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Abstract

Biochemical covalent modification networks exhibit a remarkable suite of steady state
and dynamical properties such as multistationarity, oscillations, ultrasensitivity and
absolute concentration robustness. This paper focuses on conditions required for a
network of this type to have a species with absolute concentration robustness. We
find that the robustness in a substrate is endowed by its interaction with a bifunc-
tional enzyme, which is an enzyme that has different roles when isolated versus when
bound as a substrate-enzyme complex. When isolated, the bifunctional enzyme pro-
motes production of more molecules of the robust species while when bound, the
same enzyme facilitates degradation of the robust species. These dual actions produce
robustness in the large class of covalent modification networks. For each network of
this type, we find the network conditions for the presence of robustness, the species
that has robustness, and its robustness value. The unified approach of simultaneously
analyzing a large class of networks for a single property, i.e. absolute concentration
robustness, reveals the underlying mechanism of the action of bifunctional enzyme
while simultaneously providing a precise mathematical description of bifunctionality.
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1 Introduction

The steady state properties and dynamics of covalent modification networks have been
extensively studied since the work of (Goldbeter et al. 1981; Straube and Conradi
2013; Jeynes-Smith and Araujo 2021). A large class of such networks are multisite
phosphorylation-dephosphorylation networks which play a key role in cell signaling
circuits (Thomson and Gunawardena 2009a; Walsh 2006; Cohen 2001). The number
of phosphorylation sites can be as many as 150, resulting in as many as 2'°° distinct
phospho-forms (Gnad et al. 2007). The high dimensionalities of the state space and
parameter space of the resulting dynamical model put it far beyond the scope of a
detailed simulation study. The topology of the underlying reaction network helps guide
the unraveling of complex dynamics (Thomson and Gunawardena 2009a, b; Wang and
Sontag 2008; Conradi and Shiu 2015; Holmberg et al. 2002; Manrai and Gunawardena
2008; Rubinstein et al. 2016). A parameterization of the positive steady states in the
distributive reversible covalent modification cycle (futile cycle) of arbitrary length
(Thomson and Gunawardena 2009b) decreases the complexity from a larger number
of differential equations to a small number of algebraic equations. The distributive
futile cycle was shown (Wang and Sontag 2008) to have between n and 2n — 1 steady
states where n is the number of phosphorylation sites.

In this paper, we study the conditions on network topology that endow concentra-
tion robustness in covalent modification networks. Robustness in signal transduction
against high variability in circuit components has been experimentally observed in
thousands of bacterial signaling systems (Shinar et al. 2007; Alon 2019; Hart and
Alon 2013). Experimental and mathematical modeling work identified underlying the
mechanism was a bifunctional enzyme (or paradoxical enzyme), a protein that per-
forms opposing kinase and phosphatase activities (Russo and Silhavy 1993; Hsing
et al. 1998; Batchelor and Goulian 2003; Shinar et al. 2009; Dexter and Gunawardena
2013). In general, a bifunctional enzyme has distinct and possibly opposing effects on
the network output.

The specific notion of robustness that we consider in this paper is absolute concen-
tration robustness, which refers to the property that the steady state concentration of
a specific substrate remains invariant across all positive steady states, even when the
initial values of all variables are allowed to vary. According to the Shinar—Feinberg
criterion (Shinar and Feinberg 2010), two simple network conditions suffice to ensure
absolute concentration robustness: (i) the deficiency of the reaction network is one,
and (ii) two non-terminal complexes differ in exactly one species (see Definitions 2.7
and 2.8 and Theorem 2.9). If these conditions are satisfied then the network has absolute
concentration robustness in the species that is the difference of the two non-terminal
complexes appearing in the second condition.

The property of deficiency equal to one is useful for parameterization of positive
steady states which helps prove the property of absolute concentration robustness in
such cases. Itis not clear that deficiency one plays a functional role in network output or
dynamics. Therefore, one might expect that absolute concentration robustness is found
even for reaction networks with deficiency not equal to one. In fact, zero deficiency
networks can have absolute concentration robustness, the conditions for which are
studied in Joshi and Craciun (2022). Another approach to establish ACR in networks
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without deficiency one involves network translation techniques (Tonello and Johnston
2018). The networks studied in this paper can have arbitrary deficiency, and for every
possible deficiency value, we find networks with the property of absolute concentration
robustness.

The second property that two non-terminal complexes differ in exactly one species is
related to a functional property: activity of a bifunctional enzyme. In higher deficiency
networks, bifunctionality needs a more careful definition since the same enzyme is
often implicated in covalent modification of multiple sites. Thus in more complex
networks, an enzyme may promote the increase of several different substrate types.
Moreover, if the enzyme is bifunctional it may simultaneously facilitate the removal
of many of these substrate types. In terms of the second Shinar—Feinberg condition,
there can be several pairs of non-terminal complexes that differ in exactly one species
and moreover, this differing species is usually different for every such pair.

Our goal in this work is to find a generalization of the second Shinar—Feinberg
condition for a large class of covalent modification networks while at the same time
not relying on or requiring the first Shinar—Feinberg condition to hold. We address
the questions of: (i) finding sufficient network conditions for absolute concentration
robustness (ACR) to hold, (ii) finding species for which ACR holds (subject to the
existence of a positive steady state), (iii) the ACR value of each ACR species, and (iv)
necessary and sufficient conditions for the existence of a positive steady state.

The rest of the paper is organized as follows. Section2 reviews basic definitions
related to reaction networks and ACR. Section3 introduces the detailed model for
multisite covalent modification networks with a bifunctional enzyme, and provides
preliminary analysis on their steady state equations. Section4 establishes sufficient
conditions for ACR in these networks. Section 5 gives necessary and sufficient condi-
tions for the existence of a positive steady state in these networks. Section 6 provides
a steady state parameterization for futile cycles with a bifunctional enzyme. Finally,
we end with a discussion on boundary steady states of covalent modification networks
with a bifunctional enzyme in Sect.7.

2 Reaction network

Here, we first recall the basic setup and definitions involving reaction networks, the
dynamical systems they generate (Sect. 2.1), and absolute concentration robustness
(Sect. 2.2). Readers who are familiar with reaction network theory can skip to Sect. 3
for the specific class of reaction networks we study in this paper.

2.1 Reaction networks and dynamical systems

A reaction network G is a directed graph whose vertices are non-negative linear com-
binations of species X1, X3, ..., X4. In reaction network literature, we often refer to
each vertex as a complex, and we denote acomplexby y = y1 X1+ Xo+- -+ y4 X4
orby y = (1, y2, - - ., ya) (Where y; € Z>o).
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Edges of G represent the possible changes in the abundances of the species, and
are referred to as reactions. The vector y' — y is the reaction vector associated to the
reaction y — y’. Additionally, in this reaction, y is called the reactant complex, and y’
is called the product complex. If there is also a reaction from y’ to y, we write y = y’
and say that they are a pair of reversible reactions.

Example 2.1 An example of a reaction network G is the cycle with two substrates
S1, S2 whose interconversion is facilitated by enzymes E and F:

SS+E=2C— S, +E
S$S+F=D— S +F.

Here G has 6 species {S1, S, E, F, C, D}; 6 complexes {S] + E,C, S + E, S$» +
F, D, S| + F}; and 6 reactions (one reaction for each arrow).

Under the assumption of mass-action kinetics, each reaction network G defines a
parametrized family of systems of ordinary differential equations (ODEs), as follows.
First, we enumerate the reactions by y; — y/ fori =1, ..., r and for each reaction
yi — Y. we assign a positive rate constant k; € R.q. Then the mass-action system,
denoted by (G, «) is the dynamical system arising from the following ODEs:

dx a ,
o= a0 =y = fe() @2.1)
i=1
where x (1) = ()q (), ..., xq(t)) denotes the concentration of the species at time ¢ and
XY= ]_[j?: 1 xjyfj . The right-hand side of the ODEs (2.1) consists of polynomials fj ;,
fori =1,2,...,d (where d is the number of species). For simplicity, we often write

fi instead of f ;.
The ODEs (2.1) can also be written in matrix form

dx

pri N -v(x), 2.2)
where N, the stoichiometric matrix, is the matrix whose columns are all reaction
vectors of G and v; (x) = «;xY'. A conservation law matrix of G, denoted by W, is
any row-reduced matrix whose rows form a basis of im(N L. The conservation laws
of G are given by Wx = ¢, where ¢ := Wx(0) is the total-constant vector.

We denote by S := im(N), the stoichiometric subspace of G. Observe that the
vector field of the mass-action ODEs (2.1) lies in S (more precisely, the vector of
ODE right-hand sides is always in S). Hence, a forward-time solution {x(¢) | t > 0}
of (2.1), with initial condition x(0) € R‘io, remains in the following stoichiometric
compatibility class (Feinberg 2019):

Py = (x(0)+S)NRL,.

A steady state of a mass-action system is a nonnegative concentration vector x* €
R‘io at which the right-hand side of the ODEs (2.1) vanishes: f, (x*) = 0.
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Definition 2.2 G is a consistent reaction network if there exist ,_,,» > 0 such that

Y By =y =0

y—>y'eg
Theorem 2.3 The following are equivalent

1. G is a consistent reaction network.
2. There is a choice of positive rate constants k such that the mass-action system
(G, k) has a positive steady state.

Proof Suppose that G is consistent. Then there exist By_.,y > 0 such that
> yyeg By—y (0 —y) = 0.Choose ky_,» = By forall y — y’ € G. Then from
(2.1), (1, 1,..., 1) is a positive steady state. Conversely suppose that x* is a positive
steady state for some choice of rate constants {«_, ,/}. Then consistency of G follows
from letting B, v = Ky yx™*. O

2.2 Absolute concentration robustness

In the context of reaction networks, absolute concentration robustness (ACR) can be
formally defined at the level of systems and also networks, the latter is a significantly
stronger property.

Definition 2.4 (ACR) Let X; be a species of a reaction network G with r reactions.

1. For afixed vector of positive rate constants k € R’ , the mass-action system (G, k)

has absolute concentration robustness (ACR) in X; if (G, k) has a positive steady
state and in every positive steady state x € R ; of the system, the value of x; (the
concentration of X;) is the same constant x;". This value x* is the ACR value of X;.

2. The reaction network G has absolute concentration robustness in species X; if G is
consistent and furthermore, for any «’ such that the mass-action system (G, ¥’ > 0)
has a positive steady state, (G, «”) must have ACR in X;.

Note that x;" is independent of the positive steady state of (G, «), but this value does
depend on « in general, as in the next example. A natural interpretation of ACR is thata
particular steady state coordinate (corresponding the ACR species X;) is independent
of initial concentrations.

To show ACR in a species X; (either for a mass action system or a reaction network),
one must show two things: the first is that a positive steady state exists and the second
is that the concentration of X; is invariant across all positive steady states. In this
paper, we first show the second property under the assumption that a positive steady
state exists and later in Sect. 5, we go on to show that a positive steady state exists for
every case found to have the invariance property in some species.

Remark 2.5 In this paper, the notion of ACR that we study has been referred to as
static ACR (Joshi and Craciun 2022), since it requires only knowledge of the posi-
tive steady states. A stronger notion called dynamic ACR (Joshi and Craciun 2022)
requires convergence of the ACR species concentration to the ACR value. Static ACR
is necessary for dynamic ACR; in future work, we plan to study additional conditions
required to ensure dynamic ACR.
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Example 2.6 The following network
A+B5 2B, B5 A

is a classic example of a network with ACR (Shinar and Feinberg 2010). Indeed, at all
positive steady states, the concentration of species A is k3 /k1, and hence the network
has ACR in A.

Shinar and Feinberg (2010) proposed a network condition that guarantees ACR.
We first provide the necessary terminology to state such a network condition.

Definition 2.7 The deficiency of a reaction network G is given by
§=C—1—s,

where C is the number of complexes, £ is the number of connected components, and
s is the dimension of the stoichiometric subspace of G.

Definition 2.8 A strong linkage class of a reaction network G is a maximal subset of
its complexes that are strongly connected. A terminal strong linkage class is a strong
linkage class in which there is no reaction from its complexes to complexes in another
strong linkage class. Complexes not belonging to any terminal strong linkage class
are called non-terminal.

Theorem 2.9 (Deficiency one condition (Shinar and Feinberg 2010)) Let G be a
consistent reaction network with deficiency of one and such that it has two non-terminal
complexes that differ only in species S. Then G has ACR in S.

While the network conditions in the theorem above can be checked easily, deficiency
one is a particularly restrictive condition. Deficiency can easily increase with the
addition, or discovery of new reactions (see Anderson and Nguyen 2022, Lemma 2.1)
and thus it is unrealistic to expect biochemical reaction networks to have deficiency of
exactly one. The deficiency one condition is neither sufficient nor necessary for ACR,
and the reaction networks we study in the next section do not normally satisfy this
condition (see Remark 3.5).

3 Multisite covalent modification network with a bifunctional enzyme
3.1 Model

In this section, we give a detailed description of a multisite covalent modification
network which uses a bifunctional (or paradoxical) enzyme.
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Definition 3.1 (Multisite covalent modification network with a bifunctional enzyme)
Let (G, (k, h)) denote the following mass-action system

kb kT kf
1 ki 2 ko n-1 kn—1
SI+E=Ci—> SH+E=20C—...... <_’Cn_1n—>Sn+E,
ky ky ki
+ + +
hl hy h2 hy h"’*l hm—1
Spp +Co == D1 — S(ﬂz +Cyo =Dy — ...... — Dp1 —> Swm + Cy,
hy h, h
1 2 m—1

e The top linkage class which converts S; to S,, through a sequence of steps, is
referred to as the forward chain. While the bottom linkage class which converts
Sy, to Sy, is not necessarily the reverse of the forward chain, later we show in
Sect. 5 that for G to be consistent, the bottom linkage class must contain a path that
transform S, into S;. Since our main interest is in consistent networks, we refer
to this linkage class as the backward chain.

e S1,...,Sn are phosphoforms or substrates. By convention, {Si,...,S,} U
{Seis - Sp,} € {S1,..., Sy} with the possibility of strict subset allowed for
later convenience.

e C1,...,Cy_1 are the intermediate complexes of the forward chain while
Dy, ..., Dy, are the intermediate complexes of the backward chain.

e E is the enzyme for the forward chain while C,, is the enzyme for the backward
chain. The index « takes values in {1, ..., n — 1} and therefore C, is also one of

the intermediate complexes of the forward chain. Because of the dual role of Cy,,
it is referred to as a bifunctional enzyme.

e By assumption the indices ¢y, ..., ¢, are distinct. The entire network G is
completely specified by the integers n,m, ¢1,..., ¢, and «. Letting ¢ =
(©1, ..., ¢m), we will refer to G as the covalent modification network (n, m, )
with the bifunctional enzyme C,.

e The reaction rate constants in the forward chain are labeled with a k while in the
backward chain, they are labeled with an 4. Moreover, the complex formation and
disassociation steps have the superscript + and — respectively while the subscript
index indicates the covalent modification step/site.

The name paradoxical derives from the possibly contradictory roles of the complex
Cy, for example when the backward chain is the reverse of the forward chain. On
the one hand, C, promotes a step (eg. phosphorylation) in the forward chain, in the
sense that an increase in the amount of C, directly leads to increase in the form
S«+1. On the other hand, C,, acts as an enzyme in the backward chain (eg. promotes
dephosphorylation).

Remark 3.2 Fora < b € Z-(, we use the notation [a, b] to mean the sequence (a, a +

1, ..., b). We can think of ¢ as an injective function mapping indices in {1, ..., m} to
{1,..., N}, ie. ¢; = ¢(j). We denote the image of this map by ¢([1, m]). We write
j = ¢~ (i) if there exists an index j € {1, ..., m} such thati = ;i =¢(j).
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Example 3.3 An example of a covalent modification network with a bifunctional
enzyme can be found in the E. coli IDHKP-IDH glyoxylate bypass regulation system
(Shinar and Feinberg 2010):

E+1I,=EIl, > E+]1,
El,+ 1= El,] — EI, + I,

where [ denotes the active, unphosphorylated TCA cycle enzyme isocitrate dehydro-
genase (IDH), and /,, denotes the phosphorylated form. Here E1, (or E innative form)
is a bifunctional enzyme. Upto species relabelling, this network is equivalent to the
covalent modification network (2, 2, ¢) where ¢; = 2, ¢ = 1 with the bifunctional
enzyme Ci:

SiT+E=2Ci—> S+ E
SH+Ci&2D1— S1+Ch.

This network is also the smallest among the networks in Definition 3.1.

3.2 Biologically significant special cases

Different choices of n, m, ¢ and « result in different networks. Certain specific choices
have special relevance.

e Covalent modification cycle (with bifunctional enzyme). A covalent modification
network where the initial and final substrates of the forward chain are the final and
initial substrates of the backward chain is a covalent modification cycle. More con-
cretely, a covalent modification cycle is a covalent modification network (n, m, ¢)
with 1 =n and ¢, = 1.

e Reversible covalent modification cycle = futile cycle (with bifunctional enzyme).
Every step in the forward chain is reversed in the backward chain. Concretely,
this refers to a covalent modification network (n, n, ¢) with ¢([1,n]) = (n,n —
I,...,2,1).

3.3 Steady state equations

In this subsection, we provide some preliminary analysis on the deficiency and steady
state equations of covalent modification networks with a bifunctional enzyme. The
subsection is organized as follows. First, we state the ODEs of the mass-action system
associated with G, and define some compact expressions that help with the analy-
sis. In particular, Lemmas 3.6 and 3.7 provide some useful relations between these
expressions. Using these two lemmas, we provide an equivalent but simplified set of
equations at the positive steady state in Proposition 3.8, Corollary 3.9 and Corollary
3.11. Notably, Corollary 3.11 is also used in obtaining a steady state parameterization
in Sect. 6.
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For convenience, we let kg = ka’ =ky =kp = k;f =k, =0and hy = har =
hy = hp = hl = h, = 0and ¢ = dy = ¢, = d» = 0. The ODEs of the
mass-action system (G, (k, h)) in Definition 3.1 are given by

F,+G%_, ., for ie[l,n]Ne(l,m]),
ds; =1 (D)
EZ F; for i € [1,n]Ne([1,m])",
o . C
G(p—l(i) for i €[l,n]°Ne(1, m]),
de_ " .
dt ~— ~"" 3.1
i=1
dd;
d—t]:—G‘}‘—}-H-, for jel[l,m—1],
dc; "
d—;=—ﬂ+Ki+8a(i)ZG"-‘, for i e[l,n—1],

j=1
where « is a fixed index in [1, n — 1] and

F; = —k;rsie +k; ¢i +ki—1ci—1, for i€[l,n],
G% = —hj's(pjca +thdj +hj1dj_y, for jel[l,m],

J 3.2)
Hj Z=hj71dj71—hjdj, for jE[l,m],
K,' = k,~_1c,'_1 — kiC,‘, for i€ [l,n].
The following identities follow immediately:
Fy = Ky(= kn—1cp—1) and G% = Hy (= hp—1dm—1). (3.3)
The system (3.1) satisfies the conservation laws
n n—1 m—1
IEED DEPED SRS
i=1 i=1 j=1
3.4

n—1 m—1
e—i—Zci—i-Zdj =T,
i=1 j=1

where T and T, denote the total substrate and total enzyme, respectively.

Theorem 3.4 Let G be a covalent modification network (n, m, ¢) with bifunctional
enzyme Cy. Then G has deficiency

) #A1, nl N1, ml) — 1,  otherwise,
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where #([1, n] N @([1, m])) denotes the number of common indexes between [1, n]
and ¢([1, m]).

Proof We observe that the dimensions of the subspace spanned by the reaction vectors
in the forward chain and the subspace spanned by the reaction vectors in the backward
chain are 2n — 2 and 2 m — 2 respectively. If [1, n] N ¢([1, m]) = @ then there are no
linear dependence relations among the reaction vectors and so the dimension of the
stoichiometric space is 2n —2+2m —2. Otherwise, if there are #([1, n]Ne([1, m])) — 1
linear dependence relations, the dimension of the stoichiometric subspace of G is

s=2n—-2+4+2m—-2— #(1,n]Ne(l,m]) —1)
=2n+2m —3 —#(1,n] N (1, m])).

Thus G has deficiency

§=C—l—5=QQn+2m—2)—2—Q2n+2m—3—#(1,n] N (1, m]))
=#([1,n]Ne(1,m]) — 1,

and a similar calculation gives the stated deficiency for the case of [1, n]N¢([1, m]) =
. O

Remark 3.5 From Proposition 3.4, G has deficiency one if and only if #([1,n] N
o([1,m])) = 2, i.e. when the forward and backward chain have exactly two sub-
strates in common. In all other cases, G does not have deficiency one and thus the
Shinar-Feinberg deficiency one theorem cannot be applied.

Before examining the steady states of (3.1), we state an important fact regarding
the expressions K and H.

Lemma 3.6 (Cascading sums of K and H) The expressions K and H in (3.2) satisfy
i n
(1) ZK@ = —kic; fori = 1,...,n. In particular, ZK@ =0.
=1 =1

m m
2) Z He=hjdjfor j =0,...,m — 1. In particular, ZH@ =0.
=j+1 =1

Proof The equations can be easily derived from the definition of K and H in (3.2) and
the fact that kg = k,, = 0 and hg = h,, = 0. O

Lemma 3.7 (Cascading sums of G and F at steady state) At steady state, we have the
following:

M Y F =0
i=1

2 Y Gi=o.
j=1
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Proof The first claim is immediate from de/dt. To obtain the second equality, we first
recall from (3.3) that GY, = H,,. Thus we have

m m
> Gi=>"H;=0, (3.5)
j=1 j=1

where the second equality follows from Lemma 3.6(2). O

Proposition 3.8 The steady states for the ODEs (3.1) are solutions of the following
equations

() Fi ==GZ_, ;) for iell,n]No(l, m)),
) F; =0 for i e[l,n]Ne(l,m])S,

(3) G4 =0 for ¢; €[l,n]Ne(l,ml),

4) Gj =H; for jel[l,m—1],

) F;=K;, for i e[l,n—1].

Proof Equations (1)-(4) follow directly by setting ds;/dt = 0, de/dt = 0 and
ddj/dt = 0in (3.1). Setting dc; /dt = 01in (3.1) and Lemma 3.7 yields F; = K; for
iell,n—1]. O

The next corollary, which will be used extensively in Sect. 4, follows directly from
Proposition 3.8.

Corollary 3.9 The steady states for the ODEs (3.1) satisfy the following equations

(1) Ki = —Hy-1y for i€l[l,n]Ne([1,m]),
) K; =0 for i €[l,n]Ne(l,m]S,
(3) Hi =0 for ¢; €[1,n]°Ne(1,m]).

Proof We first note that G, = H,, = hy—1dm—1 and F, = K, = k,—1cy—1. Thus
due to Proposition 3.8, the steady states for the ODEs (3.1) satisfy

) G? =H; for jell,m],
(5") F; =K;, for ie€l[l,n].
Combining equation (1) in Proposition 3.8 and (4'), (5') yields K; = —Hy-1; for
i € [1,n] N ¢([1, m]). Combining equation (2) in Proposition 3.8 and (5') yields

K; = 0fori € [1,n]Ne([1, m])¢. Finally, combining equation (3) in Proposition 3.8
and (4') yields H; = 0 for ¢; € [1,n]° No([1, m]). O

Next, we introduce two sets of quantities that are important in obtaining the ACR
values in Sect.4 and the steady state parameterization in Sect. 6.

Definition 3.10 We define

k= TR for ie[l,n—1]
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and
* —hj * h7 f i € [1 1]
R : or ell,m—1].
/ hihy /
Corollary 3.11 The steady states for the ODEs (3.1) are solutions of the following
equations

(1) ki—1cio1 — kici = _h(p*l(i)—ld(pfl(i)—l + h(pfl(i)d(p’l(i)’ for i € [1,n]N
@([1, m]),

(2) ki—ici—1 = kici, for i €[l,n]Ne([1,m]),

(3) hj_idj—1 =hjdj, for i=g¢;€[l,n]°Ne(l,m]),

“4) Sp;Ca = hjhjdj, for jell,m—1]

(5) sie =kikfci, for ie[l,n—1].

Proof Equations (1), (4), (5) are equivalent to equations (1), (4), (5) in Proposi-
tion 3.8. Equation (2) follows from combining equations (2) and (5) in Proposition 3.8
and equation (3) follows from combining equations (3) and (4) in Proposition 3.8.
Conversely, equations (2) and (5) here imply equation (2) in Proposition 3.8, and
equations (3) and (4) here imply equation (3) in Proposition 3.8. m]

Remark 3.12 Equation (4) in Corollary 3.11 is particularly important in identifying
ACR species in Sect. 4. Itimplies that if there exists an index j such that the ratio d;; /c,
is a constant independent of the conserved quantities, then the network has ACR in
species ¢ ;. Consequently, the main approach in Sect. 4 involves finding such an index

J-
4 Bifunctional enzyme generates concentration robustness

In this section, we will show that ACR is a fairly generic property for covalent
modification networks with a bifunctional enzyme. In particular, we will first show

the existence of an ACR species in the futile cycle with bifunctional enzyme.

Theorem 4.1 (Futile cycle) Let G be a covalent modification network (n, m, @) with
a bifunctional enzyme Cy, where m = nand ¢j =n+1— j.

+ +
ki ky

ki ka n—1 kn—1
SI+E=Ci— SH4+E=2C—...... —><_Cn,1’—>S,,—|—E,
kl kZ kn—l
+ + +
hy h h; hs by B
Sy +Co = D1 — §,-1+Cqo =D — ...... —— D1 —> S1+Cq,
hy hy i

Then G has ACR in species Sy+1 with ACR value ko h:_,.
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Table 1 Some examples of covalent modification networks and their ACR properties

Type of operation Forward chain Backward chain Enzyme complex ACR species ACR value
index (1, ..., n)of index Cy, 00 = Si i =
(S1,-+.,8n) @1+, 0m)
of (Spys---» Sem)
Futile cycle (1,2,3) 3,2,1) 1 2 klh’z‘
2 3 thT
Deletion 1,2,3) 3,1) 1 3 klhT
2 3 kzh’l‘
Insertion (1,2,3) 3,4,2,1) 1 2 k1h§‘
2 34 koh¥, k2h§
Deletion & Insertion 1,2,3) (3,4,1) 1 3,4 ki h¥, ky h;
2 34 ko, kzh;
Permutation (1,2,3) (3,1,2) 1 - -
2 3 kzh’l‘
Permutation (1,2,3) 2,3, 1) 1 3 k1h§
2 _ _
Deletion (1,2,3,4) “4,2,1) 1 2 k1h§
2 4 kth
3 4 k3hy

‘' uoljeJjusduod |injosqge Sap!l\OJd awAzua |euoipunyig

9¢ pEjo €| abeqd
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Table 1 continued

Type of operation Forward chain Backward chain Enzyme complex ACR species ACR value
index (1, ..., n)of index Cyq,a = Si i =
(S1,--+,8n) @1, 0m)
of (Spy» -+ +» Sgp)
Insertion (1,2,3,4) “4,3,5,2,1) 1 klhj
2 3,5 koh%, k2h§
3 k3h’1‘
Permutation (1,2,3,4) 4,2,3,1) 1 3 kyh3
) _ _
3 4 k3hy
Permutation 1,2,3,4) 2,4,3,1) 1 3 klhg‘
2 _ _
3 _ _
Permutation & Insertion (1,2,3,4) “4,2,5,3,1) 1 3 ki hz
2 _ _
3 4 k3h’l‘
Permutation & Insertion & Deletion (1,2,3,4) 4,5,1,3) 1 - -
2 _ _
3 4,5 kyh¥, k3h§

Every covalent modification network is obtained from some futile cycle by performing a series of insertion, deletion or permutation steps. For each network, the table indicates

the ACR species and its ACR value given the choice of bifunctional enzyme Cy

vejopLabed of

uaknbN @ L ‘1ysor g
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Proof We first observe from the assumption that ¢; = n+1— j that([1, m]) = [1, n]
and ¢~ (i) = n 4+ 1 — i. Thus from Corollary 3.9, we have

Ki=—-H,11_; for ie€l[l,n]

Thus we have

i

n
ZKg:— Z H, for ie[l,n].

=1 C=n+1—i
Using Lemma 3.6, we obtain
kici = h,_;id,_; for ie[l,n]. “4.1)
In particular, setting i = « in the equation (4.1) gives us
kaca = hp—adn—a-

Finally, setting j = n — « in equation (4) of Corollary 3.11 and observing that
Yn—o = o + 1, we obtain sq41 = koh)_,. O

Remark 4.2 The steady state parameterization in Sect. 6 further implies that for a futile
cycle, Sy+1 is the only ACR species.

The most general network can be obtained from a futile cycle by doing a finite
sequence of only three operations on the backward chain: (i) deletion, (ii) insertion,
and (iii) permutation. For ease of reading, before providing the most general result,
we will show in Theorems 4.3, 4.5, and 4.7 that the covalent modification networks
obtained from performing each of the three operations on the futile cycle (permutations
need to satisfy certain assumption) still have ACR.

Theorem 4.3 (Deletion in the backward chain) Let G be a covalent modification net-
work (n, m, @) with a bifunctional enzyme Cy, where 1 = @ < @—1 < --- < @1 =
n. Let the index p be such that a € [¢p+1, ¢p — 1. Then G has ACR in species Sy,
with ACR value kah;.

Proof We first observe from the assumption that ¢1, ..., ¢, € [1,n] N e([1, m]).
Thus from equation (1) in Corollary 3.9, we have

K, =—H; for jel[l,m] 4.2)

Consequently, for each j € [1, m], we have

Pj+1 m m
SKi= Y Kt X K=
i=1 l=j+1 ie[l,pj+11Ne([1,m])¢ l=j+1
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where the second equality comes from (4.2) and equation (2) in Corollary 3.9. Using
Lemma 3.6 we obtain

k(ijC(ij = hjdj for ] € [l,m]. (4.3)

Now if @ = ¢p1, then from (4.3) we have kycy = hpdy. If @ > ¢py1, then
[ep+1+1, ] C[1,r]Ne([1, m])°. Thus using equation (2) in Corollary 3.11 yields

kaca == k(PerlC(/’erl = h[’d["

In both cases, we have kycy = hpdp. Finally, setting j = p in equation (4) in
Corollary 3.11 gives us sy, = ka/1),. O

The example below illustrates how Theorem 4.3 is used, and gives some intuition
on the relation between the bifunctional enzyme and the substrate with ACR.

Example 4.4 Let G be a covalent modification network (4, 3, ¢) with a bifunctional
enzyme C,, where ¢ is given by ¢1 =4, 9o =2 and g3 = 1.
ki

K ks

k k k
SI+E=Cl > S$H+E=C—> S3+E=C3 = S4+E,
ki ky ky
h h hy o
S4+Cy = D1 — S+ Cy = Dy — §1 +Cq,
hy hy

e When the bifunctional enzyme is C, we have o« = 1 € [¢3, @2 — 1], thus G has
ACR in species Sy, = S, with ACR value k; h;. The bifunctional enzyme C; and
the reaction rate constants that appear in the ACR value are shown in red in the
reaction network. In this case, the ACR species S, can be seen as the target of the
bifunctional enzyme C as C| directly produces S,, and catalyzes the degradation
of 5.

e When the bifunctional enzyme is C» or C3, we have @ € [¢;, ¢1 — 1], thus in both
cases G has ACR in species S, = S4 with ACR values k>/} and k3h7 respectively.
When the bifunctional enzyme is C3, again we can see Sy as the target substrate as
C3 directly involves in the production and degradation of S4. When the bifunctional
enzyme is C;, while §3 is produced directly from C», it does not appear in the
backward chain. So we have to look one step further to find the target substrate: C»
indirectly involves in the production of S4, and directly involves in the degradation
of S4.

Theorem 4.5 (Insertion in the backward chain) Let G be a covalent modification net-
work (n, m, @) with a bifunctional enzyme Cy, where m = (p_l (1) > (p_l 2)>--->
o~ '(n) = 1. Then forany j € {o " (@ + 1), ..., 9o~ () — 1}, G has ACR in species
@; with ACR value kahj.
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Proof We first observe that [1,n] C ¢([1, m]). Thus from equation (1) in Corol-
lary 3.9, we have

Ki = —H,1;, for iell,n]. (4.4)

As aresult, for any i € [1, n], we have

1 1 m
D Ke==) Hpp=—-| >, Hi- ) Hj
t=1 t=1 i=e=10) Jelo™" ().l €llnle
m
=- > H, (4.5)

J=¢~1(@)

where the third equality is due to equation (3) in Corollary 3.9. In particular, setting
i =« in (4.5) gives us

o m
Y Ke=— > H
t=1 J=¢~ (@)

Using Lemma 3.6 we obtain
kaca = h(p—l (a)_ldw—l (a)—1"

Furthermore, if ™' (@ + 1) < ¢ (@) — 1, then p([o @+ D)+ 1, o @) — 1]) €
[1, n]¢. Thus by equation (3) in Corollary 3.11 we have

Ryt @181 @+1) = = Mp-1(a)-1)dp=1(0)—1 = KaCa-

Finally, setting j = (p_l(oc +1),..., (p_l(oc) — 1 in equation (4) in Corollary 3.11
yields

s, =kaht for j=¢ '@+ 1.....07 @)~ 1.

m}

We illustrate the result of Theorem 4.5 in the following example, and again include
some intuition on the relation of the bifunctional enzyme and the ACR substrate.
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Example 4.6 Let G be a covalent modification network (3, 4, ¢) with a bifunctional
enzyme C,, where ¢ is given by ¢1 = 3,92 =4, 93 =2 and ¢4 = 1.

Kt Kk
k k
SI+HE=C S S+E= 02 s54E,
ki ky
h1+ hy h; ha h3+ h3
S3+Cy = D1 — S4+Cy == Dy = S5+ Coy == D3 — 851+ Cy,
hy hy hy

e When the bifunctional enzyme is C; (i.e. « = 1), we have o '@ + 1) = 3 =
¢~ '(a) — 1, thus G has ACR in species S,y = S> with ACR value k1 43. In this
case, the ACR species 5, is the target of the bifunctional enzyme C; as C; directly
produces S», and catalyzes the degradation of S.

e When the bifunctional enzyme is C; (i.e. « = 2), we have (p_l (¢ +1) =1and
(p‘l(a) — 1 = 2, thus G has ACR in species S,, = S3 and S,, = S4 with ACR
values kxh] and kohj respectively. Similar to the previous case, here S3 can be
clearly identified as the target substrate as C, directl involves in its production
and degradation. It is much more subtle to interpret S4 as another target substrate.
While S does not appear in the forward chain, one could argue the closest enzyme
from the forward chain responsible for its production is C» since C, produces Sz,
which in turn transforms into Sy in the backward chain.

Theorem 4.7 (Permutation in the backward chain) Let G be a covalent modification
network (n, m, ) with a bifunctional enzyme Cy, where {Qm, Om—1, -+ » Om—c+1} IS
a permutation of {1, ..., a}, then G has ACR in species S,,_, with ACR value ko h, _,

Proof We first observe that [1, «] C [1,n] N ¢([1, m]). Thus from equation (1) in
Corollary 3.9, we have

Ki = —Hw—l(l’) fOr 1€ [1,(1].

Thus we have

o o
D_Ki==2 Hyp
i=1 i=1
m
= — Z H',

Jj=m—a+1
where the second equality is due to the assumption that {@,;,, @m—1, ..., @m—a+1} 1S a
permutation of {1, ..., o}. As aresult, from Lemma 3.6 we obtain

koCo = hm—adn—q.

Finally, setting j = m —a inequation (4) in Corollary 3.11, we have sy, _, = kol

O
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We illustrate the result in Theorem 4.7 with an example below. The permutation
operation is complicated and it is difficult to interpret the relation between the bifunc-
tional enzyme and the ACR substrate. We plan to develop a much broader theoretical
framework to explain this relation in a future paper.

Example 4.8 Let G be a covalent modification network (4, 4, ¢) with a bifunctional
enzyme Cy, where ¢ is given by ¢1 =4, 92 =2, 93 =3 and ¢4 = 1.

Kt kT kT
SSA4E= S S+ E= 0GR S5+ E= S s+ E,

ky i k;
hy hi hy. ho hy hs

Si+Cy == D12 8+ Cy == Dy 22 S5+ Cy == D3 2> 81+ Ca,
hy hy hy

e When the bifunctional enzyme is C; (i.e. « = 1), we have g4 = 1 = «, thus G
has ACR in species Sy, = S3 with ACR value k /3.

e When the bifunctional enzyme is Cy (i.e. « = 2), we have {¢4, 93} = {1, 3} #
{1, 2}. It can be checked that G has no ACR species.

e When the bifunctional enzyme is C3 (i.e. « = 3), we have {4, @3, 92} = {1, 2,3},
thus G has ACR in species Sy, = S4 with ACR value kgh’f.

Theorem 4.9 (General network) Let G be a covalent modification network (n, m, @)
with a bifunctional enzyme Cy. Assume that {1, n} C ¢([1, m]). Let

B=min{j:¢; € [l,a]lNe([l,m])}, and y =max{j:¢; €la+1,n]lNe(l, m)}.

Then B and y are defined. Furthermore, if y < B then forany j € {y,...,B—1}, G
has ACR in species S,; with ACR value kahjf.

Proof Since 1 € ¢([1, m]), we musthave [1, a]Ne([1, m]) # @ and thus B is defined.
Similarly, [e + 1, n] N @([1, m]) # @, and thus y is also defined. We observe that

o

Yki= Y K+ Y K= ) K. 46
i=1 ie[l,alNe([1,m]) ie[l,alNp([1,m)° ie[l,alNe([1,m])

where the second equality is due to equation (2) in Corollary 3.9. Next, we have

Y Hi= > Hj+ > Hj

J=y+1 Jpjell.n]ne(ly+1,m]) Jpjelln]Ne([y+1,m])

= > H;, 4.7

Jipjell,n]Ne(ly+1,m])

where the second equality is due to equation (3) in Corollary 3.9. Before proceeding
further, we prove the following claim.
Claim: [1, n] N @([y + 1, m]) = [1, ] N (1, m]).
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e First, assume thati € [1, n] N([y + 1, m]). Then clearly we have i € ¢([1, m]).
Furthermore, since i € ¢([y + 1, m]), we must have (p’l(i) > y. From the
definition of y, this means i ¢ [« + 1, n]. Thusi € [1, «], which further implies
iel[l,alNe(l,m]).

e For the remaining direction, assume that i € [1, o] N ¢([1, m]). Then clearly we
have i € [1, n]. From the definition of 8 and the assumption that y < 8, we have
(p’l(i) > B > y.Thusi € ¢([y+1, m]), whichimpliesi € [1, n]Ne([y +1, m]).

Using the above claim and equation (1) in Corollary 3.9, we obtain

> Ki= > Hyp= > Hj. (438

ie[l,alNg([1,m]) ie[LalNg([1,m]) Jrpjell,n]lne(ly+1,m])
Thus combining equations (4.6), (4.7) and (4.8) yields
o m
Ski= Y u
i=1 j=y+1
From Lemma 3.6 we obtain
koco = hyd,.

Furthermore, if y < B — 1, then by the definitions of 8 and y we have ¢; € [1,n]°N
o([1,m])Vj € [y + 1, B8 — 1]. Using equation (3) in Corollary 3.11, we obtain

hﬁ_ldﬂ_l == hydy = kaca.
Finally, setting j = y, ..., B — 1 in equation (4) in Corollary 3.11 yields

Sp; = kghy for j=vy,....p—1

]
Remark 4.10 We provide some intuition on the assumptions in Theorem 4.9:
e The index B indicates which species among Si, ..., S, appears first in the back-
ward chain.
e The index y indicates which species among Sy+1, - . . , S, appears last in the back-
ward chain.

e The assumption y < § will always hold if we perform an ACR-preserving permu-
tation in the backward chain (according to Theorem 4.7) first, then finite number
of insertions and deletions in the backward chain (as described in Theorems 4.3
and 4.5).
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Example 4.11 Let G be a covalent modification network (4, 4, ¢) with a bifunctional
enzyme C,, where ¢ is given by ¢1 =4, 92 =5, 93 = 1 and pq = 2.

ki k k' k Ky k
SIHE=C S S+E2G R SS+E2 S s+ E,

ky ky ks
hy n hy o hy 3

Si4+Cy == D1 25 S5 4+Cy == D2 22 §1+Cy = D3 22 855+ C,,
hy hy hy

e When the bifunctional enzyme is C; (i.e.« = 1), we have 8 = 3 and y = 4. Thus
the assumption in Theorem 4.9 is not satisfied and it can be checked that there is
no ACR species.

e When the bifunctional enzyme is C; (i.e. « = 2), we have § = 3 and y = 1. Thus
the assumption in Theorem 4.9 is satisfied, and G has ACR in species Sy, = S4
and Sy, = S5 with ACR values koh7 and kyh3 respectively.

e When the bifunctional enzyme is C3 (i.e. « = 3), we have 8 = 3 and y = 1.
Again, the assumption in Theorem 4.9 is satisfied, and G has ACR in species
Sp; = S4 and Sy, = S5 with ACR values k3h] and k3h7 respectively.

Remark 4.12 In Sect.6, we prove that the futile cycle with bifunctional enzyme has
ACR in one and only one species. Insertion in the backward chain (and any combination
of operations containing it) can give rise to more than one ACR species. As for deletion
and ACR-preserving permutation in the backward chain, we believe there isn’t ACR
in any other species. Numerical simulations or parameterization of the type in Sect. 6
can help with ruling out ACR in other species not stated in Theorems 4.3 and 4.7.

We include some additional examples in Table 1, where we apply the theorems
in this section to find the ACR species in covalent modification networks with a
bifunctional enzyme.

Remark 4.13 It is worth noting that our main result in Theorem 4.9 does not require
Cq to be the only enzyme in the backward chain. In fact, the result still holds if Cy is
replaced by another enzyme F in any complex in the backward chain except for the
complexes containing the ACR species. For example, consider the futile cycle with
n =3 and o = 1, which has ACR in S;:

kit kT
k k
SSHE=C S G +E=C 2 S+ E,

ky ky
hi ™ h3 o

S3+Cir =Dy — $+Cy = D, = S+ Cq.
hy hy
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A variant of this network where some C; in the backward chain are replaced by F
still have ACR in species S>:

Kt kT
k k

S1+E—>(1_C]—I)SQ+E—>(LC2—2)S3+E,

ky ky

nf I
S3+F =Dy — S+ F,

hy

h; ho
S+ Cy = Dy — S+ Cq.

hy

This type of replacements generally does not change our results. The main difference
it brings forth lie in equation (4) of Corollary 3.11, where ¢, is replaced by f for some
J. Thus, the proof with this type of replacements remains mostly identical to the proof
of Theorem 4.9 with very minor changes in notations.

Of course, it is possible to encounter many other ACR-preserving variants of the
class of networks studied in this paper. In future work, we will give results that sig-
nificantly generalize the results in this paper.

5 Existence of positive steady state

We give necessary and sufficient conditions for a covalent modification network to be
consistent. Even though the theorem and proof are stated for a covalent modification
network with a bifunctional enzyme, the result applies to any covalent modification
network with or without a bifunctional enzyme with a minor modification.

Theorem 5.1 Let G be a covalent modification network (n, m, ¢). Define an auxiliary
graph Ng whose vertices are

{Xls~--7Xn}U{X¢7l""’X(ﬂm}

and Xy — X is a directed edge of Ng if and only if ¢t +1 =5 <n ore ')+ 1=
¢~ (s) < m. The following are equivalent:

1. G is consistent,
2. Ng is strongly connected.

Note: The proof that 2. = 1. is by direct construction. Specifically, we give rate
constants of all reactions in G and show that (1, 1,..., 1) is a positive steady state
for the chosen rate constants. The procedure to obtain the desired rate constants is
explained in Remark 5.2 which follows the proof.

Proof Suppose that Ng is strongly connected. Then, in particular, there is a path from
X, to X1. It follows that n, 1 € J(¢) and (p’l (n) < go’l (1). Define rate constants in
backward chain of G as follows:
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3 ifeln) < -1,
h; = ife () =j<¢ (D 5.1)
' 1 otherwise.

Moreover, let h; =1and h;r =hj+1forjel[l,m—1].

Since Ng is strongly connected, there must exist a node X, such that X, — X,,.
That means either £ + 1 = @] <nore~'(£)+1 = ¢~ !(¢;) = 1. The latter is clearly
impossible, and the former implies that ¢; € [2, n]. Similarly, strong connectedness
of Ng implies that ¢, € [1, n — 1]. Define rate constants in forward chain of G as
follows:

1 ife <i <o,
ki=133 ifo, <i <, (5.2)
2 otherwise.

Moreover, let k; = 1 and ki+ =ki+1fori e [1,n—1].

Toshow that 1 := (1, 1, ..., 1) is a steady state, it suffices to show that the produc-
tion rate of every species is equal to its consumption rate at the state 1, i.e. for every
species s in G, the following must hold:

D gy =Y Kyy =0 (5.3)

sey’ SE€Y

where «_, / is the reaction rate constant of the reaction y — y"and s € y means that
the species s has positive stoichiometric coefficient in the complex y.

e For the species S, we check that

- + - +
Z Ky—y — Z Ky—y = [kO +ki =k ] + [h«f‘(l)fl + h(w(]) - hqf'(l)]
Siey’ Siey

O+ =4I+ B+ -0+ D] ifg, #1 _0
T lo+1—a+3)1+B3+0-0] ifon=1[

e For the species S;,, we check that

-+ - +
Z Ky—y — Z Ky—y = [kn—l Tk —ky ] + [hw*'(n)fl + hqu(n) - hqr‘(n)]
Spey’ Sn€y

_ oo ifer#a|
T BHo—01+[0+1-(1+3)] ife=n|
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e For the species Sy, , assuming that ¢ # n (since this case is already covered), we
check that

Z Ky—sy — Z Kysy = [kgy—1 + kg — k;—l] + [ho +hy —hf]
Spr €y’ Sor €y
_|e+r-ds i+ i-a+ny ifer<en| _
B+1—(+D]+[04+1-0+1D] ife; > @n '

e For the species Sy,
we check that

assuming that ¢, # 1 (since this case is already covered),

m >

Y kyoy = D Kymy = kg1 + kg =k T+ [+ By — BiE]
Som €Y' Som €Y
_ MT4+1—-04+2)]+[1+0-0] ife; <@y —0
R4+1-1+H+[1+0-0] ifgr > @n '

e For the species S;, i ¢ {1, n, ¢1, ¢n}, it is easy to check that the rate constants

balance “locally”, i.e. ki1 +k; —k;" =0and hy-1y_ +h_ h 0,

—ht =
=@ 7l T

and so

- - _ it - + -
Z Ky—y — Z oyoy = ki + k7 — K]+ [hw*‘(i)—l thy ~ h(pfl(i)] =0
Siey’ Siey

e Finally, for the remaining species E, Cy, ..., C,_1 (including Cy) and Dy, ...,
D, 1, balancing of production and consumption rates at the state 1 follow imme-
diately from

k" =ki+k G ell,n=1]), and h] = hj+h7(j € [1,m—1]).

For the converse, suppose that N is not strongly connected. Then there exists a proper
subgraph N’ of Ng such that N’ has at least one node, N' is strongly connected, there
is at least one edge from a node in N’ to a node in Ng\N’ but there is no edge from
anode in Ng\N' to a node in N’. Since there is no edge from a node in Ng\N' to a
node in N, the set of nodes in N" must be {X1,..., X, U{Xy, ..., Xy, } for some
Il <f<nand1 < p < m,butnotboth £ =n and p = m. Thus we have

S (L deny ddy- 1)
. dt dt dt
i:X;eN’
dsi dcl- dd(p—l(i) dsi dc,-
- Z (dt+dt+ dt +, Z ‘dt+dt
i€[1,£1Ne((1,pD i€[1,£1Ng([1,m])¢

dsi | ddy-1)
+ Z (EjL dt

i€[1,n]Ne([1, p])
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=,-2: zi: D> (z)ZG“‘.

i:X;eN’

At steady state, we must have Z'};l G‘J’.‘ = 0 from Lemma 3.7. Therefore, from
Lemma 3.6, we get that at steady state

ds; dc () : -
0= Y <E+W+ > ; XZ: j = —kece = hpdy,

i:X;eN’

which implies that ¢, and d), are zero at any steady state. When £ < n, ¢, is the
concentration of the species C¢ and when p < m, d, is the concentration of the species
D, and since one of the inequalities must hold, at least one species concentration
is zero at steady state. In particular, there is no positive steady state, i.e. G is not
consistent. O

Remark 5.2 We describe the procedure used to construct rate constants for G such that
1=(,1,...,1)isasteady state. If we choose k;” = l,kl.Jr =ki+1fori € [1,n—1]
and hj_ =1, hj' = hj+1for j € [1,m — 1], then all enzymes and intermediate
complexes are balanced at 1. Moreover, the net production rate (production rate minus
consumption rate) of each S; is —k; + k;j—1 — hq)—l(l‘) + hw—l(i)_l. In order to balance
the network, i.e. find reaction rate constants such that the net production rate of every
species is zero, it suffices to consider the following network, denoted X, instead:

X]LXQL...LX,,

b b b
Xpp = Xpy = ... = Xy,

Note that the network X" above is related to Ng appearing in the proof of Theorem 5.1
but is not exactly the same since here we use different ‘edge types’ in the forward
and the backward chain. Specifically, each edge is labeled either f or b depending
on whether it appears in the forward or the backward chain, to enable a distinction
between a transition X; — X; that may appear in both chains. Next we construct
a cycle by adding a path of edges from X, to X, (possibly trivial path if 91 = n)
and another path of edges from X, to X; (possibly trivial path if ¢, = 1). Such
paths exist because Ng is strongly connected by hypothesis. The added edges may be
any edges selected from X' Denote the constructed cycle by P where Py, x; is the
chosen fixed path from X; — X;.

f b b
P=X>...>X,— (Pxn%xwl)—> Xp = ... > Xy, = (wam%xl).
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The rate constants of G are now determined from the number of times the corresponding
edge appears in P, i.e.

ki = ’ <Xi —f> Xi+1> € P‘, and
b
b= (Xe; > Xp1) € P|

The specific rate constants (5.1) and (5.2) used in the proof of Theorem 5.1 were
obtained by constructing specific paths Py, Xy, and PXW,—> X, as follows:

b b b £y £ .
'Pxnﬁxwl = {X(ﬂwl(n) — X%”(n)-%—l - ... X%*l(l) = X2 > ... > Xy ?ffﬂl £n,
U ifo =n,
f A f b b b .
,PXWV,*)XI - {me - me+1 I X‘pwfl(nHl e quw*l(l) lf‘/’m # 1,

Example 5.3 1. Let G be the covalent modification network (5, 4, ¢) with ¢([1, 4]) =
(2,5,1,4). Ng is clearly strongly connected because it has the edge X5 — X;.

1
leX4 2 > Xs
}': 7

2. Let G be the covalent modification network (4, 4, ¢) with ¢([1,4]) = (2, 1, 4, 3).
Here the subgraph N’ of Ng containing nodes X1, X is strongly connected, and
there is no edge from a node in Ng \ N’ to a node in G. As the proof of Theorem
5.1 suggests, at steady state we have:

. dsy dsy dcy dcy dd; dd>

0= _—— < - < _ <
dt+dt+d,+dt+dz+dt

= —kacy — hada,

thus G does not have any positive steady state, i.e. G is not consistent.

Corollary 5.4 Let G be a consistent covalent modification network (n, m, ¢). Then the
B and y appearing in Theorem 4.9 are defined.

Proof If {1, n} g ¢([1, m]) then Ng is not strongly connected. m]
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6 Steady state parameterization

We give a steady state parameterization for the futile cycle using only two parameters e,
the concentration of the enzyme in the forward chain and u := e¢/c,, the ratio between
the concentration of the enzyme in the forward chain and backward chain. The results
of the previous section, especially identity of the ACR species and its ACR value are
used in obtaining a steady state parameterization. On the other hand, the steady state
parameterization is found to be useful for ruling out ACR in other species. Additionally,
the steady state parameterization helps find the number of positive steady states for
futile cycles with a bifunctional enzyme.

Throughout this section, we let G be a covalent modification network (n, m, ¢)
with a bifunctional enzyme Cy, where m = n and ¢; = n + 1 — j. The main result
is Theorem 6.3, where we show that a positive steady state exists for all sufficiently
large total substrate concentrations.

Proposition 6.1 The steady state concentration of the substrates S;, and the interme-
diate species C; and D j can be expressed in terms of the concentration of the enzymes
and their ratio as follows:

G
si =kah_g <ﬁ> W= e (1)),

i—1)1 ,
Ci = <Ut—m> eul—ﬂl—l’ (l € [l,n — 1]), (61)
%
k =24 L )
dj=h_a<m)”‘” el elln = 1)),
n—o

where for each of v € {0, u, v},

1 otherwise,
and
o= = ’—"*—’ v = L*’“ 6.3)
k; kiv1k hik,_;

Proof We observe that for futile cycle, m = n and ¢([1, m]) = [1, n], thus the steady
state equations only consist of equation (1), (4), (5) in Corollary 3.11. First, we prove
that these equations imply (6.1). We start with a useful claim on recurrence relations
of the substrates S;, and the intermediate species C; and D;.

Claim: For i € [1, n — 1], we have the following recurrence relations at a positive
steady state:

Sit1 =U-0j -8, Ciyl=U- [ ¢, di =u-v;-diy, (6.4)
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where o, w;, v; are given in (6.3).
Proof of claim: Let j = n—i in equation (4) in Corollary 3.11 we obtain s;+1¢cq =
hu—ih}_,d,—;. From equation (5) in Corollary 3.11 we have s;e = k;k}c;. Thus

: hyp—ih*_.dy—; hy—idy—;
&i—iuzu.o‘i.w:u-o‘h (65)

Si Co k,-k;kci ki Ci

where the last equality comes from (4.1). The recurrence relations for ¢; come from
equation (5) in Corollary 3.11 and (6.5). The recurrence relations for d; come from
equation (4) in Corollary 3.11 and (6.5), which completes proof of the claim.

Next, we return to the proof of the Proposition. The recurrence relations in (6.4)
have the following general solution:

si= Ml_ldl_u1S1, ¢ = ul_lu’_ulcl, d; = un—t—lvn—Zudnil. (6.6)

From Theorem 4.1 and (4.1) (where i = «) we have the following:

k
Saq1 = keh? dyg = ——¢4. (6.7)

n—ao’
hﬂ*a

Now, we leti = o+ 1 in the first equation, i = « in the second equationandi = n —«
in the third equation of (6.6) to get:

Sa+1 kah;,k_a —u
1 = = u 9
uagail o1
Co 1 —a
R e N <Ma1¢1>e” ’ (6.8)

dp—o ke —a
dp—1 = ue—lyn—2{n—a = (hn_avn—2¢n—a ew .

Re-substituting in (6.6), we get the desired equations (6.1).

Conversely, we check that equations (6.1) imply equations (1), (4), (5) in Corol-
lary 3.11, and thus they form a parameterization of the steady states. Suppose that
s, ¢i, dj are given by equations (6.1). Then we have

i—1)1 .
w

and

pn—2{n—uo

k n—2n—i )
hp—idy—; = hih = (V—> eu' !
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It is straightforward to check that the coefficients are equal:

i—1]1 k Un—2¢n—i
) = ().
e b hp_o \ V" In—a

thus kjc; = h,—_;d,—; for all i. This further implies

ki—ici—1 = hp—iv1dp—it1 — hy—idy—i = —h(p—l(i)flfﬂp—l(i),l + h(p—l(,-)d(p—l(i),

which is equation (1) in Corollary 3.11.
Next, we have

il gl
_ —a—1
Sit1Ca = kahy_g <W> u'"%cy = kahy (W eu' ",

where the last equality comes from ¢, = e/u. We also have

k. n—2\n—i .
l’ln—ih;:fidn—i = /’ln_ih* i (V—> €Ml_a_1_

n—i n—2{n—a
hp—a \V v

Again, it is straightforward to verify that the coefficients in s;1cq and by, ;b _;dy—
are the same, thus s;11cq = hy—ih},_;d,_;. By substituting j = n — i we obtain
equation (4) in Corollary 3.11. Similarly, we can check that s;e = k;k} c; by verifying
that they have the same monomial in e and ©# and same coefficient.

O

Proposition 6.2 Within a given compatibility class, with fixed total substrate T; and
total enzyme T,, defined by the equations

n n—1 i—1 n—1 i—1
UED RE) SRS ANPES 00 S T A
i=1 i=1 i=1 i=1 i=1

the number of positive steady states is the number of positive solutions of the following
equation in the variable u

n—1 ) .
T8 —a;\ u® Y " biut
galw) =) (%) u' = % =: g (u) (6.10)
i=0 ¢ u + 325 qiu'

where
oitl il k pn—2dn—i—1 il
a; = kah:a( aJ,l)’ bi = 'Z—ul "’2( - ) n2n—a > 4= 5—1¢1
o " h v 7

n—a
ke vn—ZLn—i—l

() S
Ry pn—2{n—uo
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Proof Plugging the solution (6.1) into the conservation laws (6.9) results in

n—1

n—2
Za,u +eZblu =T,u%, e |:1 +u" Zqiui] =T, (6.11)
i=0

where a;, b; and g; are as defined in the statement of the theorem. Eliminating the
variable e, and multiplying through by the common denominator gives an equation
whose left side is (6.10) and the right side is 0. For every positive zero u* of (6.10),
we can find the value of the coordinate e from the second equation in (6.11) and
finally the other coordinates from the steady state parameterization (6.1) appearing in
Proposition 6.1. It is clear that these other coordinates are positive when u* > 0. O

Theorem 6.3 Let G be a covalent modification network (n, m, ¢) with a bifunctional
enzyme Cy, wherem =nand pj =n+1— j.

1. Suppose that « = n — 1. Then a positive steady state exists if and only if Ty >
kol _ . Moreover, when a positive steady state exists, the number (counted with
multiplicity) of positive steady states is odd.

2. Suppose that a € [1,n — 2]. Then for every fixed T,, there exists a ﬁ > kohl_,
such that a positive steady state exists if Ty > i Moreover, when a positive steady

state exists, the number (counted with multiplicity) of positive steady states is even.
Proof When o = n — 1, (6.10) becomes
n—2

T. — _ R . n—l ”_zb. i
gn—1(u) = s—anlun_l — Z <2) u' = Z ! = h,—1(u).

Te i Te uh— 1 + Z > qlut

(6.12)

For u > 0, the range of h,_1 is (0,00). If Ty < a,_1, then g,_1(u) < O for all
u > 0 and so there is no positive solution. Now suppose that 7y > a,_1. Then
gn—1(u) ~ c'u" ' (as u — o0) for some positive constant ¢’. Note that g,_1(0) <
0 = hp—1(0). Since hp—1(u) ~ "u" 2 and g,—1 () ~ u" 1, go_1(u) > hp_1(u)
for all sufficiently large u. It follows (6.12) must have an odd number (counted with
multiplicity) of positive solutions, and therefore at least one. By Proposition 6.2, the
number of positive solutions is the same as the number of positive steady states. Finally,
note that ay = a,—1 = kohj;_, is both the ACR value and the threshold for existence
of positive steady state.

For any @ € [1,n — 2], g4,(0) = —ap/T, < 0 = hy(0). Moreover, gy (1) ~
—(an—1/ T,)u"~! while h, (u) is positive on (0, co). Therefore, the number (counted
with multiplicity) of positive solutions of (6.10) must be even.

To show that a positive solution exists for a large enough T, we only need to show
that the graph of g, crosses the graph of 4. Indeed, fix 7, > 0 and let

n—1 Tzn 2b
Sy -
i=0 1+Z 0611
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Then for any 7, > T‘S, we have

n—1 n—2
T, - b; ~
T, (8a(1) —he(D)) =Ty = > a; — eZ,;g LT, T >o0.

i=0 1+ 725 ai

It follows that g (1) > hy(1) and therefore there is a positive solution for u € (0, 1)
and another positive solution in the interval (1, 00). m]

7 Existence of boundary steady state

Definition 7.1 Let G be a covalent modification network (2, m, ¢). We denote by xp
the concentration vector where s; = Oforanyi # n;¢; =0fori € [1,n—1],d; =0
forje[l,m—1],s, =Ty and e = T,.

Lemma 7.2 Let G be a covalent modification network (n, m, ¢). Then the concentra-
tion vector x g is a boundary steady state of (G, (k, h)).

Proof 1t is easy to check that xp satisfies all five equations in Corollary 3.11. O

Lemma 7.3 Let G be a covalent modification network (n, m, ¢). Suppose that T, > 0.
Then at any boundary steady state, we must have e > 0.

Proof Assume by contradiction that e = 0 at a boundary steady state. From equation
(5) in Corollary 3.11, we have ¢; = 0 fori € [1l,n — 1]. In particular, ¢, = 0
and from equation (4) in Corollary 3.11 we have d; = 0 for j € [1,m — 1]. Thus
T,=e+ Y1 ci+ Z;f:ll d; = 0, which contradicts the assumption 7, > 0. O

Lemma 7.4 Let G be a covalent modification network (n, m, ¢). Suppose that T, > 0.
Then at any boundary steady state, the following statements hold

1. Foranyl e[l,n—1],ifce =0o0rsy =0, thenc; =s; =0 fori <.
2. Foranyl € [1,m —1],ifcy #0anddy =0 orsy, =0, then d; =Oands¢j =0
forj <{.

Proof From Lemma 7.3, we must have ¢ > 0. For part (1), due to equation (5) in
Cor 3.11, ¢, = 0 if and only if s, = 0. Assume that ¢, = s, = 0. Since either

Fy = 0if ¢ € g(llm])" or Fp = G2, = h;‘,l(l)szca —h 1) —
h;,l(z)_ld(p_u(@),l = —h;,l(g)dw_l(e) - h;,l(e)_ld¢_1(e)7], we must have Fy < 0.
On the other hand, we have Fy = —k; spe + k; ¢ + ke—1ce—1 = ke—1ce—1 > 0.
Thus Fy = 0 and consequently c,—; = 0. By a simple induction argument, we have
ci=s; =0fori <¢.

The proof for part (2) is similar and thus is omitted for the sake of brevity. O

Theorem 7.5 Let G be a covalent modification network (n, m, ) with auxiliary graph
Ng. Suppose that Ng is strongly connected and Ty > 0, T, > 0. Then xp is the only
boundary steady state G can admit.
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Proof Consider a boundary steady state that G can admit. From Lemma 7.3, we must
have e > 0. We consider two cases below.

Case I Suppose that ¢, = 0. Then from equation (4) in Corollary 3.11, we must have
dj = 0for j € [1, m — 1]. From equations (1) and (2) in Corollary 3.11, this further
implies k;_1cj—1 = kijc; fori € [1,n — 1]. Thus ¢; = 0 fori € [1,n — 1] and by
Lemma 7.4 we have s; = O fori € [1,n — 1]. As aresult, s, = Ty and e = T, and the
boundary steady state must be xp.

Case 2 Suppose that ¢, > 0. From equations (4) and (5) in Corollary 3.11, it suffices
to assume that sy = O for some £ € [1, n] N g[1, m]¢. Since the auxiliary graph Ng is
strongly connected, there exists a path from X,, to X,. Together with Lemma 7.4, this
implies s, = 0 and thus ¢, = 0. We reach a contradiction in this case. O

8 Discussion

In this paper, we focus on bifunctional enzyme action, an important mechanism which
has been shown to cause robustness in biological networks. Intuitively, a bifunctional
enzyme in native form facilitates the production of a substrate, while in bound form
catalyzes the degradation of the same substrate. We have shown that bifunctional
enzyme action can ensure absolute concentration robustness (ACR) of a target substrate
in a large class of covalent modification networks. Our main results not only state
sufficient conditions for the existence of ACR in this class of networks, but also
pinpoint precisely the ACR species and provide the ACR value (i.e. the steady state
concentration of the robust species). Notably, our results do not rely on the deficiency
of the networks like the well-known Shinar-Feinberg criterion in Shinar and Feinberg
(2010), and thus they can be applied to biological networks with various size and
complexity.

In addition, we have provided the necessary and sufficient conditions for the exis-
tence of a positive steady state, and the existence and uniqueness of a boundary steady
state, in covalent modification networks. For a special subclass consisting of futile
cycles with a bifunctional enzyme, we have also given a steady state parameteriza-
tion based on the bifunctional enzyme concentration and the ratio between the native
form and the bound form of this enzyme. This steady state parameterization indicates
that futile cycles with bifunctional enzyme can be multistationary (i.e. have multiple
positive steady states).

Going forward, we are planning to extend the definition of bifunctionality and
our results on ACR to a significantly more general class of enzymatic networks. For
example, we can allow for different enzymes (see Remark 4.13) and/or multiple inter-
mediate complexes in each step of the reaction cascade. The intermediate steps of an
enzyme-catalyzed reaction often vary between different modeling choices since they
are difficult to pin down experimentally. Our goal is to develop results on the con-
nection between bifunctionality and ACR in systems which have minimal underlying
assumptions on such intermediate catalysis steps.

Another direction we plan to pursue involves studying the dynamics of networks
with bifunctional enzyme. Can they exhibit important dynamical properties like bista-
bility or dynamic ACR (for example, see (Joshi and Craciun 2022, 2023a,b))? What
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is the stability of the boundary steady state? These questions would shed light on how
the presence of bifunctionality impact the dynamics of biological networks besides
causing ACR.
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