

AAS-PROVIDED PDF • OPEN ACCESS

## Scarlet Spectra: Two Red L Dwarfs Revealed by SOAR

To cite this article: Grady Robbins *et al* 2023 *Res. Notes AAS* **7** 144

Manuscript version: AAS-Provided PDF

This AAS-Provided PDF is © 2024 The Author(s). Published by the American Astronomical Society.



Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence  
<https://creativecommons.org/licenses/by/4.0>

Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.

View the [article online](#) for updates and enhancements.

## Scarlet Spectra: Two Red L Dwarfs Revealed by SOAR

1 GRADY ROBBINS ,<sup>1,2</sup> AARON M. MEISNER ,<sup>2</sup> ADAM C. SCHNEIDER ,<sup>3</sup> J. DAVY KIRKPATRICK ,<sup>4</sup> DAN CASELDEN ,<sup>5</sup>  
 2 ADAM J. BURGASSER ,<sup>6</sup> JACQUELINE K. FAHERTY ,<sup>5</sup> MARC J. KUCHNER ,<sup>7</sup> FEDERICO MAROCCHI ,<sup>4</sup>  
 3 JONATHAN GAGNÉ ,<sup>8</sup> SARAH CASEWELL ,<sup>9</sup> THE BACKYARD WORLDS: PLANET 9 COLLABORATION, AND  
 4 THE BACKYARD WORLDS: COOL NEIGHBORS COLLABORATION

<sup>5</sup> *Department of Astronomy, University of Florida, 201 Criser Hall, Gainesville, FL 32611*

<sup>6</sup> *NSF's National Optical-Infrared Astronomy Research Laboratory, 950 N. Cherry Ave., Tucson, AZ 85719, USA*

<sup>7</sup> *United States Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Rd., Flagstaff, AZ 86005, USA*

<sup>8</sup> *IPAC, Mail Code 100-22, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA*

<sup>9</sup> *Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, NY 10024, USA*

<sup>6</sup> *Center for Astrophysics and Space Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA*

<sup>7</sup> *Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA*

<sup>8</sup> *Planétarium Rio Tinto Alcan, 4801 Pierre-de Coubertin Ave, Montreal, Quebec H1V 3V4, Canada*

<sup>9</sup> *School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK*

### ABSTRACT

We present the analysis of two unusually red L dwarfs, CWISE J075554.14–325956.3 (W0755–3259) and CWISE J165909.91–351108.5 (W1659–3511), confirmed by their newly obtained near-infrared spectra collected with the TripleSpec4 spectrograph on the SOAR Telescope. We classify W0755–3259 as an L7 very low-gravity (VL-G) dwarf, exhibiting extreme redness with a characteristic peaked *H*-band and spectral indices typical of low-gravity late-type L dwarfs. We classify W1659–3511 as a red L7 field-gravity (FLD-G) dwarf, with a more rounded *H*-band peak and spectral indices that support a normal gravity designation. W1659–3511 is noticeably fainter than W0755–3259, and the rounded *H*-band of W1659–3511 may be evidence of CH<sub>4</sub> absorption.

*Keywords:* L dwarfs, Brown dwarfs, Spectroscopy, Near-infrared spectroscopy, Low-gravity dwarf, Field-gravity dwarf

### 1. INTRODUCTION

The Backyard Worlds projects (Kuchner et al. 2017; Humphreys et al. 2020) aim to discover new substellar objects in the solar neighborhood by applying citizen science to find potential moving objects. CWISE J075554.14–325956.3 (hereafter W0755–3259) and CWISE J165909.91–351108.5 (hereafter W1659–3511) were identified as part of the Backyard Worlds project by citizen scientist Dan Caselden. Both objects were determined to have significant proper motions in CatWISE2020 (Marocco et al. 2021). Photometric distance estimates suggest that each of these objects may be within  $\sim$ 25 pc of the Sun, and were both flagged for follow-up spectroscopy.

### 2. OBSERVATIONS

Near-infrared spectra of W0755–3259 and W1659–3511 were obtained using the TripleSpec4 near-infrared spectrograph (Schlawin et al. 2014; Herter et al. 2020) located at the 4.1m Southern Astrophysical Research (SOAR) telescope. Observations were taken in queue mode on April 17, 2023 (UT) and April 29, 2023 (UT), respectively. Using a slit width of 1''.1, TripleSpec4 returns simultaneous spectra across six cross-dispersed orders covering the 0.8–2.4  $\mu$ m range with a resolving power of  $\sim$ 3500. 180-second exposures were taken at different nod positions, with 16 nods obtained for W0755–3259 and 20 nods obtained for W1659–3511.

Spectral extractions and telluric corrections were performed with a modified version of the SpeXtool package (Vacca et al. 2003; Cushing et al. 2004) using A0 stars taken just after the target. W0755–3259 is a previously known source discovered in Scholz & Bell (2018), but its spectrum has not yet been analyzed and the parallax for this source has not yet been used to investigate moving group membership. Both of these objects are located in crowded fields, with W0755–3259 (l, b)  $\sim$  (249, -2) and W1659–3511 (l, b)  $\sim$  (349, +5).

44  
3. ANALYSIS OF W0755-3259 SPECTRUM

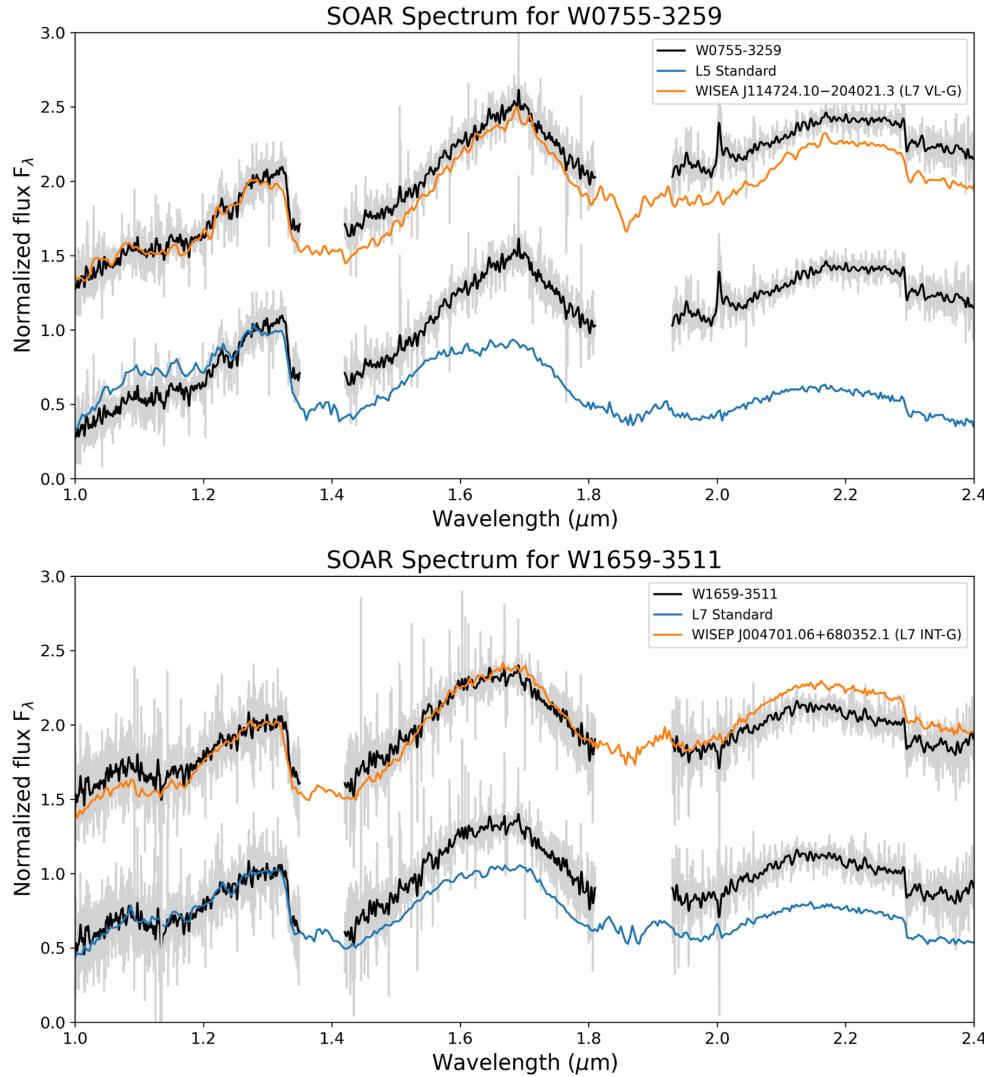
45 The spectra for W0755–3259 and W1659–3511 were compared to M, L, and T spectral standards, as well as VL-G,  
 46 intermediate-gravity (INT-G), and FLD-G spectra contained the SPLAT Python library (Burgasser & the SPLAT  
 47 Development Team 2017). The spectra were Gaussian-smoothed to the resolution of the standards ( $\Sigma = 5$ ) and  
 48 normalized between 1.27 and 1.29  $\mu\text{m}$ .

49 Using the  $J$ -band classification method referenced in Kirkpatrick et al. (2010), W0755-3259 visually best matched  
 50 the spectrum of the L5 dwarf standard 2MASS J08350622+1953050 discovered in Chiu et al. (2006) and recommended  
 51 by Kirkpatrick et al. (2010) (see Figure 1). However, it is important to note that despite being the closest match  
 52 among the standards, W0755–3259 remains unusually red compared to any dwarf standard. The  $J$ -band exhibits  
 53 noticeable differences, suggesting that this object would be classified as L5 (pec) if based on the standards alone.

54 When comparing to INT-G and VL-G dwarf spectra in the SPLAT library (Burgasser & the SPLAT Develop-  
 55 ment Team 2017), a close visual correlation was found between the  $J$ - band and  $H$ -band of W0755–3259 and the L7  
 56 VL-G dwarf WISEA J114724.10–204021.3 (Schneider et al. 2016) (see Figure 1), so we assign a classification of L7  
 57 VL-G even though the  $K$ -band of W0755–3259 is still redder.

58 Determining the gravity type of these objects through non-visual means is challenging, as many methods of gravity  
 59 classification are designed for dwarfs with spectral types earlier than L7 (e.g., Allers & Liu 2013; Cruz et al. 2017).  
 60 For L7 and later, one of the few accurate methods is measuring the H-cont index of the blue side of the  $H$ -band, as  
 61 discussed in Allers & Liu (2013). The H-cont index for W0755–3259 is  $1.00 \pm 0.04$ , a value expected for VL-G dwarfs  
 62 with  $\text{H-cont} \approx 1$ . Another gravity index is the  $K$ -band  $H_2(K)$  index described in Carty et al. (2013). W0755–3259  
 63 has  $H_2(K) = 1.03 \pm .04$  between 2.17 and 2.24  $\mu\text{m}$ , whereas VL-G dwarfs have  $H_2(K) \leq 1.045$  (Schneider et al. 2014).  
 64 Additionally, the spectrum exhibits the characteristic triangular shape in the  $H$ -band often seen in VL-G dwarfs,  
 65 further confirming the classification of W0755–3259 as L7 VL-G.

66 Using the parallax and proper motion determined in Kirkpatrick et al. (2021), we find a 98.6% probability of  
 67 membership in the Carina-Near Association (Zuckerman et al. 2006) according to the BANYAN  $\Sigma$  classification  
 68 algorithm (Gagné et al. 2018). A radial velocity measurement for this source would help to firmly determine moving  
 69 group membership.


70  
4. ANALYSIS OF W1659–3511 SPECTRUM

71 For W1659–3511, the L7 standard 2MASSI J0825196+211552 discovered in Kirkpatrick et al. (2000) and recom-  
 72 mended by Cruz et al. (2017) is a close match in the  $J$ -band (see Figure 1), while noticeable differences are again  
 73 observed in the  $H$ - and  $K$ -bands. Note that we used the L7 spectral standard recommended by Cruz et al. (2017) for  
 74 W0755–3259 instead of the recommended Kirkpatrick et al. (2010) L7 standard due to inconsistencies of the Kirk-  
 75 patrick et al. (2010) L7 standard, yielding various results for spectral and gravity types when analyzed separately (see  
 76 Faherty et al. 2012 and Allers & Liu 2013).

77 When comparing W1659–3511 to INT-G and VL-G dwarf spectra in the SPLAT library, a close  $H$ -band and  
 78 acceptable  $K$ -band correlation is found for the L7 INT-G dwarf WISEP J004701.06+680352.1 (Gizis et al. 2012).  
 79 While the  $H$ - and  $K$ -bands show greater similarity for WISEP J004701.06+680352.1 than the L7 standard, the  $J$ -  
 80 band exhibits a poorer match. Because of our classification method, the L7 standard spectrum is determined to be  
 81 more accurate and we assign W1659–3511 a classification of L7 (red).

82 We identify W1659–3511 as a likely FLD-G L7 dwarf using the previous  $H$ - and  $K$ -band analysis methods. To  
 83 determine a stable H-cont and  $H_2(K)$  index for this object, the spectrum is smoothed with  $\Sigma = 20$  to reduce error.  
 84  $\text{H-cont} = 0.95 \pm 0.02$  for W1659–3511, which is expected for FLD-G dwarfs of  $\text{H-cont} < 0.96$ .  $H_2(K) = 1.25 \pm 0.33$ ,  
 85 which is consistent with FLD-G dwarfs that have  $H_2(K) > 1.05$ . The  $H$ -band shape of W1659–3511 does not have  
 86 the triangular peak seen in most VL-G dwarfs as well, which may be attributed to  $\text{CH}_4$  absorption. Through analysis  
 87 of  $J$ -,  $H$ -, and  $K$ -bands, we classify W1659–3259 as L7 FLD-G (red). Some reasons for the red nature of this field  
 88 dwarf could be from a dusty atmosphere (Hiranaka et al. 2016) or inclination angle (Vos et al. 2017).

89 Using the best-available proper motion from Marocco et al. (2021) with BANYAN  $\Sigma$ , we find that W1659–3511  
 90 does not match any known nearby young association.



**Figure 1.** Top panel: The full resolution near-infrared spectrum of W0755–3259 (grey) and smoothed (black) compared to the L5 near-infrared spectral standard SDSS J083506.16+195304.4 (Chiu et al. 2006; Kirkpatrick et al. 2010) and L7 VL-G dwarf WISEA J114724.10–204021.3 (Schneider et al. 2016). Bottom panel: The full resolution near-infrared spectrum of W1659–3511 (grey) and smoothed (black) compared to the L7 near-infrared spectral standard 2MASSI J0825196+211552 (Kirkpatrick et al. 2000; Cruz et al. 2017) and L7 INT-G dwarf WISEP J004701.06+680352.1 (Gizis et al. 2012). All spectra are normalized between 1.27 and 1.29  $\mu\text{m}$ .

## 5. DISCUSSION

From our analysis of near-infrared spectra, we determine that W0755–3259 is a new L7 very low-gravity dwarf and that W1659–3511 is a new L7 field-gravity dwarf. Due to the redder color and striking resemblance of W0755–3259 with WISEA J114724.10–204021.3 in the  $J$ -band, as well as the combination of a high H-cont index, a low  $H_2(K)$  value, and a triangular  $H$ -band peak, there is clear evidence that W0755-3259 is an L7 VL-G dwarf. W1659–3511 has similar support in its classification as a likely L7 FLD-G dwarf due to the similarities in the  $J$ -band to the field L7 spectral standard, as well as a lower H-cont index with no peak and a high  $H_2(K)$  value. Notably, W0755–3259 is redder than the L7 VL-G dwarf it shared similarity to in the  $H$ - and  $K$ -bands. The unusual nature of these red L dwarf spectra emphasizes the importance of further research on these objects to advance our understanding of their atmospheres, gravities, and ages.

101  
6. ACKNOWLEDGMENTS

102 This work has been supported in part by the NASA Citizen Science Seed Funding Program, Grant 80NSSC21K1485.  
 103 This material is based upon work supported by the National Science Foundation under Grant No. 2007068, 2009136,  
 104 and 2009177.

105 Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project  
 106 of the Ministério da Ciência, Tecnologia e Inovações (MCTI/LNA) do Brasil, the US National Science Foundation's  
 107 NOIRLab, the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

108 This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project  
 109 of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology,  
 110 funded by the National Aeronautics and Space Administration. This publication also makes use of data products from  
 111 NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the  
 112 Planetary Science Division of the National Aeronautics and Space Administration.

113 *Software:* SPLAT (Burgasser & the SPLAT Development Team 2017), WiseView (Caselden et al. 2018)

114 *Facilities:* SOAR, WISE

## REFERENCES

115 Allers, K. N., & Liu, M. C. 2013, The Astrophysical  
 116 Journal, 772, 79, doi: [10.1088/0004-637X/772/2/79](https://doi.org/10.1088/0004-637X/772/2/79)

117 Allers, K. N., & Liu, M. C. 2013, ApJ, 772, 79,  
 118 doi: [10.1088/0004-637X/772/2/79](https://doi.org/10.1088/0004-637X/772/2/79)

119 Burgasser, A. J., & the SPLAT Development Team. 2017.  
 120 <https://arxiv.org/abs/1707.00062>

121 Canty, J. I., Lucas, P. W., Roche, P. F., & Pinfield, D. J.  
 122 2013, Monthly Notices of the Royal Astronomical  
 123 Society, 435, 2650, doi: [10.1093/mnras/stt1477](https://doi.org/10.1093/mnras/stt1477)

124 Caselden, D., Westin, Paul, I., Meisner, A., Kuchner, M., &  
 125 Colin, G. 2018, WiseView: Visualizing motion and  
 126 variability of faint WISE sources, Astrophysics Source  
 127 Code Library, record ascl:1806.004.  
 128 <http://ascl.net/1806.004>

129 Chiu, K., Fan, X., Leggett, S. K., et al. 2006, The  
 130 Astronomical Journal, 131, 2722, doi: [10.1086/501431](https://doi.org/10.1086/501431)

131 Cruz, K. L., Núñez, A., Burgasser, A. J., et al. 2017, The  
 132 Astronomical Journal, 155, 34,  
 133 doi: [10.3847/1538-3881/aa9d8a](https://doi.org/10.3847/1538-3881/aa9d8a)

134 Cushing, M. C., Vacca, W. D., & Rayner, J. T. 2004,  
 135 PASP, 116, 362, doi: [10.1086/382907](https://doi.org/10.1086/382907)

136 Faherty, J. K., Burgasser, A. J., Walter, F. M., et al. 2012,  
 137 ApJ, 752, 56, doi: [10.1088/0004-637X/752/1/56](https://doi.org/10.1088/0004-637X/752/1/56)

138 Gagné, J., Mamajek, E. E., Malo, L., et al. 2018, The  
 139 Astrophysical Journal, 856, 23,  
 140 doi: [10.3847/1538-4357/aaae09](https://doi.org/10.3847/1538-4357/aaae09)

141 Gizis, J. E., Faherty, J. K., Liu, M. C., et al. 2012, The  
 142 Astronomical Journal, 144, 94,  
 143 doi: [10.1088/0004-6256/144/4/94](https://doi.org/10.1088/0004-6256/144/4/94)

144 Herter, T., Henderson, C., Bonati, M., et al. 2020, in  
 145 Society of Photo-Optical Instrumentation Engineers  
 146 (SPIE) Conference Series, Vol. 11447, Society of  
 147 Photo-Optical Instrumentation Engineers (SPIE)  
 148 Conference Series, 114476L, doi: [10.1117/12.2563035](https://doi.org/10.1117/12.2563035)

149 Hiranaka, K., Cruz, K. L., Douglas, S. T., Marley, M. S., &  
 150 Baldassare, V. F. 2016, The Astrophysical Journal, 830,  
 151 96, doi: [10.3847/0004-637X/830/2/96](https://doi.org/10.3847/0004-637X/830/2/96)

152 Humphreys, A., Schapera, N., Meisner, A. M., et al. 2020,  
 153 in Astronomical Society of the Pacific Conference Series,  
 154 Vol. 525, 2020 Compendium of Undergraduate Research  
 155 in Astronomy and Space Science, ed. J. B. Jensen,  
 156 J. Barnes, & B. Wardell, 57

157 Kirkpatrick, J. D., Reid, I. N., Liebert, J., et al. 2000, The  
 158 Astronomical Journal, 120, 447, doi: [10.1086/301427](https://doi.org/10.1086/301427)

159 Kirkpatrick, J. D.,Looper, D. L.,Burgasser, A. J., et al.  
 160 2010, The Astrophysical Journal Supplement Series, 190,  
 161 100, doi: [10.1088/0067-0049/190/1/100](https://doi.org/10.1088/0067-0049/190/1/100)

162 Kirkpatrick, J. D., Gelino, C. R., Faherty, J. K., et al. 2021,  
 163 The Astrophysical Journal Supplement Series, 253, 7,  
 164 doi: [10.3847/1538-4365/abd107](https://doi.org/10.3847/1538-4365/abd107)

165 Kuchner, M. J., Faherty, J. K., Schneider, A. C., et al.  
 166 2017, ApJL, 841, L19, doi: [10.3847/2041-8213/aa7200](https://doi.org/10.3847/2041-8213/aa7200)

167 Marocco, F., Eisenhardt, P. R. M., Fowler, J. W., et al.  
 168 2021, ApJS, 253, 8, doi: [10.3847/1538-4365/abd805](https://doi.org/10.3847/1538-4365/abd805)

169 Schlawin, E., Herter, T. L., Henderson, C., et al. 2014, in  
170 Society of Photo-Optical Instrumentation Engineers  
171 (SPIE) Conference Series, Vol. 9147, Ground-based and  
172 Airborne Instrumentation for Astronomy V, ed. S. K.  
173 Ramsay, I. S. McLean, & H. Takami, 91472H,  
174 doi: [10.1117/12.2055233](https://doi.org/10.1117/12.2055233)

175 Schneider, A. C., Cushing, M. C., Kirkpatrick, J. D., et al.  
176 2014, AJ, 147, 34, doi: [10.1088/0004-6256/147/2/34](https://doi.org/10.1088/0004-6256/147/2/34)

177 Schneider, A. C., Windsor, J., Cushing, M. C., Kirkpatrick,  
178 J. D., & Wright, E. L. 2016, ApJL, 822, L1,  
179 doi: [10.3847/2041-8205/822/1/L1](https://doi.org/10.3847/2041-8205/822/1/L1)

180 Scholz, R.-D., & Bell, C. P. M. 2018, An extremely red and  
181 two other nearby L dwarf candidates previously  
182 overlooked in 2MASS, WISE, and other surveys.  
183 <https://arxiv.org/abs/1802.05965>

184 Vacca, W. D., Cushing, M. C., & Rayner, J. T. 2003,  
185 PASP, 115, 389, doi: [10.1086/346193](https://doi.org/10.1086/346193)

186 Vos, J. M., Allers, K. N., & Biller, B. A. 2017, The  
187 Astrophysical Journal, 842, 78,  
188 doi: [10.3847/1538-4357/aa73cf](https://doi.org/10.3847/1538-4357/aa73cf)

189 Zuckerman, B., Bessell, M. S., Song, I., & Kim, S. 2006, The  
190 Astrophysical Journal, 649, L115, doi: [10.1086/508060](https://doi.org/10.1086/508060)