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The Multiple Choice Polytope (MCP) is the prediction range of a random utility model due to Block
and Marschak(1960). Fishburn(1998) offers a nice survey of the findings on random utility models at
the time. A complete characterization of the MCP is a remarkable achievement of Falmagne (1978).
To derive a more enlightening proof of Falmagne Theorem, Fiorini(2004) assimilates the MCP with
the flow polytope of some acyclic network. However, apart from a recognition of the facets by
Suck(2002), the geometric structure of the MCP was apparently not much investigated. We characterize
the adjacency of vertices and the adjacency of facets. Our characterization of the edges of the MCP
helps understand recent findings in economics papers such as Chang, Narita and Saito(2022) and
Turansick(2022). Moreover, our results on adjacencies also hold for the flow polytope of any acyclic
network. In particular, they apply not only to the MCP, but also to three polytopes which Davis-
Stober, Doignon, Fiorini, Glineur and Regenwetter (2018) introduced as extended formulations of the
weak order polytope, interval order polytope and semiorder polytope (the prediction ranges of other
models, see for instance Fishburn and Falmagne, 1989, and Marley and Regenwetter, 2017).

© 2023 Elsevier Inc. All rights reserved.
a
w
t
a
s
o
a
o
E
F

o
t
o
a
a
(
i
E
f
i
t

1. Introduction

Block and Marschak (1960) introduce ‘‘random utility models’’,
howing in many cases their equivalence with ‘‘random ordering
odels’’. In particular, the Multiple Choice Model (MCM) predicts
tochastic choices from latent probability distributions over strict
ankings; all sets of alternatives are choice sets, and the subject
elects one alternative in the choice set2 (for a precise definition,
ee Section 3).
A complete characterization of the MCM is a remarkable result

ue to Falmagne (1978): the predictions of the MCM form the
ultiple Choice Polytope (MCP), for which Falmagne obtains an
ffine description—that is, a system of affine inequalities whose
olution set is the MCP.
More recently, Fiorini (2004) provides an alternative proof

of Falmagne’s Theorem, which is enlightening: he starts with

∗ Corresponding author.
E-mail addresses: Jean-Paul.Doignon@ulb.be (J.-P. Doignon),

aito@caltech.edu (K. Saito).
1 Saito acknowledges the financial support of the National Science Foundation

hrough grants SES-1919263 and SES-1558757.
2 Other random utility models restrict choice sets, for instance to two-
lement sets. In economics, the term ‘‘random utility model’’ refers to models
ased on probability distributions over strict rankings, that is irreflexive linear
rderings. In psychology, relations of another type often replace rankings, for
nstance, weak orders, semiorders and interval orders (see for instance the
eferences in Davis-Stober, Doignon, Fiorini, Glineur, & Regenwetter, 2018).
ttps://doi.org/10.1016/j.jmp.2023.102768
022-2496/© 2023 Elsevier Inc. All rights reserved.
change of space coordinates or, in another interpretation, he
orks on the image of MCP by a well-chosen affine transforma-
ion. Next he shows that in the new viewpoint the vertices of MCP
re (the characteristic vectors of) all paths from the source to the
ink in a special network. Hence, the MCP is the flow polytope
f the network. A characterization of the MCP by a system of
ffine inequalities then follows from the fundamental theorem
n network flows (Gallai, 1958, and Ford & Fulkerson, 1962). In
conomics, Chambers, Masatlioglu, and Turansick (2021) apply
iorini’s technique to study a ‘‘correlated random utility model’’.
However, not much is known about the geometric structure

f the MCP other than its facets (Suck, 2002a). We characterize
he adjacency of vertices and the adjacency of facets. As a matter
f fact, our characterizations hold for the flow polytope of any
cyclic network (the MCP being a particular case). So they are
lso valid for the three flow polytopes built in Davis-Stober et al.
2018) to get extended formulations of the weak order polytope,
nterval order polytope and semiorder polytope3 (see Fig. 1). In
conomics, Turansick (2022), in his Theorem 2 on the identi-
iability in the MCM (see Fishburn, 1998, for previous results),
ntroduces a condition on two vertices of the MCP which we show
o be equivalent to their non-adjacency (see Section 8.1). To check

3 We refer the reader to the last paper (and its references) for the terminol-
ogy. Note that the mastery of the adjacencies on the four extended formulations
should be useful in the design of optimization algorithms, particularly for the
statistical tests evoked in Davis-Stober et al. (2018).

https://doi.org/10.1016/j.jmp.2023.102768
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Fig. 1. A scheme of the various polytopes mentioned in the paper. Here PC
MC designates the Multiple Choice Polytope MCP on the alternative set C (Section 3), and

(D) designates the flow polytope of the network D (see Sections 8 and 9 for the four specific networks).
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hether the mixed logit model can approximate the MCM, Chang,
arita, and Saito (2022) use the fact that a convex combination
etween two adjacent vertices of the MCP is a prediction of the
CM that is uniquely represented. Thus a characterization of
ertex adjacency can be useful.
In the following, we provide a short literature review to ex-

lain the importance of the MCM. In economics, since Block and
arschak (1960) and Marschak (1960), the MCM has been used

in many different contexts. In discrete choice analysis, economists
often use the MCM to describe unknown data generating process
of stochastic choice, for instance over transportation methods,
schools, and products (although in practice, they frequently make
use of parametric models such as the mixed logit model, Mc-
Fadden, 2001). The interest for the MCM is exemplified by Mc-
Fadden and Richter (1970, 1990),4 Barberá and Pattanaik (1986)5
and Monderer (1992).6

In psychology, several papers refer to Falmagne’s Theorem
on the MCM, for instance Fiorini (2004), Suck (2002b, 2016)
and Regenwetter, Marley, and Grofman (2002). Recently, Mc-
Causland and Marley (2014) investigate Bayesian inference for
the MCM and other random utility models, while McCausland,
Davis-Stober, Marley, Park, and Brown (2020) continues the in-
vestigation and moreover apply Bayes factors to experimental
data. In another direction, Kellen, Winiger, Dunn, and Singmann
(2021) use the MCM in signal detection theory.

In both psychology and economics, and also in operations
research, the setup in which the only choice sets are binary is the
object of many publications: see Fishburn (1992) for a classical
survey, and Martí and Reinelt (2011) for a more recent overview.
For example, Fishburn and Falmagne (1989) provide necessary
conditions for binary choice probabilities to be induced by a
probability distribution on rankings. They also show that no finite
set of simple necessary conditions is sufficient for inducement
when the alternative set is finite but can be arbitrarily large.
Today, finding a manageable characterization of the binary choice
polytope appears to be out of reach in view of a related NP-hard
problem (see for instance Charon & Hudry, 2010, Problem 5 and
Theorem 7).

Fishburn published papers on the linear ordering polytope,
notably (Fishburn & Falmagne, 1989) and Fishburn (1992), and
also on the weak order polytope, Fiorini and Fishburn (2004). He
has also introduced the concept of an interval order (Fishburn,

4 McFadden and Richter establish another characterization of the model (a
ore involved one than Falmagne’s one).
5 Barbera and Pattanaik obtain a proof similar to Falmagne’s one.
6 Monderer derives another proof from a result of Weber (1988) in game

heory, namely a characterization of random order values.
 a

2

1970) as an extension of the one of a semiorder (Luce, 1956).
e dedicate our contribution to the memory of Peter Fishburn,
hose influence on the fields addressed in this paper remains so
trong.

. Basic definitions and results

.1. Polytopes

A polytope P in Rd is the convex hull of some finite subset
f Rd, say P = conv(V ) with V ⊂ Rd, V finite. A face F of the
olytope P is any subset F of P equal to P , or for which there
xists an (affine) hyperplane H which satisfies P ∩ H = F and
s valid for P , that is, P ⊆ H+ with H+ a closed side of H . If
+
= {p ∈ Rd α(p) ≥ (r)} for a linear form α on Rd and a real

number r , the inequality α(x) ≥ r defines the face F . A vertex of
P is a point p such that {p} is a face of P . An edge is a segment
which forms a face. A facet of P is a proper,7 maximal face of P .

For our polytope P = conv(V ), all vertices belong to V (but
points in V are not necessarily vertices). Even more, the vertices
form the single, inclusion-minimal subset V such that P =

conv(V ). Any face is the convex hull of the vertices it contains.
A simplex is a polytope whose vertices are affinely independent
points.

Each polytope P in Rd is the set of solutions of a (finite) system
S of affine equations and affine inequalities on Rd. Under the re-
striction that the solution set is bounded, the converse does hold.
The system S then forms an affine description of the polytope.
Suppose now that S is an affine description with a minimum
number of (in)equalities. If any inequality in S is satisfied with
equality on the whole polytope P , we replace the inequality
sign with an equality sign. Then the number of equalities in S
equals the codimension of P (that is, d − dim(P), where dim
always means the affine dimension). Moreover, there is in S one
inequality per facet of P . When dim(P) < d, the affine inequality
for a given facet can be chosen among infinitely many ones.

For more details (especially proofs) on polytopes, see for
instance Korte and Vygen (2008), Schrijver (2003) and Ziegler
(1998).

2.2. Directed graphs

A directed graph G is a pair (N, A), where N is a finite set of
nodes8 and A is a set of arcs, each arc being a pair of distinct

7 Recall that A is a proper subset of B when A ⊂ B (strict inclusion).
8 We reserve the word ‘‘vertex’’ for polytopes. In only a few other occasions
hen speaking of directed graphs, we depart from the exposition of Bang-Jensen
nd Gutin (2001).
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odes (the definition excludes loops as well as parallel arcs). For
ny arc a = (u, v), we call u the tail and v the head of the arc a.
Let G = (N, A) be a directed graph. A walk in G is a finite

sequence (u1, v1), (u2, v2), . . . , (uk, vk) of arcs with k ≥ 1, vi−1 = ui
for i = 2, 3, . . . , k. The walk starts at its initial node u1 and ends at
its terminal node vk, it is from u1 to vk. It passes through its internal
odes u2, u3, . . . , uk. The walk is a path when its nodes are two by
wo distinct. A cycle in G has a definition similar to the one of a
ath, except that u1 = vk is required.
A directed graph is acyclic if it does not possess any cycle. In

n acyclic graph (N, A), any walk is a path because any acyclic
raph has a so-called topological sort, that is a linear ordering
of its nodes such that for any arc (u, v) there holds u >L v.
lthough paths are by definition sequences of arcs, we often
reat them as sets of arcs (for instance when we say that a path
ncludes another one). In an acyclic graph, the set of arcs in a path
etermines in a unique way the path (as a sequence of these arcs).
Any set B of arcs from A (for example, B is the set of arcs in a

ath) has its characteristic vector χB in RA: for any arc a in A, we
et χB(a) = 1 if a ∈ B and χB(a) = 0 if a ∈ A \ B. For a point x in
A and B ⊆ A, define the number

(B) :=
∑
a∈B

x(a). (1)

or each node v, we denote the sets of arcs with either head or
ail v by δ−(v) and δ+(v), respectively:
−(v) := {a ∈ A ∃u ∈ N : a = (u, v)},
+(v) := {a ∈ A ∃w ∈ N : a = (v, w)},

and define the in-degree and out-degree of v by
−(v) := |δ−(v)|,
+(v) := |δ+(v)|.

.3. Network flows

A network D = (N, A, s, t) is9 an acyclic, directed graph (N, A)
n which two special nodes are designated as the source s and the
ink t . An s–t path is a path starting at s and ending at t .

There are reasons to consider only acyclic networks D, rather
han more general networks allowing for cycles. First, the results
ften take an interesting, simpler form (also, we do not have the
xtensions to general networks of all the results presented here).
econd, in the applications we have in view, the network happens
o be acyclic (as in Sections 8 and 9).

Consider a network D = (N, A, s, t) for the rest of the subsec-
ion. A flow (of value 1) of D is a point10 x from RA, associating a
onnegative number x(a) to each arc a of the network, such that
he outflow x(δ+(v)) equals the inflow x(δ−(v)) at each node v
istinct from the source s and the sink t , and at the source s the
utflow x(δ+(s)) equals 1 plus the inflow x(δ−(s)). All flows of D
orm a polytope in RA, because by their definition they are the
olutions of the following system of affine (in)equalities on RA{x(δ+(v))− x(δ−(v)) = 0, ∀v ∈ N \ {s, t},
x(δ+(s))− x(δ−(s)) = 1,

x(a) ⩾ 0, ∀a ∈ A,
(2)

nd they form a bounded set because for any flow x and any
in A there holds 0 ≤ x(a) ≤ 1 (the latter inequality follows

9 Here we follow Korte and Vygen (2008) and depart from Bang-Jensen and
Gutin (2001). Notice however that we set no cost, no capacity on the arcs and
especially that we postulate acyclicity of the graph.
10 In the literature, flows are often denoted by the letter Φ; we prefer to use
the letter x because we view flows as particular points in the space RA . When
riting the coordinate of the point x w.r.t. an arc (u, v), we abbreviate x((u, v))

nto x(u, v).
3

Fig. 2. A network D together with the ten coordinates (in columns) of the three
vertices of the flow polytope F(D) (see Example 2.4).

for instance from Theorem 2.2 below, or directly by proving, for
any topological sort L of the acyclic directed graph (N, A) and any
node w in N , that the sum of the x(u, v)’s with u >L w ≥L v equals
0 or 1—which is easily done by recurrence along the nodes w in
L).

Definition 2.1. The (value 1-) flow polytope F(D) of a network
D consists of all flows of D, in other words of all points x in RA

hat satisfy the system in (2). The latter system11 is the canonical
affine) description of the flow polytope F(D).

For any flow in F(D), the net inflow at t equals 1; in other
words, the flow polytope moreover satisfies

x(δ+(t))− x(δ−(t)) = −1. (3)

This is derived from Eqs. (2) together with(∑
v∈N

x(δ+(v))

)
−

(∑
v∈N

x(δ−(v))

)
= 0. (4)

The latter equation holds because for any a ∈ A, the term x(a)
appears once in each of the two summations.

There can be superfluous inequalities in the canonical descrip-
tion of F(D). If for some node v we have δ−(v) = {(u, v)} and
δ+(v) = {(v, w)}, the conservation law at v implies x(u, v) =

x(v, w) for any x in F(D), and so we may keep only one of the
two inequalities x(u, v) ≥ 0 and x(v, w) ≥ 0. Eq. (36) displays a
minimum affine description of the polytope F(D).

The next statement is the particular case for acyclic networks
of the Flow Decomposition Theorem due to Ford and Fulkerson
(1962) and Gallai (1958) (see also, for instance, Korte & Vygen,
2008, page 169).

Theorem 2.2. Consider a network D = (N, A, s, t). Any flow x of D
equals a convex combination of the characteristic vectors χP of the
s–t paths P of D.

Because the converse of Theorem 2.2 also holds (as easily
seen), and the χP are 0–1 points, we derive a geometric refor-
mulation.

Theorem 2.3. For any network D = (N, A, s, t), the vertices of the
flow polytope F(D) are exactly the characteristic vectors χP of all
the s–t paths P of D.

Example 2.4. Fig. 2 displays a network D. As D has three s–t
paths, the flow polytope F(D) has three vertices (the character-
istic vectors of the paths). The three columns contain the coordi-
nates of the three vertices, respectively for the s–t paths (s, t),

11 In Section 6 we will removed repeated inequalities from the canonical
description. Note that the canonical description is an affine description, but not
necessarily one of minimum size (as shown by Example 2.4).
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ext (s, u), (u, w), (w, t), and finally (s, u), (u, v), (v, w), (w, t).
he flow polytope F(D) is a convex triangle lying in a space of
imension 10. Its canonical description is formed of six affine
qualities and ten affine inequalities (so it is not a minimum-size
ffine description).

Many manuals on combinatorial optimization quote Theo-
em 2.2, which plays an important role in many applications.
owever, they do not say much on the geometric structure of
he flow polytope F(D) of a network D. We collect in subsequent
ections some related information.
Note that for each arc a in A, the inequality x(a) ≥ 0 defines
face of the flow polytope F(D) (as explained in Section 2),
hose vertices are the (characteristic vectors of the) s–t paths
voiding a; the latter property will be often used in the sequel.
roposition 6.6 characterizes the arcs for which the face is a facet.
There are many variants of the flow polytope F(D): when

ach arc of the network comes with a maximum capacity (see for
nstance Korte & Vygen, 2008); for flows not satisfying the con-
ervation law (Borgwardt, De Loera, & Finhold, 2018); or under
estrictions on the s–t paths, Stephan (2009); etc.

In the introduction, we mentioned that the MCP can be seen
s a flow polytope. This result, due to Fiorini (2004), is explained
n the next section. In Section 9 we exhibit three other net-
orks, whose flow polytopes play a role for the random utility
odels based on respectively weak orders, interval orders, and
emiorders.

. The multiple choice polytope and Falmagne’s theorem

Let LOC be the collection of all linear orderings of the alterna-
ive set C. Let moreover Λ(LOC) be the collection of all probability
istributions on LOC . We also set

:= { (i, S) i ∈ S ∈ 2C
}. (5)

For each distribution Pr in Λ(LOC), the Multiple Choice Model
MCM) predicts12 the various multiple choice probabilities p(i, S)
or (i, S) ∈ E as

(i, S) :=

∑
{ Pr(L) L ∈ LOC and ∀j ∈ S \ {i} : i >L j }. (6)

We see the p(i, S) as the coordinates of a point p in RE . So the
CM is captured by the surjective mapping

: Λ(LOC) → RE
: Pr ↦→ p. (7)

e extend f to the mapping

¯ : RLOC → RE
: t ↦→ p (8)

y setting for (i, S) ∈ E

(i, S) :=

∑
{ t(L) L ∈ LOC and ∀j ∈ S \ {i} : i >L j }. (9)

hen f is a linear mapping (each coordinate of f̄ (t) is a sum
f coordinates of t). The set of points predicted by the MCM is
qual to f (Λ(LOC)), and also to f̄ (Λ(LOC)). Because Λ(LOC) is
simplex and f̄ is a linear mapping, the predicted points form a

convex polytope, which we call the multiple choice polytope (MCP)
and denote as PC

MC . In summary

RLOC
f̄

−→ RE

∪ ∪

Λ(LOC)
f

−→ PC
MC

∈ ∈

Pr
f

↦−→ p

(10)

12 We use classical terminology related to probabilistic models, see for
nstance Doignon, Heller, and Stefanutti (2018).
4

Now for the probability distribution PrL concentrated on the
inear ordering L of C, denote by pL = f (PrL) the predicted point
n PC

MC . The various PrL are the vertices of the simplex Λ(LOC).
he image f (PrL) = f̄ (PrL) is a point in RE , which we denote pL.
or (i, S) ∈ E, we have pL(i, S) equal to 1 when i >L j for all
∈ S\{i}, and 0 otherwise. The polytope PC

MC is the convex hull of
he images pL of the vertices PrL of the simplex Λ(LOC). Because
he images pL have coordinates 0 or 1, they are the vertices of
C
MC .
We reformulate the problem of characterizing the MCM as the

roblem of finding an affine description for the convex polytope
CP. An important result of Falmagne (1978) establishes that

he MCP is exactly the solution set of the system of the Block
arschak inequalities (in the generalized form that Falmagne
ave them, see (16) below). Moreover, Fiorini (2004) provides
nother proof of Falmagne’s Theorem by viewing the MCP as a
low polytope. Let us explain this.

For i ∈ C and L ∈ LOC , the beginning set L−(i) and the ending
et L(i) are respectively
−(i) := {j ∈ C j ≥L i} (11)

L(i) := {j ∈ C i ≥L j}. (12)

n the present paragraph, we consider a fixed distribution Pr on
LOC , predicting the point p = f (Pr) in PC

MC . We moreover define
for i ∈ T ∈ 2C

q(i, T ) :=

∑
{ Pr(L) L ∈ LOC and T = L(i) }. (13)

Because if i is ranked first in S in some linear order L there is only
one superset T of S with T = L(i), there holds

p(i, S) =

∑
T∈2C : T⊇S

q(i, T ). (14)

There follows from the previous equation

q(i, T ) =

∑
S∈2C : S⊇T

(−1)|S\T | p(i, S), (15)

by an application of the Möbius inversion to the partially ordered
set ({S ∈ C i ∈ S},⊆) (see for example van Lint & Wilson,
2001). By its definition in Eq. (13), q(i, T ) is nonnegative on PC

MC ;
herefore for all pairs (i, T ) in E and p in PC

MC∑
S∈2C : S⊇T

(−1)|S\T | p(i, S) ≥ 0. (16)

or |T | = 2, Block and Marschak (1960) prove that the last
nequality holds for the MCM, and Falmagne (1978) extends the
esult to all T ’s. Just above, we followed Fiorini (2004) to derive
he validity of (16) for PC

MC . Falmagne’s Theorem states that the
system on RE formed by all these affine inequalities, for (i, T ) ∈ E,
together with the obvious equations for S in 2C∑
i∈S

p(i, S) = 1 (17)

has PC
MC as solution set. Next comes a summary of Fiorini’s proof.

Consider the network DC
LO = (2C,≺,∅, C) where the nodes are

the subsets of C, the arcs are the covering pairs of the inclusion
relation on 2C (that is, all pairs (T \ {i}, T ) for i ∈ T ∈ 2C), the
source is the empty set ∅, and the sink is C. Denote by F(DC

LO)
the flow polytope of the network DC

LO, which lies in the space RA

for A =≺. Define now a mapping ρ by

ρ : RE
→ RA

: p ↦→ r, (18)

where for (T \ {i}, T ) in A we set

r(T \ {i}, T ) := q(i, T ) (19)
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ith q(i, T ) as in (15). Note that ρ is a linear mapping (each
oordinate of ρ(p) is a linear combination of coordinates of p).
oreover, ρ has an inverse equal to the mapping

: RA
→ RE

: r ↦→ p, (20)

with p(i, S) given by a rewriting of (14):

p(i, S) =

∑
T∈2C : S⊆T

r(T \ {i}, T ). (21)

The mapping ρ induces a bijection from the vertices of the
multiple choice polytope PC

MC to the vertices of the flow polytope
F(DC

LO): for any order L with

1 >L i2 >L . . . >L in (22)

maps the vertex pL of PC
MC onto the vertex of F(DC

LO) which is
the characteristic vector of the s–t path

(∅, {i1}), ({i1}, {i1, i2}), . . . , ({i1, i2, . . . , in−1}, C) (23)

(so the beginning sets of L are the nodes on the ∅–C path, in the
same order). Consequently, the invertible linear mapping ρ from
RE to RA (where A =≺) transforms the multiple choice polytope
PC

MC into the flow polytope F(DC
LO). Falmagne’s Theorem now

follows at once from Theorem 2.313 for the particular network
(2C,≺,∅, C).

Fiorini (2004) proof shows the interest of flow polytopes to
solve formal problems appearing in mathematical psychology.
More flow polytopes play a central role in Davis-Stober et al.
(2018) (see our Section 9). Very recently, flow polytopes make
their apparition in theoretical economics papers: for instance, Tu-
ransick (2022) uses them to analyze the identification of the
multiple choice model. Also, Chang et al. (2022) refers in a proof
o the adjacency of vertices on the multiple choice polytope.

In the next section we characterize the adjacency on any flow
olytope, thus covering the adjacency on the multiple choice
olytope as a particular case.

. Adjacency of vertices on a flow polytope

In this section and the next three ones, we consider the flow
olytope F(D) of a network D = (N, A, s, t). We may assume that
has at least one s–t path, because otherwise F(D) is empty. A

haracterization of the adjacency of vertices on a flow polytope is
he object of Proposition 4.2 below. By Theorem 2.3, the vertices
f F(D) are the characteristic vectors χP of the s–t paths P of D.

emma 4.1. Let χP1 , χP2 , . . . , χPk be vertices of the flow polytope
(D), that is, the characteristic vectors of s–t paths P1, P2, . . . , Pk of
he network D. The vertices of the smallest face of F(D) containing
P1 , χP2 , . . . , χPk are exactly the vertices χR for R an s–t path such
hat R ⊆ P1 ∪ P2 ∪ · · · ∪ Pk.

roof. Let U := P1 ∪ P2 ∪ · · · ∪ Pk, and F be the face of F(D)
efined by the inequality∑

a∈A\U

x(a) ≥ 0. (24)

Any vertex of F(D) equals χP for some s–t path P; this vertex
P belongs to F if and only if a /∈ P for each a ∈ A\U (so that the
oordinate x(a) takes value 0 at χP ), that is, if and only if P ⊆ U .
It remains to prove that the face F is the smallest face of F(D)

ontaining χP1 , χP2 , . . . , χPk . Let G be any facet of F(D); thus G
s defined by the inequality x(b) ≥ 0 for some arc b of D. If G

13 Fiorini (2004) rather refers to the total unimodularity of a certain matrix.
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contains χP1 , χP2 , . . . , χPk then b ∈ A\U . Therefore F ⊆ G (because
if (24) is satisfied with equality at some point x of F(D), then
x(b) = 0). Hence any facet containing χP1 , χP2 , . . . , χPk includes F .
Thus F is the smallest face of F(D) containing χP1 , χP2 , . . . , χPk . □

roposition 4.2. Let P and Q be two s − t paths of a network
= (N, A, s, t). The vertices χP and χQ of F(D) are adjacent if and
nly if

(∗) whenever P and Q pass through a common internal node
v, then P and Q coincide either before v or after v.

Note that when the s − t paths P and Q do not share any
internal node, the vertices χP and χQ are adjacent (because (∗)
then trivially holds). This case is covered by the arguments in the
proof.

Proof. By Lemma 4.1, a vertex χR of F(D) (for some s–t path R)
elongs to the smallest face containing χP and χQ if and only if
⊆ P ∪ Q .
If P and Q do not satisfy (∗) for some common internal node v,

we form a walk R from s to t by following P from s to v, next Q
from v to t . Because of acyclicity, R must be an s–t path, and so
the vertex χR belongs to the smallest face containing χP and χQ .
Because χR differs from both χP and χQ , the two latter vertices
are nonadjacent.

Conversely, assume that (∗) holds. We prove that the smallest
face of F(D) containing the vertices χP and χQ does not contain
any further vertex. Proceeding by contradiction, assume such a
third vertex χR does exist. Then R is an s–t path such that R ⊆

∪ Q and R ̸= P,Q .
Now let (u, u′) be the first arc of R which lies outside P or

outside Q . Assume (u, u′) /∈ Q , and thus (u, u′) ∈ P (otherwise,
exchange the notations P , Q ). Because R ̸= P , there must be a
first arc (v, v′) in R after (u, u′) such that (v, v′) /∈ P . So (v, v′) ∈ Q
in view of R ⊆ P ∪ Q . Then the node v shows that Condition (∗)
does not hold, a contradiction. □

Remark 4.3. In the notation of the second paragraph of the proof
above, we can create a second s–t path S by following Q from s
to v, next P from v to t . We have then (χ P

+ χQ )/2 = (χR
+

χ S)/2 because the equality holds for each coordinate x(a), where
a ∈ A. Consequently, the flow polytope F(D) is a combinatorial
polytope in the sense of Naddef and Pulleyblank (1981): it is a
/1-polytope in which for any pair of nonadjacent vertices, there
s another pair of vertices having the same midpoint as the first
air.
As a matter of fact, the last assertion follows also from Mat-

ui and Tamura (1995). Any flow polytope F(D) is an equality
onstraint polytope, that is, its set of vertices is the set of 0–1
oints satisfying a given system of affine equations (in our case,
he equalities in the canonical description of F(D)). It is thus also
polytope satisfying Properties A and B of Matsui and Tamura.
onsequently all the findings of Matsui and Tamura hold for F(D),
or instance those about linear optimization, or the fact that F(D)
s a combinatorial polytope. However, the results we present on
low polytopes (in particular on the MCP) differ in that they
efer to s–t paths and thus require the networks from which the
olytopes are built.

xample 4.4. For the network D in Fig. 3, it is an exercise to
heck that the flow polytope F(D) is a d-dimensional 0/1-cube
the vertices of F(D) are completely specified by the values, 0
r 1, of the coordinates x(u1, w1), x(u2, w2), . . .x(ud−1, wd−1), and
(ud, t)). As announced in Remark 4.3, it is indeed a combinatorial
olytope. Moreover, the diameter of (the graph of) the flow
olytope equals d.
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Fig. 3. A network for Example 4.4, for each natural number d with d ≥ 1.

Fig. 4. On the left, a nonreduced network; on the right, its reduction.

5. The dimension of a flow polytope

Consider again the flow polytope F(D) of a network D =

N, A, s, t), assuming that D has at least one s–t path. Let Ã denote
the subset of A formed by all arcs of D that belong to at least one
s–t path, and let Ñ be the subset of N formed by all nodes of D
that appear on at least one arc in Ã. The network D̃ = (Ñ, Ã, s, t)
s called the reduced network of D, or the reduction of D (for
n illustration, see Fig. 4). For any node u of Ñ , denote with
˜−(u), resp. δ̃+(u), the sets of arcs in Ã with head, resp. tail u. By
heorem 2.2, the flow polytope F(D) satisfies x(a) = 0 for any arc
n A\Ã. Thus the flow polytopes F (̃d) and F(D) are essentially the
ame polytope (they become equal when we naturally assimilate
he space RÃ with the linear subspace of the space RA specified
y x(a) = 0 for all a ∈ A \ Ã). A network D is reduced if D = D̃.

Proposition 5.1. Suppose the network D = (N, A, s, t) has at least
one s–t path, and let d̃ = (Ñ, Ã, s, t) be its reduced network. Then
the dimension of the flow polytope F(D) equals |̃A| − |Ñ| + 1.

Proof. As we saw in the paragraph before the statement we may
assimilate F(D) with F (̃D), a polytope lying in RÃ. By definition,
F (̃D) is the solution set of the system on RÃ⎧⎨⎩x(̃δ+(v))− x(̃δ−(v)) = 0, ∀v ∈ Ñ \ {s, t},

x(̃δ+(s))− x(̃δ−(s)) = 1,
x(a) ⩾ 0, ∀a ∈ Ã.

(25)

Hence F (̃d) lies in the subspace of RÃ defined by the |Ñ|−1 affine
equations in (25). We first show that the subspace has dimension
6

at most |̃A| − (|Ñ| − 1) by establishing that the |Ñ| − 1 affine
equations are independent. It suffices to exhibit, for each of the
equalities in (25), a point in RÃ which satisfies all equalities in
(25) but the one considered. Let first v be a node in Ã\{s, t}. Take
any path U in (Ñ, Ã, s, t) from s to v (such a path exists because
v is on some s–t path). The characteristic vector χU satisfies all
inequalities in (25) as well as all equalities but the one for v.
Second, assume v = s. The null vector in RÃ does the job.

From the previous paragraph dimF (̃d) ≤ |̃A| − (|Ñ| − 1). To
prove the opposite inequality, we show the existence of 1+|̃A|−
(|Ñ|− 1) affinely independent vertices in F (̃d) (Remark 5.2 below
provides an alternate argument). Because the reduced network d̃
is acyclic, it admits a topological sort L of its nodes, say

u1 >L u2 >L . . . >L um, (26)

with u >L v for any arc (u, v) in Ã and m = |Ñ| (necessarily
u1 = s and um = t in view of the definition of d̃). Now for each
node u distinct from u1, paint in green one arbitrarily chosen arc
in Ã with head u. Thus |Ñ| − 1 arcs were just painted in green;
paint in blue all the other arcs.

Form a first s–t path PG using only green arcs. This path is
uniquely determined: its last arc is the green arc (uk, um) with
head um (for some unique k), the arc before (uk, um) is the green
arc with head uk, etc.

Next, for any of the |̃A|− (|Ñ|−1) blue arcs, say (u, v), form an
s–t path by first following green arcs from s to u (there is only one
suitable sequence of green arcs), next follow the blue arc(u, v)
and finally arcs (green or blue) from v to t (such arcs do exist
because v is on some s–t path). The characteristic vectors of the
resulting s–t paths, in number 1 + |̃A| − (|Ñ| − 1), are affinely
independent, as we next show.

Build as follows a list M of the |̃A| − |Ñ| + 2 s–t paths we just
constructed:M collects first, in any order, all the s–t paths formed
for the blue arcs with tail u1 (if any); next in any order the s–t
paths formed for the blue arcs with tail u2 (if any); . . . ; the s–t
paths formed for the blue arcs with tail um−1 if any; finally, the
last item in the list M is the s–t path PG consisting only of green
arcs. Then the characteristic vector of any s–t path P in M distinct
from PG is affinely independent from the characteristic vectors of
all the s–t paths listed in M after P . Indeed, if P was formed for
the blue arc (u, v), then (u, v) belongs to P but not to any of the
s–t paths listed after P in M . Thus the characteristic vector χP

satisfies x(u, v) ̸= 0 while all the characteristic vectors of the s–t
paths after P in M satisfy x(u, v) = 0. □

Remark 5.2. The proof of the second inequality can be replaced
with a call to Theorem 5.6 of Schrijver (2003). Because no in-
equality x(a) ≥ 0, for a ∈ Ã, is satisfied with equality by F(D),
the dimension of F (̃D) equals |̃A| (the dimension of the space in
which F (̃d) lies) minus the rank of the matrix of coefficients of
the variables in the affine equations in (25). From the first half of
the proof, we know that the rank equals |Ñ| − 1.

6. The facets of a flow polytope

We now aim at recognizing the facets of the flow polytope
F(D) of a network D = (N, A, s, t). In view of the canonical
description of F(D) in (2), any facet is for sure defined by an
inequality x(a) ≥ 0 for some arc in Ã (remember from Section 5
that for b ∈ A \ Ã, the flow polytope F(D) satisfies x(b) = 0).
Proposition 6.6 below characterizes the arcs a such that x(a) ≥ 0
defines a facet of F(D), referring to the notions of ‘corridors’ and
‘good arcs’ (see Example 6.2 and Fig. 4 for an illustration).

For a node u in the network D = (N, A, s, t), set d̃−(u) =

|̃δ−(u)| and d̃+(u) = |̃δ+(u)|.
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efinition 6.1. A corridor of the network D is a path of the
reduced network d̃ = (Ñ, Ã, s, t)

(u1, u2), (u2, u3), . . . , (um−1, um) (27)

such that

d−(u2) = d̃+(u2) = d̃−(u3) = d̃+(u3)

= · · · = d̃−(um−1) = d̃+(um−1) = 1 (28)

which is maximal (w.r.t. the inclusion of arc sets) for this prop-
erty, that is(̃
d−(u1) ̸= 1 or d̃+(u1) ̸= 1

)
and

(̃
d−(um) ̸= 1 or d̃+(um) ̸= 1

)
.

(29)

The corridor in (27) is good when d̃+(u1) ≥ 2 and d̃−(um) ≥ 2.
n arc is good if it belongs to some good corridor. We call arcs or
orridors bad if they are not good.

xample 6.2. The network D on the left in Fig. 4 is not reduced.
ts reduction d̃ is on the right. Both networks have three good
orridors, namely

(s, t)
)
,

(
(u, w)

)
, and

(
(u, v), (v, w)

)
, (30)

nd two bad corridors, namely

(s, u)
)

and
(
(w, t)

)
. (31)

Definition 6.1 implies that no arc in A \ Ã belongs to any
orridor, while each arc a in Ã belongs to a unique corridor
sometime reduced to itself), which we denote as cor(a). Said
therwise, the corridors of the network D = (N, A, s, t) form a
artition of Ã. Moreover, if an s–t path contains any arc of some
orridor, then it includes the whole corridor.
For the corridor in (27), the flow polytope satisfies

(u1, u2) = x(u2, u3) = · · · = x(um−1, um) (32)

because of the conservation law at nodes u2, u3, . . . , um−1).
n the canonical description of F(D), from all the inequalities
(ui−1, ui) ≥ 0 for i = 2, 3, . . . , m, we need to keep only one
chosen as we wish).

emma 6.3. Let D = (N, A, s, t) be a network, and (u, v) be an arc
n Ã satisfying at least one of the two following conditions:

(i) d̃−(u) ̸= 1 and d̃+(u) = 1;
(ii) d̃−(v) = 1 and d̃+(v) ̸= 1.

hen the face F of the flow polytope F(D) defined by the inequality
(u, v) ≥ 0 cannot be a facet of F(D).

roof. We consider only Assumption (ii), the proof under As-
umption (i) being similar. A priori, there are three cases for
.
If v = t , then we have for each point x of F(D) (because the

et inflow at t equals 1, see Eq. (3))

(u, v) = 1+
∑

{x(t, w) (t, w) ∈ δ+(t)}. (33)

ven if there is no term in the summation, the last equation
mplies that x(u, v) = 0 is impossible, so F is the empty face.
or the empty set to be a facet of F(D), it must be that D has a
ingle s–t path. This contradicts (ii).
The case v = s is impossible because of the acyclicity of D

(remember that (u, v) ∈ Ã means that (u, v) belongs to some s–t
path).

Letting now v ̸= s, t , we prove that F cannot be a facet. From
the present assumptions (u, v) ∈ Ã, v ̸= t , and d̃+(v) ̸= 1, we
7

derive d̃+(v) ≥ 2. For any flow x in F(D), the conservation law at
v gives

x(u, v) =

∑
{x(v, w) (v, w) ∈ δ̃+(v)}. (34)

ence x(u, v) = 0 if and only if x(v, w) = 0 for all (v, w) ∈ δ̃+(v).
hus the face defined by x(u, v) ≥ 0 is the intersection of the faces
efined by x(v, w) ≥ 0, for (v, w) ∈ δ̃+(v), each of the latter faces
eing proper because δ+(v) ⊆ Ã. Moreover, at least two such
aces must differ because any s–t path P containing (u, v) contains
xactly one arc (v, w) in δ̃+(v), hence the vertex χP satisfies
(v, w) ̸= 0 and also x(v, w′) = 0 for (v, w′) ∈ δ̃+(v) \ {(v, w)}.
e conclude that F cannot be a facet. □

For most networks, the next Proposition 6.6 states that the
nequality x(a) ≥ 0 defines a facet of F(D) if and only if the
rc a is good. The next lemma helps understand the proof of the
roposition.

emma 6.4. Let D = (N, A, s, t) be a network. For the two arcs a
nd b of Ã, assume that both inequalities x(a) ≥ 0 and x(b) ≥ 0 on
A define facets Fa and Fb of F(D) respectively. Then Fa = Fb if and
nly if a and b belong to the same corridor.

roof. If cor(a) = cor(b), then x(a) = x(b) for any flow x in F(D)
nd so Fa = Fb.
To prove the converse, assume Fa = Fb. Because an empty

olytope has no facet, D must have at least one s–t path. If D has
single s–t path, a and b belong for sure to the unique corridor
f D. Assume from now on that D has at least two s–t paths.
here exists some s–t path P containing the arc a (because the
acet Fa must exclude some vertex of F(D)). Because Fa and Fb
void exactly the same vertices, P must also contain b; say that a
omes before b in P (otherwise relabel a and b). Now cor(a) and
or(b) are subsets of P . If they differ, we derive a contradiction as
ollows. The last node v on cor(a) must then come along P before
cor(b) (here v can be the head of a and/or the tail of b). We have
d−(v) ≥ 2 or d̃+(v) ≥ 2.

If d̃−(v) ≥ 2, there exists some arc (u, v) in δ̃−(v) not in cor(a).
The arc (u, v) is in some s–t path Q . Following Q from s to v, and
next P from v to t , we get an s–t path R (in view of the acyclicity
of D). As R excludes the arc a but contains the arc b, the vertex
χR is in Fa but not in Fb, a contradiction.

If d̃−(v) < 2, then d̃−(v) = 1 and d̃+(v) ≥ 2. Let u be this time
the node preceding v on P . Then x(u, v) ≥ 0 also defines the facet
Fa (because the arcs (u, v) and a belong to the same corridor). By
Lemma 6.3(ii), Fa cannot be a facet, a contradiction. □

Remark 6.5. In the proof of sufficiency in Lemma 6.4 (from right
to left) we do not need the assumption that Fa and Fb are facets,
faces is enough. To the contrary, the necessity part (left to right)
of Lemma 6.4 does not remain true if we replace ‘facet’ by ‘face’
in the statement. This is shown by the arcs (s, u) and (w, t) in
the network D displayed in Fig. 4. Here the flow polytope F(D)
has three vertices. Its three facets are respectively defined by the
inequalities x(s, t) ≥ 0, x(u, w) ≥ 0, x(u, v) ≥ 0 (or x(v, w) ≥ 0).
Both inequalities x(s, u) ≥ 0 and x(w, t) ≥ 0 define the same
0-dimensional face; however, they are in distinct corridors.

Proposition 6.6. Given an arc a in the network D = (N, A, s, t),
the inequality x(a) ≥ 0 defines a facet of the flow polytope F(D) if
and only if the arc a belongs to Ã and moreover either the network
D has a single s–t path, or the arc a is good.

Proof. When a belongs to some s–t path, we assume that the
successive arcs in cor(a) (the corridor containing a) are
(u1, u2), (u2, u3), . . . , (um−1, um). (35)
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or all arcs b in cor(a) the polytope F(D) satisfies x(a) = x(b)
(as in (32)). Therefore, in the canonical description of F(D), we
eep only one of the inequalities x(b) ≥ 0 for b ∈ cor(a), namely
(a) ≥ 0.
To prove sufficiency, first note that if D has a single s–t path,

hen F(D) has only one point and moreover x(a) ≥ 0 defines
ere the empty face, a facet of F(D). Now suppose that the arc
is good, which in the notation of (35) means d̃+(u1) ≥ 2 and
−(um) ≥ 2. To show that the inequality x(a) ≥ 0 defines a
acet, it suffices to exhibit some point y of RA that satisfies all the
ffine equations and inequalities of the canonical description of
(D) except for the inequality x(a) ≥ 0. Take some arc (u, um) in
−(um) \ {(um−1, um)}. Thus there exists some s–t path containing
u, um), and so also a path M starting at s with last arc (u, um).
ow take some arc (u1, v) in δ̃+(u1)\{(u1, u2)}. There exists some
–t path containing (u1, v), and so a path P with first arc (u1, v)
nd ending at t . Set C := cor(a). The point y = χM

+ χP
− χC in

A has the desired property (even if M and P pass through some
ommon nodes and/or share some arcs).
To prove necessity, assume that the inequality x(a) ≥ 0 defines

facet. First note that a must belong to some s–t path otherwise
he facet defined by x(a) ≥ 0 would contain all vertices of F(D).
ence a ∈ Ã. Assume further that the arc a is bad. Then for
ts corridor cor(a) written as in (35), there holds d̃+(u1) = 1 or
−(um) = 1. In the first case, we must also have d̃−(u1) ̸= 1 (by
29)), and so a contradiction follows from Lemma 6.3(i). In the
econd case, we have d̃+(um) ̸= 1, and a contradiction follows
rom Lemma 6.3(ii). □

orollary 6.7. The number of facets of the flow polytope F(D) of
network D equals the number of good corridors of D.

roof. This follows at once from Proposition 6.6 and
emma 6.4. □

From Proposition 5.1 and the proof of Proposition 6.6 we
erive a minimum-size affine description of F(D). Let B be a
ubset of A which is a transversal of the collection of corridors,
hat is, B contains exactly one arc from each corridor. The system

⎧⎪⎨⎪⎩
x(a) = 0, ∀a ∈ A \ Ã,

x(̃δ+(v))− x(̃δ−(v)) = 0, ∀v ∈ Ñ \ {s, t},
x(̃δ+(s))− x(̃δ−(s)) = 1,

x(b) ⩾ 0, ∀b ∈ B

(36)

s an affine description of F(D) having minimum size.

. The adjacency of facets of a flow polytope

By definition, two facets of a polytope are adjacent if their
ntersection is a face of dimension equal to the dimension of
he polytope minus 2. See Fig. 5 for an illustration of the next
haracterization of (non-)adjacency of facets of a flow polytope.

roposition 7.1. For two good arcs a and b in a network D =

N, A, s, t), let Fa and Fb be the facets of the flow polytope F(D)
espectively defined by x(a) ≥ 0 and x(b) ≥ 0. The facets Fa and
b are not adjacent if and only if at least one of the two following
conditions holds:

(i) the corridors cor(a) and cor(b) have the same initial node, say
v, with d̃+(v) = 2, and

(1) either d̃−(v) ≥ 2,
(2) or δ̃−(v) = {(u, v)} and the initial node of cor(u, v) has

in-degree at least 2;
8

(ii) the corridors cor(a) and cor(b) have the same terminal node,
say u, with d̃−(u) = 2, and

(1) either d̃+(u) ≥ 2,
(2) or δ̃+(u) = {(u, v)} and the terminal node of cor(u, v)

has out-degree at least 2.

roof (Necessity). For any polytope, two of its facets F and G are
ot adjacent if and only if there exists some facet K such that

F ∩ G ⊆ K with K distinct from F and G.
In view of Proposition 6.6, nonadjacency of the given facets

Fa and Fb of F(D) implies the existence of some good arc c for
which the facet Fc defined by the inequality x(c) ≥ 0 includes
Fa ∩ Fb and is distinct from Fa and Fb (note that Fa ̸= Fb implies
that the network has more than one s–t path). Then by Lemma 6.4
or(c) ̸= cor(a), cor(c) ̸= cor(b). All vertices of the face Fa∩ Fb are
vertices of Fc , equivalently all s–t paths containing c also contain
a or b.

Take some s–t path P containing c (there exists such a P
because Fc ̸= F(D)). Say that P contains a (if P does not contain a,
exchange the notation a and b), then P includes cor(a). In P , the
arc a comes either after the arc c or before c. Treating only the
second case, we will derive (ii) (in a similar way, the first case
leads to (i)).

Let u be the terminal node of cor(a), and v be the terminal
node of cor(b). We first prove u = v. Because a is good, there
exists some arc (u′, u) in Ã outside cor(a), thus also outside P . Take
an s–t path Q containing the arc (u′, u). Following Q from s to u,
next P from u to t we get an s–t path R containing c which avoids
a and passes through u. Then R must contain b, thus R includes
cor(b). Now if u ̸= v, we derive a contradiction in each of the two
remaining possible positions of v in R with respect to cor(c):

(α) v comes in R after the last node of cor(c). Then the initial
node v1 of cor(b) comes on R at or after the last node of
cor(c). Because the arc b is good, there is some arc (v1, w)
in δ̃+(v1) outside cor(b). Following R from s to v1, next
(v1, w), finally some path from w to t , we obtain an s–t
path containing c but neither a nor b, a contradiction.

(β) v comes in R before or at the initial node of cor(c). Because
the arc b is good, there is an arc (v′, v) outside cor(b), thus
an s–t path containing (v′, v). Following this last path from
s to v, next R from v to t , we get an s–t path S containing c
but not b. If S happens to avoid a, we have a contradiction.
If S contains a, then a must be before b on S and we can
then similarly build an s–t path S containing c but neither
b nor a, the same contradiction.

We have thus proved u = v. In view of cor(a) ̸= cor(b), there
olds d̃−(u) ≥ 2. If d̃−(u) > 2 were true, there would exist some
rc (w, u) outside cor(a)∪ cor(b). Following some s–t path from s
o w, next (w, u) and finally the part after u of the path R (as
bove), we form an s–t path containing c but neither b nor a,
ontradiction. Thus d̃−(u) = 2.
Next assuming (1) were not true, we prove (2) still referring

o the arc c and the s–t path R met in previous paragraph. Note
δ̃+(u)| ≥ 1 because of the arc c. Now if δ̃+(u) = {(u, v)}, then
or(u, v) is on the s–t path R and entirely before the arc c (we
annot have cor(u, v) = cor(c) because c is a good arc and the
ssumption δ̃+(u) = {(u, v)}). Let w be the terminal node of
or(u, v). If w had out-degree less than 2, then w would have in-
egree as least 2 (by the definition of cor(u, v)). Any arc (w′, w)
n Ã \ cor(u, v) is on some s–t path. Following the latter from s to
, then R to t , we get an s–t path containing c but avoiding both
and b: contradiction.
(Sufficiency). For any polytope, two of its facets F and G are

ot adjacent if and only if there exists some proper face K such
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that F ∩ G ⊆ K and moreover K ̸⊆ F and K ̸⊆ G (indeed, any
facet including K is a facet which includes F ∩ G and differs from
F and G).

Assuming (ii) (assuming (i) leads to similar arguments), either
(1) or (2) holds:

(1) If d̃+(u) ≥ 2, let (u, v) and (u, v′) be arcs in δ̃+(u). For the
face K defined by x(u, v) ≥ 0, we have Fa ∩ Fb ⊆ K (because in
iew of d̃−(u) = 2, any s–t path containing (u, v) contains a or
). Moreover K ̸⊆ Fa (an s–t path including cor(a) and containing
u, v′) gives a vertex in K but not in Fa), and similarly K ̸⊆ Fb.
Thus the facets Fa and Fb are not adjacent.

(2) If δ̃+(u) = {(u, v)}, let w be the terminal node of cor(u, v).
By assumption, d̃+(w) ≥ 2, so let (w, z), (w, z ′) be two arcs in Ã.
Letting K be the face defined by x(w, z) ≥ 0, we conclude as in
previous paragraph that the facets Fa and Fb are not adjacent. □

Remark 7.2. For many networks D, the facets of the flow poly-
tope F(D) are two by two adjacent: it suffices that the network
has no node of in- or out-degree equal to 2.

8. Consequences for the multiple choice polytope

We saw in Section 3 that the multiple choice polytope PC
MC is

ffinely isomorphic to the flow polytope F(DC
LO) of the network

C
LO = (2C,≺,∅, C); we keep this notation here, with n := |C|.
y Proposition 5.1, the dimension of both F(DC

LO) and PC
MC equals

n−1 (n− 2)+ 1. Proposition 4 of Chang et al. (2022) also implies
his result.

The vertices of the multiple choice polytope PC
MC are the points

L, where L is a linear ordering of the set C of alternatives. The
inear mapping (as in (18))

: RE
→ RA

: p ↦→ r, with r(T \ {i}, T ) := q(i, T ) (37)
9

aps the vertex pL of PC
MC onto the vertex χP of F(DC

LO), where if
is given by

1 >L i2 >L . . . >L in (38)

hen P is the ∅–C path

∅, {i1}), ({i1}, {i1, i2}), . . . , ({i1, i2, . . . , in−1}, C). (39)

o determine when two vertices of PC
MC are adjacent, we rather

ook at their images by ρ in F(DC
LO).

Proposition 4.2 states when two vertices of any flow polytope
re adjacent. Its particularization to F(DC

LO) translates as follows
o the MCP:

roposition 8.1. For any two linear orderings L1 and L2 of C, the
ertices pL1 and pL2 of PC

MC are adjacent if and only if

whenever a nontrivial14 subset S of C is a beginning set of both
L1 and L2, then L1 and L2 coincide in S or in C \ S.

For |C| = 2, 3, the graph of the flow polytope F(DC
LO) has

iameter 1 (the polytope is a segment, a 5-dimensional simplex
espectively).

orollary 8.2. For |C| ≥ 4, the diameter of the graph of the flow
olytope F(DC

LO) equals 2.

roof. Again, we work on the flow polytope F(DC
LO). Given two

–C paths P and Q , we show the existence of a ∅–C path R
uch that the vertex χR is adjacent to both vertices χP and χQ . If
∅, {i1}) and (∅, {j1}) are the two first arcs on respectively P and
, we consider two cases. If i1 = j1, we let R be any ∅–C path

14 Recall that A is a nontrivial subset of B when ∅ ̸= A ⊂ B.
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ith last arc (C \ {i1}, C). If i1 ̸= j1 we let R be any ∅–C path with
wo last arcs (C \ {i1, j1}, C \ {i1}) and (C \ {i1}, C). Then no node
n R, distinct of both ∅ and C, is on P (because the only node
n R that contains i1 is C, while every node on P distinct from ∅
ontains i1). Similarly, the only node on R, distinct of both ∅ and
, which could be on Q is C \ {i1} (because the only nodes on R
hat contain j1 are C\{i1} when i1 ̸= j1, and C, while every node of
distinct from ∅ contains j1). By Proposition 8.1 χR is adjacent

o both χP and χQ . □

We now turn to the adjacency of facets of the MCP, and again
eason on the flow polytope F(DC

LO). By Proposition 6.6, a facet of
he latter polytope is defined by an inequality x(a) ≥ 0 where a
s a good arc in the network DC

LO (as soon as |C| ≥ 3 all corridors
onsist of a single arc, hence distinct good arcs define distinct
acets). For the network DC

LO, the arc a = (T \ {i}, T ) is good if
nd only if 2 ≤ |T | ≤ |C| − 1. We deduce that an inequality as in
16), that is for (i, T ) ∈ E (or i ∈ T ∈ 2C)∑
S∈2C : S⊇T

(−1)|S\T | p(i, S) ≥ 0, (40)

efines a facet of PC
MC if and only if 2 ≤ |T | ≤ |C|−1 (Suck, 1995,

npublished, and Fiorini, 2004). We derive from Proposition 7.1:

roposition 8.3. Assume |C| ≥ 4. Consider the two facets of PC
MC

efined by inequalities as in (40), for the two distinct pairs (i, T ) and
i′, T ′) in E with 2 ≤ |T |, |T ′

| ≤ |C| − 1. The two facets are adjacent
f and only if neither of the two following cases occurs:

(i) T = C \ {i′} and T ′
= C \ {i};

(ii) T = T ′
= {i, i′}.

For n := |C| ≥ 4, it readily follows that the adjacency
raph on the collection of facets of PC

MC is the complete graph
n 2 n (2n−2

−1) nodes minus n (n−1) two by two disjoint links;
hus the graph has diameter 2. For n ≤ 3, the graph is complete.

.1. Identifiability in the MCM

It is well known that the MCM is not identifiable (see Fal-
agne, 1978; Fishburn, 1998 collects several results and refer-
nces). In terms of (7), it means the existence of at least one
redicted point p in PC

MC for which there exists more than one
oint Pr in Λ(LOC) such that f (Pr) = p; in this situation, we
ay that the point p is non-identifying, and the points Pr are
on-identified.15 Proposition 1 in McClellon (2015) states that
ll points in the relative interior of PC

MC are non-identifying.
heorem 2 in Turansick (2022) characterizes as follows the non-

identified points in Λ(LOC), in terms of beginning sets of linear
orderings (beginning sets were defined in (11)).

Proposition 8.4 (Turansick, 2022). In the MCM, the distribution Pr
on LOC is identified if and only if there is no pair of linear orderings
, L′ of C such that

(1) Pr(L) > 0 and Pr(L′) > 0;
(2) there exist alternatives i, j, k with

(a) i >L k, j >L k, i >L′ k, and j >L′ k;
(b) i ̸= j;
(c) L−(k) ̸= L′−(k);
(d) L−(i) = L′−(j).

15 As in Doignon et al. (2018), the term ‘‘non-identifiable’’ is currently used
in both cases, but we prefer to reserve it to qualify the model.
 t

10
Here is a geometric interpretation of Condition (2) from Propo-
sition 8.4. Recall that PrL designates the distribution on LOC that
is concentrated on the linear ordering L; in other terms, PrL is
a vertex of the simplex Λ(LOC). Moreover, the vertices of the
polytope PC

MC are the images by f of the vertices of Λ(LOC); we
set pL = f (PrL).

Proposition 8.5. The three following conditions on two linear
orderings L and L′ of C are equivalent:

(A) L and L′ satisfy Conditions (2) in Proposition 8.4;
(B) there exists a nontrivial subset U of C such that

(α) U is a beginning set of both L and L′, and
(β) L and L′ do not coincide on U nor on C \ U;

(C) the vertices pL and pL
′

of PC
MC are not adjacent.

Proof. (A) ⇒ (B) Letting U = L−(i), we prove that U satisfies (α)
nd (β). Necessarily i ∈ U , and because L−(i) = L′−(j), also j ∈ U .
oreover, i and j being distinct and also the smallest elements

n U for respectively the orderings L and L′, the two orderings do
ot coincide on U . Next, because by (a) we have k /∈ U , (c) implies
hat L and L′ do not coincide on C \ U .

(B) ⇒ (A) Among all the nontrivial subsets U of C satisfying
α) and (β), take the minimum one w.r.t. set inclusion. Then
= L−(i) = L′−(j) for some i, j in C; moreover by the minimality

equirement, i ̸= j. Because L and L′ do not coincide on C\U , there
ust be some alternative k in C \ U which is ranked differently
y L and L′. The alternatives i, j and k ‘‘do the job’’.
The equivalence of (B) and (C) is the object of

roposition 8.1. □

Thus Turansick’s result (here Proposition 8.4) states in a hid-
en way that the point Pr in Λ(LOC) is identified if and only if
or any two linear orderings L and M of C

r(L) > 0 ∧ Pr(M) > 0 H⇒

the vertices pL and pM of PC
MC are adjacent.

n a future project, we intend to search for a more efficient
haracterization of adjacency.

. Consequences for some other particular flow polytopes

The multiple choice polytope appears in Davis-Stober et al.
2018) as an ‘extended formulation’ for the ‘linear order poly-
ope’ (we refer the reader to this paper for the definitions of
echnical terms used only in the present section). Three more
low polytopes appear there, also as extended formulations, these
imes for the ‘weak order polytope’, the ‘interval order polytope’
nd the ‘semiorder polytope’. We provide characterization of the
djacencies of vertices and of facets for the three flow polytopes.

.1. An extended formulation for the weak order polytope

Consider the network DC
WO = (2C,⊂,∅, C), where the arcs are

airs (S, T ) of subsets of C with S ⊂ T . The ∅–C path P equal to
where S0 = ∅ and Sk = C)

S0, S1), (S1, S2), . . . , (Sk−1, Sk) (41)

erives from exactly one weak order on C (aweak order is a binary
elation which is transitive and complete), namely the weak order

whose equivalence classes are

1 \ S0 ≻W S2 \ S1 ≻W · · · ≻W Sk \ Sk−1. (42)

beginning set of a weak order W on C is any subset S of C such
hat i ∈ S and i ≥ j implies j ∈ S (this extends the definition
W
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Fig. 6. The network in Example 9.1.

iven in (11) for linear orders). The weak order W characterized
n (42) is the weak order whose beginning sets are

S0, S1, S2, · · · , Sk. (43)

We say that the vertex χP of the flow polytope F(DC
WO) corre-

sponding to the ∅–C path P also corresponds to the weak order
W .

Example 9.1. For C = {1, 2}, the network DC
WO = (2C,⊂,∅, C)

is displayed in Fig. 6. The flow polytope F(DC
WO) is a triangle.

Note that for |C| ≥ 3, all corridors of the network (2C,⊂,∅, C)
have size 1. Proposition 4.2 becomes here the next result.

Proposition 9.2. Assume |C| ≥ 3. The two vertices of the flow
polytope F(DC

WO) corresponding to the two weak orderings W1 and
W2 of C are adjacent if and only if when a nontrivial subset S of C
is a beginning set of both W1 and W2, then W1 and W2 coincide in
S or in C \ S.

Corollary 9.3. When |C| ≥ 3, the diameter of the flow polytope
F(DC

WO) equals 2.

Proof. The weak order C × C (with C as its single equivalence
class) produces a vertex of F(DC

WO) which is adjacent to all other
vertices. □

Propositions 6.6 and 7.1 directly imply the next results.

Proposition 9.4. Assume |C| ≥ 3. An inequality x(a) ≥ 0, for
a = (S, T ) with S ⊂ T ⊆ C, defines a facet of the flow polytope
F(DC

WO) if and only if ∅ ̸= S and T ̸= C. Any two facets of F(DC
WO)

are adjacent.

More terminology is needed to describe the next two flow
polytopes. To keep the length of this paper (hopefully) acceptable,
we state our results without repeating all definitions from Davis-
Stober et al. (2018).

9.2. An extended formulation for the interval order polytope

For any set C of n alternatives, the network DC
IO = (N, A, s, t)

is defined as follows (see Fig. 7 for |C| = 2):

N := {(X, Y ) Y ⊆ X ⊆ C},

A :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩((X, Y ), (Z, T )) ∈ N × N

X ⊆ Z, Y ⊆ T , and
either |Z | = |X | + 1,

|T | = |Y |
or |Z | = |X |,

|T | = |Y | + 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

s := (∅,∅),
t := (C, C).

The flow polytope F(DC
IO) is an extended formulation of the inter-

al order polytope (the vertices of the last polytope are the char-

cteristic vectors of the interval orders on C), see Davis-Stober

11
Fig. 7. The network DC
IO used in the investigation of interval orders, for |C| = 2.

The label of the central node is ({1, 2},∅).

et al. (2018). The numbers of nodes and arcs in the network DC
IO

are respectively, for n := |C|,

|N| = 3n and |A| = 2 n 3n−1 (44)

several (∅,∅)–(C, C) paths encode the same interval order).
When |C| ≥ 3, all corridors of the network DC

IO have size 1. For
the adjacency of vertices, we cannot tell more than the charac-
terization in Proposition 4.2 (note that the vertices of F(DC

IO) do
not have a simple interpretation while the vertices of F(DC

LO) and
F(DC

WO) exactly correspond to linear orders and weak orders on
C respectively; see Davis-Stober et al., 2018, for more details on
F(DC

IO)). For the facets we have:

Proposition 9.5. Let a be any arc in DC
IO, with |C| ≥ 3. The

inequality x(a) ≥ 0 defines a facet Fa of the flow polytope F(DC
IO)

if and only if the arc a is good, equivalently a is not of any of the
four forms, for some i ∈ C,

( (∅,∅), ({i},∅) ), ( ({i},∅), ({i}, {i}) ),
( (C \ {i}, C \ {i} ), ( C, C \ {i} )), ( (C, C \ {i}), (C, C) ).

If the two arcs a and b of DC
IO are good, then the two facets Fa and Fb

are not adjacent if and only if {a, b} is, for some distinct alternatives
i and j, one of the six pairs of arcs shown in Fig. 8.

Proof. By Proposition 6.6 and because the network DC
IO has more

than one ∅–C path, x(v) ≥ 0 defines a facet if and only if the arc
v is good. When |C| ≥ 3, any corridor is formed by a single arc.
Note that a node (X, Y ) has in-degree |X | and out-degree |C \ Y |.
Hence the in-degree of any node v in DC

IO is at least 2 except when
v equals (∅,∅), ({i},∅), or ({i}, {i}) for some alternative i (here
again we need |C| ≥ 3, as testified by Fig. 7). Similarly, the out-
degree of any node w in DC

IO is at least 2 except when w equals
(C \{j}, C \{j}), (C, C \{j}) or (C, C) for some alternative j. It follows
that the only bad arcs are those mentioned in the statement.

Now suppose that the two arcs a and b are good. Referring to
Proposition 7.1, we see that the facets Fa and Fb are not adjacent
exactly if either a and b have the same initial node, say u, with
d+(u) = 2, or a and b have the same terminal node, say v, with
−(v) = 2 (here the cases (2) in Proposition 7.1 cannot occur in

view of |C| ≥ 3). When |C| ≥ 3, the latter happens exactly for any
f the six types of arcs displayed in Fig. 8. □

9.3. An extended formulation for the semiorder polytope

Davis-Stober et al. (2018) introduce still another network
DC
SO = (N, A, s, t) with n := |C|, whose flow polytope makes an
xtended formulation of the ‘semiorder polytope’. The definition
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Fig. 8. The six types of pairs of arcs producing pairs of nonadjacent facets of F(DC
IO).
Fig. 9. The network DC
SO used in the investigation of semiorders, for |C| = 2.

hen |X \ Y | ≤ 1, the linear ordering of X \ Y is obvious; we simply write
or L for it. The labels of the central nodes are ({1, 2},∅, 1 <L 2) and

{1, 2},∅, 2 <L 1) respectively.

f DC
SO goes as follows, where L + i means that we append

lternative i at the end of the linear ordering L of some subset
f C excluding i. Moreover L− j denotes the removal of j from the
round set of the linear order L. As a convention, the only linear
rdering of the empty set is L = ∅.

= {(X, Y , L) C ⊇ X ⊇ Y , L linear ordering of X \ Y };
A = {

(
(X, Y , L), (Z, T ,M)

)
∈ N2

either for some i ∈ C \ X :

{Z = X ∪ {i},
T = Y ,

M = L+ i,
or for the alternative j in X \ Y which is the first one in L :{Z = X,

T = Y ∪ {j},
M = L− j };

s = (∅,∅,∅);
t = (C, C,∅).

Each (∅,∅,∅)–(C, C,∅) path is a sequence of 2 n arcs (here,
again, n := |C|). See Fig. 9 for DC

SO when n = 2.

Lemma 9.6. For any node (X, Y , L) in the network DC
SO,

d+(X, Y , L) =

{
n− |X |, if X = Y ,

n− |X | + 1, if X ⊃ Y ;
(45)

d−(X, Y , L) =

{
|Y |, if X = Y ,

(46)

|Y | + 1, if X ⊃ Y .

12
Proof. The first two equations derive from the definition of arcs
with tail (X, Y , L). To derive the last two equations, rewrite the
definition as follows. For two nodes (Z, T ,M) and (X, Y , L), the
pair

(
(Z, T ,M), (X, Y , L)

)
is an arc if and only if

for i ∈ X \ Y which is the last for L :

{Z = X \ {i},
T = Y ,

M = L− i,
(47)

or

for some j in Y :

{Z = X,

T = Y \ {j},
M = j+ L.

(48)

□

Here again, as for the interval order case, there is no more
about adjacency of vertices that we can say beside Proposi-
tion 4.2. We thus turn to the adjacency of facets.

Proposition 9.7. Assume |C| ≥ 3. All corridors of DC
SO consist of

either one arc or two arcs. The corridors of size 2 have central nodes
of the form (C,∅, L), for some linear ordering L of C; both of their
arcs are good. An arc of DC

SO is good if and only if it is not of any of
the following types:

((X,∅, L), (X ∪ {i},∅, L+ i)), where X ⊂ C, i ∈ C \ X;
(α)

((C \ {i}, C \ {i},∅), (C, C \ {i}, L)), where i ∈ C; (β)

((X,∅, L), (X, {j}, L− j)), where j ∈ X ⊆ C (γ )
((C, Y , L), (C, Y ∪ {j}, L− j)), where Y ⊂ C, j ∈ C \ Y .

(δ)

Proof. By Lemma 9.6, the only nodes of DC
SO having both in- and

out-degree 1 are the (C,∅, L)’s with L any linear ordering of C.
So the corridors are of size 1 or 2, and the corridors of size 2
have (C,∅, L) as their middle nodes. Note moreover that each arc
in a corridor of size 2 is good because both the terminal node
(C, {j}, L − j) of the corridor (with j the first element in L) has
in-degree at least 2 and the initial node (C \ {i},∅, L − i) of the
corridor (with i the last element in L) has out-degree at least 2.

According to the definition of DC
SO, there are two types of arcs,

which we now review for badness:
▷ If the arc ((X, Y , L), (X∪{i}, Y , L+ i)) is bad (where i ∈ C\X),

then d−((X∪{i}, Y , L+ i)) = 1 or d+((X, Y , L)) = 1. By Lemma 9.6,
in the first case, (X ∪ {i} = Y and |Y | = 1) or (Y = ∅ and
X ∪ {i} ⊃ Y ). The first eventuality being impossible because by
assumption X ⊇ Y , we get (α). In the second case, again by
Lemma 9.6 and with n := |C|, we have (X = Y and |X | = n−1) or
(X = C ⊃ Y ). The second eventuality being impossible (because
we need i in C \ X), we get (β).
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▷ If the arc (X, Y , L), (X, Y ∪ {j}, L − j) is bad (where j ∈

X \ Y is the first element in the linear ordering L of X \ Y ), then
d−((X, Y ∪ {j}, L − j)) = 1 or d+((X, Y , L)) = 1. By Lemma 9.6, in
the first case, (X = Y ∪ {j} and |Y ∪ {j}| = 1) or (X ⊃ Y ∪ {j} and
= ∅), so we get (γ ). In the second case, (X = Y and |X | = n−1)
r (X ⊃ Y and |X | = n). The first eventuality being impossible (in
iew of j ∈ X \ Y ), we get (δ). □

roposition 9.8. Assume n := |C| ≥ 3. Take the two facets of
(DC

SO) defined by the inequalities x(a) ≥ 0 and x(b) ≥ 0, where a
and b are two good arcs. The two facets are not adjacent if and only
f the corridors cor(a) and cor(b)

(i) have the same tail of the form either (X, X,∅) with |X | =

n− 2 ≥ 2, or (X, Y , L) with |X | = n− 1 and X ̸= Y ,
(ii) or they have the same head of the form either (X, X,∅) with

|X | = 2 and n ≥ 4, or (X, Y , L) with |Y | = 1 and X ̸= Y .

Proof. Refer to Proposition 7.1 and Proposition 9.7. □

0. Conclusions

To characterize the adjacency of vertices and the adjacency of
acets on the multiple choice polytope (Propositions 8.1 and 8.3),
e established the similar results for all network flow polytopes
Propositions 4.2 and 7.1). As byproducts, we also derived in
ection 9 related results on other polytopes which are extended
ormulations of the weak order, semiorder and interval order
olytopes. The introduction of network flow polytopes in the
nvestigation of random utility models from psychology and/or
conomics is due to Fiorini (2004), when he designed another
roof of Falmagne’s Theorem.
In our eyes, the relevance of our paper for the (mathematical)

sychology and economics communities lies in the importance of
he multiple choice model (based on linear orders, as in Falmagne
ork, or on other order relations, for instance weak orders, in-
erval orders and semiorders, as in recent work by Marley &
egenwetter, 2017). Statistical tests of the various models rely
n an understanding of the associated polytope, formed by all
oints predicted by the model under consideration (see Davis-
tober, 2009 and its references; for recent work, see McCausland
t al., 2020; McCausland & Marley, 2014; Regenwetter, Dana, &
avis-Stober, 2011).
So, understanding the structure of the various polytopes is

mportant for designing better statistical procedures, or simply
or investigating intrinsic properties of the models. For instance,
e arrived at a simple, geometric interpretation of Turansick
2022) results on the identification question for the multiple
hoice model (see after Proposition 8.5).
In other projects, we are now pursuing the application of

he network flow technique. One of our goals is a characteri-
ation of the Multiple Choice Model based on weak orders, a
odel in which the subject may select several alternatives in

he choice set. Barberá and Pattanaik (1986) provide without
roof an implicit characterization of the resulting polytope. We
im at an explicit characterization, working with the network
mplementing the boolean lattice. Another of our goals is a better
nderstanding of identification in the Multiple Choice Model
based on either linear orders or weak orders). Still another
ne concerns the situation where subject’s choices are made
ccording to a product structure (‘correlated choice’ in the sense
f Chambers et al., 2021).
Although the flow technique happens to be quite effective in

he characterization of several random ordering models, it cannot
andle all of these models. We lack technical reasons explaining
ts successes and limitations.
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