

AAS-PROVIDED PDF • OPEN ACCESS

VVV J165507.19-421755.5: A Nearby T Dwarf Hidden in the Galactic Plane

To cite this article: Noah Schapera *et al* 2022 *Res. Notes AAS* **6** 189

Manuscript version: AAS-Provided PDF

This AAS-Provided PDF is © 2024 The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
<https://creativecommons.org/licenses/by/4.0>

Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.

View the [article online](#) for updates and enhancements.

VVV J165507.19–421755.5: A Nearby T Dwarf Hidden in the Galactic Plane

1 NOAH SCHAPERA ,^{1,2} DAN CASELDEN ,³ AARON M. MEISNER ,² ADAM J. BURGASSER ,⁴ ADAM C. SCHNEIDER ,^{5,6}
 2 AUSTIN HUMPHREYS ,^{7,2} CHIH-CHUN HSU ,⁴ EMMA SOFTICH ,⁴ LEIGH C. SMITH ,⁸ PHILIP W. LUCAS ,⁹
 3 J. DAVY KIRKPATRICK ,¹⁰ FEDERICO MAROCCHI ,¹⁰ JACQUELINE K. FAHERTY ,³ MARC J. KUCHNER ,¹¹
 4 MICHAEL C. CUSHING ,¹² THE BACKYARD WORLDS: PLANET 9 COLLABORATION, AND
 5 THE BACKYARD WORLDS: COOL NEIGHBORS COLLABORATION

6 ¹*Department of Physics, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA*

7 ²*NSF's National Optical-Infrared Astronomy Research Laboratory, 950 N. Cherry Ave., Tucson, AZ 85719, USA*

8 ³*Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, NY 10024, USA*

9 ⁴*Center for Astrophysics and Space Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA*

10 ⁵*United States Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Rd., Flagstaff, AZ 86005, USA*

11 ⁶*Department of Physics and Astronomy, George Mason University, MS3F3, 4400 University Drive, Fairfax, VA 22030, USA*

12 ⁷*Department of Astronomy, University of Maryland, College Park, MD 20742, USA*

13 ⁸*Institute of Astronomy, University of Cambridge, Madingley Rd, Cambridge, CB3 0HA, UK*

14 ⁹*Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield
15 AL10 9AB, UK*

16 ¹⁰*IPAC, Mail Code 100-22, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA*

17 ¹¹*Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA*

18 ¹²*Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH
19 43606, USA*

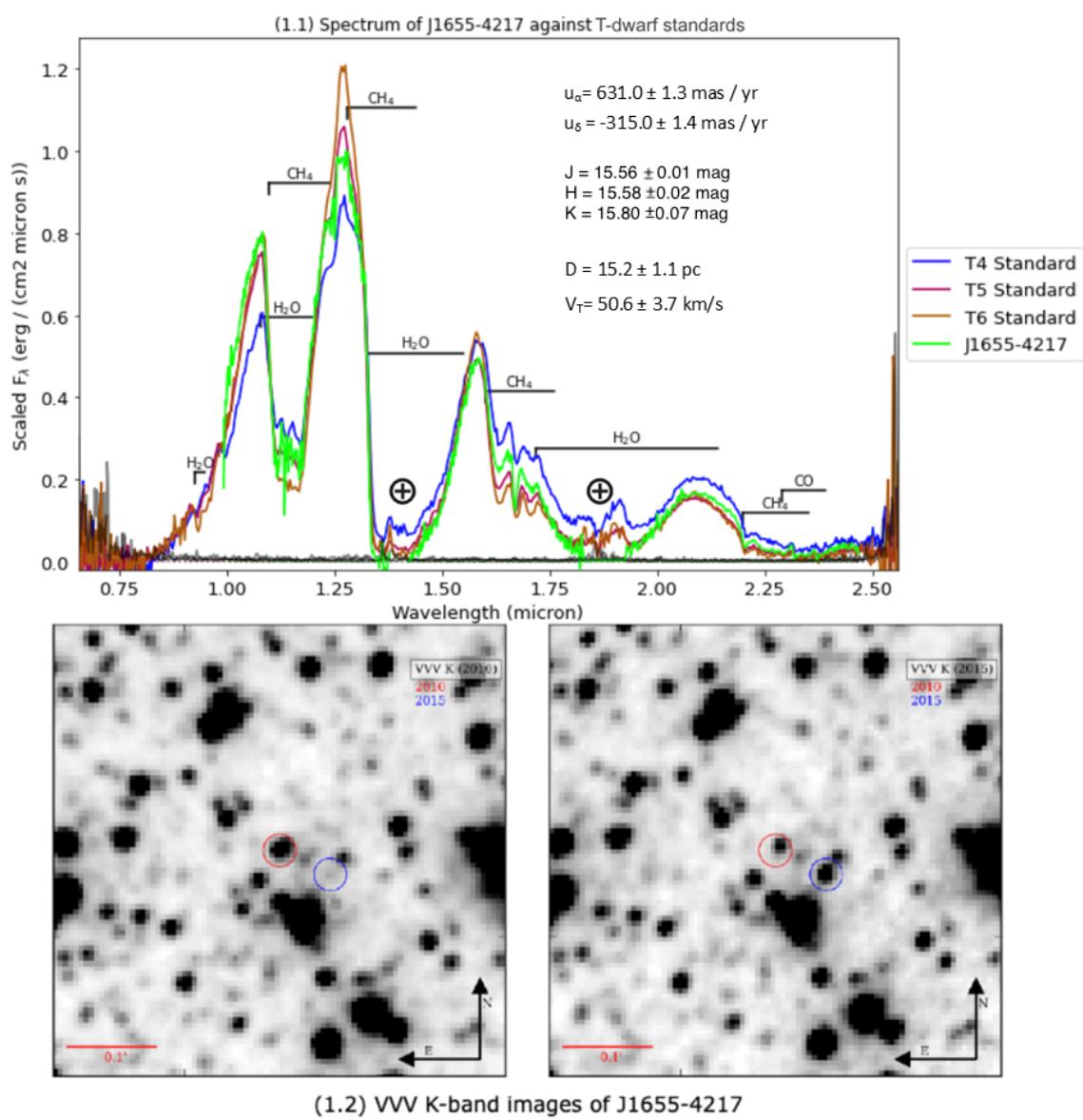
20 Submitted to RNAAS

21 **ABSTRACT**

22 We present the discovery of VVV J165507.19–421755.5, a mid-T dwarf found through ongoing
 23 unWISE-based proper motion searches. A near-infrared spectrum of this object obtained with the
 24 NIRES instrument on the Keck II telescope indicates a spectral classification of T5. Using data from
 25 the VISTA Variables in the Via Lactea (VVV) catalog with a 9 year baseline, we measure a proper
 26 motion of $(\mu_\alpha \cos(\delta), \mu_\delta) = (-631.0 \pm 1.3, -315.0 \pm 1.4)$ mas yr⁻¹ and a trigonometric parallax of
 27 $\pi_{abs} = 66.0 \pm 4.8$ mas, corresponding to a distance of 15.2 ± 1.1 pc. The trigonometric parallax agrees
 28 well with our photometric distance estimate $(16.1^{+5.1}_{-3.9}$ pc) assuming that VVV J165507.19–421755.5
 29 is a single T5 dwarf. VVV J165507.19–421755.5 is a new member of the 20 parsec census.

30 **Keywords:** T dwarfs (1679), Brown dwarfs (185), Infrared spectroscopy (2285), Spectroscopy (1558)

31 **1. DISCOVERY OF J1655–4217**


32 VVV J165507.19–421755.5 (J1655–4217) was initially discovered through “SMDET” machine learning analysis
 33 (Caselden et al. 2020) of unWISE coadds (Meisner et al. 2018). Although not immediately visible to the human eye
 34 in these coadds, J1655–4217 was visually confirmed to be a moving point source in imaging data from the Vista
 35 Variables in the Via Lactea survey (VVV; Minniti et al. 2010) over a 5.3 year baseline (Figure 1). Once its status as
 36 a candidate nearby source was confirmed, its spectrum was obtained using the Near-Infrared Echellette Spectrometer
 37 (NIRES; Wilson et al. 2004) on the Keck II 10 m Telescope.

38 **2. ANALYZING J1655–4217**

39 We obtained Keck/NIRES spectroscopy of J1655–4217 on the night of 2022 June 11 (UT) in clear and dry conditions
 40 with 0''.5 seeing. NIRES is a cross-dispersed spectrometer, providing 1–2.4 μ m spectroscopy at an average resolution
 41 of $\lambda/\Delta\lambda \approx 2700$ for its 0''.55 slit (Wilson et al. 2004). Four exposures of 250 s each were obtained, followed by an

42 observation of the A0 V HD 154409 for flux and telluric calibration. Data were reduced using a modified version of
 43 the Spextool package (Cushing et al. 2004) using standard settings.

44 We analyzed a smoothed (30 pixels) and normalized version of the reduced NIRSPEC spectrum using tools in the
 45 SPLAT Python library (Burgasser & Splat Development Team 2017). We compared the spectrum of J1655–4217 to
 46 T dwarf spectral standards (Burgasser et al. 2006; Theissen et al. 2022), and found a best overall fit (minimum χ^2) to
 47 the T5 standard (Figure 1). This is also a good visual match, with no spectral peculiarities indicative of low surface
 48 gravity or unresolved multiplicity.

Figure 1. Figure 1.1: Smoothed NIRSPEC spectrum of J1655–4217 (green line), compared to low-resolution T4, T5 and T6 spectral standards (blue, purple, and brown lines, respectively; data from Burgasser et al. 2004). T5 provides the best match. Measured and inferred properties of this object are summarized in the upper right. Figure 1.2: VVV K-band images of J1655–4217 in 2010 and 2015. The red circle highlights the 2010 position (left) and the blue circle highlights the 2015 position (right).

49 We obtained preliminary proper motion and parallax measurements from ‘VIRAC2’, version 2 of the VVV Infrared
 50 Astrometric Catalogue (VIRAC; Smith et al. 2018). A total of 126 VVV epochal detections spanning a 9 year time

51 baseline were used for the astrometric fit. The VIRAC2 proper motion is $(\mu_\alpha \cos(\delta), \mu_\delta) = (-631.0 \pm 1.3, -315.0 \pm 1.4)$
52 mas yr $^{-1}$ and the corresponding trigonometric parallax measurement is $\pi_{abs} = 66.0 \pm 4.8$ mas, corresponding to
53 15.2 ± 1.1 pc. The total proper motion is 705.3 ± 1.3 mas yr $^{-1}$ and the tangential velocity is 50.6 ± 3.7 km s $^{-1}$.

54 Using the individual VVV detections, we determined an average apparent K -band magnitude of 15.80 ± 0.07 mag
55 (Vega). We then used the proper motion trajectory to identify J -band and H -band counterparts in the VVV data,
56 and from these determined an average J -band (H -band) Vega apparent magnitude of 15.56 ± 0.01 (15.58 ± 0.02) mag.
57 The implied J -band, H -band, and K -band absolute magnitudes (using the VIRAC2 trigonometric parallax) are all
58 consistent with those of other field T5 dwarfs within 1σ (Dupuy & Liu 2012; Kirkpatrick et al. 2021). Note that the
59 region surrounding J1655–4217 is too crowded in WISE (FWHM $\approx 6''$; Wright et al. 2010) to extract accurate $W1$
60 or $W2$ flux information. This area was also imaged by Spitzer/GLIMPSE360 (Churchwell et al. 2009) in 2004, but
61 J1655–4217 is badly contaminated by a similarly bright background source at that epoch.

62 3. DISCUSSION

63 We conclude that J1655–4217 is a new T5 brown dwarf member of the 20 pc solar neighborhood census (Kirkpatrick
64 et al. 2021). Future studies can expand upon our measurements, including determination of its radial velocity for full
65 kinematic analysis. J1655–4217 was likely overlooked in previous VVV astrometric surveys due to blending in several
66 epochs. While its absolute magnitudes are consistent with a single source, J1655–4217’s location in a crowded stellar
67 field makes it an excellent adaptive optics target to search for fainter and cooler companions. Furthermore, the
68 crowded field surrounding J1655–4217 and its accurately measured proper motion make this object a promising target
69 for a future microlensing-based determination of its mass. The discovery of J1655–4217 reinforces the continued
70 incompleteness of the brown dwarf census in the Galactic plane.

71 This work has been supported in part by the NASA Citizen Science Seed Funding Program, Grant 80NSSC21K1485.
72 This material is based upon work supported by the National Science Foundation under Grant No. 2007068, 2009136,
73 and 2009177.

74 This work used the high-performance computing facility of University of Hertfordshire. We gratefully acknowledge
75 data from the ESO Public Survey program ID 179.B-2002 taken with the VISTA telescope, and products from the
76 Cambridge Astronomical Survey Unit (CASU).

77 Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific
78 partnership among the California Institute of Technology, the University of California and the National Aeronautics
79 and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck
80 Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the
81 summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the
82 opportunity to conduct observations from this mountain.

83 This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project
84 of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology,
85 funded by the National Aeronautics and Space Administration. This publication also makes use of data products from
86 NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the
87 Planetary Science Division of the National Aeronautics and Space Administration.

88 *Software:* SMDET (Caselden et al. 2020), Spextool (Cushing et al. 2004), SPLAT (Burgasser & Splat Development
89 Team 2017), WiseView (Caselden et al. 2018)

90 *Facilities:* Keck(NIRES), NEOWISE, Spitzer(IRAC), VISTA(VIRCAM), WISE

REFERENCES

92 Burgasser, A. J., Geballe, T. R., Leggett, S. K.,
93 Kirkpatrick, J. D., & Golimowski, D. A. 2006, *ApJ*, 637,
94 1067, doi: [10.1086/498563](https://doi.org/10.1086/498563)

95 Burgasser, A. J., McElwain, M. W., Kirkpatrick, J. D.,
96 et al. 2004, *AJ*, 127, 2856, doi: [10.1086/383549](https://doi.org/10.1086/383549)

97 Burgasser, A. J., & Splat Development Team. 2017, 14, 7.
98 <https://arxiv.org/abs/1707.00062>

99 Caselden, D., Colin, G., Lack, L., et al. 2020, in American
100 Astronomical Society Meeting Abstracts, Vol. 235,
101 American Astronomical Society Meeting Abstracts #235,
102 274.18

103 Caselden, D., Westin, Paul, I., Meisner, A., Kuchner, M., &
104 Colin, G. 2018, WiseView: Visualizing motion and
105 variability of faint WISE sources, *Astrophysics Source
106 Code Library*, record ascl:1806.004.
107 <http://ascl.net/1806.004>

108 Churchwell, E., Babler, B. L., Meade, M. R., et al. 2009,
109 *PASP*, 121, 213, doi: [10.1086/597811](https://doi.org/10.1086/597811)

110 Cushing, M. C., Vacca, W. D., & Rayner, J. T. 2004,
111 *PASP*, 116, 362, doi: [10.1086/382907](https://doi.org/10.1086/382907)

112 Dupuy, T. J., & Liu, M. C. 2012, *ApJS*, 201, 19,
113 doi: [10.1088/0067-0049/201/2/19](https://doi.org/10.1088/0067-0049/201/2/19)

114 Kirkpatrick, J. D., Gelino, C. R., Faherty, J. K., et al. 2021,
115 *The Astrophysical Journal Supplement Series*, 253, 7,
116 doi: [10.3847/1538-4365/abd107](https://doi.org/10.3847/1538-4365/abd107)

117 Kirkpatrick, J. D., Gelino, C. R., Faherty, J. K., et al.
118 2021, *ApJS*, 253, 7, doi: [10.3847/1538-4365/abd107](https://doi.org/10.3847/1538-4365/abd107)

119 Meisner, A. M., Lang, D., & Schlegel, D. J. 2018, *AJ*, 156,
120 69, doi: [10.3847/1538-3881/aacbcd](https://doi.org/10.3847/1538-3881/aacbcd)

121 Minniti, D., Lucas, P. W., Emerson, J. P., et al. 2010,
122 *NewA*, 15, 433, doi: [10.1016/j.newast.2009.12.002](https://doi.org/10.1016/j.newast.2009.12.002)

123 Smith, L. C., Lucas, P. W., Kurtev, R., et al. 2018,
124 *MNRAS*, 474, 1826, doi: [10.1093/mnras/stx2789](https://doi.org/10.1093/mnras/stx2789)

125 Theissen, C. A., Burgasser, A. J., Martin, E. C., et al.
126 2022, *Research Notes of the American Astronomical
127 Society*, 6, 151, doi: [10.3847/2515-5172/ac8425](https://doi.org/10.3847/2515-5172/ac8425)

128 Wilson, J. C., Henderson, C. P., Herter, T. L., et al. 2004,
129 *Society of Photo-Optical Instrumentation Engineers
130 (SPIE) Conference Series*, Vol. 5492, Mass producing an
131 efficient NIR spectrograph, ed. A. F. M. Moorwood &
132 M. Iye, 1295–1305, doi: [10.1117/12.550925](https://doi.org/10.1117/12.550925)

133 Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al.
134 2010, *AJ*, 140, 1868, doi: [10.1088/0004-6256/140/6/1868](https://doi.org/10.1088/0004-6256/140/6/1868)