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1 Introduction

1.1 Main Result

This note proves a central limit theorem (CLT) for the eigenvalue counting function of

a matrix of real Gaussian random variables in regions of the complex plane. While such a

result is well known for matrices of complex Gaussians (see [4, Section 3.1] for a survey),

to the best of our knowledge, the analogous statement for real Gaussian matrices has

not previously been addressed.

We begin by defining the random matrix ensemble of interest in this work.

Definition 1.1. For all N ∈ N, let GN = (gij)1≤i,j≤N be a random matrix whose entries

are mutually independent Gaussian random variables with mean zero and variance

one. We call GN the real Ginibre matrix (GinOE) of dimension N . We also denote

WN = N−1/2GN .

In the limit as N goes to infinity, it is known that the empirical spectral distribution of

WN tends to the uniform measure on the unit disk D = {z ∈ C : |z| < 1} [2]. We note that

the eigenvalues ofWN come in conjugate pairs, sinceWN is real; if λ ∈ C is an eigenvalue,

then so is λ̄. It is therefore natural when studying the fluctuations of the eigenvalues

of WN to restrict attention to the upper half disk D+ = {z ∈ C : |z| < 1, Im z > 0}. We

recall that a domain is defined as a non-empty connected open subset of C.

Definition 1.2. We say that a domain A is admissible if A ⊂ D+.

This condition is slightly stronger than requiring A ⊂ D+, since it enforces a sep-

aration between A and the boundary of D+. We also recall that a domain is said to

be Lipschitz if its boundary is locally the graph of a Lipschitz continuous function; see
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Central limit theorem for the eigenvalues of Gaussian matrices

[25, Definition 12.9]. Given an admissible Lipschitz domain A, we let ℓ(∂A) denote the

length of its boundary.

Denote the eigenvalues of WN by λ1, . . . , λN , in an arbitrary order. Given an admis-

sible domain A, we define fA : C → R by fA(z) = 1A(z), and define the (N -dependent)

random variable

XA =

N∑

i=1

fA(λi)− E

[
N∑

i=1

fA(λi)

]
. (1.1)

The following theorem is our main result. We let N (0, c) denote a Gaussian random

variable with mean zero and variance c > 0.

Theorem 1.3. Let A be an admissible Lipschitz domain. Then we have the weak

convergence

lim
N→∞

XA

N1/4
= N

(
0,
ℓ(∂A)

2π3/2

)
. (1.2)

The variance of XA is of order N1/2, which is smaller than the variance of order N

seen in sums of independent random variables. This is due to the strong correlations

between the eigenvalues of WN [28]. Further, the variance of the Gaussian in (1.2) is

identical to the one in the analogous theorem for complex Gaussian matrices [4, (3.9)].

1.2 Background

The analogue of Theorem 1.3 for a complex Ginibre matrix (GinUE) is known. It

is a consequence of a theorem that provides a CLT for a broad class of determinantal

point processes proved in [35, Section 2] (see also [11]), together with the the explicit

computation of the asymptotic variance in [26, Corollary 1.2.1].1 See [6, Corollary 1.7]

for an alternative proof in the case where A has a smooth boundary. Further, a local CLT

for the counting function of the GinUE eigenvalues was derived in [17].

All of these works crucially rely on the fact that the eigenvalues of the GinUE form

a determinantal point process. While this determinantal structure enables a precise

analysis of many aspects of the GinUE, it is absent in the GinOE. Instead, the eigenvalues

of the GinOE form a Pfaffian point process, and consequently they are more difficult to

study [5].

Previous work on linear statistics of the GinOE has considered smooth test functions

of the complex eigenvalues [23, 30], differentiable functions of the real eigenvalues

[15, 23, 31], general functions of the real eigenvalues [15], and the number of real

eigenvalues [12,13,15,16,22,31]. There have also been a few recent articles proving

CLTs for linear statistics of matrices of general i.i.d. random variables when the test

function has at least two derivatives [7–9]. Proving a CLT for the eigenvalue counting

function in this more general setting remains an open problem.

1.3 Outline

In Section 2, we collect several preliminary lemmas, and show that the Pfaffian corre-

lations of the GinOE eigenvalues may be quantitatively approximated by determinantal

correlations. In Section 3, we compute the variance and higher cumulants of XA, and

show that they match those of the desired Gaussian distribution, concluding the proof of

Theorem 1.3. Using the results of [26], it is straightforward to extend Theorem 1.3 to

all domains with finite perimeter (so-called Caccioppoli sets) and certain domains with

fractal boundaries. We briefly discuss this point in Remark 3.8.

1While [11] gives details only for certain Gaussian matrices, the authors note (in a remark attributed to H.

Widom) that their method works in much greater generality, as later demonstrated in [35].
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2 Preliminary Results

Set C∗ = C\R. We recall that for all k ∈ N, the complex–complex correlation

functions ρ
(N)
k : (C∗)k → R for GN are defined by the following property [3, (5.1)]. For

every compactly supported, bounded Borel-measurable function f : (C∗)k → R, we have

∫

(C∗)k
f(z1, . . . , zk)ρ

(N)
k (z1, . . . , zk) dz1 . . . dzk = E


 ∑

(i1,...,ik)∈Ik

f(wi1 , . . . , wik)


 , (2.1)

where Ik ⊂ {1, . . . , N}N is the set of pairwise distinct k-tuples of indices, {wi}Ni=1 are the

eigenvalues of GN , and we use dzi to denote the Lebesgue measure on C. We typically

write ρk instead of ρ
(N)
k , since the value of N will be clear from context. We also recall

that ifM = (Mij)
2n
i,j=1 is a 2n× 2n skew-symmetric matrix, its Pfaffian is defined as

Pf(M) =
1

2nn!

∑

σ∈S2n

sgn(σ)

n∏

i=1

Mσ(2i−1),σ(2i), (2.2)

where S2n is the symmetric group of degree 2n.

The following lemma, taken from [29, Appendix B.3], identifies the correlation func-

tions ρk explicitly.

Lemma 2.1. The k-point complex–complex correlation functions of the N -dimensional

real Ginibre ensemble GN are given by

ρk(z1, . . . , zk) = Pf(K(zi, zj))1≤i,j≤k, (2.3)

where (K(zi, zj))1≤i,j≤k is a 2k × 2k matrix composed of the 2× 2 blocks

K(zi, zj) =

(
DN (zi, zj) SN (zi, zj)

−SN (zj , zi) IN (zi, zj)

)
,

and DN , IN , and SN are defined by

SN (z, w) =
ie−(1/2)(z−w̄)2

√
2π

(w̄ − z)G(z, w)sN (zw̄),

DN (z, w) =
e−(1/2)(z−w)2

√
2π

(w − z)G(z, w)sN (zw),

IN (z, w) =
e−(1/2)(z̄−w̄)2

√
2π

(z̄ − w̄)G(z, w)sN (z̄w̄),

where z, w ∈ C∗ and

G(z, w) =

√
erfc(

√
2 Im(z)) erfc(

√
2 Im(w)), erfc(x) =

2√
π

∫ ∞

x

exp(−t2) dt,

sN (z) = e−z
N−1∑

j=0

zj

j!
.

Remark 2.2. The functions ρk were first determined explicitly in [19]. The Pfaffian form

in (2.3) was derived in the case of even N in [3]. Subsequently, a variety of methods

have been used to recover this form for all N [18,32,33] (see also [29, Section 4.6]).

By a change of variable it is straightforward to see that the k-th correlation function

for the complex eigenvalues of WN is Nkρk(
√
Nz1, . . .

√
Nzk). The following lemma is

useful for controlling these functions and is proved in Section 4. We let dA = inf{|z −w| :
z ∈ A,w ∈ ∂D+} denote the distance between A and the boundary of D+, and use the

standard “big O” notation O(·) for estimates that hold in the limit N → ∞.
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Lemma 2.3. Let A be an admissible domain. Then there exists a constant c(dA) > 0

such that

sup
z,w∈A

DN (
√
Nz,

√
Nw) = O(e−cN ), sup

z,w∈A
IN (

√
Nz,

√
Nw) = O(e−cN ),

sup
z,w∈A

SN (
√
Nz,

√
Nw) = O(1),

where the implicit constants in the asymptotic notation depend only on dA.

We next state a useful lemma about Pfaffians, proved in [21, Appendix B].2

Lemma 2.4. LetM = (Mij)
2n
i,j=1 be a skew-symmetric 2n× 2n matrix such thatMij = 0

when i ≡ j mod 2. Let M̃ = (M̃)ni,j=1 be the n×nmatrix formed by setting M̃ij =M2i−1,2j .

Then Pf(M) = det(M̃).

Finally, we require the following integral formula from [26, Corollary 3.1.4].

Lemma 2.5. Let J : C → R be radially symmetric (meaning J(z) = J(|z|)) and nonnega-

tive. Suppose further that
∫
C
J(z) · |z| dz = 1. Then for any admissible Lipschitz region

A,

lim
N→∞

N3/2

∫

A

∫

Ac

J
(√
N(z − w)

)
dz dw =

4

π
· ℓ(∂A).

3 Proof of Theorem 1.3

3.1 Variance Calculation

The following lemma follows from results proved in [23]. We sketch the proof for

completeness.

Lemma 3.1. For any admissible domain A,

Var[XA] =
N

π
area(A)− N2

π2

∫

A

∫

A

exp(−N |z − w|2) dz dw +O(N−1), (3.1)

where the implicit constant in the asymptotic notation depends only on dA.

Proof. From the definition (1.1) of XA, we compute

Var[XA] = E

[
N∑

i=1

fA(λi)

]
+ E


∑

i ̸=j

fA(λi)fA(λj)


− E

[
N∑

i=1

fA(λi)

]2
.

Writing this expression in terms of correlation functions using (2.1) and (2.3), we obtain

Var[XA] =N

∫

A

SN (
√
Nz,

√
Nz) dz −N2

∫

A2

SN (
√
Nz,

√
Nw)2 dz dw

−N2

∫

A2

DN (
√
Nz,

√
Nw)IN (

√
Nz,

√
Nw) dz dw. (3.2)

The last term in (3.2) vanishes exponentially, by Lemma 2.3. The first term is computed

in [23, Lemma 7] and equals

N

π
area(A)− 1

4π

∫

A

dz

Im(z)2
+O(N−1). (3.3)

The second term is computed in the proof of [23, Lemma 9] and equals

−N
2

π2

∫

A

∫

A

exp(−N |z − w|2) dz dw +
1

4π

∫

A

dz

Im(z)2
+O(N−1). (3.4)

2The statement has appeared earlier in the literature, for example in [20].
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Inserting (3.3) and (3.4) into (3.2) completes the proof.3 We observe that the asymptotic

bounds in the proofs of the cited lemmas rely only on Lemma 2.3 and the estimates

Lemma 4.1 and (3.15) stated below, whose error terms depend on A only through dA.

This justifies the claim that the implicit constant in (3.1) depends only on dA, even though

this dependence was not made explicit in [23].

Lemma 3.2. For any admissible Lipschitz domain A,

lim
N→∞

Var[XA]

N1/2
=

1

2π3/2
· ℓ(∂A).

Proof. We write
∫

A

∫

A

exp(−N |z − w|2) dz dw =

∫

A

∫

C

exp(−N |z − w|2) dz dw

−
∫

A

∫

Ac

exp(−N |z − w|2) dz dw (3.5)

By a change of variable and the Gaussian integral formula
∫
R
e−x2

=
√
π, we have

∫

C

exp(−N |z − w|2) dz =
∫

C

exp(−N |z|2) dz = π

N
. (3.6)

Combining (3.1), (3.5), and (3.6), we obtain

Var[XA] =
N2

π2

∫

A

∫

Ac

exp(−N |z − w|2) dz dw +O(N−1). (3.7)

By Lemma 2.5 applied to the radially-symmetric kernel function J : R2 → R given by

J(r) = 2π−3/2 exp(−2r2), we find

lim
N→∞

N3/2

∫

A

∫

Ac

exp(−N |z − w|2) dz dw =

√
π

2
· ℓ(∂A). (3.8)

We conclude by combining (3.7) and (3.8).

3.2 Higher Cumulants

We recall that given a random variable X, its cumulants {κn}∞n=1 are defined by

logE[eitX ] =
∞∑

n=1

κn
(it)n

n!
,

and that for every n ∈ N, there exists a degree n polynomial Ln (independent of the

choice of X) such that κn = Ln

(
E[X],E[X2], . . . ,E[Xn]

)
.

Let Y be a point process on a subset D ⊂ C with N particles {yi}Ni=1 and correlation

functions τk : Dk → R such that

∫

Dk

f(z1, . . . , zk)τk(z1, . . . , zk) dz1 . . . dzk = E


 ∑

(i1,...,ik)∈Ik

f(yi1 , . . . , yik)


 (3.9)

for all k ∈ N and all compactly supported, bounded Borel-measurable functions f : Dk →
R. For every domain A ⊂ C, let NA =

∑N
i=1 1A(yi) denote the counting function for

3While the main results of [23] require the test function to be smooth, these calculations do not. Further,

they were given for even N in [23] using the statement of (2.3) for even N in [3]. Their extension to odd N

requires only notational changes, given that (2.3) is now known for all N .
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A. We insert the test function f(z1, . . . , zk) = 1A(z1) · · ·1A(zk) into (3.9), and note

that the number of elements (i1, . . . , ik) ∈ Ik such that f(yi, . . . , yik) = 1 is equal to

NA(NA − 1) · · · (NA − k + 1), since there are NA choices for i1, and then NA − 1 choices

remaining for i2, and so on until ik. This implies the well-known identity

E
[
NA(NA − 1) · · · (NA − k + 1)

]
=

∫

Ak

τk(z1, . . . , zk) dz1 . . . dzk. (3.10)

Let Jk denote the integral on the right-hand side of (3.10). Then (3.10) implies that

for all n ∈ N, the moment E[Nn
A] is equal to a linear combination of the terms J1, . . . , Jn,

with universal coefficients (independent of Y ). Recalling the definition of the polynomial

Ln, we conclude that for every n ∈ N, there exists a universal polynomial Hn such that

κn(NA) = Hn(J1, . . . , Jn). (3.11)

The following lemma is a consequence of Lemma 2.3 and Lemma 2.4. Let A be an

admissible domain, and for all k ∈ N, set Q(k)(z1, . . . , zk) = (SN (zi, zj))1≤i,j≤k. We define

Tk = Nk

∫

Ak

detQ(k)(
√
Nz1, . . . ,

√
Nzk) dz1 . . . dzk. (3.12)

Lemma 3.3. For any admissible domain A, there exists a constant c(dA) > 0 such that

κn(XA) = Hn(T1, . . . , Tn) +O(e−cN ) for all n ∈ N. The implicit constant depends only on

n and dA.

Proof. We begin by computing ρk(
√
Nz1, . . . ,

√
Nzk) using the definition of ρk in (2.3)

and the definition of a Pfaffian in (2.2). By Lemma 2.3, all terms in the defining sum (2.2)

containing a factor of DN or IN are exponentially small. We conclude that

sup
z1,...,zk∈Ω

∣∣Nkρk(
√
Nz1, . . . ,

√
Nzk)−Nk Pf

(
K̃(

√
Nzi,

√
Nzj)

)
1≤i,j≤k

∣∣ ≤ c−1e−cN , (3.13)

where where (K̃(zi, zj))1≤i,j≤k is a 2k × 2k matrix composed of the 2× 2 blocks

K̃(zi, zj) =

(
0 SN (zi, zj)

−SN (zj , zi) 0

)
.

Lemma 2.4 implies

Pf
(
K̃(

√
Nzi,

√
Nzj)

)
1≤i,j≤k

= detQ(k)(z1, . . . , zk). (3.14)

Combining (3.10), (3.13), (3.14), and the definition of Tk in (3.12), we find

Tk = Nk

∫

Ak

ρk(
√
Nz1, . . . ,

√
Nzk) dz1 . . . dzk +O(e−cN )

= E
[
XA(XA − 1) · · · (XA − k + 1)

]
+O(e−cN ),

sinceNkρk(
√
Nz1, . . . ,

√
Nzk) is the k-th correlation function for the complex eigenvalues

of WN . The conclusion follows after recalling the definition of Hn from (3.11) and using

the trivial inequality |Tk| ≤ 2Nk.

Lemma 3.3 motivates the next definition.

Definition 3.4. We define the pseudo-cumulants of XA by κ̃n = Hn(T1, . . . , Tn) for all

n ∈ N.
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The following cumulant identity is known for determinantal processes [34, (2.6)].

The proof in [34] works for the pseudo-cumulants without modification, since they are

defined in terms of a determinantal kernel.4

Lemma 3.5. For all n ∈ N, we have

κ̃n =

n∑

m=1

(−1)m−1

m

∑

n1+···+nm=n
n1,...,nm>0

n!

n1! · · ·nm!
·Rm,

Rm = Nm

∫

Am

m∏

i=1

SN (
√
Nzi,

√
Nzi+1) dzi,

with the convention that zm+1 = z1.

The next lemma follows from the previous one by induction; see [35, Lemma 1] for

the statement in the case of determinantal processes.

Lemma 3.6. For all n ∈ N, there exist constants (αnj)
n−1
j=2 (independent of A and N )

such that

κ̃n = (−1)n(n− 1)!(R1 −Rn) +

n−1∑

j=2

αnj κ̃j .

In light of the previous lemma, we now aim to calculate the terms Rn.

Lemma 3.7. Fix δ ∈ (0, 1/2). For k ≥ 2, we have

R1 =
N

π
area(A) +O(1), Rk =

N

π
area(A) +O(N1/2+δ),

where the implicit constant in the asymptotic notation depends only on dA, k, and δ.

To prepare for the proof, we recall the standard error function asymptotic

erfc(x) =
e−x2

√
πx

(
1 +O(x−2)

)
. (3.15)

Proof of Lemma 3.7. The case k = 1 is [23, Lemma 7], so we suppose that k ≥ 2. Then

by (3.15) and Lemma 4.1, for all z, w ∈ A, we have the asymptotic expansion

SN (
√
Nz,

√
Nw) = U(z, w)

(
1− e−2(1−zw̄)

√
2πN(1− zw̄)

eN(1−zw̄)(zw̄)N
)(

1 +O(N−1)
)

(3.16)

where

U(z, w) =
ie(−N/2)(z−w̄)2−N(Im(z)2+Im(w)2)

2π
√
Im(z) Im(w)

(w̄ − z).

We claim that the leading order term in Rk is Nk
∫
Ak

∏k
i=1 U(zi, zi+1) dzi. To show this,

we begin by illustrating how to bound one of the other terms in Rk coming from (3.16).

We note that there exists a constant C(dA, k) > 0 such that

Nk

∣∣∣∣∣

∫

Ak

k∏

i=1

U(zi, zi+1)
e−2(1−ziz̄i+1)

√
2Nπziz̄i+1

eN(1−ziz̄i+1)(ziz̄i+1)
N dzi

∣∣∣∣∣

≤ CNk

∫

Ak

k∏

i=1

e(−N/2)Re((zi−z̄i+1)
2)−N(Im(zi)

2+Im(zi+1)
2)eN(1−Re(ziz̄i+1)+ln |ziz̄i+1|) dzi

= CNk

∫

Ak

k∏

i=1

e(−N/2)(|zi|
2+|zi+1|

2−2−ln |zi|
2−ln |zi+1|

2) dzi. (3.17)

4They are precisely the cumulants of the determinantal point process defined by the kernel SN (
√

Nz,
√

Nw),
if such a process exists. We do not address the question of existence here, since this claim is not needed.
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We now observe that the integral in (3.17) decays exponentially in z, since |z|2−1− ln |z|2
is positive and bounded away from zero for z ∈ A (since A is admissible). The other error

terms can be treated similarly; each has an integrand that decays exponentially.

Introducing the notation

g(z, w) = Re(z) Im(w)− Re(w) Im(z),

using (3.16), and bounding the error terms as indicated in (3.17), we obtain (after

observing some cancellation in the exponent) that

Rk =
(
1 +O(N−1)

)
Nk

∫

Ak

exp

(
−N

2

k∑

i=1

|zi − zi+1|2 + iN

N∑

i=1

g(zi, zi+1)

)
(3.18)

×
k∏

i=1

i(z̄i+1 − zi)

2π Im(zi)
dzi +O(e−cN ),

for some constant c(dA, k) > 0. We now decompose

k∏

i=1

(z̄i+1 − zi) =

k∏

i=1

(zi+1 − zi − 2i Im(zi+1)) = (−2i)k
k∏

i=1

Im(zi) + ϵ(z1, . . . , zk),

where ϵ(z1, . . . , zk) is the sum of terms containing at least one copy of (zi−zi+1). We claim

that all integrals arising from ϵ(z1, . . . , zk) are negligible. The following computation

demonstrates this for terms containing exactly one copy of (zi − zi+1); the other terms

are bounded similarly (and are lower order). We have

Nk

∣∣∣∣∣

∫

Ak

exp

(
−N

2

k∑

i=1

|zi − zi+1|2 + iN

N∑

i=1

g(zi, zi+1)

)
(z1 − z2) dz1 . . . dzk

∣∣∣∣∣

≤ Nk

∫

Ak

exp

(
−N

2

k∑

i=1

|zi − zi+1|2
)
|z1 − z2| dz1 . . . dzk

≤ Nk

∫

Ak∩{|z1−z2|≤N−1/2+δ}

exp

(
−N

2

k∑

i=1

|zi − zi+1|2
)
|z1 − z2| dz1 . . . dzk +O(e−cN ),

due to the exponential decay of the integrand on the set Ak ∩ {|z1 − z2| > N−1/2+δ}. We

have

Nk

∫

Ak∩{|z1−z2|≤N−1/2+δ}

exp

(
−N

2

k∑

i=1

|zi − zi+1|2
)
|z1 − z2| dz1 . . . dzk

≤ Nk−1/2+δ

∫

Ck−1×A

exp

(
−N

2

k−1∑

i=1

|zi − zi+1|2
)
dz1 . . . dzk = O(N1/2+δ),

where the last inequality follows by directly evaluating the integrals in the variables z1
through zk−1, then using the fact that area(A) ≤ 2.

After bounding these lower-order terms, (3.18) becomes

Rk = π−kNk

∫

Ak

exp

(
−N

2

k∑

i=1

|zi − zi+1|2 + iN

k∑

i=1

g(zi, zi+1)

)
dz1 . . . dzk +O(N1/2+δ).

We write Rk as

Rk = π−kNk


I0 −

k−1∑

j=1

Ij


+O(N1/2+δ), (3.19)
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where

I0 =

∫

A

∫

Ck−1

exp

(
−N

2

k∑

i=1

|zi − zi+1|2 + iN

k∑

i=1

g(zi, zi+1)

)
dz1 . . . dzk,

and Ij for j ≥ 1 is defined similarly to I0, with the integral over A × Ck−1 replaced by

one over Aj ×Ac ×Ck−j−1. I0 is the leading-order term, and may be computed explicitly.

After the change variables by zi 7→ zi + zk for i < k, the variable zk disappears from the

exponent and may be integrated directly. After some simplification, we obtain

I0 = area(A)

∫

Ck−1

exp

(
−N

k−1∑

i=1

|zi|2 +N

k−2∑

i=1

zizi+1

)
dz1 . . . dzk−1

Changing variables to polar coordinates by setting zi = rie
iθi , and using the identity

∫ 2π

0

exp(αeiθ) dθ =

∮
exp(αz)

dz

iz
= 2π,

valid for any α ∈ C, to integrate out the θi variables, we obtain5

I0 = πk−1N1−k area(A). (3.20)

Next, we note that for every j such that 1 ≤ j ≤ k − 1, we have

|Ij | ≤
∫

A×Ac×Ck−2

exp

(
−N

2

k∑

i=1

|zi − zi+1|2
)
dz1 . . . dzk.

Recalling (3.6), we have

∫

C

exp

(
−N

2
|zk−1 − zk|2 −

N

2
|zk − z1|2

)
dzk ≤

∫

C

exp

(
−N

2
|zk − z1|2

)
dzk =

π

N
.

The variables zk−1, . . . , z3 can then be integrated directly using (3.6). By Lemma 2.5,

∫

A×Ac

exp

(
−N

2
|z1 − z2|2

)
dz1 dz2 = O(N−3/2).

We conclude that for j ≥ 1,

Ij = O(N−k+1/2) (3.21)

Inserting (3.20) and (3.21) into (3.19) completes the proof.

3.3 Conclusion

Proof of Theorem 1.3. By Lemma 3.3, for every n ∈ N the cumulant κn(XA) is equal to

the pseudo-cumulant κ̃n plus an exponentially small error term. Then by Lemma 3.2,

Lemma 3.6, Lemma 3.7, and induction, we have for every n ≥ 3 that

lim
N→∞

κ2(N
−1/4XA) =

ℓ(∂A)

2π3/2
, lim

N→∞
κn(N

−1/4XA) = 0.

We conclude that the limiting cumulants of N−1/4XA are the same as the cumulants

of a Gaussian random variable with variance 2−1π−3/2ℓ(∂A). Since the cumulants of a

random variable determine its moments, the limiting moments also match those of this

Gaussian. Because the Gaussian distribution is uniquely determined by its moments

[1, Theorem 30.1], this implies the desired weak convergence [1, Theorem 30.2].

5We learned of this integration method from [14], which derives a general formula for integrals of exponen-

tials of complex quadratic forms.
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Remark 3.8. The Lipschitz hypothesis in Theorem 1.3 was used only to compute the

variance in Lemma 3.2. To relax this hypothesis, one only needs to compute the integral

(3.1) for more general domains (with rougher boundaries). This can be done for Cac-

cioppoli sets using [26, Corollary 3.1.4] and for the Koch snowflake using [26, Theorem

3.3.2]. We note that the proof technique for the latter result is applicable to many other

domains with self-similar boundaries.

4 Technical Estimates

The following estimate improves [3, Lemma 9.2] by establishing a quantitative error

term. It is implicit in [24, Remark 3.4]; we provide a short proof here for completeness.

Lemma 4.1. Let A be an admissible domain. Define d̃A = inf{|z−1| : z ∈ A}. Then there

exists a constant C(d̃A) > 0 such that for all z ∈ A,

sN (Nz) = 1− 1√
2πN

(ze1−z)N

1− z

(
1 +R(z;N)

)
,

∣∣R(z;N)
∣∣ ≤ CN−1.

Proof. By repeated integration by parts, we have

sN (Nz) = 1− 1

(N − 1)!

∫ Nz

0

ζN−1e−ζdζ = 1− NN

(N − 1)!

∫ z

0

ζN−1e−Nζdζ. (4.1)

The integral
∫ z

0
can be taken along any curve connecting 0 and z since the integrand is

analytic. Inserting Stirling’s formula [27]

N ! =
√
2πN

(
N

e

)N

τN , τN = 1 +
1

12N
+O(N−2) (4.2)

into (4.1), we have

e−NzsN (Nz) = 1− 1

τN

√
N

2π

∫ z

0

ζN−1eN(1−ζ)dζ. (4.3)

Consider the map φ : ζ 7→ ζe1−ζ on C. We recall that the function W (z) solving the

equation−eφ(−W (z)) = z is known as the LambertW function. Standard facts about this

function imply that there is a multi-valued inverse of φ with a (single-valued) principal

branch defined on C \ [1,∞) (see [10, Section 4]). It is given by ψ(z) = −W (−z/e).
Applying the change of variable ζ = ψ((1− t)ze1−z) to (4.3), we have

sN (Nz) =1− 1

τN

√
N

2π

∫ z

0

e1−ζφ(ζ)N−1dζ

=1− 1

τN

√
N

2π

(
ze1−z

)N ∫ 1

0

(1− t)N−1

1− ψ((1− t)ze1−z)
dt.

(4.4)

Define f(z; t) = (1− ψ((1− t)ze1−z))−1. Note that f(z; ·) is infinitely differentiable in a

neighborhood of t = 1 since ψ is analytic in a neighborhood of ze1−z for |z| < 1. Direct

differentiation shows that

f(z; t) =
1

1− z
+ r(z; t),

where

r(z; t) =

∫ t

0

−ψ((1− τ)ze1−z)

(1− τ)(1− ψ((1− τ)ze1−z))3
dτ. (4.5)

By the continuity of (τ, z) 7→ ψ((1− τ)ze1−z) over [0, 1]×A, together with ψ(ze1−z) = z,

there exists tA > 0 such that for all 0 ≤ τ ≤ tA and all z ∈ A, |1− ψ((1− τ)ze1−z)| ≤ 1
2 d̃A.

Therefore, there exists cA > 0 depending on A (only through d̃A) such that |r(z; t)| ≤ cAt.
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A standard application of Laplace’s method (see [36, Section 19.2.4, Theorem 1(a)])

implies that there exists a constant C > 0 depending only on cA, and consequently only

on d̃A, such that

∫ 1

0

(1− t)N−1f(z; t) dt =
1

N(1− z)
(1 +R(z;N)), (4.6)

where |R(z;N)| ≤ CN−1. Combining (4.4) and (4.6) and recalling the definition of τN in

(4.2) completes the proof.

Proof of Lemma 2.3. Using (3.15), we obtain

G(
√
Nz,

√
Nw) =

e−N(Im(z)2+Im(w)2)

√
2Nπ| Im(z) Im(w)|

(
1 +O

(
1

N min(|z|, |w|)4
))

.

Combining this estimate with Lemma 4.1 and |(2π)−1(w − z)| ≤ 1, we get

∣∣DN (
√
Nz,

√
Nw)

∣∣ ≤e−(N/2)Re(z−w)2 e
−N(Im(z)2+Im(w)2)

√
N | Im(z) Im(w)|

(
1 +O

(
1

N min(|z|, |w|)4
))

×
(
1 +

∣∣∣∣
e−2(1−zw)

√
2πN(1− zw)

eN(1−zw)(zw)N
(
1 +O(N−1)

)∣∣∣∣
)
. (4.7)

We observe that

−N
2
Re(z − w)2 −N(Im(z)2 + Im(w)2) ≤ −N Im(z) Im(w). (4.8)

We also note that

|e−(N/2)Re(z−w)2e−N(Im(z)2+Im(w)2)eN(1−zw)(zw)N |

≤ exp

(
−N

2
(|z|2 − ln |z|2 − 1)− N

2
(|w|2 − ln |w|2 − 1)

)

≤ exp

(
−N

8
(|z| − 1)2 − N

8
(|w| − 1)2

)
. (4.9)

Inserting (4.8) and (4.9) into (4.7) completes the proof of the bound on DN . The proof

for IN is similar, so we omit the details.

For SN , we have

∣∣SN (
√
Nz,

√
Nw)

∣∣ ≤e−(N/2)Re(z−w)2 e
−N(Im(z)2+Im(w)2)

√
N | Im(z) Im(w)|

(
1 +O

(
1

N min(|z|, |w|)4
))

×
(
1 +

∣∣∣∣
e−2(1−zw)

√
2πNπ(1− zw)

eN(1−zw)(zw)N
(
1 +O(N−1)

)∣∣∣∣
)

We note that

e−(N/2)Re(z−w)2e−N(Im(z)2+Im(w)2) = e−(N/2)|z−w|2 ≤ 1, (4.10)

and

|e−(N/2)Re(z−w)2e−N(Im(z)2+Im(w)2)eN(1−zw)(zw)N | (4.11)

≤ e(N/2)(−|z−w|2+2+2Re(zw)+2 ln |zw|) = e−(N/2)(|z|2+|w|2−2−ln |z|2−ln |w|2) ≤ 1, (4.12)

where the last inequality follows from |z|2 − 1− ln |z|2 ≥ 0 for z ∈ A. This completes the

proof of the bound on SN .

ECP 0 (2020), paper 0.
Page 11/13

https://www.imstat.org/ecp



Central limit theorem for the eigenvalues of Gaussian matrices

References

[1] Patrick Billingsley. Probability and Measure. John Wiley & Sons, 2017.

[2] Charles Bordenave and Djalil Chafaï. Around the circular law. Probability Surveys, 9:1–89,

2012.

[3] Alexei Borodin and Christopher D. Sinclair. The Ginibre ensemble of real random matrices

and its scaling limits. Communications in Mathematical Physics, 291:177–224, 2009.

[4] Sung-Soo Byun and Peter J. Forrester. Progress on the study of the Ginibre ensembles I:

GinUE. arXiv preprint arXiv:2211.16223, 2022.

[5] Sung-Soo Byun and Peter J. Forrester. Progress on the study of the Ginibre ensembles II:

GinOE and GinSE. arXiv preprint arXiv:2301.05022, 2023.

[6] Laurent Charles and Benoit Estienne. Entanglement entropy and Berezin–Toeplitz operators.

Communications in Mathematical Physics, 376(1):521–554, 2020.
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