correlation of the Monte Carlo
errors between points with significant posterior support. It is unclear
a priori when the local neighbourhood approximation is valid, in this
work, we numerically test whether this scaling holds for the specific
case of inferring the population properties of merging binary black
hole systems.

2.1 Uncertainty as a draw from a Gaussian process

To build an understanding of the impact of uncertainty, we assert
that the estimated difference in log-likelihood is a fair draw from
the Gaussian process with mean function Aln L and (potentially
non-stationary) kernel function (A, A')

AlnL{d}|A, A ~ GP(AIn L({d;}| A, A), T(A, A)). (13)

Here, (A, A') = 02, is the 2D-dimensional covariance matrix,
where D is the dimensionality of the population model. In practice,
we do not have access to the true kernel function, and so we approx-
imate it using a numerical covariance matrix using the covariance
between the likelihood estimator at each pair of points we consider.
Specifically, we construct the approximate kernel by numerically
calculating

2
(A AN)=0, ¢ (14)

following equation (A11) in Essick & Farr (2022). We will use this
quantity to estimate the average variance over the posterior for the
hyperparameters

(AlnL) = /dA/dA/p(A|{d,-})p(A’|{d,—})E(A,A/) (15)

1 k=K k'=K
Nz DD Bk Av) (16)
k=1 k'=1
Ai ~ p(Al{di)). (17)
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‘We note that this is the average of the covariance matrix weighted by
the posterior support.

This is a slightly different statistic than the one considered in
Essick & Farr (2022), where the authors replace the integral over A’
with a fixed value at the mean of the hyperposterior

Az/dAP(Al{di})A»

While the simpler expression used in Essick & Farr (2022) likely
produces comparable results for posterior distributions with Gaus-
sian uncertainties, for posteriors with more complex shapes, e.g.
multimodality or curving degeneracies, the mean of the posterior
is not in general representative of points with significant posterior
support. In contrast, the full integral over A, A’ ensures that we
accurately represent the variance between all pairs of points with
posterior support.

3 HOW UNCERTAIN CAN WE BE?

Before turning to real examples, we first motivate an acceptable
level of uncertainty in the log-likelihood estimator. Specifically, we
want to know a threshold value of (A In ﬁ) above which we expect
to see significant biases. To test this, we consider a simple one-
dimensional problem where the true posterior distribution is a unit
normal distribution. To verify that the threshold is independent of the
structure of the covariance matrix, we perform this experiment with
four analytical kernel functions: a block-diagonal kernel where each
block is fully correlated with a random number of blocks, a Matérn
kernel with v = 5/2 and random correlation length, a completely
uncorrelated kernel, and a completely correlated kernel. We find that
the result is independent of the kernel choice.

For 4800 iterations, we choose a covariance matrix using one of
our kernels with a random value of (A In £) drawn logarithmically
between [1072, 20]. For each covariance matrix, we draw 100
realizations from the covariance matrix X (A, A’) to generate biased
posterior probability distributions. For each of these realizations,
we compute the fraction f of the posterior support below a random
point drawn from the true posterior. If there is no bias, f should
follow a uniform distribution in [0, 1]. We, therefore, compute a
Pvaiee comparing the 100 values of f to the uniform distribution. In
Fig. 1, we show a two-dimensional histogram of the result of this
numerical experiment. We see that when (A lIn ﬁ) <1, the pyane
are uniformly distributed indicating unbiased recovery. However,
as the magnitude of the uncertainty rises, the distribution of pyuye
skews heavily towards small py,.. As a final quantitative test, we
compare the distribution of py,e in each bin of (A ln f) to compute
a combined py,e. We see that the combined pyyy,. is very small for
(Aln L) > 1. We will therefore use (AIn£) > 1 as our heuristic
threshold for significant bias.

4 HOW UNCERTAIN ARE WE?

We now turn to a tangible example of uncertainty in the infer-
ence performed on the population of binary black hole mergers
observed during the first three observing runs of Advanced LIGO
and Advanced Virgo with a false alarm rate of less than one per
year. The analyses performed in The LIGO Scientific Collaboration
et al. (2021d) imposed cuts on the convergence of the Monte
Carlo integrals that implicitly limit the variance in the likelihood
to avoid spurious features in the posteriors. All analyses in that work
imposed a condition first proposed in Farr (2019) demanding that
for the selection function n.s > 4N. Some models also enforced the
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Figure 1. pyaue versus uncertainty in difference in log-likelihood averaged
over the posterior distribution ((A In f)). For unbiased analyses at a given
value of (Aln ﬁ), we expect pyaie to follow a uniform distribution in [0,
1]. The upper panel shows a combined pyaye for all the points in the
histogram falling within that range of (A In £). We note that this is satisfied
for (Aln £) < 1; however, when the uncertainty is larger than that value, the
analysis is biased on average.

condition that each marginalization over the single event posteriors
had nes > N. We consider one of the models that applied both
convergence conditions.

We compute the uncertainty in the estimated likelihood for one
of the models used in the latest LIGO-Virgo—-KAGRA analysis.
Specifically, we use the PowerLaw + Peak mass model (Tal-
bot & Thrane 2018), Default spin model (Talbot & Thrane 2017;
Wysocki et al. 2019), and power-law redshift model (Fishbach,
Holz & Farr 2018). For our default analysis configuration, we use the
same 4278 per-event posterior samples (The LIGO Scientific Col-
laboration, The Virgo Collaboration & The KAGRA Collaboration
2021a) and injection set (The LIGO Scientific Collaboration, The
Virgo Collaboration & The KAGRA Collaboration 2021b) used in
the equivalent analysis in The LIGO Scientific Collaboration et al.
(2021d) and do not apply any constraints on the convergence of the
Monte Carlo integrals.

For all of our analyses, we sample the population posterior using
the nestle (Barbary 2016) nested sampling package as imple-
mented in Bilby (Ashton et al. 2019). We use GWPopulation
(Talbot et al. 2019) to compute the likelihood function. We use the
same prior distributions as in The LIGO Scientific Collaboration
et al. (2021d). For each of the posterior samples, we evaluate the
uncertainty in each of the 70 Monte Carlo integrals involved (one for
each event and the selection function integral).

4.1 Evolution of o g

We begin by testing our assumption that rewriting the total variance in
terms of the average per-event variance o s is reliable. One method
in which this could break down is if the average uncertainty changes
as the sensitivities of the observatories improve. In Fig. 2, we show
the average contribution to the covariance over the posterior for
the hyperparameters for each event ordered by observation date.
The different colours correspond to events observed in different
years. There is no obvious trend over time which validates our
approximation of 02, = (o). We show this value with the dashed

obs
grey line. The event with the largest contribution to the uncertainty is
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Figure 2. The per-event contribution to the likelihood covariance averaged
over the posterior support for our population hyperparameters. We divide
the events by the year of the observation, approximately corresponding to
different observing runs of Advanced LIGO/Advanced Virgo. We note that
there is no obvious trend with time, indicating that we can reliably consider

the average uncertainty ogbs = (al.z) (shown by the dashed grey line).

GW190517, which has masses consistent with the excess at ~ 35 Mg
and large inferred spins.

4.2 Scaling with the population size

In order to estimate the scaling of the uncertainty with the size of the
catalogue, we randomly sample observations from the total catalogue
to simulate smaller catalogues and scale the uncertainty on the
selection function appropriately. Specifically, we consider catalogues
with increments of 5 events from 5 to 65 and all 69 events. For each
catalogue size, we sample from the hyperposterior and compute the
average variance in the estimated differences of log-likelihood values
over the posterior samples (A In £). We do not apply any of the ad
hoc restrictions on Monte Carlo integral convergence proposed in
Farr (2019) and The LIGO Scientific Collaboration et al. (2021d)
and described above in these analyses. We fit a simple model to
the uncertainty coming from the per-event terms and the selection
function to obtain fits for the contribution from the individual events
and the sensitivity. The model for the total variance is

(AlnL) = 02 N 4 o2, N. (18)

obs

Here, we emphasize that A In £ is proportional to the variance in the
estimator and not the standard deviation. We note that equation (11)
implies a = 1, b = 2 while if the assumptions from Essick & Farr
(2022) hold we will have a = 0, b = 1. We perform this calculation for
both the mean variance and the mean covariance over the posterior
support.

In Fig. 3, we show the total uncertainty (blue) along with the
contributions from the per-event terms (orange) and the selection
function (green) as a function of the number of events with the
solid curves. The dashed-coloured curves show projections for larger
populations based on the analytical fit. The dashed grey lines indicate
the number of events in each of the first three gravitational-wave
transient catalogues and the grey-shaded region shows a plausible
range of observations we may expect after the upcoming fourth
gravitational-wave observing run (Petrov et al. 2022; Weizmann
Kiendrebeogo et al. 2023). The purple-shaded region shows where,
heuristically, we may expect to see noticeable biases, following the
criteria developed in Section 3.

We find that in practice, the scaling of the uncertainty lies between
the best-case scenario from Farr (2019) and Essick & Farr (2022) and
the worst-case scenario in equation (11). Specifically, we find a =
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Figure 3. Scaling of the uncertainty in the log-likelihood averaged over
the full posterior support with the population size for a simple parametric
population model. The dashed vertical lines show the number of confident
binary black hole events in the gravitational-wave transient catalogue at the
time of publication of GWTC-1 (Abbott et al. 2019a), GWTC-2 (Abbott
etal. 2021a), and GWTC-3 (The LIGO Scientific Collaboration et al. 2021c).
The grey filled region indicates the projected number of binary black hole
observations during the next observing run of the international gravitational-
wave detector network (Petrov et al. 2022; Weizmann Kiendrebeogo et al.
2023). The purple shaded region indicates heuristic values for when the
uncertainty in the likelihood is likely to cause noticeable bias in the
analysis. The solid curves show the empirically obtained uncertainties and
the dashed curves are extrapolations based on the power-law fit to the per-
event contribution (orange) and the contribution from the selection function
(green). The total uncertainty is shown in blue.

0.7, b = 1.6. The dominant source of uncertainty is from estimating
the selection function when the population is larger than ~10 events.
We note that for populations larger than ~40 events, the uncertainty
is consistently in the purple-shaded region. This is consistent with the
fact that ad hoc cuts on the prior space or Monte Carlo convergence
were needed to avoid significant biases in Abbott et al. (2021b).

To test if this scaling depends on the functional form used to fit
the population, we repeat the above calculation with a more flexible
model for the primary mass and spin parameters. Specifically, we
take the exponential-spline-modulated power-law mass distribution
from Edelman et al. (2022) and the exponential-spline model for
black hole spin magnitudes and tilt angles from Golomb & Talbot
(2022a). For the mass distribution, we use 10 spline nodes spaced
logarithmically between [2, 100] My and for the spin parameters
we take six nodes equally spaced over the relevant domain. For all
spline nodes, our prior on the amplitudes is a unit normal distribution,
except for the endpoints for the mass distribution that are fixed to
zero.

In Fig. 4, we show the same as Fig. 3 with this more flexible
model. We see that the average covariance in both the per-event
and selection function terms grows more rapidly in this case than
for the simpler model (a =1.0, b = 1.9). The more extreme scaling
may be due to the greater flexibility of the spline model causing the
‘local neighbourhood’ assumption of Essick & Farr (2022) to be less
appropriate.

4.3 Scaling with the size of Monte Carlo integrals

Having established numerically how the size of the uncertainty
in the likelihood estimates varies with the size of the population
and configuration settings, we turn to how the number of samples
per Monte Carlo integral impacts the uncertainty for this concrete
example. To address this, we repeat the uncertainty calculation for
the PowerLaw + Peak and Default configuration above ten
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Figure 4. The same a Fig. 3 but with a more flexible model. We note that the
same general features are present; however, for this model, the uncertainty
grows much more rapidly with population size.
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Figure 5. The scaling of the average variance in the log-likelihood with the
number of events per Monte Carlo integral. The solid blue, dashed orange, and
dash—dotted green curves show the results using the full likelihood, selection
function only, and per-observation terms, respectively. In the top panel, we
show the variance. In the bottom panel, we show the normalized variance
divided the number of samples per integral. As expected, these quantities
scale inversely with the number of samples.

times, once using all of the available samples, once with half of the
samples, one-third of the samples, etc., down to one-tenth of the
samples.

In Fig. 5, we show the mean variance over the posterior distribution
as a function of the number of samples per Monte Carlo integral in the
upper panel. The solid blue, dashed orange, and dash—dotted green
curves show the results using the full likelihood, selection function
only, and per-observation terms, respectively. In the lower panel, we
show the variance scaled by the number of samples in the integral
such that it will be constant if the uncertainty scales linearly with the
number of samples. We observe that the variance is consistent with
scaling inversely with the number of samples.

4.4 Impact on the inferred astrophysical distributions

To study the impact of the convergence-motivated prior cuts and bias
in likelihood estimates, we consider four analysis configurations:

(1) LVK. The first configuration is the same one used in the LIGO—
Virgo—-KAGRA analysis in The LIGO Scientific Collaboration et al.
(2021d). This analysis used ~4 x 10* found injections to estimate

MNRAS 526, 3495-3503 (2023)
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Table 1. Hyperparameters for the injection sets used in each of the analysis configurations we consider
as described in Section 4. We additionally list the average variance in the difference between estimated

likelihood values.

Ninjections o Mmax Mmin Sm Hm Om A (Aln £>
LVK 4 % 10* 2 100 2 0 - - 0 0.63
No convergence 4 % 10* 2 100 2 0 - - 0 5.06
Tailored 4 x 10* 35 105 3 6 33 5 0.04 1.24
More injections 8 x 10° 1 100 2 0 - - 0 0.50
No injections 0 - - - - - - - 0.42

the selection function, and 4278 fiducial posterior samples were used
for each event. Specifically, we use the posterior samples released
in The LIGO Scientific Collaboration et al. (2021a) and the set
of sensitivity injections that combine injections covering the first
three observing runs of Advanced LIGO/Advanced Virgo (The LIGO
Scientific Collaboration et al. 2021b). For this configuration, there is
the prior cut on e for each of the Monte Carlo integrals as described
at the beginning of this section.

(ii) No convergence. The second configuration repeats the analysis
from The LIGO Scientific Collaboration et al. (2021d) but removes
the prior constraints on n.g in each Monte Carlo integral.

(iii) Tailored injections. We replace the injection set released by
the LVK, we use synthetic injections drawn using a mass distribution
that more closely matches the observed distribution. Specifically, we
set the mass distribution using the PowerLaw + Peak model
using the parameters in Table 1. Since the proposal distribution for
our Monte Carlo integral more closely matches the target distribution,
we expect this injection set to lead to smaller uncertainties with the
same number of found injections.

(iv) More injections. Rather than using the ~4 x 10* found
injections used in The LIGO Scientific Collaboration et al. (2021d),
we use the ~8 x 10° synthetic found injections used in Golomb &
Talbot (2022a) in order to reduce the uncertainty in the estimate of
the selection function. While this uses many more injections, we
note that the underlying distribution of signals is different than for
the LVK configuration.

(v) No injections. Rather than using the ~4 x 10* found injections
used in The LIGO Scientific Collaboration et al. (2021d), we ignore
the impact of selection effects completely. This will reduce the
uncertainty in the estimated likelihoods at the cost of only estimat-
ing the observed distribution and not the underlying astrophysical
distribution.

For both cases where we use synthetic injection sets, we do
not repeat the full injection and recovery using a matched-filter
search pipeline due to the large associated computational cost.
Instead, we threshold the simulated signals on the optimal signal-
to-noise ratio of the injected signal in Gaussian noise with PSDs
matching the detector sensitivity during O3 rather than the false-
alarm rate (The LIGO Scientific Collaboration et al. 2021c; The
LIGO Scientific Collaboration, The Virgo Collaboration & The
KAGRA Collaboration 2022). We anticipate that this difference
between the detection thresholds does not significantly bias the
inferred mass and spin distributions (e.g. Abbott et al. 2019b, 2021b;
The LIGO Scientific Collaboration et al. 2021d; Golomb & Talbot
2022a; Essick 2023).

In Table 1, we summarize the population hyperparameters describ-
ing the mass distribution used for each injection set. Additionally, we
show (A1In £) computed over the respective posterior distributions
for the hyperparameters. We find that the no comvergence case
clearly surpasses our threshold. The failored injection set reduces
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Figure 6. The inferred spin magnitude (top) and primary mass (bottom)
distributions for a range of analysis configurations. The solid curves show
the mean inferred distribution and the shaded regions show the 90 per cent
symmetric credible interval. The blue curves show the results presented in
The LIGO Scientific Collaboration et al. (2021d). In orange, we show results
obtained using the same input samples but without performing the ad hoc
constraints on the number of effective samples per Monte Carlo integral. In
red, we show the results when using more found injections to compute the
selection function. In purple, we show the results obtained when neglecting
the selection function, we note that in this case, we do not show the inferred
mass distribution as that is significantly biased by neglecting selection effects.
In grey, we show the results obtained using our tailored injection set.

the variance by ~4 x by more closely matching the true underlying
distribution but is still in the regime where we expect to see some
bias. For the other cases (A In lj) < 1 and so, we would expect the
results to be unimpacted by Monte Carlo convergence.

In Fig. 6, we show the inferred distribution for spin magnitude
(top panel) and primary mass (lower panel) with our five analysis
configurations. We note that the no injections configuration is
excluded for the primary mass distribution as that distribution is
strongly biased by not accounting for selection effects. The solid
lines indicate the mean inferred distributions and the dashed curves
enclose the 90 per cent uncertainty region. While the uncertainties
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of all of the results agree within their error bars there are visible
differences between the inferred results. Specifically, we find that for
both parameters, the width of the peak ata ~ 0.2 and m; = 35 M, are
broadest for the result that imposes cuts on the prior based on Monte
Carlo convergence (blue) and narrowest for the analysis that has the
largest average uncertainties (orange) with the analyses with reduced
uncertainty (grey, red, purple) lying in between. This indicates that
for commonly used analysis configurations, the inferred shape of
features in the distribution of black hole mass and spin are notably
impacted by uncertainty in the estimate of the likelihood.

We note that the inferred spin magnitude distributions for the more
injections and no injections configurations are the most consistent.
This would be the expected outcome if the impact of the spin
magnitude on the selection function is small and the uncertainty
in the likelihood estimates is small. We thus infer that the larger
injection set is sufficient to remove the bias present when using the
found injections released by the LIGO-Virgo—-KAGRA collabora-
tion. While the cuts on the number of effective samples in each
Monte Carlo integral in the LVK configuration control the average
uncertainty in the likelihood estimates, the cuts have a visible impact
on the inferred distributions.

4.5 Result differences are explainable due to Monte Carlo
uncertainty

The posterior predictive distribution (PPD) for the binary parameters
is defined as

N

1
p(9|{d})=/dAP(GIA)p(AI{d})NN > p@lA). (19

Aj~p(Al{d})

In Fig. 6, the solid curves show the PPD using our different analysis
set-ups (solid curves). While the curves are visibly different, we
wish to know whether the differences can be explained as the result of
statistical fluctuations expected due to the uncertainty in our estimator
of the likelihood.

Our aim is to estimate the range of different PPDs we might
expect to measure given the PPD with no systematic uncertainty and
a covariance X(A, A’). In the absence of a ground truth, we take
the no injections case as our reference analysis as it has the lowest
uncertainty estimator of the likelihood and neglect the impact of the
per-event integrals as all analyses use the same set of samples for
each event.

We begin by taking the samples A; ~ p(A|{d}) for the reference
case. We then construct the covariance matrix by numerically
calculating the covariance between the likelihood estimates for every
pair of posterior samples. Using this covariance matrix, we generate
weights for each of the samples § ~ N(0, (A, A')). Finally, we
compute the PPD using these weights as

(S(ADPOIAD) A~ paliay
(8(A)) Ai~p(atiay .

By repeating this many times, we can construct the 90 percent
credible interval for the systematic error.

In Fig. 7, we show the same PPDs for the no injections, no
convergence, and more injections configurations and the statistical
uncertainty for the no injections configuration (dotted curves) as
in Fig. 6. The estimated systematic uncertainty is shown by the
dashed curves. We note that in both cases, the PPDs with our specific
realization are entirely consistent with the systematic uncertainty
region indicating that the differences in the PPDs can be fully
explained by Monte Carlo uncertainty. For the no convergence case,

pONd}) =

(20)
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Figure 7. Comparison of statistical and systematic uncertainties in our
inference of the distribution of black hole spin magnitude a. The solid
curves show the PPD for three of the analysis configurations described in
Section 4. The dotted curves show the 5th and 95th percentiles of our statistical
uncertainty for the lowest variance analysis (no injections). The orange and
green dashed curves show the 5th and 95th percentiles of the additional
systematic uncertainty from estimating the selection function. We note that for
the more injections case the systematic uncertainty is much smaller than the
statistical. However, for the no convergence case the systematic uncertainty
is comparable to the statistical.

the estimated systematic uncertainty is comparable to the statistical
uncertainty. One limitation of our method is that the realizations
cannot deviate outside the set of samples used for importance
sampling and so cannot accurately resolve cases where the systematic
uncertainty is larger than the statistical uncertainty in the posterior.

5 CONCLUSIONS

Often when performing Bayesian inference, we cannot calculate
the true likelihood function, but rather a computationally tractable
approximation. For example, the use of Monte Carlo integration
to approximate marginal likelihoods is widespread in population
inference in gravitational-wave astronomy and beyond. However,
often, the uncertainty associated with these finite numerical integrals
is neglected. We specifically examine the requirement of performing
unbiased population inference on binary black holes with Monte
Carlo integrals used to marginalize over the parameters of the
individual sources. Previous work has claimed that as the size of
the population increases, keeping the allowed uncertainty in each
marginal likelihood constant (e.g. the number of samples used in each
Monte Carlo integral does not have to increase with the population
size) is sufficient for precise inference of the population parameters
(Essick & Farr 2022).

In this work, through a series of numerical experiments, we demon-
strated that for models widely used to characterize the population of
merging black hole binaries, this scaling is insufficient and the actual
scaling depends on the functional form chosen to fit the distribution.
Failing to use a larger number of samples per Monte Carlo integral
will result in an increasingly significant bias in the recovery of the
population as the number of observations grows. We recommend that
the calculations described in this work be routinely performed for
any population analysis to identify cases where the inference may be
impacted by Monte Carlo uncertainty. We provide scripts to evaluate
this in the accompanying code release.

By considering a model routinely employed to characterize the
distribution of masses and spins of merging compact binaries, we
found that the uncertainty in the likelihoods estimated as part of
population inference on the gravitational-wave transient catalogue
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is sufficient to lead to noticeable bias with the current size of the
gravitational-wave transient catalogue. Additionally, by examining
the impact of the specific choice of input samples and convergence
requirements, we observed changes in the width of features in the
distribution of black hole masses and spin magnitudes. While the
differences observed here are within the statistical uncertainties,
more significant biases have been observed when using more flexible
models, e.g. appendix B of Golomb & Talbot (2022a).

The results presented in this work are somewhat in conflict with the
results from Essick & Farr (2022). One difference between this work
and theirs is that in Essick & Farr (2022) the authors only consider
population models where the uncertainties on each measurement
are smaller than the width of the population. In contrast, in many
of the models considered here, including the models for the black
hole mass and spin, the individual measurements are broader than
the underlying population model. The spin magnitudes of individual
black holes are very poorly measured, and so the individual posterior
distributions are inevitably broader than the population for the
majority of systems. For black hole masses, one might think that the
total population model is broader than individual measurements; very
few black holes are consistent with masses ranging from 5 to 80 M.
However, the relevant quantity is not the whole domain of the
model, but rather change in the population model over the individual
event posterior support. For events intersecting the Gaussian peak
at ~35 Mg, the uncertainty in the mass is almost always larger than
the preferred width of 1-5 M. We defer detailed investigations into
whether this is a relevant difference to future work.

In the next observing runs, we can conservatively expect the size
of the observed population to double or triple (Petrov et al. 2022).
With a population of this size, we can expect that if we continue
to use the same number of samples per Monte Carlo integral, the
variance in the log-likelihood will reach ~4—10 and we will be in
danger of making severely biased inferences. In order to avoid this,
we will either need to use dramatically more samples in our Monte
Carlo integrals or consider novel approaches.

There are a number of questions posed by our results that should
be explored in future work. In Section 4, we found an approximate
scaling for the growth of the uncertainty with the population size;
developing a theoretical understanding of this scaling may prove
instructive in developing improved methods to deal with large pop-
ulations. Ensuring accurate estimation of the population likelihood
is an increasingly complex task as the population size increases, and
so we will require increasingly sophisticated methods.

As shown in Section 4, a simple method to reduce the uncertainty
in Monte Carlo integrals is to reduce the divergence between the
initial model and the target model. Fortunately, as the size of the
population grows, we can use our existing knowledge to generate
initial models that well approximate the true distribution, e.g. by
drawing our injections to determine the survey sensitivity by our
best estimate of the true population. Additionally, one can recast the
Monte Carlo integral using continuous representations of the per-
event likelihoods in order to minimize the uncertainty, e.g. Wysocki
et al. (2019) and Golomb & Talbot (2022b). Finally, one can limit
the analysis to only consider slowly varying source models, e.g. by
imposing smoothing priors on the population model (Callister &
Farr 2023; Edelman, Farr & Doctor 2023). Howeyver, this can lead to
missing any sharp features in the distribution.

Each of these improvements is likely to fail eventually, and new
methods will be needed. One possibility is to remove the Monte
Carlo integral to determine the selection function and instead directly
model the observed distribution of compact binaries. If desired, the
astrophysical distribution can then be obtained as a post-processing
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stage using continuous estimates of the selection function such as
those in e.g. Veske et al. (2021) and Talbot & Thrane (2022).
Similar approaches have been proposed for analyses of online
polling data (e.g. Elliott & Valliant 2017; Liu, Scholtus & De Waal
2022). Since the contribution of the uncertainty from estimating the
selection function grows most rapidly with population size, this will
significantly alleviate bias in the inferred distribution.

While we considered uncertainties in the likelihood function
used for gravitational-wave population inference, our analysis holds
for any problem where there are parameter-dependent biases in
calculating likelihoods. For example, when characterizing individual
compact binary coalescences, there are a number of sources of bias in
the likelihood function, including waveform systematics (Piirrer &
Haster 2020), detector calibration uncertainty (Payne et al. 2020;
Vitale et al. 2021), and likelihood acceleration methods (Smith et al.
2016; Leslie, Dai & Pratten 2021; Morisaki 2021). While the specific
results in Section 4 will not be relevant to these cases, the general
expressions in Sections 2.1 and 3 are relevant.
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