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Abstract

Biochemical covalent modification networks exhibit a remarkable suite of steady state

and dynamical properties such as multistationarity, oscillations, ultrasensitivity and

absolute concentration robustness. This paper focuses on conditions required for a

network of this type to have a species with absolute concentration robustness. We

find that the robustness in a substrate is endowed by its interaction with a bifunc-

tional enzyme, which is an enzyme that has different roles when isolated versus when

bound as a substrate-enzyme complex. When isolated, the bifunctional enzyme pro-

motes production of more molecules of the robust species while when bound, the

same enzyme facilitates degradation of the robust species. These dual actions produce

robustness in the large class of covalent modification networks. For each network of

this type, we find the network conditions for the presence of robustness, the species

that has robustness, and its robustness value. The unified approach of simultaneously

analyzing a large class of networks for a single property, i.e. absolute concentration

robustness, reveals the underlying mechanism of the action of bifunctional enzyme

while simultaneously providing a precise mathematical description of bifunctionality.
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1 Introduction

The steady state properties and dynamics of covalent modification networks have been

extensively studied since the work of (Goldbeter et al. 1981; Straube and Conradi

2013; Jeynes-Smith and Araujo 2021). A large class of such networks are multisite

phosphorylation-dephosphorylation networks which play a key role in cell signaling

circuits (Thomson and Gunawardena 2009a; Walsh 2006; Cohen 2001). The number

of phosphorylation sites can be as many as 150, resulting in as many as 2150 distinct

phospho-forms (Gnad et al. 2007). The high dimensionalities of the state space and

parameter space of the resulting dynamical model put it far beyond the scope of a

detailed simulation study. The topology of the underlying reaction network helps guide

the unraveling of complex dynamics (Thomson and Gunawardena 2009a, b; Wang and

Sontag 2008; Conradi and Shiu 2015; Holmberg et al. 2002; Manrai and Gunawardena

2008; Rubinstein et al. 2016). A parameterization of the positive steady states in the

distributive reversible covalent modification cycle (futile cycle) of arbitrary length

(Thomson and Gunawardena 2009b) decreases the complexity from a larger number

of differential equations to a small number of algebraic equations. The distributive

futile cycle was shown (Wang and Sontag 2008) to have between n and 2n − 1 steady

states where n is the number of phosphorylation sites.

In this paper, we study the conditions on network topology that endow concentra-

tion robustness in covalent modification networks. Robustness in signal transduction

against high variability in circuit components has been experimentally observed in

thousands of bacterial signaling systems (Shinar et al. 2007; Alon 2019; Hart and

Alon 2013). Experimental and mathematical modeling work identified underlying the

mechanism was a bifunctional enzyme (or paradoxical enzyme), a protein that per-

forms opposing kinase and phosphatase activities (Russo and Silhavy 1993; Hsing

et al. 1998; Batchelor and Goulian 2003; Shinar et al. 2009; Dexter and Gunawardena

2013). In general, a bifunctional enzyme has distinct and possibly opposing effects on

the network output.

The specific notion of robustness that we consider in this paper is absolute concen-

tration robustness, which refers to the property that the steady state concentration of

a specific substrate remains invariant across all positive steady states, even when the

initial values of all variables are allowed to vary. According to the Shinar–Feinberg

criterion (Shinar and Feinberg 2010), two simple network conditions suffice to ensure

absolute concentration robustness: (i) the deficiency of the reaction network is one,

and (ii) two non-terminal complexes differ in exactly one species (see Definitions 2.7

and 2.8 and Theorem 2.9). If these conditions are satisfied then the network has absolute

concentration robustness in the species that is the difference of the two non-terminal

complexes appearing in the second condition.

The property of deficiency equal to one is useful for parameterization of positive

steady states which helps prove the property of absolute concentration robustness in

such cases. It is not clear that deficiency one plays a functional role in network output or

dynamics. Therefore, one might expect that absolute concentration robustness is found

even for reaction networks with deficiency not equal to one. In fact, zero deficiency

networks can have absolute concentration robustness, the conditions for which are

studied in Joshi and Craciun (2022). Another approach to establish ACR in networks
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without deficiency one involves network translation techniques (Tonello and Johnston

2018). The networks studied in this paper can have arbitrary deficiency, and for every

possible deficiency value, we find networks with the property of absolute concentration

robustness.

The second property that two non-terminal complexes differ in exactly one species is

related to a functional property: activity of a bifunctional enzyme. In higher deficiency

networks, bifunctionality needs a more careful definition since the same enzyme is

often implicated in covalent modification of multiple sites. Thus in more complex

networks, an enzyme may promote the increase of several different substrate types.

Moreover, if the enzyme is bifunctional it may simultaneously facilitate the removal

of many of these substrate types. In terms of the second Shinar–Feinberg condition,

there can be several pairs of non-terminal complexes that differ in exactly one species

and moreover, this differing species is usually different for every such pair.

Our goal in this work is to find a generalization of the second Shinar–Feinberg

condition for a large class of covalent modification networks while at the same time

not relying on or requiring the first Shinar–Feinberg condition to hold. We address

the questions of: (i) finding sufficient network conditions for absolute concentration

robustness (ACR) to hold, (ii) finding species for which ACR holds (subject to the

existence of a positive steady state), (iii) the ACR value of each ACR species, and (iv)

necessary and sufficient conditions for the existence of a positive steady state.

The rest of the paper is organized as follows. Section 2 reviews basic definitions

related to reaction networks and ACR. Section 3 introduces the detailed model for

multisite covalent modification networks with a bifunctional enzyme, and provides

preliminary analysis on their steady state equations. Section 4 establishes sufficient

conditions for ACR in these networks. Section 5 gives necessary and sufficient condi-

tions for the existence of a positive steady state in these networks. Section 6 provides

a steady state parameterization for futile cycles with a bifunctional enzyme. Finally,

we end with a discussion on boundary steady states of covalent modification networks

with a bifunctional enzyme in Sect. 7.

2 Reaction network

Here, we first recall the basic setup and definitions involving reaction networks, the

dynamical systems they generate (Sect. 2.1), and absolute concentration robustness

(Sect. 2.2). Readers who are familiar with reaction network theory can skip to Sect. 3

for the specific class of reaction networks we study in this paper.

2.1 Reaction networks and dynamical systems

A reaction network G is a directed graph whose vertices are non-negative linear com-

binations of species X1, X2, . . . , Xd . In reaction network literature, we often refer to

each vertex as a complex, and we denote a complex by y = y1 X1 + y2 X2 +· · ·+ yd Xd

or by y = (y1, y2, . . . , yd) (where yi ∈ Z≥0).
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Edges of G represent the possible changes in the abundances of the species, and

are referred to as reactions. The vector y′ − y is the reaction vector associated to the

reaction y → y′. Additionally, in this reaction, y is called the reactant complex, and y′

is called the product complex. If there is also a reaction from y′ to y, we write y � y′

and say that they are a pair of reversible reactions.

Example 2.1 An example of a reaction network G is the cycle with two substrates

S1, S2 whose interconversion is facilitated by enzymes E and F :

S1 + E � C → S2 + E

S2 + F � D → S1 + F .

Here G has 6 species {S1, S2, E, F, C, D}; 6 complexes {S1 + E, C, S2 + E, S2 +

F, D, S1 + F}; and 6 reactions (one reaction for each arrow).

Under the assumption of mass-action kinetics, each reaction network G defines a

parametrized family of systems of ordinary differential equations (ODEs), as follows.

First, we enumerate the reactions by yi → y′
i for i = 1, . . . , r and for each reaction

yi → y′
i we assign a positive rate constant κi ∈ R>0. Then the mass-action system,

denoted by (G, κ) is the dynamical system arising from the following ODEs:

dx

dt
=

r∑

i=1

κi x yi (y′
i − yi ) =: fκ(x) , (2.1)

where x(t) = (x1(t), . . . , xd(t)) denotes the concentration of the species at time t and

x yi :=
∏d

j=1 x
yi j

j . The right-hand side of the ODEs (2.1) consists of polynomials fκ,i ,

for i = 1, 2, . . . , d (where d is the number of species). For simplicity, we often write

fi instead of fκ,i .

The ODEs (2.1) can also be written in matrix form

dx

dt
= N · v(x), (2.2)

where N , the stoichiometric matrix, is the matrix whose columns are all reaction

vectors of G and vi (x) = κi x yi . A conservation law matrix of G, denoted by W , is

any row-reduced matrix whose rows form a basis of im(N )⊥. The conservation laws

of G are given by W x = c, where c := W x(0) is the total-constant vector.

We denote by S := im(N ), the stoichiometric subspace of G. Observe that the

vector field of the mass-action ODEs (2.1) lies in S (more precisely, the vector of

ODE right-hand sides is always in S). Hence, a forward-time solution {x(t) | t ≥ 0}

of (2.1), with initial condition x(0) ∈ Rd
>0, remains in the following stoichiometric

compatibility class (Feinberg 2019):

Px(0) := (x(0) + S) ∩ Rd
≥0 .

A steady state of a mass-action system is a nonnegative concentration vector x∗ ∈

Rd
≥0 at which the right-hand side of the ODEs (2.1) vanishes: fκ(x∗) = 0.
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Definition 2.2 G is a consistent reaction network if there exist βy→y′ > 0 such that∑

y→y′∈G

βy→y′(y′ − y) = 0.

Theorem 2.3 The following are equivalent

1. G is a consistent reaction network.

2. There is a choice of positive rate constants κ such that the mass-action system

(G, κ) has a positive steady state.

Proof Suppose that G is consistent. Then there exist βy→y′ > 0 such that∑
y→y′∈G βy→y′(y′ − y) = 0. Choose κy→y′ = βy→y′ for all y → y′ ∈ G. Then from

(2.1), (1, 1, . . . , 1) is a positive steady state. Conversely suppose that x∗ is a positive

steady state for some choice of rate constants {κy→y′}. Then consistency of G follows

from letting βy→y′ = κy→y′ x∗y . 	


2.2 Absolute concentration robustness

In the context of reaction networks, absolute concentration robustness (ACR) can be

formally defined at the level of systems and also networks, the latter is a significantly

stronger property.

Definition 2.4 (ACR) Let X i be a species of a reaction network G with r reactions.

1. For a fixed vector of positive rate constants κ ∈ Rr
>0, the mass-action system (G, κ)

has absolute concentration robustness (ACR) in X i if (G, κ) has a positive steady

state and in every positive steady state x ∈ Rn
>0 of the system, the value of xi (the

concentration of X i ) is the same constant x∗
i . This value x∗

i is the ACR value of X i .

2. The reaction network G has absolute concentration robustness in species X i if G is

consistent and furthermore, for any κ ′ such that the mass-action system (G, κ ′ > 0)

has a positive steady state, (G, κ ′) must have ACR in X i .

Note that x∗
i is independent of the positive steady state of (G, κ), but this value does

depend on κ in general, as in the next example. A natural interpretation of ACR is that a

particular steady state coordinate (corresponding the ACR species X i ) is independent

of initial concentrations.

To show ACR in a species X i (either for a mass action system or a reaction network),

one must show two things: the first is that a positive steady state exists and the second

is that the concentration of X i is invariant across all positive steady states. In this

paper, we first show the second property under the assumption that a positive steady

state exists and later in Sect. 5, we go on to show that a positive steady state exists for

every case found to have the invariance property in some species.

Remark 2.5 In this paper, the notion of ACR that we study has been referred to as

static ACR (Joshi and Craciun 2022), since it requires only knowledge of the posi-

tive steady states. A stronger notion called dynamic ACR (Joshi and Craciun 2022)

requires convergence of the ACR species concentration to the ACR value. Static ACR

is necessary for dynamic ACR; in future work, we plan to study additional conditions

required to ensure dynamic ACR.
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Example 2.6 The following network

A + B
κ1
−→ 2B, B

κ2
−→ A

is a classic example of a network with ACR (Shinar and Feinberg 2010). Indeed, at all

positive steady states, the concentration of species A is κ2/κ1, and hence the network

has ACR in A.

Shinar and Feinberg (2010) proposed a network condition that guarantees ACR.

We first provide the necessary terminology to state such a network condition.

Definition 2.7 The deficiency of a reaction network G is given by

δ = C − � − s,

where C is the number of complexes, � is the number of connected components, and

s is the dimension of the stoichiometric subspace of G.

Definition 2.8 A strong linkage class of a reaction network G is a maximal subset of

its complexes that are strongly connected. A terminal strong linkage class is a strong

linkage class in which there is no reaction from its complexes to complexes in another

strong linkage class. Complexes not belonging to any terminal strong linkage class

are called non-terminal.

Theorem 2.9 (Deficiency one condition (Shinar and Feinberg 2010)) Let G be a

consistent reaction network with deficiency of one and such that it has two non-terminal

complexes that differ only in species S. Then G has ACR in S.

While the network conditions in the theorem above can be checked easily, deficiency

one is a particularly restrictive condition. Deficiency can easily increase with the

addition, or discovery of new reactions (see Anderson and Nguyen 2022, Lemma 2.1)

and thus it is unrealistic to expect biochemical reaction networks to have deficiency of

exactly one. The deficiency one condition is neither sufficient nor necessary for ACR,

and the reaction networks we study in the next section do not normally satisfy this

condition (see Remark 3.5).

3 Multisite covalentmodification networkwith a bifunctional enzyme

3.1 Model

In this section, we give a detailed description of a multisite covalent modification

network which uses a bifunctional (or paradoxical) enzyme.
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Definition 3.1 (Multisite covalent modification network with a bifunctional enzyme)

Let (G, (k, h)) denote the following mass-action system

S1 + E
k+

1
−→←−
k−

1

C1
k1
−→ S2 + E

k+
2

−→←−
k−

2

C2
k2
−→ . . . . . .

k+
n−1

−−→←−−
k−

n−1

Cn−1
kn−1
−−→ Sn + E,

Sϕ1 + Cα

h+
1

−→←−
h−

1

D1
h1
−→ Sϕ2 + Cα

h+
2

−→←−
h−

2

D2
h2
−→ . . . . . .

h+
m−1

−−−→←−−−
h−

m−1

Dm−1
hm−1
−−−→ Sϕm + Cα,

• The top linkage class which converts S1 to Sn , through a sequence of steps, is

referred to as the forward chain. While the bottom linkage class which converts

Sϕ1 to Sϕm is not necessarily the reverse of the forward chain, later we show in

Sect. 5 that for G to be consistent, the bottom linkage class must contain a path that

transform Sn into S1. Since our main interest is in consistent networks, we refer

to this linkage class as the backward chain.

• S1, . . . , SN are phosphoforms or substrates. By convention, {S1, . . . , Sn} ∪

{Sϕ1 , . . . , Sϕm } ⊆ {S1, . . . , SN } with the possibility of strict subset allowed for

later convenience.

• C1, . . . , Cn−1 are the intermediate complexes of the forward chain while

D1, . . . , Dm−1 are the intermediate complexes of the backward chain.

• E is the enzyme for the forward chain while Cα is the enzyme for the backward

chain. The index α takes values in {1, . . . , n − 1} and therefore Cα is also one of

the intermediate complexes of the forward chain. Because of the dual role of Cα ,

it is referred to as a bifunctional enzyme.

• By assumption the indices ϕ1, . . . , ϕm are distinct. The entire network G is

completely specified by the integers n, m, ϕ1, . . . , ϕm and α. Letting ϕ =

(ϕ1, . . . , ϕm), we will refer to G as the covalent modification network (n, m, ϕ)

with the bifunctional enzyme Cα .

• The reaction rate constants in the forward chain are labeled with a k while in the

backward chain, they are labeled with an h. Moreover, the complex formation and

disassociation steps have the superscript + and − respectively while the subscript

index indicates the covalent modification step/site.

The name paradoxical derives from the possibly contradictory roles of the complex

Cα , for example when the backward chain is the reverse of the forward chain. On

the one hand, Cα promotes a step (eg. phosphorylation) in the forward chain, in the

sense that an increase in the amount of Cα directly leads to increase in the form

Sα+1. On the other hand, Cα acts as an enzyme in the backward chain (eg. promotes

dephosphorylation).

Remark 3.2 For a < b ∈ Z>0, we use the notation [a, b] to mean the sequence (a, a +

1, . . . , b). We can think of ϕ as an injective function mapping indices in {1, . . . , m} to

{1, . . . , N }, i.e. ϕ j = ϕ( j). We denote the image of this map by ϕ([1, m]). We write

j = ϕ−1(i) if there exists an index j ∈ {1, . . . , m} such that i = ϕ j = ϕ( j).
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Example 3.3 An example of a covalent modification network with a bifunctional

enzyme can be found in the E. coli IDHKP-IDH glyoxylate bypass regulation system

(Shinar and Feinberg 2010):

E + Ip � E Ip → E + I ,

E Ip + I � E Ip I → E Ip + Ip,

where I denotes the active, unphosphorylated TCA cycle enzyme isocitrate dehydro-

genase (IDH), and Ip denotes the phosphorylated form. Here E Ip (or E in native form)

is a bifunctional enzyme. Upto species relabelling, this network is equivalent to the

covalent modification network (2, 2, ϕ) where ϕ1 = 2, ϕ2 = 1 with the bifunctional

enzyme C1:

S1 + E � C1 → S2 + E

S2 + C1 � D1 → S1 + C1.

This network is also the smallest among the networks in Definition 3.1.

3.2 Biologically significant special cases

Different choices of n, m, ϕ and α result in different networks. Certain specific choices

have special relevance.

• Covalent modification cycle (with bifunctional enzyme). A covalent modification

network where the initial and final substrates of the forward chain are the final and

initial substrates of the backward chain is a covalent modification cycle. More con-

cretely, a covalent modification cycle is a covalent modification network (n, m, ϕ)

with ϕ1 = n and ϕm = 1.

• Reversible covalent modification cycle = futile cycle (with bifunctional enzyme).

Every step in the forward chain is reversed in the backward chain. Concretely,

this refers to a covalent modification network (n, n, ϕ) with ϕ([1, n]) = (n, n −

1, . . . , 2, 1).

3.3 Steady state equations

In this subsection, we provide some preliminary analysis on the deficiency and steady

state equations of covalent modification networks with a bifunctional enzyme. The

subsection is organized as follows. First, we state the ODEs of the mass-action system

associated with G, and define some compact expressions that help with the analy-

sis. In particular, Lemmas 3.6 and 3.7 provide some useful relations between these

expressions. Using these two lemmas, we provide an equivalent but simplified set of

equations at the positive steady state in Proposition 3.8, Corollary 3.9 and Corollary

3.11. Notably, Corollary 3.11 is also used in obtaining a steady state parameterization

in Sect. 6.
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For convenience, we let k0 = k+
0 = k−

0 = kn = k+
n = k−

n = 0 and h0 = h+
0 =

h−
0 = hm = h+

m = h−
m = 0 and c0 = d0 = cn = dm = 0. The ODEs of the

mass-action system (G, (k, h)) in Definition 3.1 are given by

dsi

dt
=

⎧
⎪⎨
⎪⎩

Fi + Gα
ϕ−1(i)

, for i ∈ [1, n] ∩ ϕ([1, m]),

Fi for i ∈ [1, n] ∩ ϕ([1, m])c,

Gα
ϕ−1(i)

for i ∈ [1, n]c ∩ ϕ([1, m]),

de

dt
=

n∑

i=1

Fi ,

dd j

dt
= −Gα

j + H j , for j ∈ [1, m − 1],

dci

dt
= −Fi + Ki + δα(i)

m∑

j=1

Gα
j , for i ∈ [1, n − 1],

(3.1)

where α is a fixed index in [1, n − 1] and

Fi := −k+
i si e + k−

i ci + ki−1ci−1, for i ∈ [1, n],

Gα
j := −h+

j sϕ j
cα + h−

j d j + h j−1d j−1, for j ∈ [1, m],

H j := h j−1d j−1 − h j d j , for j ∈ [1, m],

Ki := ki−1ci−1 − ki ci , for i ∈ [1, n].

(3.2)

The following identities follow immediately:

Fn = Kn(= kn−1cn−1) and Gα
m = Hm(= hm−1dm−1). (3.3)

The system (3.1) satisfies the conservation laws

n∑

i=1

si +

n−1∑

i=1

ci + 2

m−1∑

j=1

d j = Ts,

e +

n−1∑

i=1

ci +

m−1∑

j=1

d j = Te,

(3.4)

where Ts and Te denote the total substrate and total enzyme, respectively.

Theorem 3.4 Let G be a covalent modification network (n, m, ϕ) with bifunctional

enzyme Cα . Then G has deficiency

δ =

{
0, if [1, n] ∩ ϕ([1, m]) = ∅,

#([1, n] ∩ ϕ([1, m])) − 1, otherwise,
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where #([1, n] ∩ ϕ([1, m])) denotes the number of common indexes between [1, n]

and ϕ([1, m]).

Proof We observe that the dimensions of the subspace spanned by the reaction vectors

in the forward chain and the subspace spanned by the reaction vectors in the backward

chain are 2n − 2 and 2 m − 2 respectively. If [1, n] ∩ ϕ([1, m]) = ∅ then there are no

linear dependence relations among the reaction vectors and so the dimension of the

stoichiometric space is 2n−2+2m−2. Otherwise, if there are #([1, n]∩ϕ([1, m]))−1

linear dependence relations, the dimension of the stoichiometric subspace of G is

s = 2n − 2 + 2m − 2 − (#([1, n] ∩ ϕ([1, m])) − 1)

= 2n + 2m − 3 − #([1, n] ∩ ϕ([1, m])).

Thus G has deficiency

δ = C − � − s = (2n + 2m − 2) − 2 − (2n + 2m − 3 − #([1, n] ∩ ϕ([1, m])))

= #([1, n] ∩ ϕ([1, m])) − 1,

and a similar calculation gives the stated deficiency for the case of [1, n]∩ϕ([1, m]) =

∅. 	


Remark 3.5 From Proposition 3.4, G has deficiency one if and only if #([1, n] ∩

ϕ([1, m])) = 2, i.e. when the forward and backward chain have exactly two sub-

strates in common. In all other cases, G does not have deficiency one and thus the

Shinar–Feinberg deficiency one theorem cannot be applied.

Before examining the steady states of (3.1), we state an important fact regarding

the expressions K and H .

Lemma 3.6 (Cascading sums of K and H ) The expressions K and H in (3.2) satisfy

(1)

i∑

�=1

K� = −ki ci for i = 1, . . . , n. In particular,

n∑

�=1

K� = 0.

(2)

m∑

�= j+1

H� = h j d j for j = 0, . . . , m − 1. In particular,

m∑

�=1

H� = 0.

Proof The equations can be easily derived from the definition of K and H in (3.2) and

the fact that k0 = kn = 0 and h0 = hm = 0. 	


Lemma 3.7 (Cascading sums of G and F at steady state) At steady state, we have the

following:

(1)

n∑

i=1

Fi = 0.

(2)

m∑

j=1

Gα
j = 0.
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Proof The first claim is immediate from de/dt . To obtain the second equality, we first

recall from (3.3) that Gα
m = Hm . Thus we have

m∑

j=1

Gα
j =

m∑

j=1

H j = 0, (3.5)

where the second equality follows from Lemma 3.6(2). 	


Proposition 3.8 The steady states for the ODEs (3.1) are solutions of the following

equations

(1) Fi = −Gα
ϕ−1(i)

for i ∈ [1, n] ∩ ϕ([1, m]),

(2) Fi = 0 for i ∈ [1, n] ∩ ϕ([1, m])c,

(3) Gα
j = 0 for ϕ j ∈ [1, n]c ∩ ϕ([1, m]),

(4) Gα
j = H j for j ∈ [1, m − 1],

(5) Fi = Ki , for i ∈ [1, n − 1].

Proof Equations (1)–(4) follow directly by setting dsi/dt = 0, de/dt = 0 and

dd j/dt = 0 in (3.1). Setting dci/dt = 0 in (3.1) and Lemma 3.7 yields Fi = Ki for

i ∈ [1, n − 1]. 	


The next corollary, which will be used extensively in Sect. 4, follows directly from

Proposition 3.8.

Corollary 3.9 The steady states for the ODEs (3.1) satisfy the following equations

(1) Ki = −Hϕ−1(i) for i ∈ [1, n] ∩ ϕ([1, m]),

(2) Ki = 0 for i ∈ [1, n] ∩ ϕ([1, m])c,

(3) H j = 0 for ϕ j ∈ [1, n]c ∩ ϕ([1, m]).

Proof We first note that Gα
m = Hm = hm−1dm−1 and Fn = Kn = kn−1cn−1. Thus

due to Proposition 3.8, the steady states for the ODEs (3.1) satisfy

(4′) Gα
j = H j for j ∈ [1, m],

(5′) Fi = Ki , for i ∈ [1, n].

Combining equation (1) in Proposition 3.8 and (4′), (5′) yields Ki = −Hϕ−1(i) for

i ∈ [1, n] ∩ ϕ([1, m]). Combining equation (2) in Proposition 3.8 and (5′) yields

Ki = 0 for i ∈ [1, n]∩ϕ([1, m])c. Finally, combining equation (3) in Proposition 3.8

and (4′) yields H j = 0 for ϕ j ∈ [1, n]c ∩ ϕ([1, m]). 	


Next, we introduce two sets of quantities that are important in obtaining the ACR

values in Sect. 4 and the steady state parameterization in Sect. 6.

Definition 3.10 We define

k∗
i :=

ki + k−
i

ki k
+
i

for i ∈ [1, n − 1]
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and

h∗
j :=

h j + h−
j

h j h
+
j

for j ∈ [1, m − 1].

Corollary 3.11 The steady states for the ODEs (3.1) are solutions of the following

equations

(1) ki−1ci−1 − ki ci = −hϕ−1(i)−1dϕ−1(i)−1 + hϕ−1(i)dϕ−1(i), for i ∈ [1, n] ∩

ϕ([1, m]),

(2) ki−1ci−1 = ki ci , for i ∈ [1, n] ∩ ϕ([1, m])c,

(3) h j−1d j−1 = h j d j , for i = ϕ j ∈ [1, n]c ∩ ϕ([1, m]),

(4) sϕ j
cα = h j h

∗
j d j , for j ∈ [1, m − 1],

(5) si e = ki k
∗
i ci , for i ∈ [1, n − 1].

Proof Equations (1), (4), (5) are equivalent to equations (1), (4), (5) in Proposi-

tion 3.8. Equation (2) follows from combining equations (2) and (5) in Proposition 3.8

and equation (3) follows from combining equations (3) and (4) in Proposition 3.8.

Conversely, equations (2) and (5) here imply equation (2) in Proposition 3.8, and

equations (3) and (4) here imply equation (3) in Proposition 3.8. 	


Remark 3.12 Equation (4) in Corollary 3.11 is particularly important in identifying

ACR species in Sect. 4. It implies that if there exists an index j such that the ratio d j/cα

is a constant independent of the conserved quantities, then the network has ACR in

species ϕ j . Consequently, the main approach in Sect. 4 involves finding such an index

j .

4 Bifunctional enzyme generates concentration robustness

In this section, we will show that ACR is a fairly generic property for covalent

modification networks with a bifunctional enzyme. In particular, we will first show

the existence of an ACR species in the futile cycle with bifunctional enzyme.

Theorem 4.1 (Futile cycle) Let G be a covalent modification network (n, m, ϕ) with

a bifunctional enzyme Cα , where m = n and ϕ j = n + 1 − j .

S1 + E
k+

1
−→←−
k−

1

C1
k1
−→ S2 + E

k+
2

−→←−
k−

2

C2
k2
−→ . . . . . .

k+
n−1

−−→←−−
k−

n−1

Cn−1
kn−1
−−→ Sn + E,

Sn + Cα

h+
1

−→←−
h−

1

D1
h1
−→ Sn−1 + Cα

h+
2

−→←−
h−

2

D2
h2
−→ . . . . . .

h+
n−1

−−−→←−−−
h−

n−1

Dn−1
hn−1
−−→ S1 + Cα,

Then G has ACR in species Sα+1 with ACR value kαh∗
n−α.
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Table 1 Some examples of covalent modification networks and their ACR properties

Type of operation Forward chain

index (1, . . . , n) of

(S1, . . . , Sn)

Backward chain

index

(ϕ1, . . . , ϕm )

of (Sϕ1 , . . . , Sϕm )

Enzyme complex

Cα, α =

ACR species

Si , i =

ACR value

Futile cycle (1, 2, 3) (3, 2, 1) 1 2 k1h∗
2

2 3 k2h∗
1

Deletion (1, 2, 3) (3, 1) 1 3 k1h∗
1

2 3 k2h∗
1

Insertion (1, 2, 3) (3, 4, 2, 1) 1 2 k1h∗
3

2 3,4 k2h∗
1 , k2h∗

2

Deletion & Insertion (1, 2, 3) (3, 4, 1) 1 3,4 k1h∗
1 , k1h∗

2

2 3,4 k2h∗
1 , k2h∗

2

Permutation (1, 2, 3) (3, 1, 2) 1 – –

2 3 k2h∗
1

Permutation (1, 2, 3) (2, 3, 1) 1 3 k1h∗
2

2 – –

Deletion (1, 2, 3, 4) (4, 2, 1) 1 2 k1h∗
2

2 4 k2h∗
1

3 4 k3h∗
1

1
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Table 1 continued

Type of operation Forward chain

index (1, . . . , n) of

(S1, . . . , Sn)

Backward chain

index

(ϕ1, . . . , ϕm)

of (Sϕ1 , . . . , Sϕm )

Enzyme complex

Cα, α =

ACR species

Si , i =

ACR value

Insertion (1, 2, 3, 4) (4, 3, 5, 2, 1) 1 2 k1h∗
4

2 3,5 k2h∗
2 , k2h∗

3

3 4 k3h∗
1

Permutation (1, 2, 3, 4) (4, 2, 3, 1) 1 3 k1h∗
3

2 – –

3 4 k3h∗
1

Permutation (1, 2, 3, 4) (2, 4, 3, 1) 1 3 k1h∗
3

2 – –

3 – –

Permutation & Insertion (1, 2, 3, 4) (4, 2, 5, 3, 1) 1 3 k1h∗
4

2 – –

3 4 k3h∗
1

Permutation & Insertion & Deletion (1, 2, 3, 4) (4, 5, 1, 3) 1 – –

2 – –

3 4,5 k3h∗
1, k3h∗

2

Every covalent modification network is obtained from some futile cycle by performing a series of insertion, deletion or permutation steps. For each network, the table indicates

the ACR species and its ACR value given the choice of bifunctional enzyme Cα

1
23
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Proof We first observe from the assumption that ϕ j = n+1− j that ϕ([1, m]) = [1, n]

and ϕ−1(i) = n + 1 − i . Thus from Corollary 3.9, we have

Ki = −Hn+1−i for i ∈ [1, n].

Thus we have

i∑

�=1

K� = −

n∑

�=n+1−i

H� for i ∈ [1, n].

Using Lemma 3.6, we obtain

ki ci = hn−i dn−i for i ∈ [1, n]. (4.1)

In particular, setting i = α in the equation (4.1) gives us

kαcα = hn−αdn−α.

Finally, setting j = n − α in equation (4) of Corollary 3.11 and observing that

ϕn−α = α + 1, we obtain sα+1 = kαh∗
n−α . 	


Remark 4.2 The steady state parameterization in Sect. 6 further implies that for a futile

cycle, Sα+1 is the only ACR species.

The most general network can be obtained from a futile cycle by doing a finite

sequence of only three operations on the backward chain: (i) deletion, (ii) insertion,

and (iii) permutation. For ease of reading, before providing the most general result,

we will show in Theorems 4.3, 4.5, and 4.7 that the covalent modification networks

obtained from performing each of the three operations on the futile cycle (permutations

need to satisfy certain assumption) still have ACR.

Theorem 4.3 (Deletion in the backward chain) Let G be a covalent modification net-

work (n, m, ϕ) with a bifunctional enzyme Cα , where 1 = ϕm < ϕm−1 < · · · < ϕ1 =

n. Let the index p be such that α ∈ [ϕp+1, ϕp − 1]. Then G has ACR in species Sϕp

with ACR value kαh∗
p.

Proof We first observe from the assumption that ϕ1, . . . , ϕm ∈ [1, n] ∩ ϕ([1, m]).

Thus from equation (1) in Corollary 3.9, we have

Kϕ j
= −H j for j ∈ [1, m]. (4.2)

Consequently, for each j ∈ [1, m], we have

ϕ j+1∑

i=1

Ki =

m∑

�= j+1

Kϕ�
+

∑

i∈[1,ϕ j+1]∩ϕ([1,m])c

Ki = −

m∑

�= j+1

H�,
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where the second equality comes from (4.2) and equation (2) in Corollary 3.9. Using

Lemma 3.6 we obtain

kϕ j+1
cϕ j+1

= h j d j for j ∈ [1, m]. (4.3)

Now if α = ϕp+1, then from (4.3) we have kαcα = h pdp. If α > ϕp+1, then

[ϕp+1 +1, α] ⊂ [1, n]∩ϕ([1, m])c. Thus using equation (2) in Corollary 3.11 yields

kαcα = · · · = kϕp+1 cϕp+1 = h pdp.

In both cases, we have kαcα = h pdp. Finally, setting j = p in equation (4) in

Corollary 3.11 gives us sϕp = kαh∗
p. 	


The example below illustrates how Theorem 4.3 is used, and gives some intuition

on the relation between the bifunctional enzyme and the substrate with ACR.

Example 4.4 Let G be a covalent modification network (4, 3, ϕ) with a bifunctional

enzyme Cα , where ϕ is given by ϕ1 = 4, ϕ2 = 2 and ϕ3 = 1.

S1 + E
k+

1
−→←−
k−

1

C1
k1
−→ S2 + E

k+
2

−→←−
k−

2

C2
k2
−→ S3 + E

k+
3

−→←−
k−

3

C3
k3
−→ S4 + E,

S4 + Cα

h+
1

−→←−
h−

1

D1
h1
−→ S2 + Cα

h+
2

−→←−
h−

2

D2
h2
−→ S1 + Cα,

• When the bifunctional enzyme is C1, we have α = 1 ∈ [ϕ3, ϕ2 − 1], thus G has

ACR in species Sϕ2 = S2 with ACR value k1h∗
2. The bifunctional enzyme C1 and

the reaction rate constants that appear in the ACR value are shown in red in the

reaction network. In this case, the ACR species S2 can be seen as the target of the

bifunctional enzyme C1 as C1 directly produces S2, and catalyzes the degradation

of S2.

• When the bifunctional enzyme is C2 or C3, we have α ∈ [ϕ2, ϕ1 − 1], thus in both

cases G has ACR in species Sϕ1 = S4 with ACR values k2h∗
1 and k3h∗

1 respectively.

When the bifunctional enzyme is C3, again we can see S4 as the target substrate as

C3 directly involves in the production and degradation of S4. When the bifunctional

enzyme is C2, while S3 is produced directly from C2, it does not appear in the

backward chain. So we have to look one step further to find the target substrate: C2

indirectly involves in the production of S4, and directly involves in the degradation

of S4.

Theorem 4.5 (Insertion in the backward chain) Let G be a covalent modification net-

work (n, m, ϕ) with a bifunctional enzyme Cα , where m = ϕ−1(1) > ϕ−1(2) > · · · >

ϕ−1(n) = 1. Then for any j ∈ {ϕ−1(α + 1), . . . , ϕ−1(α) − 1}, G has ACR in species

ϕ j with ACR value kαh∗
j .
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Proof We first observe that [1, n] ⊂ ϕ([1, m]). Thus from equation (1) in Corol-

lary 3.9, we have

Ki = −Hϕ−1(i) for i ∈ [1, n]. (4.4)

As a result, for any i ∈ [1, n], we have

i∑

�=1

K� = −

i∑

�=1

Hϕ−1(�) = −

⎛
⎝

m∑

j=ϕ−1(i)

H j −
∑

j∈[ϕ−1(i),m]:ϕ j ∈[1,n]c

H j

⎞
⎠

= −

m∑

j=ϕ−1(i)

H j , (4.5)

where the third equality is due to equation (3) in Corollary 3.9. In particular, setting

i = α in (4.5) gives us

α∑

�=1

K� = −

m∑

j=ϕ−1(α)

H j .

Using Lemma 3.6 we obtain

kαcα = hϕ−1(α)−1dϕ−1(α)−1.

Furthermore, if ϕ−1(α + 1) < ϕ−1(α) − 1, then ϕ([ϕ−1(α + 1) + 1, ϕ−1(α) − 1]) ∈

[1, n]c. Thus by equation (3) in Corollary 3.11 we have

hϕ−1(α+1)dϕ−1(α+1) = · · · = hϕ−1(α)−1)dϕ−1(α)−1 = kαcα.

Finally, setting j = ϕ−1(α + 1), . . . , ϕ−1(α) − 1 in equation (4) in Corollary 3.11

yields

sϕ j
= kαh∗

j for j = ϕ−1(α + 1), . . . , ϕ−1(α) − 1.

	


We illustrate the result of Theorem 4.5 in the following example, and again include

some intuition on the relation of the bifunctional enzyme and the ACR substrate.
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Example 4.6 Let G be a covalent modification network (3, 4, ϕ) with a bifunctional

enzyme Cα , where ϕ is given by ϕ1 = 3, ϕ2 = 4, ϕ3 = 2 and ϕ4 = 1.

S1 + E
k+

1
−→←−
k−

1

C1
k1
−→ S2 + E

k+
2

−→←−
k−

2

C2
k2
−→ S3 + E,

S3 + Cα

h+
1

−→←−
h−

1

D1
h1
−→ S4 + Cα

h+
2

−→←−
h−

2

D2
h2
−→ S2 + Cα

h+
3

−→←−
h−

3

D3
h3
−→ S1 + Cα,

• When the bifunctional enzyme is C1 (i.e. α = 1), we have ϕ−1(α + 1) = 3 =

ϕ−1(α) − 1, thus G has ACR in species Sϕ3 = S2 with ACR value k1h∗
3. In this

case, the ACR species S2 is the target of the bifunctional enzyme C1 as C1 directly

produces S2, and catalyzes the degradation of S2.

• When the bifunctional enzyme is C2 (i.e. α = 2), we have ϕ−1(α + 1) = 1 and

ϕ−1(α) − 1 = 2, thus G has ACR in species Sϕ1 = S3 and Sϕ2 = S4 with ACR

values k2h∗
1 and k2h∗

2 respectively. Similar to the previous case, here S3 can be

clearly identified as the target substrate as C2 directl involves in its production

and degradation. It is much more subtle to interpret S4 as another target substrate.

While S4 does not appear in the forward chain, one could argue the closest enzyme

from the forward chain responsible for its production is C2 since C2 produces S3,

which in turn transforms into S4 in the backward chain.

Theorem 4.7 (Permutation in the backward chain) Let G be a covalent modification

network (n, m, ϕ) with a bifunctional enzyme Cα , where {ϕm, ϕm−1, . . . , ϕm−α+1} is

a permutation of {1, . . . , α}, then G has ACR in species Sϕm−α with ACR value kαh∗
m−α

Proof We first observe that [1, α] ⊂ [1, n] ∩ ϕ([1, m]). Thus from equation (1) in

Corollary 3.9, we have

Ki = −Hϕ−1(i) for i ∈ [1, α].

Thus we have

α∑

i=1

Ki = −

α∑

i=1

Hϕ−1(i)

= −

m∑

j=m−α+1

H j ,

where the second equality is due to the assumption that {ϕm, ϕm−1, . . . , ϕm−α+1} is a

permutation of {1, . . . , α}. As a result, from Lemma 3.6 we obtain

kαcα = hm−αdm−α.

Finally, setting j = m−α in equation (4) in Corollary 3.11, we have sϕm−α = kαh∗
m−α .
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We illustrate the result in Theorem 4.7 with an example below. The permutation

operation is complicated and it is difficult to interpret the relation between the bifunc-

tional enzyme and the ACR substrate. We plan to develop a much broader theoretical

framework to explain this relation in a future paper.

Example 4.8 Let G be a covalent modification network (4, 4, ϕ) with a bifunctional

enzyme Cα , where ϕ is given by ϕ1 = 4, ϕ2 = 2, ϕ3 = 3 and ϕ4 = 1.

S1 + E
k+

1
−→←−
k−

1

C1
k1
−→ S2 + E

k+
2

−→←−
k−

2

C2
k2
−→ S3 + E

k+
3

−→←−
k−

3

C3
k3
−→ S4 + E,

S4 + Cα

h+
1

−→←−
h−

1

D1
h1
−→ S2 + Cα

h+
2

−→←−
h−

2

D2
h2
−→ S3 + Cα

h+
3

−→←−
h−

3

D3
h3
−→ S1 + Cα,

• When the bifunctional enzyme is C1 (i.e. α = 1), we have ϕ4 = 1 = α, thus G

has ACR in species Sϕ3 = S3 with ACR value k1h∗
3.

• When the bifunctional enzyme is C2 (i.e. α = 2), we have {ϕ4, ϕ3} = {1, 3} �=

{1, 2}. It can be checked that G has no ACR species.

• When the bifunctional enzyme is C3 (i.e. α = 3), we have {ϕ4, ϕ3, ϕ2} = {1, 2, 3},

thus G has ACR in species Sϕ1 = S4 with ACR value k3h∗
1.

Theorem 4.9 (General network) Let G be a covalent modification network (n, m, ϕ)

with a bifunctional enzyme Cα . Assume that {1, n} ⊆ ϕ([1, m]). Let

β = min{ j : ϕ j ∈ [1, α] ∩ ϕ([1, m])}, and γ = max{ j : ϕ j ∈ [α + 1, n] ∩ ϕ([1, m])}.

Then β and γ are defined. Furthermore, if γ < β then for any j ∈ {γ, . . . , β − 1}, G

has ACR in species Sϕ j
with ACR value kαh∗

j .

Proof Since 1 ∈ ϕ([1, m]), we must have [1, α]∩ϕ([1, m]) �= ∅ and thus β is defined.

Similarly, [α + 1, n] ∩ ϕ([1, m]) �= ∅, and thus γ is also defined. We observe that

α∑

i=1

Ki =
∑

i∈[1,α]∩ϕ([1,m])

Ki +
∑

i∈[1,α]∩ϕ([1,m])c

Ki =
∑

i∈[1,α]∩ϕ([1,m])

Ki , (4.6)

where the second equality is due to equation (2) in Corollary 3.9. Next, we have

m∑

j=γ+1

H j =
∑

j :ϕ j ∈[1,n]∩ϕ([γ+1,m])

H j +
∑

j :ϕ j ∈[1,n]c∩ϕ([γ+1,m])

H j

=
∑

j :ϕ j ∈[1,n]∩ϕ([γ+1,m])

H j , (4.7)

where the second equality is due to equation (3) in Corollary 3.9. Before proceeding

further, we prove the following claim.

Claim: [1, n] ∩ ϕ([γ + 1, m]) = [1, α] ∩ ϕ([1, m]).
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• First, assume that i ∈ [1, n] ∩ ϕ([γ + 1, m]). Then clearly we have i ∈ ϕ([1, m]).

Furthermore, since i ∈ ϕ([γ + 1, m]), we must have ϕ−1(i) > γ . From the

definition of γ , this means i /∈ [α + 1, n]. Thus i ∈ [1, α], which further implies

i ∈ [1, α] ∩ ϕ([1, m]).

• For the remaining direction, assume that i ∈ [1, α] ∩ ϕ([1, m]). Then clearly we

have i ∈ [1, n]. From the definition of β and the assumption that γ < β, we have

ϕ−1(i) ≥ β > γ . Thus i ∈ ϕ([γ +1, m]), which implies i ∈ [1, n]∩ϕ([γ +1, m]).

Using the above claim and equation (1) in Corollary 3.9, we obtain

∑

i∈[1,α]∩ϕ([1,m])

Ki =
∑

i∈[1,α]∩ϕ([1,m])

Hϕ−1(i) =
∑

j :ϕ j ∈[1,n]∩ϕ([γ+1,m])

H j . (4.8)

Thus combining equations (4.6), (4.7) and (4.8) yields

α∑

i=1

Ki =

m∑

j=γ+1

H j .

From Lemma 3.6 we obtain

kαcα = hγ dγ .

Furthermore, if γ < β − 1, then by the definitions of β and γ we have ϕ j ∈ [1, n]c ∩

ϕ([1, m]) ∀ j ∈ [γ + 1, β − 1]. Using equation (3) in Corollary 3.11, we obtain

hβ−1dβ−1 = · · · = hγ dγ = kαcα.

Finally, setting j = γ, . . . , β − 1 in equation (4) in Corollary 3.11 yields

sϕ j
= kαh∗

j for j = γ, . . . , β − 1.

	


Remark 4.10 We provide some intuition on the assumptions in Theorem 4.9:

• The index β indicates which species among S1, . . . , Sα appears first in the back-

ward chain.

• The index γ indicates which species among Sα+1, . . . , Sn appears last in the back-

ward chain.

• The assumption γ < β will always hold if we perform an ACR-preserving permu-

tation in the backward chain (according to Theorem 4.7) first, then finite number

of insertions and deletions in the backward chain (as described in Theorems 4.3

and 4.5).
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Example 4.11 Let G be a covalent modification network (4, 4, ϕ) with a bifunctional

enzyme Cα , where ϕ is given by ϕ1 = 4, ϕ2 = 5, ϕ3 = 1 and ϕ4 = 2.

S1 + E
k+

1
−→←−
k−

1

C1
k1
−→ S2 + E

k+
2

−→←−
k−

2

C2
k2
−→ S3 + E

k+
3

−→←−
k−

3

C3
k3
−→ S4 + E,

S4 + Cα

h+
1

−→←−
h−

1

D1
h1
−→ S5 + Cα

h+
2

−→←−
h−

2

D2
h2
−→ S1 + Cα

h+
3

−→←−
h−

3

D3
h3
−→ S2 + Cα,

• When the bifunctional enzyme is C1 (i.e. α = 1), we have β = 3 and γ = 4. Thus

the assumption in Theorem 4.9 is not satisfied and it can be checked that there is

no ACR species.

• When the bifunctional enzyme is C2 (i.e. α = 2), we have β = 3 and γ = 1. Thus

the assumption in Theorem 4.9 is satisfied, and G has ACR in species Sϕ1 = S4

and Sϕ2 = S5 with ACR values k2h∗
1 and k2h∗

2 respectively.

• When the bifunctional enzyme is C3 (i.e. α = 3), we have β = 3 and γ = 1.

Again, the assumption in Theorem 4.9 is satisfied, and G has ACR in species

Sϕ1 = S4 and Sϕ2 = S5 with ACR values k3h∗
1 and k3h∗

2 respectively.

Remark 4.12 In Sect. 6, we prove that the futile cycle with bifunctional enzyme has

ACR in one and only one species. Insertion in the backward chain (and any combination

of operations containing it) can give rise to more than one ACR species. As for deletion

and ACR-preserving permutation in the backward chain, we believe there isn’t ACR

in any other species. Numerical simulations or parameterization of the type in Sect. 6

can help with ruling out ACR in other species not stated in Theorems 4.3 and 4.7.

We include some additional examples in Table 1, where we apply the theorems

in this section to find the ACR species in covalent modification networks with a

bifunctional enzyme.

Remark 4.13 It is worth noting that our main result in Theorem 4.9 does not require

Cα to be the only enzyme in the backward chain. In fact, the result still holds if Cα is

replaced by another enzyme F in any complex in the backward chain except for the

complexes containing the ACR species. For example, consider the futile cycle with

n = 3 and α = 1, which has ACR in S2:

S1 + E
k+

1
−→←−
k−

1

C1
k1
−→ S2 + E

k+
2

−→←−
k−

2

C2
k2
−→ S3 + E,

S3 + C1

h+
1

−→←−
h−

1

D1
h1
−→ S2 + C1

h+
2

−→←−
h−

2

D2
h2
−→ S1 + C1.
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A variant of this network where some C1 in the backward chain are replaced by F

still have ACR in species S2:

S1 + E
k+

1
−→←−
k−

1

C1
k1
−→ S2 + E

k+
2

−→←−
k−

2

C2
k2
−→ S3 + E,

S3 + F
h+

1
−→←−
h−

1

D1
h1
−→ S2 + F,

S2 + C1

h+
2

−→←−
h−

2

D2
h2
−→ S1 + C1.

This type of replacements generally does not change our results. The main difference

it brings forth lie in equation (4) of Corollary 3.11, where cα is replaced by f for some

j . Thus, the proof with this type of replacements remains mostly identical to the proof

of Theorem 4.9 with very minor changes in notations.

Of course, it is possible to encounter many other ACR-preserving variants of the

class of networks studied in this paper. In future work, we will give results that sig-

nificantly generalize the results in this paper.

5 Existence of positive steady state

We give necessary and sufficient conditions for a covalent modification network to be

consistent. Even though the theorem and proof are stated for a covalent modification

network with a bifunctional enzyme, the result applies to any covalent modification

network with or without a bifunctional enzyme with a minor modification.

Theorem 5.1 Let G be a covalent modification network (n, m, ϕ). Define an auxiliary

graph NG whose vertices are

{X1, . . . , Xn} ∪ {Xϕ1 , . . . , Xϕm }

and X� → Xs is a directed edge of NG if and only if � + 1 = s ≤ n or ϕ−1(�) + 1 =

ϕ−1(s) ≤ m. The following are equivalent:

1. G is consistent,

2. NG is strongly connected.

Note: The proof that 2. �⇒ 1. is by direct construction. Specifically, we give rate

constants of all reactions in G and show that (1, 1, . . . , 1) is a positive steady state

for the chosen rate constants. The procedure to obtain the desired rate constants is

explained in Remark 5.2 which follows the proof.

Proof Suppose that NG is strongly connected. Then, in particular, there is a path from

Xn to X1. It follows that n, 1 ∈ �(ϕ) and ϕ−1(n) < ϕ−1(1). Define rate constants in

backward chain of G as follows:
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h j =

{
3 if ϕ−1(n) ≤ j < ϕ−1(1),

1 otherwise.
(5.1)

Moreover, let h−
j = 1 and h+

j = h j + 1 for j ∈ [1, m − 1].

Since NG is strongly connected, there must exist a node X� such that X� → Xϕ1 .

That means either �+ 1 = ϕ1 ≤ n or ϕ−1(�)+ 1 = ϕ−1(ϕ1) = 1. The latter is clearly

impossible, and the former implies that ϕ1 ∈ [2, n]. Similarly, strong connectedness

of NG implies that ϕm ∈ [1, n − 1]. Define rate constants in forward chain of G as

follows:

ki =

⎧
⎪⎨
⎪⎩

1 if ϕ1 ≤ i < ϕm,

3 if ϕm ≤ i < ϕ1,

2 otherwise.

(5.2)

Moreover, let k−
i = 1 and k+

i = ki + 1 for i ∈ [1, n − 1].

To show that 1 := (1, 1, . . . , 1) is a steady state, it suffices to show that the produc-

tion rate of every species is equal to its consumption rate at the state 1, i.e. for every

species s in G, the following must hold:

∑

s∈y′

κy→y′ −
∑

s∈y

κy→y′ = 0 (5.3)

where κy→y′ is the reaction rate constant of the reaction y → y′ and s ∈ y means that

the species s has positive stoichiometric coefficient in the complex y.

• For the species S1, we check that

∑

S1∈y′

κy→y′ −
∑

S1∈y

κy→y′ =
[
k0 + k−

1 − k+
1

]
+

[
hϕ−1(1)−1 + h−

ϕ−1(1)
− h+

ϕ−1(1)

]

=

{
[0 + 1 − (1 + 2)] + [3 + 1 − (1 + 1)] if ϕm �= 1

[0 + 1 − (1 + 3)] + [3 + 0 − 0] if ϕm = 1

}
= 0.

• For the species Sn , we check that

∑

Sn∈y′

κy→y′ −
∑

Sn∈y

κy→y′ =
[
kn−1 + k−

n − k+
n

]
+

[
hϕ−1(n)−1 + h−

ϕ−1(n)
− h+

ϕ−1(n)

]

=

{
[2 + 0 − 0] + [1 + 1 − (1 + 3)] if ϕ1 �= n

[3 + 0 − 0] + [0 + 1 − (1 + 3)] if ϕ1 = n

}
= 0.
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• For the species Sϕ1 , assuming that ϕ1 �= n (since this case is already covered), we

check that

∑

Sϕ1
∈y′

κy→y′ −
∑

Sϕ1
∈y

κy→y′ =
[
kϕ1−1 + k−

ϕ1
− k+

ϕ1

]
+

[
h0 + h−

1 − h+
1

]

=

{
[2 + 1 − (1 + 1)] + [0 + 1 − (1 + 1)] if ϕ1 < ϕm

[3 + 1 − (1 + 2)] + [0 + 1 − (1 + 1)] if ϕ1 > ϕm

}
= 0.

• For the species Sϕm , assuming that ϕm �= 1 (since this case is already covered),

we check that

∑

Sϕm ∈y′

κy→y′ −
∑

Sϕm ∈y

κy→y′ =
[
kϕm−1 + k−

ϕm
− k+

ϕm

]
+

[
hm−1 + h−

m − h+
m

]

=

{
[1 + 1 − (1 + 2)] + [1 + 0 − 0] if ϕ1 < ϕm

[2 + 1 − (1 + 3)] + [1 + 0 − 0] if ϕ1 > ϕm

}
= 0.

• For the species Si , i /∈ {1, n, ϕ1, ϕm}, it is easy to check that the rate constants

balance “locally”, i.e. ki−1 + k−
i − k+

i = 0 and hϕ−1(i)−1 + h−

ϕ−1(i)
− h+

ϕ−1(i)
= 0,

and so

∑

Si ∈y′

κy→y′ −
∑

Si ∈y

κy→y′ =
[
ki−1 + k−

i − k+
i

]
+

[
hϕ−1(i)−1 + h−

ϕ−1(i)
− h+

ϕ−1(i)

]
= 0.

• Finally, for the remaining species E , C1, . . . , Cn−1 (including Cα) and D1, . . . ,

Dm−1, balancing of production and consumption rates at the state 1 follow imme-

diately from

k+
i = ki + k−

i (i ∈ [1, n − 1]), and h+
j = h j + h−

j ( j ∈ [1, m − 1]).

For the converse, suppose that NG is not strongly connected. Then there exists a proper

subgraph N ′ of NG such that N ′ has at least one node, N ′ is strongly connected, there

is at least one edge from a node in N ′ to a node in NG\N ′ but there is no edge from

a node in NG\N ′ to a node in N ′. Since there is no edge from a node in NG\N ′ to a

node in N ′, the set of nodes in N ′ must be {X1, . . . , X�} ∪ {Xϕ1, . . . , Xϕp } for some

1 ≤ � ≤ n and 1 ≤ p ≤ m, but not both � = n and p = m. Thus we have

∑

i :Xi ∈N ′

(
dsi

dt
+

dci

dt
+

ddϕ−1(i)

dt

)

=
∑

i∈[1,�]∩ϕ([1,p])

(
dsi

dt
+

dci

dt
+

ddϕ−1(i)

dt

)
+

∑

i∈[1,�]∩ϕ([1,m])c

(
dsi

dt
+

dci

dt

)

+
∑

i∈[1,n]c∩ϕ([1,p])

(
dsi

dt
+

ddϕ−1(i)

dt

)
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=

�∑

i=1

Ki +

p∑

j=1

H j +
∑

i :Xi ∈N ′

δα(i)

m∑

j=1

Gα
j .

At steady state, we must have
∑m

j=1 Gα
j = 0 from Lemma 3.7. Therefore, from

Lemma 3.6, we get that at steady state

0 =
∑

i :Xi ∈N ′

(
dsi

dt
+

dci

dt
+

ddϕ−1(i)

dt

)
=

�∑

i=1

Ki +

p∑

j=1

H j = −k�c� − h pdp,

which implies that c� and dp are zero at any steady state. When � < n, c� is the

concentration of the species C� and when p < m, dp is the concentration of the species

Dp, and since one of the inequalities must hold, at least one species concentration

is zero at steady state. In particular, there is no positive steady state, i.e. G is not

consistent. 	


Remark 5.2 We describe the procedure used to construct rate constants for G such that

1 = (1, 1, . . . , 1) is a steady state. If we choose k−
i = 1, k+

i = ki +1 for i ∈ [1, n −1]

and h−
j = 1, h+

j = h j + 1 for j ∈ [1, m − 1], then all enzymes and intermediate

complexes are balanced at 1. Moreover, the net production rate (production rate minus

consumption rate) of each Si is −ki + ki−1 − hϕ−1(i) + hϕ−1(i)−1. In order to balance

the network, i.e. find reaction rate constants such that the net production rate of every

species is zero, it suffices to consider the following network, denoted X , instead:

X1
f

−→ X2
f

−→ . . .
f

−→ Xn

Xϕ1

b
−→ Xϕ1

b
−→ . . .

b
−→ Xϕm .

Note that the network X above is related to NG appearing in the proof of Theorem 5.1

but is not exactly the same since here we use different ‘edge types’ in the forward

and the backward chain. Specifically, each edge is labeled either f or b depending

on whether it appears in the forward or the backward chain, to enable a distinction

between a transition X i → X j that may appear in both chains. Next we construct

a cycle by adding a path of edges from Xn to Xϕ1 (possibly trivial path if ϕ1 = n)

and another path of edges from Xϕm to X1 (possibly trivial path if ϕm = 1). Such

paths exist because NG is strongly connected by hypothesis. The added edges may be

any edges selected from X . Denote the constructed cycle by P where PXi →X j
is the

chosen fixed path from X i → X j .

P = X1
f

−→ . . .
f

−→ Xn → (PXn→Xϕ1
) → Xϕ1

b
−→ . . .

b
−→ Xϕm → (PXϕm →X1).
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The rate constants ofG are now determined from the number of times the corresponding

edge appears in P , i.e.

ki =

∣∣∣
(

X i
f

−→ X i+1

)
∈ P

∣∣∣, and

h j =

∣∣∣
(

Xϕ j

b
−→ Xϕ j +1

)
∈ P

∣∣∣.

The specific rate constants (5.1) and (5.2) used in the proof of Theorem 5.1 were

obtained by constructing specific paths PXn→Xϕ1
and PXϕm →X1 , as follows:

PXn→Xϕ1
=

{
Xϕ

ϕ−1(n)

b
−→ Xϕ

ϕ−1(n)+1

b
−→ . . .

b
−→ Xϕ

ϕ−1(1)

f
−→ X2

f
−→ . . .

f
−→ Xϕ1 if ϕ1 �= n,

{} if ϕ1 = n,

PXϕm →X1 =

{
Xϕm

f
−→ Xϕm+1

f
−→ . . .

f
−→ Xn

b
−→ Xϕ

ϕ−1(n)+1

b
−→ . . .

b
−→ Xϕ

ϕ−1(1)
if ϕm �= 1,

{} if ϕm = 1.

Example 5.3 1. Let G be the covalent modification network (5, 4, ϕ) with ϕ([1, 4]) =

(2, 5, 1, 4). NG is clearly strongly connected because it has the edge X5 → X1.

X1 X2 X3 X4 X5
2 1 1 2

1

3

1

2. Let G be the covalent modification network (4, 4, ϕ) with ϕ([1, 4]) = (2, 1, 4, 3).

Here the subgraph N ′ of NG containing nodes X1, X2 is strongly connected, and

there is no edge from a node in NG \ N ′ to a node in G. As the proof of Theorem

5.1 suggests, at steady state we have:

0 =
ds1

dt
+

ds2

dt
+

dc1

dt

+
dc2

dt
+

dd1

dt
+

dd2

dt
= −k2c2 − h2d2,

thus G does not have any positive steady state, i.e. G is not consistent.

X1 X2 X3 X4

Corollary 5.4 Let G be a consistent covalent modification network (n, m, ϕ). Then the

β and γ appearing in Theorem 4.9 are defined.

Proof If {1, n} � ϕ([1, m]) then NG is not strongly connected. 	
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6 Steady state parameterization

We give a steady state parameterization for the futile cycle using only two parameters e,

the concentration of the enzyme in the forward chain and u := e/cα , the ratio between

the concentration of the enzyme in the forward chain and backward chain. The results

of the previous section, especially identity of the ACR species and its ACR value are

used in obtaining a steady state parameterization. On the other hand, the steady state

parameterization is found to be useful for ruling out ACR in other species. Additionally,

the steady state parameterization helps find the number of positive steady states for

futile cycles with a bifunctional enzyme.

Throughout this section, we let G be a covalent modification network (n, m, ϕ)

with a bifunctional enzyme Cα , where m = n and ϕ j = n + 1 − j . The main result

is Theorem 6.3, where we show that a positive steady state exists for all sufficiently

large total substrate concentrations.

Proposition 6.1 The steady state concentration of the substrates Si , and the interme-

diate species Ci and D j can be expressed in terms of the concentration of the enzymes

and their ratio as follows:

si = kαh∗
n−α

(
σ i−1↓1

σα↓1

)
ui−α−1, (i ∈ [1, n]),

ci =

(
μi−1↓1

μα−1↓1

)
eui−α−1, (i ∈ [1, n − 1]),

d j =
kα

hn−α

(
νn−2↓ j

νn−2↓n−α

)
eun− j−α−1, ( j ∈ [1, n − 1]),

(6.1)

where for each of υ ∈ {σ,μ, ν},

υi↓ j :=

{
υi · · · υ j if i ≥ j,

1 otherwise,
(6.2)

and

σi =
h∗

n−i

k∗
i

, μi =
ki h

∗
n−i

ki+1k∗
i+1

, νi =
hi+1h∗

i+1

hi k
∗
n−i

. (6.3)

Proof We observe that for futile cycle, m = n and ϕ([1, m]) = [1, n], thus the steady

state equations only consist of equation (1), (4), (5) in Corollary 3.11. First, we prove

that these equations imply (6.1). We start with a useful claim on recurrence relations

of the substrates Si , and the intermediate species Ci and D j .

Claim: For i ∈ [1, n − 1], we have the following recurrence relations at a positive

steady state:

si+1 = u · σi · si , ci+1 = u · μi · ci , di = u · νi · di+1, (6.4)
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where σi , μi , νi are given in (6.3).

Proof of claim: Let j = n − i in equation (4) in Corollary 3.11 we obtain si+1cα =

hn−i h
∗
n−i dn−i . From equation (5) in Corollary 3.11 we have si e = ki k

∗
i ci . Thus

si+1

si

=
e

cα

hn−i h
∗
n−i dn−i

ki k
∗
i ci

= u · σi ·
hn−i dn−i

ki ci

= u · σi , (6.5)

where the last equality comes from (4.1). The recurrence relations for ci come from

equation (5) in Corollary 3.11 and (6.5). The recurrence relations for di come from

equation (4) in Corollary 3.11 and (6.5), which completes proof of the claim.

Next, we return to the proof of the Proposition. The recurrence relations in (6.4)

have the following general solution:

si = ui−1σ i−1↓1s1, ci = ui−1μi−1↓1c1, di = un−i−1νn−2↓i dn−1. (6.6)

From Theorem 4.1 and (4.1) (where i = α) we have the following:

sα+1 = kαh∗
n−α, dn−α =

kα

hn−α

cα. (6.7)

Now, we let i = α+1 in the first equation, i = α in the second equation and i = n −α

in the third equation of (6.6) to get:

s1 =
sα+1

uασα↓1
=

(
kαh∗

n−α

σα↓1

)
u−α,

c1 =
cα

uα−1μα−1↓1
=

(
1

μα−1↓1

)
eu−α,

dn−1 =
dn−α

uα−1νn−2↓n−α
=

(
kα

hn−ανn−2↓n−α

)
eu−α.

(6.8)

Re-substituting in (6.6), we get the desired equations (6.1).

Conversely, we check that equations (6.1) imply equations (1), (4), (5) in Corol-

lary 3.11, and thus they form a parameterization of the steady states. Suppose that

si , ci , d j are given by equations (6.1). Then we have

ki ci = ki

(
μi−1↓1

μα−1↓1

)
eui−α−1

and

hn−i dn−i = hi

kα

hn−α

(
νn−2↓n−i

νn−2↓n−α

)
eui−α−1
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It is straightforward to check that the coefficients are equal:

ki

(
μi−1↓1

μα−1↓1

)
= hi

kα

hn−α

(
νn−2↓n−i

νn−2↓n−α

)
,

thus ki ci = hn−i dn−i for all i . This further implies

ki−1ci−1 = hn−i+1dn−i+1 − hn−i dn−i = −hϕ−1(i)−1dϕ−1(i)−1 + hϕ−1(i)dϕ−1(i),

which is equation (1) in Corollary 3.11.

Next, we have

si+1cα = kαh∗
n−α

(
σ i↓1

σα↓1

)
ui−αcα = kαh∗

n−α

(
σ i↓1

σα↓1

)
eui−α−1,

where the last equality comes from cα = e/u. We also have

hn−i h
∗
n−i dn−i = hn−i h

∗
n−i

kα

hn−α

(
νn−2↓n−i

νn−2↓n−α

)
eui−α−1.

Again, it is straightforward to verify that the coefficients in si+1cα and hn−i h
∗
n−i dn−i

are the same, thus si+1cα = hn−i h
∗
n−i dn−i . By substituting j = n − i we obtain

equation (4) in Corollary 3.11. Similarly, we can check that si e = ki k
∗
i ci by verifying

that they have the same monomial in e and u and same coefficient.

	


Proposition 6.2 Within a given compatibility class, with fixed total substrate Ts and

total enzyme Te, defined by the equations

n∑

i=1

si +

n−1∑

i=1

ci + 2

i−1∑

i=1

di = Ts, e +

n−1∑

i=1

ci +

i−1∑

i=1

di = Te, (6.9)

the number of positive steady states is the number of positive solutions of the following

equation in the variable u

gα(u) :=

n−1∑

i=0

(
Tsδα − ai

Te

)
ui =

uα
∑n−2

i=0 bi u
i

uα +
∑n−2

i=0 qi ui
=: hα(u) (6.10)

where

ai = kαh∗
n−α

(
σ i↓1

σα↓1

)
, bi =

μi↓1

μα−1↓1
+ 2

(
kα

hn−α

)
νn−2↓n−i−1

νn−2↓n−α
, qi =

μi↓1

μα−1↓1

+

(
kα

hn−α

)
νn−2↓n−i−1

νn−2↓n−α
.
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Proof Plugging the solution (6.1) into the conservation laws (6.9) results in

n−1∑

i=0

ai u
i + e

n−2∑

i=0

bi u
i = Tsuα, e

[
1 + u−α

n−2∑

i=0

qi u
i

]
= Te, (6.11)

where ai , bi and qi are as defined in the statement of the theorem. Eliminating the

variable e, and multiplying through by the common denominator gives an equation

whose left side is (6.10) and the right side is 0. For every positive zero u∗ of (6.10),

we can find the value of the coordinate e from the second equation in (6.11) and

finally the other coordinates from the steady state parameterization (6.1) appearing in

Proposition 6.1. It is clear that these other coordinates are positive when u∗ > 0. 	


Theorem 6.3 Let G be a covalent modification network (n, m, ϕ) with a bifunctional

enzyme Cα , where m = n and ϕ j = n + 1 − j .

1. Suppose that α = n − 1. Then a positive steady state exists if and only if Ts >

kαh∗
n−α . Moreover, when a positive steady state exists, the number (counted with

multiplicity) of positive steady states is odd.

2. Suppose that α ∈ [1, n − 2]. Then for every fixed Te, there exists a T̂s > kαh∗
n−α

such that a positive steady state exists if Ts > T̂s . Moreover, when a positive steady

state exists, the number (counted with multiplicity) of positive steady states is even.

Proof When α = n − 1, (6.10) becomes

gn−1(u) =
Ts − an−1

Te

un−1 −

n−2∑

i=0

(
ai

Te

)
ui =

un−1
∑n−2

i=0 bi u
i

un−1 +
∑n−2

i=0 qi ui
= hn−1(u).

(6.12)

For u > 0, the range of hn−1 is (0,∞). If Ts ≤ an−1, then gn−1(u) < 0 for all

u > 0 and so there is no positive solution. Now suppose that Ts > an−1. Then

gn−1(u) ∼ c′un−1 (as u → ∞) for some positive constant c′. Note that gn−1(0) <

0 = hn−1(0). Since hn−1(u) ∼ c′′un−2 and gn−1(u) ∼ c′un−1, gn−1(u) > hn−1(u)

for all sufficiently large u. It follows (6.12) must have an odd number (counted with

multiplicity) of positive solutions, and therefore at least one. By Proposition 6.2, the

number of positive solutions is the same as the number of positive steady states. Finally,

note that aα = an−1 = kαh∗
n−α is both the ACR value and the threshold for existence

of positive steady state.

For any α ∈ [1, n − 2], gα(0) = −a0/Te < 0 = hα(0). Moreover, gα(u) ∼

−(an−1/Te)u
n−1 while hα(u) is positive on (0,∞). Therefore, the number (counted

with multiplicity) of positive solutions of (6.10) must be even.

To show that a positive solution exists for a large enough Ts , we only need to show

that the graph of gα crosses the graph of hα . Indeed, fix Te > 0 and let

T̂s =

n−1∑

i=0

ai +
Te

∑n−2
i=0 bi

1 +
∑n−2

i=0 qi

.
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Then for any Ts > T̂s , we have

Te (gα(1) − hα(1)) = Ts −

n−1∑

i=0

ai −
Te

∑n−2
i=0 bi

1 +
∑n−2

i=0 qi

= Ts − T̂s > 0.

It follows that gα(1) > hα(1) and therefore there is a positive solution for u ∈ (0, 1)

and another positive solution in the interval (1,∞). 	


7 Existence of boundary steady state

Definition 7.1 Let G be a covalent modification network (n, m, ϕ). We denote by xB

the concentration vector where si = 0 for any i �= n; ci = 0 for i ∈ [1, n − 1], d j = 0

for j ∈ [1, m − 1], sn = Ts and e = Te.

Lemma 7.2 Let G be a covalent modification network (n, m, ϕ). Then the concentra-

tion vector xB is a boundary steady state of (G, (k, h)).

Proof It is easy to check that xB satisfies all five equations in Corollary 3.11. 	


Lemma 7.3 Let G be a covalent modification network (n, m, ϕ). Suppose that Te > 0.

Then at any boundary steady state, we must have e > 0.

Proof Assume by contradiction that e = 0 at a boundary steady state. From equation

(5) in Corollary 3.11, we have ci = 0 for i ∈ [1, n − 1]. In particular, cα = 0

and from equation (4) in Corollary 3.11 we have d j = 0 for j ∈ [1, m − 1]. Thus

Te = e +
∑n−1

i=1 ci +
∑m−1

j=1 d j = 0, which contradicts the assumption Te > 0. 	


Lemma 7.4 Let G be a covalent modification network (n, m, ϕ). Suppose that Te > 0.

Then at any boundary steady state, the following statements hold

1. For any � ∈ [1, n − 1], if c� = 0 or s� = 0, then ci = si = 0 for i ≤ �.

2. For any � ∈ [1, m − 1], if cα �= 0 and d� = 0 or sϕ�
= 0, then d j = 0 and sϕ j

= 0

for j ≤ �.

Proof From Lemma 7.3, we must have e > 0. For part (1), due to equation (5) in

Cor 3.11, c� = 0 if and only if s� = 0. Assume that c� = s� = 0. Since either

F� = 0 if � ∈ ϕ([1, m])c or F� = −Gα
ϕ−1(�)

= h+

ϕ−1(�)
s�cα − h−

ϕ−1(�)
dϕ−1(�) −

h−

ϕ−1(�)−1
dϕ−1(�)−1 = −h−

ϕ−1(�)
dϕ−1(�) − h−

ϕ−1(�)−1
dϕ−1(�)−1, we must have F� ≤ 0.

On the other hand, we have F� = −k+
� s�e + k−

� c� + k�−1c�−1 = k�−1c�−1 ≥ 0.

Thus F� = 0 and consequently c�−1 = 0. By a simple induction argument, we have

ci = si = 0 for i ≤ �.

The proof for part (2) is similar and thus is omitted for the sake of brevity. 	


Theorem 7.5 Let G be a covalent modification network (n, m, ϕ) with auxiliary graph

NG . Suppose that NG is strongly connected and Ts > 0, Te > 0. Then xB is the only

boundary steady state G can admit.
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Proof Consider a boundary steady state that G can admit. From Lemma 7.3, we must

have e > 0. We consider two cases below.

Case 1 Suppose that cα = 0. Then from equation (4) in Corollary 3.11, we must have

d j = 0 for j ∈ [1, m − 1]. From equations (1) and (2) in Corollary 3.11, this further

implies ki−1ci−1 = ki ci for i ∈ [1, n − 1]. Thus ci = 0 for i ∈ [1, n − 1] and by

Lemma 7.4 we have si = 0 for i ∈ [1, n − 1]. As a result, sn = Ts and e = Te and the

boundary steady state must be xB .

Case 2 Suppose that cα > 0. From equations (4) and (5) in Corollary 3.11, it suffices

to assume that s� = 0 for some � ∈ [1, n] ∩ ϕ[1, m]c. Since the auxiliary graph NG is

strongly connected, there exists a path from Xn to X�. Together with Lemma 7.4, this

implies sn = 0 and thus cα = 0. We reach a contradiction in this case. 	


8 Discussion

In this paper, we focus on bifunctional enzyme action, an important mechanism which

has been shown to cause robustness in biological networks. Intuitively, a bifunctional

enzyme in native form facilitates the production of a substrate, while in bound form

catalyzes the degradation of the same substrate. We have shown that bifunctional

enzyme action can ensure absolute concentration robustness (ACR) of a target substrate

in a large class of covalent modification networks. Our main results not only state

sufficient conditions for the existence of ACR in this class of networks, but also

pinpoint precisely the ACR species and provide the ACR value (i.e. the steady state

concentration of the robust species). Notably, our results do not rely on the deficiency

of the networks like the well-known Shinar–Feinberg criterion in Shinar and Feinberg

(2010), and thus they can be applied to biological networks with various size and

complexity.

In addition, we have provided the necessary and sufficient conditions for the exis-

tence of a positive steady state, and the existence and uniqueness of a boundary steady

state, in covalent modification networks. For a special subclass consisting of futile

cycles with a bifunctional enzyme, we have also given a steady state parameteriza-

tion based on the bifunctional enzyme concentration and the ratio between the native

form and the bound form of this enzyme. This steady state parameterization indicates

that futile cycles with bifunctional enzyme can be multistationary (i.e. have multiple

positive steady states).

Going forward, we are planning to extend the definition of bifunctionality and

our results on ACR to a significantly more general class of enzymatic networks. For

example, we can allow for different enzymes (see Remark 4.13) and/or multiple inter-

mediate complexes in each step of the reaction cascade. The intermediate steps of an

enzyme-catalyzed reaction often vary between different modeling choices since they

are difficult to pin down experimentally. Our goal is to develop results on the con-

nection between bifunctionality and ACR in systems which have minimal underlying

assumptions on such intermediate catalysis steps.

Another direction we plan to pursue involves studying the dynamics of networks

with bifunctional enzyme. Can they exhibit important dynamical properties like bista-

bility or dynamic ACR (for example, see (Joshi and Craciun 2022, 2023a, b))? What
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is the stability of the boundary steady state? These questions would shed light on how

the presence of bifunctionality impact the dynamics of biological networks besides

causing ACR.
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