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Abstract

We present three new brown dwarf spectral-binary candidates: CWISE J072708.09−360729.2, CWISE
J103604.84−514424.4, and CWISE J134446.62−732053.9, discovered by citizen scientists through the
Backyard Worlds: Planet 9 project. Follow-up near-infrared spectroscopy shows that each of these objects is
poorly fit by a single near-infrared standard. We constructed binary templates and found significantly better fits,
with component types of L7+T4 for CWISE J072708.09−360729.2, L7+T4 for CWISE J103604.84−514424.4,
and L7+T7 for CWISE J134446.62−732053.9. However, further investigation of available spectroscopic indices
for evidence of binarity and large amplitude variability suggests that CWISE J072708.09−360729.2 may instead
be a strong variability candidate. Our analysis offers tentative evidence and characterization of these peculiar
brown dwarf sources, emphasizing their value as promising targets for future high-resolution imaging or
photometric variability studies.

Unified Astronomy Thesaurus concepts: Brown dwarfs (185); L dwarfs (894); T dwarfs (1679); Binary stars (154)

1. Introduction

Brown dwarfs occupy a unique space between stars and
planets, possessing masses below the threshold required for
sustained hydrogen fusion in their cores (Kumar 1962; Hayashi &
Nakano 1963; Kumar 1963). Their cool temperatures and intrinsic
faintness make them difficult to detect, and nearby brown dwarfs
are continuing to be discovered (e.g., Marocco et al. 2019;
Bardalez Gagliuffi et al. 2020; Best et al. 2020; Meisner et al.
2020a, 2020b; Kirkpatrick et al. 2021a, 2021b; Schneider et al.
2021; Kota et al. 2022; Lodieu et al. 2022; Schapera et al. 2022).
The Backyard Worlds: Planet 9 project (Kuchner et al. 2017)
leverages the collaboration between citizen and professional
scientists to locate nearby substellar objects by identifying and
analyzing moving objects in images from the Wide-field Infrared
Survey Explorer (Wright et al. 2010; Mainzer et al. 2014).
Multiepoch WISE images and motion measurements from WISE
data (CatWISE 2020; Marocco et al. 2021) have allowed for
numerous discoveries missed by previous surveys, many of which
were based solely on infrared colors or limited to nearby objects
with very large proper motions. In addition to finding new nearby
brown dwarfs, the Backyard Worlds project has been adept at
discovering unusual substellar objects, such as old, low-metallicity
subdwarfs (Schneider et al. 2020; Meisner et al. 2021; Brooks
et al. 2022) and comoving companions (Faherty et al. 2020, 2021;

Jalowiczor et al. 2021; Kiwy et al. 2021, 2022; Rothermich et al.
2021; Gramaize et al. 2022; Softich et al. 2022). In this study, we
examine three spectrally peculiar brown dwarfs found in
the Backyard Worlds program: CWISE J072708.09−360729.2
(W0727−3607), CWISE J103604.84−514424.4 (W1036−5144),
and CWISE J134446.62−732053.9 (W1344−7320). These
objects were discovered by citizen scientists Dan Caselden, Arttu
Sainio, and Les Hamlet. Each were flagged as high-priority for
follow-up observations because their photometry and estimated
spectral types indicated that they may be nearby (d< 25 pc).
Properties of these three sources are provided in Table 1.

2. Observations

W0727−3607, W1036−5144, and W1344−7320 were
observed with the TripleSpec4.1 near-infrared spectrograph
(Schlawin et al. 2014; Herter et al. 2020) located at the Southern
Astrophysical Research (SOAR) telescope. TripleSpec4.1 simulta-
neously covers 0.8−2.4 μm using six cross-dispersed orders with a
resolving power of ∼3500. The observations were conducted in
AEON queue mode and took place on 2023 April 16 (UT), 2023
February 10 (UT), and 2023 March 14 (UT) for W0727−3607,
W1036−5144, and W1344−7320, respectively. The spectra were
obtained in an ABBA pattern with 120 second exposures. The total
integration times for W0727−3607, W1036−5144, and W1344
−7320 were 2880, 2400, and 1920 s, respectively. A0 stars were
observed immediately after each science target for telluric
correction and flux calibration. Data reduction and telluric
correction was performed using a modified version of the Spextool
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data reduction package (Vacca et al. 2003; Cushing et al. 2004).
The final reduced spectra are shown in Figure 1.

3. Analysis

To determine preliminary spectral types, we compared to the
near-infrared L and T dwarf standards from Kirkpatrick et al.
(2010) and Burgasser et al. (2006b), with the exception of the
L7 standard, where we use 2MASSI J0825196+ 211552 as
recommended in Cruz et al. (2018), as the original L7 near-
infrared standard appears to have an unusually low surface
gravity and age. The best-fitting standards for each object are
shown in the left column of Figure 1, and match reasonably
well in the J-band region, but show significant discrepancies
beyond ∼1.5 μm. To ensure that differences between standards
and the observed spectra were not due to uncertainties incurred
when stitching orders or some other observational systematic,
we calculated synthetic photometric J−KS colors using the
VISTA filter response curves. We find synthetic colors

consistent with the photometric colors in Table 1 to within
1σ. For this reason, we constructed binary templates in an
attempt to better fit the observed spectra.
We utilized the same spectral standards as above, with a few

exceptions to account for known distance and multiplicity. The L2
near-infrared standard is a resolved binary (Liu & Leggett 2005),
so we instead use the L2 object 2MASS J04082905−1450334
(Wilson et al. 2003; Bardalez Gagliuffi et al. 2014). The L5 near-
infrared standard 2MASS J08350622+1953050 has no measured
parallax, so we instead use the L5 2MASS J21373742+0808463
(Reid et al. 2008; Burgasser et al. 2010). The T0 near-infrared
standard is suspected to be a spectral binary (Burgasser et al.
2010; Ashraf et al. 2022), thus we employed the T0 WISEPA
J015010.86+382724.3 (Kirkpatrick et al. 2011). Lastly, the T3
standard 2MASS J12095613−1004008 is a resolved binary (Liu
et al. 2010), and we therefore use the T3 WISEPC J223937.55
+161716.2 (Kirkpatrick et al. 2011). The objects used to create
spectral binary templates are summarized in Table 2.

Table 1
Candidate Spectral Binary Propertiesa

CatWISE Name J KS μα μδ SpT SpT
(mag) (mag) (mas yr−1) (mas yr−1) (single) (binary)

CWISE J072708.09−360729.2 16.521 ± 0.017 15.344 ± 0.026 −54.0 ± 8.3 233.6 ± 9.3 T4 L7+T4
CWISE J103604.84−514424.4 15.977 ± 0.012 14.776 ± 0.015 −108.1 ± 6.8 −62.7 ± 8.0 T2 L7+T4
CWISE J134446.62−732053.9 15.890 ± 0.087 14.185 ± 0.010 −34.3 ± 5.4 143.3 ± 6.7 T4 L7+T7

Note.
a All near-infrared photometry comes from the Vista Hemisphere Survey (VHS; McMahon et al. 2013), with the exception of the J-band magnitude of CWISE
J134446.62−732053.9, which comes from 2MASS (Skrutskie et al. 2006). All proper motions listed are taken from the CatWISE 2020 catalog (Marocco et al. 2021).

Figure 1. Observed SOAR/TripleSpec4.1 spectra for W0727−3607 (top), W1036−5144 (middle), and W1344−7320 (bottom), with gray lines showing the full
resolution and black lines showing the spectra smoothed to the resolution of the standards and binary templates (R ≈ 150) according to their parallax-based absolute
fluxes. The left-hand column depicts the best-fitting single standards (orange line) for the spectra of the three candidates while the right-hand column shows both the
binary template (orange line) and the standard spectra that compose it (purple line for primary, blue line for secondary). Reduced 2cn values are reported for each of
the fits.
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To generate spectral binary templates, we acquired near-
infrared spectra from the the SpeX Prism Library Analysis
Toolkit (SPLAT; Burgasser & Splat Development Team 2017).
We absolute flux calibrated each spectrum using UKIDSS
Hemisphere Survey (Dye et al. 2018) or Vista Hemisphere
Survey (VHS; McMahon et al. 2013) J-band photometry, and
measured parallaxes (Tinney et al. 2003; Dupuy & Liu 2012;
Manjavacas et al. 2013; Dahn et al. 2017; Best et al. 2020;
Kirkpatrick et al. 2021a; Gaia Collaboration et al. 2023).
Finally, we added the spectra together and normalized the
result to the J-band peak between 1.27 and 1.29 μm. We
compared the resulting templates to each observed spectrum
and found the best fits by calculating 2cn values following
Burgasser et al. (2010).

3.1. Spectral Index Calculations

Spectral indices are also used to identify potential objects of
interest (e.g., young brown dwarfs, spectral binaries, and
photometric variables). We follow the methods and calculate
the indices defined in Burgasser et al. (2002, 2006b, 2010) and
Bardalez Gagliuffi et al. (2014) for our observed objects
(Table 3) and a large comparison sample from the SPLAT
library. Uncertainties were determined in a Monte Carlo
fashion. We use binary index regions from Burgasser et al.
(2010)’ and variability regions from Ashraf et al. (2022) in the
following sections.

4. Results and Discussion

The observed discrepancies between observed spectra and
existing spectral standards can be attributed to various factors
—such as binarity, variability, youth, and metallicity—or a
combination of these influences, as discussed below.

4.1. Binarity

4.1.1. Analysis of Binary Templates

The right column of Figure 1 compares the best-fitting binary
templates to our sources. The discrepancies observed with the
single fits beyond approximately 1.5 μm are greatly reduced with
the binary templates, as verified by lower 2cn values. A discussion
of the results for each individual object follows.
CWISE J072708.09−360729.2: the best-fitting T4 single

standard exhibits a significantly higher 2cn = 503 compared to
the L7+T4 binary template, which has 2cn = 39.7. Following
Burgasser et al. (2010), we evaluate our fits with a one-sided
F-test, finding ηSB= 12.7, well above the ηSB >1.34 spectral
binary confidence threshold given in that work. Although the
binary template provides a superior fit overall, discrepancies
persist, particularly at the H-band peak. We retain W0727
−3607 as a spectral binary candidate, but discuss below that it
is also a potential variable source (see Section 5).
CWISE J103604.84−514424.4: W1036−5144 shows a

lower-than-expected peak in the H band and more flux across
the K band compared to the T2 standard. These discrepancies

Table 2
Properties of Objects Used to Create Binary Templates

SpT Discovery Discovery Spec. J Reference ϖ Reference
Name Reference Reference (mag) (mas)

L0 2MASSP J0345432+254023 1 15 13.924 ± 0.003 23 37.89 ± 0.26 27
L1 2MASS J21304464−0845205 2 16 14.059 ± 0.002 24 37.47 ± 0.31 27
L2 2MASS J04082905−1450334a 3 16 14.128 ± 0.002 24 45.57 ± 0.27 27
L3 2MASSW J1506544+132106 4 17 13.211 ± 0.002 25 85.43 ± 0.19 27
L4 2MASS J21580457−1550098 2 16 14.794 ± 0.004 24 43.11 ± 0.91 27
L5 2MASS J21373742+0808463b 5 18 14.644 ± 0.005 25 66.37 ± 0.66 27
L6 2MASSI J1010148−040649 6 19 15.372 ± 0.005 24 57.7 ± 3.6 28
L7 2MASSI J0825196+211552 7 18 15.014 ± 0.005 25 93.19 ± 0.59 29
L8 2MASSW J1632291+190441 8 17 15.823 ± 0.010 25 66.29 ± 1.61 29
L9 DENIS J025503.3−470049 9 20 13.122 ± 0.001 24 205.43 ± 0.19 27
T0 WISEPA J015010.86+382724.3c 10 10 15.901 ± 0.010 25 44.6 ± 3.2 28
T1 SDSS J083717.21−000018.0 11 20 16.929 ± 0.007 26 29.8 ± 2.7 30
T2 SDSS J125453.90−012247.5 11 21 14.694 ± 0.002 26 78.34 ± 1.07 29
T3 WISEPC J223937.55+161716.2d 10 10 15.995 ± 0.010 25 42.9 ± 3.0 30
T4 2MASSI J2254188+312349 12 21 15.000 ± 0.005 25 72.0 ± 3.0 31
T5 2MASS J15031961+2525196 13 21 13.621 ± 0.003 25 155.78 ± 0.76 27
T6 SDSSp J162414.37+002915.6 14 22 15.187 ± 0.006 25 90.9 ± 1.2 32
T7 2MASSI J0727182+171001 12 22 15.210 ± 0.006 25 112.5 ± 0.9 33
T8 2MASSI J0415195−093506 12 21 15.327 ± 0.004 24 175.2 ± 1.7 33

Notes.
a This object replaces the L2 near-infrared standard (Kelu-1), which is a resolved binary (Liu & Leggett 2005).
b This object replaces the L5 near-infrared standard (2MASS J08350622+1953050), which has no measured parallax.
c This object replaces the T0 near-infrared standard (2MASS J12074717+0244249), which is a suspected spectral binary (Burgasser et al. 2010).
d This object replaces the T3 near-infrared standard (2MASS J12095613−1004008), which is a resolved binary (Liu et al. 2010).
References. (1) Kirkpatrick et al. (1997); (2) Kirkpatrick et al. (2008); (3) Wilson et al. (2003); (4) Gizis et al. (2000); (5) Reid et al. (2008); (6) Cruz et al. (2003); (7)
Kirkpatrick et al. (2000); (8) Kirkpatrick et al. (1999); (9) Martín et al. (1999); (10) Kirkpatrick et al. (2011); (11) Leggett et al. (2000); (12) Burgasser et al. (2002);
(13) Burgasser et al. (2003); (14) Strauss et al. (1999); (15) Burgasser & McElwain (2006); (16) Bardalez Gagliuffi et al. (2014); (17) Burgasser (2007); (18) Burgasser
et al. (2010); (19) Reid et al. (2006); (20) Burgasser et al. (2006b); (21) Burgasser et al. (2004); (22) Burgasser et al. (2006a); (23) Lawrence et al. (2007); (24)
McMahon et al. (2013); (25) Dye et al. (2018); (26) Edge et al. (2013); (27) Gaia Collaboration et al. (2023); (28) Kirkpatrick et al. (2021a); (29) Dahn et al. (2017);
(30) Best et al. (2020); (31) Manjavacas et al. (2013); (32) Tinney et al. (2003); (33) Dupuy & Liu (2012).
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are largely resolved in the L7+T4 binary fit, with only minor
deviations in the J band and in the longest wavelengths of the K
band. The binary fit yields a significantly lower 2cn = 16.8,

compared to the 2cn = 107.4 for the single fit, and yields
ηSB= 6.4, consistent with the spectral binary criteria specified
in Burgasser et al. (2010).

CWISE J134446.62−732053.9: the single standard fit to
W1344−7320 has H and K bands that are underluminous,
leading to a relatively poor 2cn = 610. The L7+T7 binary template

yields a significantly improved fit with 2cn = 13.7. Although there

is a slight discrepancy in Y band, where the template is too bright
compared to the observed spectrum, the remainder of the J-, H-,
and K-band regions exhibit a well-matched morphology. Our 2cn
values correspond to ηSB = 44.5, which again satisfies the spectral
binary criteria specified in Burgasser et al. (2010).

4.1.2. Analysis of Binary Indices

The spectral indices shown to be indicative of binarity in
Burgasser et al. (2010) are shown in Figure 2. That study
designated sources that satisfied at least three index criteria as

Table 3
Spectral Index Values

Spectral Object Referencea

Index W0727−3607 W1036−5144 W1344−7320

H2O-J 0.392 ± 0.009 0.546 ± 0.009 0.467 ± 0.017 1
CH4-J 0.542 ± 0.006 0.586 ± 0.004 0.579 ± 0.010 1
J-Curve 4.121 ± 0.084 2.970 ± 0.042 3.286 ± 0.104 2
CH4-H 0.999 ± 0.011 0.822 ± 0.005 0.858 ± 0.011 1
H-Bump 0.852 ± 0.012 1.120 ± 0.008 1.056 ± 0.016 2
H-Dip 0.518 ± 0.006 0.459 ± 0.003 0.451 ± 0.006 3
CH4-K 0.607 ± 0.010 0.801 ± 0.009 0.909 ± 0.013 1
K-Slope 0.960 ± 0.010 0.975 ± 0.008 0.973 ± 0.012 4
K/J 0.453 ± 0.005 0.433 ± 0.003 0.559 ± 0.007 1
H2O-H 0.414 ± 0.010 0.572 ± 0.006 0.622 ± 0.013 1

Binarityb weak strong strong
Variabilityc strong L L

Notes.
a Given reference corresponds to the work where the index was originally defined.
b Based on the index criteria defined in Burgasser et al. (2010).
c Based on the index criteria defined in Ashraf et al. (2022).
References. (1) Burgasser et al. (2006b); (2) Bardalez Gagliuffi et al. (2014); (3) Burgasser et al. (2010) Burgasser et al. (2002).

Figure 2. Index-index plots highlighting regions defined in Burgasser et al. (2010) and Bardalez Gagliuffi et al. (2015), as indicative of spectral binarity (red-shaded
regions). Background gray points are SPLAT objects with spectral types between L3 and T8. The three targets of this study are shown in the legend.
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“strong” candidates, and two index criteria as “weak”
candidates.

CWISE J072708.09−360729.2: W0727−3607 falls within
two of five regions indicative of binarity, and are very close to
the edges of these regions. This classifies the source as a weak
candidate. Note that we exclude for consideration the
H2O-J/H2O-H versus spectral type comparison as it is not
applicable for spectral types later than T3.5. Along with the
mediocre fit of the L7+T4 binary template, this result suggests
a factor other than binarity is responsible for this object’s
unusual spectrum.

CWISE J103604.84−514424.4: W1036−5144 satisfies five
of six regions, making it a strong binary candidate. Considering
the well-fit binary template, binarity is a strong possibility for
this source.

CWISE J134446.62−732053.9: W1344−7320 satisfies five
of five binary regions (excluding H2O-J/H2O-H versus spectral
type), making it a strong binary candidate. Again, the well-fit

binary template of L7+T7 makes this object a likely spectral
binary.

4.1.3. Distance Estimation

If these objects are indeed spectral binaries, then updated
distance estimates can be obtained by scaling the best-fitting
absolutely flux calibrated binary templates to each object’s
observed photometric magnitudes. Using J-band photometry
from VHS for W0727−3607 and W1036−5144 and 2MASS
(Skrutskie et al. 2006) for W1344−7320, we find estimated
distances of 34± 7 pc, 27± 5 pc, and 20± 4 pc, respectively.

4.2. Variability

There is evidence that some spectral binary candidates are
instead single stars with inhomogeneous atmospheres as
indicated via their photometric or spectroscopic variability
(e.g., 2MASS J21392676+0220226; Radigan et al. 2012;

Figure 3. Index-index plots highlighting the regions indicative of photometric variability defined in Ashraf et al. (2022; green-shaded regions). Background gray
points are SPLAT objects with spectral types between L7 and T3, with our three observed targets indicated shown in the legend.
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Khandrika et al. 2013). We applied the spectral index criteria
introduced in Ashraf et al. (2022) to analyze the spectra of
W0727−3607, W1036−5144, and W1344−7320 and evaluate
their potential as strong variable sources. This method uses
single low-resolution spectra to empirically identify spectral
indices that may be indicative of variability based on known
variable sources. The idea is that cloudy or patchy layers at
different temperatures in a brown dwarf atmosphere that lead to
photometric variability may have measurable effects in the
emergent spectra of these objects. Note that we do not examine
any index-index criteria that use the H2O-K index, as the region
of the numerator range (1.975−1.995 μm) is especially noisy
in our TripleSpec4.1 spectra. In Figure 3, there are nine total
index-index correlation plots, as discussed below. Ashraf et al.
(2022) only considered objects that satisfied all of their
variability index criteria as “strong” candidates, and those that
satisfied all but one of their outlined criteria as “weak”
candidates.

4.2.1. Analysis of Variable Indices

CWISE J072708.09−360729.2: W0727−3607 falls within all
of the designated regions indicating potential variability. Coupled
with the weak spectral binary designation and less accurate match
to binary templates, variability appear to be at least partly
responsible for the unusual shape of this object’s spectrum. We
investigated potential variability using WISE single-exposure
photometry following the methods in Schneider et al. (2023). We
found no clear signs of variability in the single-exposure WISE
data, with W1 and W2 photometric standard deviation values
within 1σ of the median value for objects with similar magnitudes.
However, we note that with magnitudes of W1= 14.639± 0.018
mag and W2= 13.862± 0.15 mag, W0727−3607 may be too
faint to detect significant variability in WISE data, as no variables
were identified in Schneider et al. (2023) with magnitudes as faint
as these.

CWISE J103604.84−514424.4: W1036−5144 consistently
lies outside the range indicative of potential variability,
supporting the spectral binary hypothesis.

CWISE J134446.62−732053.9: W1344−7320 satisfies four
of the nine variability regions, below the weak candidate
threshold of Ashraf et al. (2022) again, the spectral binary
hypothesis is favored for this object.

5. Conclusions

In this study, we presented three new brown dwarf spectral
binary candidates: CWISE J072708.09−360729.2, CWISE
J103604.84−514424.4, and CWISE J134446.62−732053.9.
By constructing binary templates and comparing them to the
observed spectra, we found significantly better fits, revealing
component types of T0+T7 for CWISE J072708.09
−360729.2, L7+T4 for CWISE J103604.84−514424.4, and
L7+T7 for CWISE J134446.62−732053.9. However, our
investigation of variability indices suggests that CWISE
J072708.09−360729.2 is a strong variability candidate.

The rarity of brown dwarf–brown dwarf binary systems, as
consistently highlighted by statistical studies (Burgasser 2007;
Radigan et al. 2013; Aberasturi et al. 2014; Opitz et al. 2016;
Fontanive et al. 2018), underscores the importance of pinpointing
more such systems. Moreover, the ability to identify spectral
binaries offers the advantage that their orbital period are
sufficiently short to be amenable to dynamical-mass follow up

(Burgasser et al. 2012; Bardalez Gagliuffi et al. 2015; Burgasser
et al. 2016; Sahlmann et al. 2020). Similarly, variable brown
dwarfs provide opportunities to study their rotational and
atmospheric dynamics, particularly through multiwavelength
studies (Buenzli et al. 2012; Apai et al. 2013; Radigan et al.
2013). Future work includes confirming the binary and/or
variability nature of these objects through high-resolution
imaging and photometry, astrometric, and radial velocity
monitoring. Increasing the sample of close binary and variable
brown dwarfs has the potential to advance our understanding of
substellar formation, evolution, and dynamics.
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