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1 Introduction

Throughout this paper we work with pairs (X, B) where X is a normal complex analytic variety and B
is an effective R-divisor such that Kx + B is R-Cartier. Understanding the singularities of such pairs
plays a fundamental role in recent advances in the birational classification of algebraic varieties. One
important measure of these singularities is the log canonical threshold. If (X, B) is log canonical and D
is a non-zero effective R-Cartier divisor, then the log canonical threshold is

let(X, B; D) :=sup{t | (X, B +¢D) is log canonical}.

Understanding the behaviour of log canonical thresholds is essential in a variety of contexts such as, for
example, the termination of flips, moduli problems, and K-stability (see, for example, [1,11,13]). Perhaps
the most important result in this context is the solution, by Hacon, McKernan and Xu, of Shokurov’s
“ACC for LCT’s conjecture” [10] which we will now recall.

A set I of non-negative real numbers satisfies the ascending chain condition or ACC (resp. the
descending chain condition or DCC) if any non-decreasing sequence i; < iz < --- (resp. any non-
increasing sequence i; > iy > ---) is eventually constant. Let I and J be two DCC sets of nonnegative
real numbers and n a natural number. We define

LCT,(I,J) := {let(X, B; D) | dim X = n, coeff(B) € I, coeff(D) € J}
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to be the set of all log canonical thresholds of n-dimensional lc pairs (X, B) with respect to divisors D
such that the coefficients of B and D belong to I and J respectively. When X is quasi-projective, then by
[10, Theorem 1.1], it follows that the set LCT,, (I, J) satisfies the ACC and that one can characterize the
accumulation points under mild assumptions on the DCC sets I and J. By [10, Theorem 1.1], it follows
that if I C [0,1], the only possible accumulation point of I is 1, and [ = Iy := {0} U{j = > _,ix €
[0,1] | i € I}, then the only accumulation points of LCT,,(I,N) are LCT,,_1(I,N) \ {1}.

Recently, generalized pairs have begun playing an increasingly more prominent role in birational
geometry (see [2] and the references therein). It has become apparent that it is important to also study
singularities in this context. The analogs of the main results of [10], for generalized pairs were proven in
[4,9], and have already found several important applications.

Naturally, it is also expected that the ACC for LCT’s will play an important role in many other
contexts such as analytic varieties, foliated pairs, varieties in positive and mixed characteristics (see, for
example, [5,8,12]). In view of recent progress in the minimal model program for analytic varieties (see
[6,7]), it is expected that the results of [10] should also hold for analytic varieties. Fujino has in fact shown
that Shokurov’s ACC for LCT’s conjecture holds for analytic varieties [8]. One interesting phenomenon
that occurs in the analytic case (which does not happen in the algebraic case or for compact analytic
varieties) is that if A = let(X, B; D), then it is possible that (X, B + AD) is klt, i.e., there is no divisor
E over X of log discrepancy a(E; X, B+ AD) = 0 (see [8, Example 1.3]). This is somewhat troubling as
typically, many proofs by induction on the dimension involve studying the restriction of Kx + B + AD
to an appropriate divisor F over X of log discrepancy a(E; X, B+ A\D) = 0.

We will now give a more precise description of the main results of this paper. Let I,J be DCC sets
andn € N, f: X’ = X a proper bimeromorphic morphism of analytic varieties, (X, B+ M), M', P', P,
D be as in Definition 2.3 so that

1. (X,B+ M) is glc of dimension n,

2. M"= %7, ujM;, where M are relatively nef Cartier divisors on X', and p; € 1,

3. P'' =3, v.P}, where P/ are relatively nef Cartier divisors on X', and v, € J,

4. the coefficients of B belong to I and the coefficients of D belong to J.

Then GLCT, (I,J) C R is the set consisting of all the possible generalized log canonical thresholds
glet(X, B+ M; D + P) where (X, B+ M; D + P) are as above (see Definition 2.3).

Theorem 1.1.  The set GLCT,, (I, J) satisfies the ACC.

Moreover, we give a precise description of the accumulation points of generalized log canonical
thresholds as in [10, Theorem 1.11] and [9, Theorem 1.7]:

Theorem 1.2. If1 is the only accumulation point of the DCC set I C [0,1] and 1 € I = I, then the
accumulation points of GLCT,,(I) := GLCT,,(I,N) belong to GLCT,,_1(I).

2 Preliminaries

Let X be a normal complex analytic space. A prime divisor P on X is an irreducible and reduced closed
subspace of codimension one. An R-divisor (resp. Q-divisor) D on X is a locally finite formal sum
D = ),d;D; of distinct prime divisors D; with coefficients d; € R (resp. d; € Q). If for some point
x € X there is a neighborhood z € U C X such that the restriction D|y of the R-divisor (resp. Q-divisor)
D is a finite R-linear (resp. Q-linear) combination of Cartier divisors, then we say that D is R-Cartier
(resp. Q-Cartier) at z € X. If D is R-Cartier (resp. Q-Cartier) at every € X then we say that D is
R-Cartier (resp. Q-Cartier).
Definition 2.1. We say that (X, B + M) is a generalized pair if there is a proper bimeromorphic
morphism f : X’ — X and an f-nef R-Cartier divisor M’ on X’ such that

1. X’ and X are normal,

2. M= f,M' and B >0,

3. Kx + B+ M is R-Cartier.
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We call B the boundary part and M the nef part of the generalized pair. We can always replace X’ by
a higher model that factors through f, and M’ by its pullback.
We can write
Kx'+B +M = f*(Kx + B+ M)

and we say that the generalized pair (X, B + M) is generalized log canonical (glc) at x € X if there
is a neighborhood = € U C X such that (X', B’)|y is sub-lc (see [7, Remark 3.2]) and is generalized
Kawamata log terminal (gklt) at x € X if there is a neighborhood x € U C X such that (X', B')|y is
sub-klt (see [7, Remark 3.2]). We can also define the log discrepancy a(E,X,B + M) := a(E, X', B’)
for any divisor over X. We say that Z is a log canonical center (resp. log canonical place) of a glc pair
(X,B+ M) if Z is the image of an lc center of (X', B") (resp. a log canonical place of (X', B")).

We say that a glc pair (X, B+M) is generalized divisorially log terminal (gdlt) if we can choose f : X' —
X (in the definition) to be a log resolution of (X, B) such that the log discrepancy is a(F, X, B+ M) >0
for every f-exceptional divisor E.

Definition 2.2. A set I C R satisfies the ACC (resp. DCC) if any non-decreasing (resp. non-
increasing) sequence I, C I is eventually constant. We let O be the set of accumulation points of I and
I=TUdl. If I C[0,+00), then

ik € I}

, meNT, fe]+}.

l

I+:{O}U{Zik € [0,1]

k=1

and
_m—=1+f

If I C [0,1], then we let
.
o) =41- -
n={1-=

Definition 2.3 (Generalized log canonical thresholds for complex analytic spaces). Let (X, B+ M) be
a generalized log canonical pair and let D be an effective R-Cartier R-divisor on X and P = f,P’ where
P’ is a nef divisor on X’. Let ¢ be the supremum of all real numbers such that (X, B+ M +¢(D + P)) is
generalized log canonical, then c is called the generalized log canonical threshold of D + P with respect
to (X, B+ M) and is denoted by lct(X, B+ M;D + P).

Lemma 2.4. If(X,B+ M) and D + P are as above, then (X,B + M + ¢(D + P)) is generalized log
canonical.

Proof.  This follows directly from the definition. O

rEI,mEN+}.

Remark 2.5. Note that the above definition differs from the one in [8] as there does not necessarily
exist a non-Kawamata log terminal center of (X, B + M + ¢(D + P)). The issue is that X may not be
compact. In this case, we may not have a log resolution, and the divisor D may have infinitely many
components (see [8, Example 1.3]). If however X is (relatively) compact, then log resolutions exist, the
two definitions agree, and we always have a log canonical center of (X, B + M + ¢(D + P)) (see [8,
Remark 1.4]).

The next theorem is the analogue of dlt-blowups of generalized pairs in the complex analytic setting:

Theorem 2.6 (Dlt-blowup).  Let X be a normal complez variety and (X, B+M) a generalized pair as in
Definition 2.1. Let U be any relatively compact Stein open subset of X and let V' be any relatively compact
open subset of U. Then we can take a Stein compact subset W of U such that T(W,Ox) is Noetherian,
V. C W, and after shrinking X around W suitably, we can construct a projective bimeromorphic morphism
g:Y — X from a normal complex variety Y with the following properties:

1. Y is Q-factorial over W

2. a(E,X,B+ M) <0 for every g-exceptional divisor E on 'Y

3. (Y, By' 4+ My) is gdlt, where Ky + By + My = f*(Kx + B+ M).
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Proof.  We will freely shrink X suitably without mentioning it explicitly. By taking a resolution of
singularities, we can assume that f : X’ — X is a projective bimeromorphic morphism such that f~1(U)
is smooth and Exc(f) U Supp(f~!B) is a simple normal crossing divisor on f~}(U). Let E be any
f-exceptional divisor such that f(E) N U # (. Then, by enlarging V suitably, we may assume that
f(E)NV # 0. By [7, Lemma 2.16], we can take a Stein compact subset W of U such that I'(W, Ox) is
Noetherian and that V. C W.

Write Kx/ + B+ M' = f*(Kx + B+ M) as in Definition 2.1 and let B’ =, a;D; be the irreducible
decomposition, where each D; is irreducible. Now we define a boundary

A= > aDi+ ) Di+e) E, 1>e>0,
0<a; <1 a; =1 [
where E;’s are all the f-exceptional divisors such that a(F;, X, B+ M) > 0. Then we have

Kx'+A+M = f(Kx+B+M)+F

and we see that — f, F' is effective. Let A be a general ample (over X) Q-divisor such that (X', A+A+M’)
is gdlt and Kx: + A + A+ M’ is nef over W. Notice that for any ¢ > 0, tA + M’ is f-ample. Therefore
(over W) we can write

Kx/ + A+ tA+ M ~q 5 Kx + A

for some klt pair (X', A?). Then by [7, Theorem 1.7] we can run a (Kx: + A + M’)-MMP with scaling
of A over X around W.
Let
(Xo,Ao-FM/) = (X/7A+M/), Fy:=F, M,:= M' and Ay:= A.

Then we obtain a sequence of divisorial contractions and flips:

_QS_O-) (XlaAl +M1) —(b_l-) ces ?i:_)l (X“Al + MZ) _qzi,_),

(Xo, Ao + Mo)
where A;, M;, F;, A; are the corresponding strict transforms. We also have the scaling numbers
12202 2M2-20
such that Kx, + A; + M; + A\; A; is nef over W. Then by [7, Lemma 13.7] we know that
Kx, + Ag + My € Mov (X /X; W)

for some k£ > 0. Thus by the negativity lemma (see [7, Lemma 4.6]) we have —F} > 0 over W. Hence
—F}, is effective over some open neighborhood of W. Let

Y =X, g:Xp—>X, My=M,; and Ky+By+My=g*(Kx+B+M).

Then (Y, By + My ) satisfies 1-3 above. O

3 Proof of the main theorems

Lemma 3.1. We fiz a positive integer n and a set 1 € I C [0,00). Assume that f : X' — X is a
projective morphism, and we have R-divisors B, D > 0 on X and nef R-divisors M', P’ on X' such that

1. (X,B+ M) and (X,B+ D+ M + P) are (n+ 1)-dimensional glc pairs with data given by M’ and
P, where M = f,M',P = f,P’;

2. M' =37, pujMj, where M; are relatively nef Cartier divisors and p; € I;

3. P' =", v Py, where P are relatively nef Cartier divisors and vy, € I;

4. the coefficients of B, D, M’ + P’ belong to I.
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We further assume that there exists a non-gklt center V. of (X,B + D + M + P) such that V is not a
non-gklt center of (X, B4+ M) and dimV < dim X —2. Then we can construct a generalized log canonical
pair (S, A+ N) with S — S and N’ as in Definition 2.1 such that

1. S is a projective variety of dimension at most n;

2. the coefficients of A belong to D(I);

3. Kg + A+ N is numerically trivial;

4 N'"=3".a;Nj, where N; are relatively nef Cartier divisors and a; € I and
at least one of the following happens:

(i) some component of A has coefficient of the form

m—-—1+a+c

)

m

where m is a positive integer, o € I, and ¢ € I is the coefficient of some component of D or P’;

(ii) N} is not numerically trivial for some i and a; = g + vi, where g € I and v, > 0 is a coefficient
of P'.
Proof. ~ 'We can replace V with a maximal (with respect to inclusion) glc center of (X, B+ D+ M + P)
satisfying dim V' < dim X —2 and V is not a glc center of (X, B4+ M). Let @ be an analytically sufficiently
general point of V. Consider an open neighborhood U of @) and a Stein compact subset W of X such
that U C W and that I'(W, Ox) is Noetherian. By Theorem 2.6, after shrinking X around W suitably,
we can construct a projective bimeromorphic morphism 7 : ¥ — X with

Ky +By + Dy + My + Py =" (Kx + B+ D+ M + P)

such that

1. Y is Q-factorial over W, and By, Dy, My, Py are pushforwards of B’, D', M’ P' (after possibly
replacing X’ by a higher model);

2. (Y, By + Dy + My + Py) is gdlt, where By + Dy is the boundary part and My + Py is the nef
part;

3.a(E,X,B+ D+ M+ P) =0 holds for every m-exceptional divisor E; and

4. there exists a m-exceptional divisor F' such that 7=(F) = V.

Let D be the strict transform of D on X’ and Dy be the pushforward of D on Y. We first claim
that we can choose F in (4) such that (Dy + Py)|p, is not numerically trivial, where v € V N U is an
analytically sufficiently general point (see [7, Definition 2.50]). Let

E =n*(D+ P) — Dy — Py,

and then we can see E > 0 since (X, B+ M) is glc and every m-exceptional divisor E; has log discrepancy
a(E;,X,B+ D+ M + P) = 0. Moreover, since V is not a log canonical center of (X,B + M), E is
non-trivial. Therefore by [3, Lemma 3.6.2] (see also [7, Section 11]) there is a component F' of E with
a covering family of curves C' (contracted over X) such that E-C < 0. So (Dy + Py) - C > 0 for such
curves and hence (Dy + Py)|p is not numerically trivial over sufficiently general points of V.

After replacing X’ by a higher model, we may assume that g : X’ — Y is a projective morphism. Let

Kx+A+M +P =f*(Kx+B+D+ M+ P)
and I be the strict transform of F' on X’. Let Ags be the R-divisor defined by the adjunction
Kp+ Apr = (Kxr + A)|p

and Ap, Mg, Pr be the pushforwards of Ap/, M'|pr, P'|ps, respectively, and then these data define a
generalized pair (F, Ap + Mp + Pr) with nef part Mpr + Pr as in Definition 2.1 and we have

(Ky+By+Dy+My+Py)|pNRKF-FAF-I-MF-‘FPF.
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Following [4, Definition 4.7 and Remark 4.8], (F, Ar + MFr + Pr) is generalized log canonical.

Next, we calculate the coefficients of Ap. Cutting by hyperplanes in Y we can assume that dimY = 2
(note that we are working over a Stein set W and Y is projective over W). Let p € F' be a point and
I, be the Cartier index at p € Y. In this case we may assume that F’ is a normal curve isomorphic to
F (since F is already normal), so we may also regard p as a point on F’. Then by classification of klt
surface singularities we obtain that

l,—1
mult, Ap = 2 + mult,(By + Dy — F)|p + mult,((¢"(My + Py) — M’ — P')| /)
P
l,—1
b mLEBET g,
Ly
where

multy,(By + Dy — F)|r = lﬁ, mult, ((¢" (My + Py) = M’ = P')|p/) = 11
P p

and 3,v,8 + v € I, by the assumptions on the coefficients of B + D and M’ + P’.

Let S (resp. S’) be the general fiber of the Stein factorization of F' — V (resp. F' = V), A = Ap|g,
N’ = (M'+ P')|sr and N = (Mg + Pr)|s. Then, these data define a generalized pair (S, A + N) with
nef part N as in Definition 2.1 and we have

1. (S, A+ N) is generalized log canonical;

2. Ks + A+ N ~p 0;

3. the coefficients of N’ belong to I;

4. (Dy 4 Py)|s is not numerically trivial.

If P'|ss is not numerically trivial, then (ii) in the statement is satisfied and we are done. So we can
assume that P’|gs = 0, hence Pp|s = 0. If we write g*(Py) = P’ + G and let Gs be the pushforward of
G|s on S, then we have

(Dy + Py)|ls = Prls + Gs + Dg = G + Dg # 0,

where Dg := Dy|s. Let R be the pushforward of (¢*(My + Py) — M’ — P)|p on F and Rg := Rr|s,
and then mult,(Rp) = % in the previous computation. Notice that Dg < (By +Dy —F)|s and Gs < Rg,

therefore Gg + Dg # 0 implies that (i) holds. O

Theorem 3.2. Let A be a DCC set of non-negative real numbers and d a positive integer. Assume
X, Bi, M;, M/, D;, P!, P/ are as in Definition 2.3 such that for any i > 1,

. (Xi, Bi + M;) are glc pairs of dimension d;

M =32, wigM; ;, where Mj ; are relatively nef Cartier divisors and pi; ; € A;

- Pl =32y vik Py, where P/, are relatively nef Cartier divisors and v; j; € A;

. the coefficients of B; and D; belong to A;

. (Xi, Bi + M; + t;D; + t; P;) is glc and has a glc center V; which is not a glc center of (X;, B; + M;)
for some t; > 0.

Then T = {t;}i>1 is an ACC set.

Proof.  Assume that the sequence {t;};>1 is strictly increasing. If dimV; = d — 1 for infinitely many 4,
then we have 1 — t;A; = X, € AN [0,1] for some 0 < \; € A. Let

O W N =

1
Flt:{)\‘0<)\€A}, Fglz{l—A/|A/€Aﬁ[0,1]},

and then I'y, 'y and I'; - Ty are ACC sets. Passing to a subsequence we have {t;};>1 C I'y - 'y, which
contradicts the assumption that {¢;};>1 is strictly increasing. Therefore passing to a subsequence we can
assume that dimV; < d — 2.
Let
I'=AU(T-ANUA+T-A),
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and then I is also a DCC set. Possibly replacing {¢;};>1 by a subsequence, by Lemma 3.1 and [4,
Theorem 1.6], one of the following happens:

(i) W belongs to a finite set A° for every i > 1, where m; € N*, a; € I, and 0 < ¢; € I;

(ii) g; + t;vix belongs to a finite set A° for every i > 1, where g; € I and v; j, > 0.
In either case we can conclude that ¢; must belong to a finite set A, which is a contradiction and we are

done. O

It is easy to see that Theorem 1.1 is equivalent to the following theorem (letting A = I U J), whose
algebraic case is exactly [4, Theorem 1.5].

Theorem 3.3 (ACC for generalized lc thresholds).  Let A be a DCC set of nonnegative real numbers
and d a natural number. Then there is an ACC set © depending only on A and d such that if (X, B+ M),
M', P, P, D are as in Definition 2.3, and

1. (X, B+ M) is glc of dimension d;

2. M’ = Zj i Mj, where M are relatively nef Cartier divisors and pi; € A;

3. P' =%, vk Py, where P} are relatively nef Cartier divisors and vy, € A; and

4. the coefficients of B and D belong to A,
then the generalized lc threshold glct(X, B+ M; D + P) of D + P with respect to (X, B+ M) belongs to
0.

Proof.  Suppose that
c=glet(X,B+ M;D+ P) >0,

and then there exists a non-increasing sequence c¢; > ¢;+1 > --- with lim;_,, ¢; = c and relatively compact
open subsets U; C X such that

where B; + M;+ D; + P, = (B+ M+ D+ P)|y,. By Remark 2.5 we know that (U;, B; + M; +¢;D; +¢; P;)
has a glc center which is not a glc center of (U;, B; + M;). Since the closure of an ACC set is also
an ACC set, it suffices to consider relatively compact varieties X, and then the statement follows from

Theorem 3.2. O
Proof of Theorem 1.2.  Suppose c¢ is an accumulation point of GLCT, (I). Then again there exists a
non-increasing sequence c¢; = ¢;4+1 = -+ with lim;_, ., ¢; = ¢ and relatively compact open subsets U; C X
such that

C; = glCt(Ui,Bi + Mi; D; + Pi),

where B; + M;+ D;+ P; = (B+ M + D+ P)|y,. Therefore by Lemma 3.1 we know that ¢; € Ny(I,N,N),
which is defined in [9, Definition 2.18]. Notice that since the generalized pair (S, A + N) constructed in
Lemma 3.1 is projective, we are in the algebraic setting and so the proof follows from [9)]. O
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