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1 Introduction

1.1 Main Result

This note proves a central limit theorem (CLT) for the eigenvalue counting function of
a matrix of real Gaussian random variables in regions of the complex plane. While such a
result is well known for matrices of complex Gaussians (see [4, Section 3.1] for a survey),
to the best of our knowledge, the analogous statement for real Gaussian matrices has
not previously been addressed.

We begin by defining the random matrix ensemble of interest in this work.

Definition 1.1. Forall N € IN, let Gn = (¢:j)1<i,j<~ be a random matrix whose entries
are mutually independent Gaussian random variables with mean zero and variance
one. We call Gy the real Ginibre matrix (GinOE) of dimension N. We also denote
Wy = N_1/2GN.

In the limit as IV goes to infinity, it is known that the empirical spectral distribution of
W tends to the uniform measure on the unit disk D = {z € C: |z| < 1} [2]. We note that
the eigenvalues of Wy come in conjugate pairs, since Wy is real; if A € C is an eigenvalue,
then so is . It is therefore natural when studying the fluctuations of the eigenvalues
of Wy to restrict attention to the upper half disk D™ = {z € C : |z] < 1,Imz > 0}. We
recall that a domain is defined as a non-empty connected open subset of C.

Definition 1.2. We say that a domain A is admissible if A C D*.

This condition is slightly stronger than requiring A C DT, since it enforces a sep-
aration between A and the boundary of DT. We also recall that a domain is said to
be Lipschitz if its boundary is locally the graph of a Lipschitz continuous function; see
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Central limit theorem for the eigenvalues of Gaussian matrices

[25, Definition 12.9]. Given an admissible Lipschitz domain A, we let /(0A) denote the
length of its boundary.

Denote the eigenvalues of Wy by A1,..., Ay, in an arbitrary order. Given an admis-
sible domain A, we define f4 : C — R by fa(z) = 14(2), and define the (/N-dependent)
random variable

N
Xa=)Y falh)—E
i=1

N
ZfA(m] : (1.1)

The following theorem is our main result. We let N'(0, ¢) denote a Gaussian random
variable with mean zero and variance ¢ > 0.

Theorem 1.3. Let A be an admissible Lipschitz domain. Then we have the weak

convergence
. Xy L(0A)
1\/113;0 N/ —N(O, 5372 )" (1.2)

The variance of X 4 is of order N 1/2 which is smaller than the variance of order N
seen in sums of independent random variables. This is due to the strong correlations
between the eigenvalues of Wy [28]. Further, the variance of the Gaussian in (1.2) is
identical to the one in the analogous theorem for complex Gaussian matrices [4, (3.9)].

1.2 Background

The analogue of Theorem 1.3 for a complex Ginibre matrix (GinUE) is known. It
is a consequence of a theorem that provides a CLT for a broad class of determinantal
point processes proved in [35, Section 2] (see also [11]), together with the the explicit
computation of the asymptotic variance in [26, Corollary 1.2.1].! See [6, Corollary 1.7]
for an alternative proof in the case where A has a smooth boundary. Further, a local CLT
for the counting function of the GinUE eigenvalues was derived in [17].

All of these works crucially rely on the fact that the eigenvalues of the GinUE form
a determinantal point process. While this determinantal structure enables a precise
analysis of many aspects of the GinUE, it is absent in the GinOE. Instead, the eigenvalues
of the GinOE form a Pfaffian point process, and consequently they are more difficult to
study [5].

Previous work on linear statistics of the GinOE has considered smooth test functions
of the complex eigenvalues [23, 30], differentiable functions of the real eigenvalues
[15,23,31], general functions of the real eigenvalues [15], and the number of real
eigenvalues [12,13,15,16,22,31]. There have also been a few recent articles proving
CLTs for linear statistics of matrices of general i.i.d. random variables when the test
function has at least two derivatives [7-9]. Proving a CLT for the eigenvalue counting
function in this more general setting remains an open problem.

1.3 Outline

In Section 2, we collect several preliminary lemmas, and show that the Pfaffian corre-
lations of the GinOE eigenvalues may be quantitatively approximated by determinantal
correlations. In Section 3, we compute the variance and higher cumulants of X 4, and
show that they match those of the desired Gaussian distribution, concluding the proof of
Theorem 1.3. Using the results of [26], it is straightforward to extend Theorem 1.3 to
all domains with finite perimeter (so-called Caccioppoli sets) and certain domains with
fractal boundaries. We briefly discuss this point in Remark 3.8.

1While [11] gives details only for certain Gaussian matrices, the authors note (in a remark attributed to H.
Widom) that their method works in much greater generality, as later demonstrated in [35].

ECP 0 (2020), paper 0. https://www.imstat.org/ecp
Page 2/13



Central limit theorem for the eigenvalues of Gaussian matrices

2 Preliminary Results

Set C* = C\R. We recall that for all £ € N, the complex-complex correlation

functions prN) : (C*)* = R for Gy are defined by the following property [3, (5.1)]. For
every compactly supported, bounded Borel-measurable function f: (C*)* — R, we have

/( )kf(zl,...,zk)p,(cN)(zl,...,zk)dzl...dzk:E Z flwi,...,wi) |, (2.1)
C* )k

(215000sik ) ELy

where 7;, C {1,..., N}¥ is the set of pairwise distinct k-tuples of indices, {w;}}, are the
eigenvalues of G, and we use dz; to denote the Lebesgue measure on C. We typically
write p; instead of p,(CN), since the value of N will be clear from context. We also recall
that if M = (M;;);"_, is a 2n x 2n skew-symmetric matrix, its Pfaffian is defined as

1 n
Pf(M) = 2l Zs: sgn (o) I[Ma(%fl),a(%)a (2.2)
oESon 1=

where S,,, is the symmetric group of degree 2n.

The following lemma, taken from [29, Appendix B.3], identifies the correlation func-
tions p; explicitly.
Lemma 2.1. The k-point complex-complex correlation functions of the N-dimensional
real Ginibre ensemble Gy are given by

pr(21, - -5 zi) = PE(K (20, 25) )1<i <k (2.3)

where (K (2;,2;))1<i,j<k is @ 2k x 2k matrix composed of the 2 x 2 blocks

Dy (zi,2;) SN (2, Zj))
K iy %7 ) — ’
(20:23) (—SN (zj,21)  In (25 25)
and Dy, Iy, and Sy are defined by
(e = T e wen ()
Z,w) = w—z Z,W)Ss W),
N 27‘(‘ N
D e—(1/2)(z—w)2 o
zyw) = ———(w — 2)G(z,w)sy(zw),
~(z,w) NG ( )G (2, w)sy (zw)
; D B
Z,W) = —F——(z—w Z,W)Ss zZw),

where z,w € C* and

G(z,w) = \/erfc(\/ﬁIm(z)) erfc(v2Im(w)), erfe(x) = % /00 exp(—t?) dt,

Remark 2.2. The functions p; were first determined explicitly in [19]. The Pfaffian form
in (2.3) was derived in the case of even N in [3]. Subsequently, a variety of methods
have been used to recover this form for all N [18,32,33] (see also [29, Section 4.6]).

By a change of variable it is straightforward to see that the k-th correlation function
for the complex eigenvalues of Wy is N kpk(\/ﬁ Z1y. . VN zi). The following lemma is
useful for controlling these functions and is proved in Section 4. We let d4 = inf{|z — w| :
z € A,w € 9D} denote the distance between A and the boundary of D, and use the
standard “big O” notation O(-) for estimates that hold in the limit N — oc.
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Lemma 2.3. Let A be an admissible domain. Then there exists a constant ¢(ds) > 0
such that

sup Dy (VN2 VNw) = O(e™ ), sup In(VNz,VNw) = O(e~N),
zZ,WEA ZweA

sup Sy (VNz, VNw) = O(1),

Z,WEA

where the implicit constants in the asymptotic notation depend only on d 4.

We next state a useful lemma about Pfaffians, proved in [21, Appendix B].2
Lemma 2.4. Let M = (M;;)?"_, be a skew-symmetric 2n x 2n matrix such that M;; = 0
wheni = j mod 2. Let M = (M)Zj=1 be the n xn matrix formed by setting M;; = My;_1 2;.
Then Pf(M) = det(M).

Finally, we require the following integral formula from [26, Corollary 3.1.4].

Lemma 2.5. Let J : C — R be radially symmetric (meaning J(z) = J(|z|)) and nonnega-
tive. Suppose further that [ J(z) - |z|dz = 1. Then for any admissible Lipschitz region

s

lim N3/2/ J(\/JV(z—w)) dzdw = — - L(0A).
AJAe

N—o00

CHIS

3 Proof of Theorem 1.3

3.1 Variance Calculation

The following lemma follows from results proved in [23]. We sketch the proof for
completeness.

Lemma 3.1. For any admissible domain A,
N N? 9 1
Var[X ] = — area(A) — — exp(—N|z —w|*)dzdw + O(N™), (3.1)
T ™ AJA

where the implicit constant in the asymptotic notation depends only on d 4.

Proof. From the definition (1.1) of X 4, we compute

N

> fan)

i=1

Var[X4] = E +E D fai)fay) | —E

i#]

Writing this expression in terms of correlation functions using (2.1) and (2.3), we obtain
Var[X 4] :N/ Sn(VNz VNz)dz — N? / Sn(VNz,VNw)? dz dw
A A2
—~N? | Dn(VNz,VNw)Iy(VNz vVNw)dzdw. (3.2)
A2

The last term in (3.2) vanishes exponentially, by Lemma 2.3. The first term is computed
in [23, Lemma 7] and equals

N dz 1
;area(A) - E/AW +O(N7). (3.3)

The second term is computed in the proof of [23, Lemma 9] and equals

N2 1 dz
—— —N|z—w]*)dzdw+ — | —— N1, 3.4
= /A/Aexp( |z — w|?)dz w+47r/AIm(z)2 + O( ) (3.4)

2The statement has appeared earlier in the literature, for example in [20].
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Inserting (3.3) and (3.4) into (3.2) completes the proof.3 We observe that the asymptotic
bounds in the proofs of the cited lemmas rely only on Lemma 2.3 and the estimates
Lemma 4.1 and (3.15) stated below, whose error terms depend on A only through d 4.
This justifies the claim that the implicit constant in (3.1) depends only on d 4, even though
this dependence was not made explicit in [23]. O

Lemma 3.2. For any admissible Lipschitz domain A,

. Var[Xy] 1
NN T g (04

Proof. We write

//exp(—N|z—w\2)dzdw://exp(—N|z—w|2)dzdw
alJa ale
—// exp(—N|z — w|?) dz dw (3.5)
A c

By a change of variable and the Gaussian integral formula f]R e = /7, we have

/ exp(—Nl|z — w|?) dz = / exp(—N|z|?) dz = —. (3.6)
C C N
Combining (3.1), (3.5), and (3.6), we obtain
N2 2 -1
Var[Xa] = — exp(—N|z — w|*)dzdw + O(N™). (3.7)
m AJAc

By Lemma 2.5 applied to the radially-symmetric kernel function J: R?> — R given by
J(r) = 273/ exp(—2r?), we find

lim N3/2/ / exp(—N|z — w|?) dz dw = vr -L(0A). (3.8)
N—o0 A c 2
We conclude by combining (3.7) and (3.8). O

3.2 Higher Cumulants
We recall that given a random variable X, its cumulants {x,}52 ; are defined by

ixy_ N~ ()"
log E[e"*] = ;’%T,
and that for every n € N, there exists a degree n polynomial L,, (independent of the
choice of X) such that s, = L, (E[X], E[X?],...,E[X"]).
Let Y be a point process on a subset D C C with N particles {y;}¥ , and correlation
functions 75, : P*¥ — R such that

fz1, o zie)mr(21, oy 26)d2y .. dzgy = B Z FWiyy ey Yir) (3.9)
D* (i1yryi ) €T

for all £ € IN and all compactly supported, bounded Borel-measurable functions f: D* —
RR. For every domain A C C, let Ny = Zf\; 1 La(y;) denote the counting function for

3While the main results of [23] require the test function to be smooth, these calculations do not. Further,
they were given for even N in [23] using the statement of (2.3) for even N in [3]. Their extension to odd N
requires only notational changes, given that (2.3) is now known for all V.
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A. We insert the test function f(z1,...,2k) = La(z1)---1a(zx) into (3.9), and note
that the number of elements (iy,...,i;) € Z; such that f(y;,...,v:.) = 1 is equal to
NA(Ng—1)--- (N4 — k+1), since there are N4 choices for iy, and then N4 — 1 choices
remaining for i5, and so on until ¢;. This implies the well-known identity

IE[NA(NA —1)---(Na—k+ 1)] = / Te(z1, ..y 2K) dz1 - dzg. (3.10)
Ak

Let Ji denote the integral on the right-hand side of (3.10). Then (3.10) implies that

for all n € IN, the moment E[N7}] is equal to a linear combination of the terms Ji, ..., J,,

with universal coefficients (independent of Y). Recalling the definition of the polynomial

L,,, we conclude that for every n € N, there exists a universal polynomial H,, such that

bkn(Na) = Hy(J1,. .., Jdn). (3.11)
The following lemma is a consequence of Lemma 2.3 and Lemma 2.4. Let A be an
admissible domain, and for all k € IN, set Q¥ (21, ..., 2) = (Sn(2i,2j))1<i j<k. We define
T, = Nk/ det QP (VNzy, ...,V Nz) dz ... dz,. (3.12)

Ak

Lemma 3.3. For any admissible domain A, there exists a constant ¢(d4) > 0 such that
kn(Xa) = Hy(Ty,...,T,) + O(e=¢N) for all n € N. The implicit constant depends only on
nanddy.

Proof. We begin by computing pk(\/ﬁzl, ey \/Nzk) using the definition of p; in (2.3)
and the definition of a Pfaffian in (2.2). By Lemma 2.3, all terms in the defining sum (2.2)
containing a factor of Dy or Iy are exponentially small. We conclude that

sup ’Nkpk(\/ﬁzl,...,\/ﬁzk) — Nk Pf ([W((\/ﬁzl,\/ﬁzj))

Z14..,2L EQ

—1_—cN
1<ijekl S€TTeT N, (3.13)

where where (K (z;, 2j))1<i,j<k is @ 2k x 2k matrix composed of the 2 x 2 blocks
oy _ 0 SN (Z,', Zj)
Klzi.2) = <—5N (25, 2:) 0 '

Lemma 2.4 implies

Pf (K(VNz;,VNz;)) =det Q™ (21,...,21). (3.14)

1<i,j<k

Combining (3.10), (3.13), (3.14), and the definition of T} in (3.12), we find

Tk:Nk/ ok(VNzy, ...,V Nzp)dz ... dz, + O(e™N)
Ak
:E[XA(XA—I)(XA,]C+1)}+O(€7¢:N),

since N* pk(\/ﬁ 21,...,VN zx) is the k-th correlation function for the complex eigenvalues
of Wy . The conclusion follows after recalling the definition of H,, from (3.11) and using
the trivial inequality |T}| < 2N*. O

Lemma 3.3 motivates the next definition.

Definition 3.4. We define the pseudo-cumulants of X4 by k,, = H,(T1,...,T,) for all
n € IN.
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The following cumulant identity is known for determinantal processes [34, (2.6)].
The proof in [34] works for the pseudo-cumulants without modification, since they are
defined in terms of a determinantal kernel.*

Lemma 3.5. For alln € N, we have

n
~ (_1>m—1 nl
””_Z m Z nlg...nm!'Rm’

m=1 ni+-+nm,m=n
N1 yeeey i, >0

m

R, = Nm/ HSN(\/NZia\/NZi-‘rl)dzia
™ i=1

with the convention that z,,11 = 21.

The next lemma follows from the previous one by induction; see [35, Lemma 1] for
the statement in the case of determinantal processes.

Lemma 3.6. For all n € IN, there exist constants (am)] —, (independent of A and N)
such that

Fn = (=1)"(n - DI(R Z njFj-

In light of the previous lemma, we now aim to calculate the terms R,,.
Lemma 3.7. Fix § € (0,1/2). For k > 2, we have
N N
Ry = —area(A) + O(1), Ry = — area(A) + O(N/2+9),
s s
where the implicit constant in the asymptotic notation depends only on d 4, k, and .
To prepare for the proof, we recall the standard error function asymptotic
_1:2
€
L
Proof of Lemma 3.7. The case k = 1 is [23, Lemma 7], so we suppose that £ > 2. Then
by (3.15) and Lemma 4.1, for all z,w € A, we have the asymptotic expansion

erfe(x) = (14+0(z7?)). (3.15)

6—2(1—2'@) B
Sn(VNz VNw) = U(z,w) (1 - \/m_zw)eml_zw)(zw)N) (1+O0(N"")) (3.16)

where
ie(=N/2)(z=@)? =N (Im(z)*+1Im(w)?)

27/Im(z) Im(w)

We claim that the leading order term in Ry, is N* fA’« Hle U(zi, zi+1) dz;. To show this,
we begin by illustrating how to bound one of the other terms in R;, coming from (3.16).
We note that there exists a constant C(d 4, k) > 0 such that

U(z,w) = (o — z).

k e 20mzizi) N (122 N
N HU 2, Zip1) F ( —ZzZz+1)(Zi2i+1) dz;
Nz,

Zz+1

< CNk/ H e(—N/2)Re((zi—2i+1)2)—N(Im(zi)2+1m(2i+1)2)6N(1—Re(zi5i+1)+1n\Zi5i+1|) dz;
Ak

k
— CNk‘/ He(—N/2)(|Z11|2+‘Zi+1|2_2_1nIzi‘2_lnlzi+1‘2) dZi. (317)
Ak

4They are precisely the cumulants of the determinantal point process defined by the kernel Sy (v Nz, vV Nw),
if such a process exists. We do not address the question of existence here, since this claim is not needed.
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We now observe that the integral in (3.17) decays exponentially in z, since |z|> — 1 —1In |z|?

is positive and bounded away from zero for z € A (since A is admissible). The other error

terms can be treated similarly; each has an integrand that decays exponentially.
Introducing the notation

g(z,w) = Re(z) Im(w) — Re(w) Im(z),

using (3.16), and bounding the error terms as indicated in (3.17), we obtain (after
observing some cancellation in the exponent) that

Ry = (1 +O(N*1))Nk/ exp < Z |z; — Zz+1\ +1NZg zi,zl+1)> (3.18)
Ak

= i=1
k

H i —20) g4 ogeem),

e 27 Im(2;)

for some constant ¢(d4, k) > 0. We now decompose

k k k

[[Gi1—2) = [[(zir1 — 2 — 2iIm(zi11)) = (=20)" [ [Im(z) + (21, - ., 2),

i=1 i=1 i=1
where €(z1, ..., ;) is the sum of terms containing at least one copy of (z; —z;41). We claim
that all integrals arising from €(zy, ..., 2;) are negligible. The following computation
demonstrates this for terms containing exactly one copy of (z; — z;11); the other terms
are bounded similarly (and are lower order). We have

k

N
N
/Ak exp <—2 Z |z — zip1|* + iNZg(zi, Zi+1)> (21 — 22)dz1 ... dzy,

i=1 i=1

Nk’

k

N
< N’“/ exp <—QZ|«2¢ - Zi+1|2> |21 — 22| dzy -
Ak i=1

k
N
: Nk/ exp | =5 D |z —zenl? | 21 — 22| dz1 . day + O(e™N),
AkN{|z1 — 22| <N—1/2+6} 2 p

due to the exponential decay of the integrand on the set A* N {|z; — zo| > N~V/2+9} We
have

k
' N
Nk/ exp | —— g \zifz,;+1|2 |21 — 22| dz1 ... dzg
Akﬁ{‘Z17Z2‘SN*1/2+5} 2

i=1
k—1
N
< Nk71/2+5/ exp | —— Z |z; — Z»L'+1‘2 dzy...dz, = O(NI/QJ”S),
Ch-1xA 2

=1

where the last inequality follows by directly evaluating the integrals in the variables z;
through z;_1, then using the fact that area(A) < 2.
After bounding these lower-order terms, (3.18) becomes

k

k
N .
Ry=n""N* /Ak exp (‘2 >z — ziga +1NZg(zi,zi+1)> dzy ...dz, + O(NY/2+9),

i=1 i=1

We write Ry as

k—1
Rp=n*NF (1o = > I; | + O(N'/?+9), (3.19)
j=1

ECP 0 (2020), paper 0. https://www.imstat.org/ecp
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where

k k
N .
Iy = / / exp <—2 Z \zi — z¢+1|2 +1NZQ(2iaZ¢+1)> dz ...dz,
AJgk-1 p vt

and /[; for j > 1 is defined similarly to Iy, with the integral over A x C*~! replaced by
one over A7 x A¢ x CF—7=1 ], is the leading-order term, and may be computed explicitly.
After the change variables by z; — z; 4+ z; for ¢ < k, the variable z; disappears from the
exponent and may be integrated directly. After some simplification, we obtain

Iy = A N P+ NY Zizi | day .. dage
o = area( )/Ck exp( Z|z|+ ZZZH) 21 ... dzp_1

Changing variables to polar coordinates by setting z; = 7;¢'%, and using the identity

27
: d
/ exp(ael?) df = ]{exp(az),—z = 2m,
0 iz
valid for any « € C, to integrate out the 6, variables, we obtain®
Iy = 7FINIF area(A). (3.20)

Next, we note that for every j such that 1 < j < k — 1, we have

|I-|§/ exp | —— |zi — ziq1|? | dz1 ..
! Ax Aex k=2 Z o

Recalling (3.6), we have

N N N
/Cexp <—2|zk_1 A — ?‘Zk - 212> dz, < /Cexp (—2|zk - Zl|2> dzi, = %
2

The variables z;_1, ..., 23 can then be integrated directly using (3.6). By Lemma 2.5,

N
/ exp <|zl - zz|2> dz dzy = O(N3/2),
Ax Ae 2

We conclude that for j > 1,
Ij = O(N~*172) (3.21)

Inserting (3.20) and (3.21) into (3.19) completes the proof. O

3.3 Conclusion

Proof of Theorem 1.3. By Lemma 3.3, for every n € IN the cumulant x,, (X 4) is equal to
the pseudo-cumulant k,, plus an exponentially small error term. Then by Lemma 3.2,
Lemma 3.6, Lemma 3.7, and induction, we have for every n > 3 that

. —1/4 (aA) . —1/4 _
W e NTERA) = e e (N =0

We conclude that the limiting cumulants of N —-1/4x 4 are the same as the cumulants
of a Gaussian random variable with variance 2~ '7~3/2((JA). Since the cumulants of a
random variable determine its moments, the limiting moments also match those of this
Gaussian. Because the Gaussian distribution is uniquely determined by its moments
[1, Theorem 30.1], this implies the desired weak convergence [1, Theorem 30.2]. O

5We learned of this integration method from [14], which derives a general formula for integrals of exponen-
tials of complex quadratic forms.
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Remark 3.8. The Lipschitz hypothesis in Theorem 1.3 was used only to compute the
variance in Lemma 3.2. To relax this hypothesis, one only needs to compute the integral
(3.1) for more general domains (with rougher boundaries). This can be done for Cac-
cioppoli sets using [26, Corollary 3.1.4] and for the Koch snowflake using [26, Theorem
3.3.2]. We note that the proof technique for the latter result is applicable to many other
domains with self-similar boundaries.

4 Technical Estimates

The following estimate improves [3, Lemma 9.2] by establishing a quantitative error
term. It is implicit in [24, Remark 3.4]; we provide a short proof here for completeness.
Lemma 4.1. Let A be an admissible domain. Define ds =inf{|z—1|: z € A}. Then there
exists a constant C(d4) > 0 such that for all z € A,

1 (Zelfz)N

V2rN 11—z

Proof. By repeated integration by parts, we have

Vevrecg 1 - / ¢NotemNedg.4.1)
0 (N =1 Jo ' '

N(NZ) =1-

(1+ R(2;N)), |R(z; N)| <CN~.

1

N(NZ)Zl—m

The integral foz can be taken along any curve connecting 0 and z since the integrand is
analytic. Inserting Stirling’s formula [27]

M=vam (M) . w14 Lt o 4.2)
e ’ 12N

into (4.1), we have

e Ny (N2 _1——\/ / (N1eNO=0gc. (4.3)

Consider the map ¢: ¢ + (e!~¢ on C. We recall that the function W (z) solving the
equation —ep(—W (z)) = zis known as the Lambert W function. Standard facts about this
function imply that there is a multi-valued inverse of ¢ with a (single-valued) principal
branch defined on C \ [1,00) (see [10, Section 4]). It is given by ¢¥(z) = —W(—=z/e).
Applying the change of variable ¢ = ¥ ((1 — t)zel =) to (4.3), we have

v L e

1—z\N ' (1 _t)N_l
4‘% %(26 ) /0 T (- haerr) ™

Define f(z;t) = (1 —((1 — t)ze!=%))~ L. Note that f(z;-) is infinitely differentiable in a
neighborhood of ¢ = 1 since v is analytic in a neighborhood of ze! = for |z| < 1. Direct
differentiation shows that

(4.4)

flet) = 1 +r(0),

where . .
)= [ D
o (1=7)(1=9((1—7)ze' %))
By the continuity of (,2) + ¥ ((1 — 7)ze! %) over [0,1] x A4, together with ¥ (ze )
— (1 —7)zel” )l <
Therefore, there exists c4 > 0 dependlng on A (only through d, A) such that |r(z; )| § At.

dr. (4.5)

ECP 0 (2020), paper 0. https://www.imstat.org/ecp
Page 10/13



Central limit theorem for the eigenvalues of Gaussian matrices

A standard application of Laplace’s method (see [36, Section 19.2.4, Theorem 1(a)])
implies that there exists a constant C' > 0 depending only on c4, and consequently only
on d 4, such that

/1(1 — )N f(zt)dt = ~ (1+ R(z; N)), (4.6)
0

_

(1-2)
where |R(z; N)| < CN~!. Combining (4.4) and (4.6) and recalling the definition of 7 in
(4.2) completes the proof. O

Proof of Lemma 2.3. Using (3.15), we obtain

o \/ﬁ \/ﬁ e—N(IHl(z)2+IIII(w)2) ) o 1
: = +0 (=3 ) |-
(VNVz, VNw) s/72N7rIm(z)Im(w)< (Nm1n<z|,|w>4))

Combining this estimate with Lemma 4.1 and |(27) ' (w — 2)| < 1, we get

- mi(z 2 m(w 2
‘DN(‘/NZ,‘/NU))’ Se—(N/Z)Re(z—w)ze N(Im{z)"+Im(w)") <1 +0 (14)>
VN|Im(2) Im(w))| N min(|z], |w])

—2(1—zw)
O e A S Ul B

We observe that
—g Re(z — w)? — N(Im(2)? + Im(w)?) < —N Im(z) Im(w). (4.8)

We also note that

|67(N/2) Re(sz)2efN(Im(z)2+Im(w)2)6N(17zw) (Z’LU)N|

<oxp (=5 (s - nleP — 1) - F(lul? - nfuf - 1)
N N
< oxp (=51 - = T ul 1), (4.9)

Inserting (4.8) and (4.9) into (4.7) completes the proof of the bound on Dy . The proof
for I is similar, so we omit the details.
For Sy, we have

1Sy (VNz, VNw)| <e(N/2) Rel gy VO C) Hme)) <1 O< 1 >>
z, w)| <e elzmw + I
N VN|Im(z) Im(w))| N min(|z[, Jw])*
« <1+ e—2(1—-2) eN(l_zw)(zw)N(l+O(N_1))D
V2rN7(l — zw)

We note that

e~ (N/2) Rc(z—m)’-’e—N(Im(z)2+Im(w)2) _ e—(N/2)|z—w|2 <1, (4.10)

and
|€—(N/2) Re(z—ﬁ)ze—N(Im(z)2+Im(w)2)eN(l—zE) (ZE)N| 4.1 1)
< e(N/Q)(7|z7E\2+2+2Re(zﬁ)Jran|zE|) _ ef(N/2)(\z\2+|w\2f2fln\2\271n|w\2) <1, (4.12)

where the last inequality follows from |z|> — 1 —In|z|? > 0 for 2 € A. This completes the
proof of the bound on Sy. O
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