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The Multiple Choice Polytope (MCP) is the prediction range of a random utility model due to Block
and Marschak(1960). Fishburn(1998) offers a nice survey of the findings on random utility models at
the time. A complete characterization of the MCP is a remarkable achievement of Falmagne (1978).
To derive a more enlightening proof of Falmagne Theorem, Fiorini(2004) assimilates the MCP with
the flow polytope of some acyclic network. However, apart from a recognition of the facets by
Suck(2002), the geometric structure of the MCP was apparently not much investigated. We characterize
the adjacency of vertices and the adjacency of facets. Our characterization of the edges of the MCP
helps understand recent findings in economics papers such as Chang, Narita and Saito(2022) and
Turansick(2022). Moreover, our results on adjacencies also hold for the flow polytope of any acyclic
network. In particular, they apply not only to the MCP, but also to three polytopes which Davis-
Stober, Doignon, Fiorini, Glineur and Regenwetter (2018) introduced as extended formulations of the
weak order polytope, interval order polytope and semiorder polytope (the prediction ranges of other
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models, see for instance Fishburn and Falmagne, 1989, and Marley and Regenwetter, 2017).
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1. Introduction

Block and Marschak (1960) introduce “random utility models”,
showing in many cases their equivalence with “random ordering
models”. In particular, the Multiple Choice Model (MCM) predicts
stochastic choices from latent probability distributions over strict
rankings; all sets of alternatives are choice sets, and the subject
selects one alternative in the choice set® (for a precise definition,
see Section 3).

A complete characterization of the MCM is a remarkable result
due to Falmagne (1978): the predictions of the MCM form the
Multiple Choice Polytope (MCP), for which Falmagne obtains an
affine description—that is, a system of affine inequalities whose
solution set is the MCP.

More recently, Fiorini (2004) provides an alternative proof
of Falmagne’s Theorem, which is enlightening: he starts with
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a change of space coordinates or, in another interpretation, he
works on the image of MCP by a well-chosen affine transforma-
tion. Next he shows that in the new viewpoint the vertices of MCP
are (the characteristic vectors of) all paths from the source to the
sink in a special network. Hence, the MCP is the flow polytope
of the network. A characterization of the MCP by a system of
affine inequalities then follows from the fundamental theorem
on network flows (Gallai, 1958, and Ford & Fulkerson, 1962). In
Economics, Chambers, Masatlioglu, and Turansick (2021) apply
Fiorini’s technique to study a “correlated random utility model”.

However, not much is known about the geometric structure
of the MCP other than its facets (Suck, 2002a). We characterize
the adjacency of vertices and the adjacency of facets. As a matter
of fact, our characterizations hold for the flow polytope of any
acyclic network (the MCP being a particular case). So they are
also valid for the three flow polytopes built in Davis-Stober et al.
(2018) to get extended formulations of the weak order polytope,
interval order polytope and semiorder polytope> (see Fig. 1). In
Economics, Turansick (2022), in his Theorem 2 on the identi-
fiability in the MCM (see Fishburn, 1998, for previous results),
introduces a condition on two vertices of the MCP which we show
to be equivalent to their non-adjacency (see Section 8.1). To check

3 We refer the reader to the last paper (and its references) for the terminol-
ogy. Note that the mastery of the adjacencies on the four extended formulations
should be useful in the design of optimization algorithms, particularly for the
statistical tests evoked in Davis-Stober et al. (2018).
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Fig. 1. A scheme of the various polytopes mentioned in the paper. Here PS. designates the Multiple Choice Polytope MCP on the alternative set ¢ (Section 3), and
F(D) designates the flow polytope of the network D (see Sections 8 and 9 for the four specific networks).

whether the mixed logit model can approximate the MCM, Chang,
Narita, and Saito (2022) use the fact that a convex combination
between two adjacent vertices of the MCP is a prediction of the
MCM that is uniquely represented. Thus a characterization of
vertex adjacency can be useful.

In the following, we provide a short literature review to ex-
plain the importance of the MCM. In economics, since Block and
Marschak (1960) and Marschak (1960), the MCM has been used
in many different contexts. In discrete choice analysis, economists
often use the MCM to describe unknown data generating process
of stochastic choice, for instance over transportation methods,
schools, and products (although in practice, they frequently make
use of parametric models such as the mixed logit model, Mc-
Fadden, 2001). The interest for the MCM is exemplified by Mc-
Fadden and Richter (1970, 1990),% Barber4 and Pattanaik (1986)°
and Monderer (1992).5

In psychology, several papers refer to Falmagne’s Theorem
on the MCM, for instance Fiorini (2004), Suck (2002b, 2016)
and Regenwetter, Marley, and Grofman (2002). Recently, Mc-
Causland and Marley (2014) investigate Bayesian inference for
the MCM and other random utility models, while McCausland,
Davis-Stober, Marley, Park, and Brown (2020) continues the in-
vestigation and moreover apply Bayes factors to experimental
data. In another direction, Kellen, Winiger, Dunn, and Singmann
(2021) use the MCM in signal detection theory.

In both psychology and economics, and also in operations
research, the setup in which the only choice sets are binary is the
object of many publications: see Fishburn (1992) for a classical
survey, and Marti and Reinelt (2011) for a more recent overview.
For example, Fishburn and Falmagne (1989) provide necessary
conditions for binary choice probabilities to be induced by a
probability distribution on rankings. They also show that no finite
set of simple necessary conditions is sufficient for inducement
when the alternative set is finite but can be arbitrarily large.
Today, finding a manageable characterization of the binary choice
polytope appears to be out of reach in view of a related NP-hard
problem (see for instance Charon & Hudry, 2010, Problem 5 and
Theorem 7).

Fishburn published papers on the linear ordering polytope,
notably (Fishburn & Falmagne, 1989) and Fishburn (1992), and
also on the weak order polytope, Fiorini and Fishburn (2004). He
has also introduced the concept of an interval order (Fishburn,

4 McFadden and Richter establish another characterization of the model (a
more involved one than Falmagne’s one).

5 Barbera and Pattanaik obtain a proof similar to Falmagne’s one.

6 Monderer derives another proof from a result of Weber (1988) in game
theory, namely a characterization of random order values.

1970) as an extension of the one of a semiorder (Luce, 1956).
We dedicate our contribution to the memory of Peter Fishburn,
whose influence on the fields addressed in this paper remains so
strong.

2. Basic definitions and results
2.1. Polytopes

A polytope P in R? is the convex hull of some finite subset
of RY, say P = conv(V) with V c RY V finite. A face F of the
polytope P is any subset F of P equal to P, or for which there
exists an (affine) hyperplane H which satisfies » " H = F and
is valid for P, that is, 7 € H' with H™ a closed side of H. If
H* ={pe Rdla(p) > (r)} for a linear form « on RY and a real
number r, the inequality a(x) > r defines the face F. A vertex of
P is a point p such that {p} is a face of P. An edge is a segment
which forms a face. A facet of P is a proper,” maximal face of P.

For our polytope P = conv(V), all vertices belong to V (but
points in V are not necessarily vertices). Even more, the vertices
form the single, inclusion-minimal subset V such that P =
conv(V). Any face is the convex hull of the vertices it contains.
A simplex is a polytope whose vertices are affinely independent
points.

Each polytope P in R¢ is the set of solutions of a (finite) system
S of affine equations and affine inequalities on R?. Under the re-
striction that the solution set is bounded, the converse does hold.
The system S then forms an affine description of the polytope.
Suppose now that S is an affine description with a minimum
number of (in)equalities. If any inequality in S is satisfied with
equality on the whole polytope P, we replace the inequality
sign with an equality sign. Then the number of equalities in S
equals the codimension of P (that is, d — dim(7?), where dim
always means the affine dimension). Moreover, there is in S one
inequality per facet of P. When dim(7P) < d, the affine inequality
for a given facet can be chosen among infinitely many ones.

For more details (especially proofs) on polytopes, see for
instance Korte and Vygen (2008), Schrijver (2003) and Ziegler
(1998).

2.2. Directed graphs

A directed graph G is a pair (N, A), where N is a finite set of
nodes® and A is a set of arcs, each arc being a pair of distinct

7 Recall that A is a proper subset of B when A C B (strict inclusion).

8 We reserve the word “vertex” for polytopes. In only a few other occasions
when speaking of directed graphs, we depart from the exposition of Bang-Jensen
and Gutin (2001).
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nodes (the definition excludes loops as well as parallel arcs). For
any arc a = (u, v), we call u the tail and v the head of the arc a.

Let G = (N, A) be a directed graph. A walk in G is a finite
sequence (uq, vy), (Uz, v2), ..., (Uk, vg) of arcs with k > 1, v;_; = y;
fori =2, 3, ..., k. The walk starts at its initial node u; and ends at
its terminal node vy, it is from u to v. It passes through its internal
nodes uy, us, ..., ux. The walk is a path when its nodes are two by
two distinct. A cycle in G has a definition similar to the one of a
path, except that u; = vy is required.

A directed graph is acyclic if it does not possess any cycle. In
an acyclic graph (N, A), any walk is a path because any acyclic
graph has a so-called topological sort, that is a linear ordering
L of its nodes such that for any arc (u, v) there holds u >; v.
Although paths are by definition sequences of arcs, we often
treat them as sets of arcs (for instance when we say that a path
includes another one). In an acyclic graph, the set of arcs in a path
determines in a unique way the path (as a sequence of these arcs).

Any set B of arcs from A (for example, B is the set of arcs in a
path) has its characteristic vector x® in R*: for any arc a in A, we
set x3(a) = 1ifa € Band x8(a) = 0ifa € A\ B. For a point x in
R” and B C A, define the number

x(B) := Zx(a). (1)

aeB

For each node v, we denote the sets of arcs with either head or
tail v by 8~ (v) and 8§ (v), respectively:

8 (v) == {a eAlEIu eN:a=(uv)},
5*(v) ={acA|lFweN:a= (@, w),
and define the in-degree and out-degree of v by

d~(v) = [6~(v)l,
dt(v) == 6T (v)|.

2.3. Network flows

A network D = (N, A, s, t) is? an acyclic, directed graph (N, A)
in which two special nodes are designated as the source s and the
sink t. An s-t path is a path starting at s and ending at t.

There are reasons to consider only acyclic networks D, rather
than more general networks allowing for cycles. First, the results
often take an interesting, simpler form (also, we do not have the
extensions to general networks of all the results presented here).
Second, in the applications we have in view, the network happens
to be acyclic (as in Sections 8 and 9).

Consider a network D = (N, A, s, t) for the rest of the subsec-
tion. A flow (of value 1) of D is a point'? x from R4, associating a
nonnegative number x(a) to each arc a of the network, such that
the outflow x(87(v)) equals the inflow x(§~(v)) at each node v
distinct from the source s and the sink t, and at the source s the
outflow x(87(s)) equals 1 plus the inflow x(5(s)). All flows of D
form a polytope in R4, because by their definition they are the
solutions of the following system of affine (in)equalities on R?

X(5T(v) —x(8~(v)) = 0, Yv e N\ {s, t},
X(8T(s) —x(87(s)) = 1, (2)
x(a) > 0O, Ya e A,

and they form a bounded set because for any flow x and any
a in A there holds 0 < x(a) < 1 (the latter inequality follows

9 Here we follow Korte and Vygen (2008) and depart from Bang-Jensen and
Gutin (2001). Notice however that we set no cost, no capacity on the arcs and
especially that we postulate acyclicity of the graph.

10 1n the literature, flows are often denoted by the letter @; we prefer to use
the letter x because we view flows as particular points in the space R*. When
writing the coordinate of the point x w.r.t. an arc (u, v), we abbreviate x((u, v))
into x(u, v).
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(s,t) 10 0

t w Vg (s,u) 0 1 1
(u,v) 0 01

v (u, w) 010

(v, w) 0 0 1

s u 0 (w, 1) 01 1
any other arc 0 0 0

Fig. 2. A network D together with the ten coordinates (in columns) of the three
vertices of the flow polytope F(D) (see Example 2.4).

for instance from Theorem 2.2 below, or directly by proving, for
any topological sort L of the acyclic directed graph (N, A) and any
node w in N, that the sum of the x(u, v)’'s withu >; w >; v equals
0 or 1—which is easily done by recurrence along the nodes w in
L).

Definition 2.1. The (value 1-) flow polytope F(D) of a network
D consists of all flows of D, in other words of all points x in R*
that satisfy the system in (2). The latter system'! is the canonical
(affine) description of the flow polytope F(D).

For any flow in F(D), the net inflow at t equals 1; in other
words, the flow polytope moreover satisfies

X)) —x(87() = —1. (3)
This is derived from Egs. (2) together with

(Z x(8+<v))) - (Z x(8—<v))) = 0. (4)

veN veN

The latter equation holds because for any a € A, the term x(a)
appears once in each of the two summations.

There can be superfluous inequalities in the canonical descrip-
tion of F(D). If for some node v we have §~(v) = {(u, v)} and
8T(v) = {(v, w)}, the conservation law at v implies x(u, v) =
x(v, w) for any x in F(D), and so we may keep only one of the
two inequalities x(u, v) > 0 and x(v, w) > 0. Eq. (36) displays a
minimum affine description of the polytope F(D).

The next statement is the particular case for acyclic networks
of the Flow Decomposition Theorem due to Ford and Fulkerson
(1962) and Gallai (1958) (see also, for instance, Korte & Vygen,
2008, page 169).

Theorem 2.2. Consider a network D = (N, A, s, t). Any flow x of D
equals a convex combination of the characteristic vectors x* of the
s—t paths P of D.

Because the converse of Theorem 2.2 also holds (as easily
seen), and the x” are 0-1 points, we derive a geometric refor-
mulation.

Theorem 2.3. For any network D = (N, A, s, t), the vertices of the
flow polytope F(D) are exactly the characteristic vectors x* of all
the s—t paths P of D.

Example 2.4. Fig. 2 displays a network D. As D has three s-t
paths, the flow polytope F(D) has three vertices (the character-
istic vectors of the paths). The three columns contain the coordi-
nates of the three vertices, respectively for the s-t paths (s, t),

11 1y Section 6 we will removed repeated inequalities from the canonical
description. Note that the canonical description is an affine description, but not
necessarily one of minimum size (as shown by Example 2.4).
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next (s, u),(u, w), (w,t), and finally (s, u), (u, v), (v, w), (w, t).
The flow polytope F(D) is a convex triangle lying in a space of
dimension 10. Its canonical description is formed of six affine
equalities and ten affine inequalities (so it is not a minimum-size
affine description).

Many manuals on combinatorial optimization quote Theo-
rem 2.2, which plays an important role in many applications.
However, they do not say much on the geometric structure of
the flow polytope F(D) of a network D. We collect in subsequent
sections some related information.

Note that for each arc a in A, the inequality x(a) > 0 defines
a face of the flow polytope F(D) (as explained in Section 2),
whose vertices are the (characteristic vectors of the) s-t paths
avoiding a; the latter property will be often used in the sequel.
Proposition 6.6 characterizes the arcs for which the face is a facet.

There are many variants of the flow polytope F(D): when
each arc of the network comes with a maximum capacity (see for
instance Korte & Vygen, 2008); for flows not satisfying the con-
servation law (Borgwardt, De Loera, & Finhold, 2018); or under
restrictions on the s-t paths, Stephan (2009); etc.

In the introduction, we mentioned that the MCP can be seen
as a flow polytope. This result, due to Fiorini (2004), is explained
in the next section. In Section 9 we exhibit three other net-
works, whose flow polytopes play a role for the random utility
models based on respectively weak orders, interval orders, and
semiorders.

3. The multiple choice polytope and Falmagne’s theorem

Let £O be the collection of all linear orderings of the alterna-
tive set C. Let moreover A(LO¢) be the collection of all probability
distributions on £O.. We also set

E = {(iS)]iese2°). (5)

For each distribution Pr in A(LO¢), the Multiple Choice Model
(MCM) predicts'? the various multiple choice probabilities p(i, S)
for (i,S) € E as

p(i.S) = Y {Pr(l) | Le cocandVjeS\{i}: i>j}. (6)
We see the p(i, S) as the coordinates of a point p in RE. So the
MCM is captured by the surjective mapping

f: A(LO) — RE: Pri— p. (7)
We extend f to the mapping

f:RFOC S RE: t>p (8)
by setting for (i,S) € E

p(i.S) ==Y {tl) | LecocandVjeS\{i}: i>ij}.  (9)

Then f is a linear mapping (each coordinate of f(t) is a sum
of coordinates of t). The set of points predicted by the MCM is
equal to f(A(LO¢)), and also to f(A(LOc¢)). Because A(LOc) is
a simplex and f is a linear mapping, the predicted points form a
convex polytope, which we call the multiple choice polytope (MCP)
and denote as Py. In summary

RO Mg
U U
A(LO) L pe. (10)
w w
!
Pr o p

12 \we use classical terminology related to probabilistic models, see for
instance Doignon, Heller, and Stefanutti (2018).
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Now for the probability distribution Pr! concentrated on the
linear ordering L of ¢, denote by p* = f(Prt) the predicted point
in P,\C,[C. The various Pr! are the vertices of the simplex A(£O¢).
The image f(Prt) = f(Prl) is a point in RE, which we denote p’.
For (i,S) € E, we have p'(i,S) equal to 1 when i >; j for all
j € S\{i}, and 0 otherwise. The polytope P, is the convex hull of
the images p" of the vertices Pr’ of the simplex A(£O¢). Because
the images p* have coordinates 0 or 1, they are the vertices of
Plc-

MgNe reformulate the problem of characterizing the MCM as the
problem of finding an affine description for the convex polytope
MCP. An important result of Falmagne (1978) establishes that
the MCP is exactly the solution set of the system of the Block
Marschak inequalities (in the generalized form that Falmagne
gave them, see (16) below). Moreover, Fiorini (2004) provides
another proof of Falmagne's Theorem by viewing the MCP as a
flow polytope. Let us explain this.

Fori € C and L € £O¢, the beginning set L~ (i) and the ending
set L(i) are respectively

L() = fjecli=i (11)
L) = fecli=j. (12)

In the present paragraph, we consider a fixed distribution Pr on
LO¢, predicting the point p = f(Pr) in PI\C/[C' We moreover define
forieT e2¢

q(i,T) = Y {(Pr(L) | Le £Oc and T = L(i) }. (13)

Because if i is ranked first in S in some linear order L there is only
one superset T of S with T = L(i), there holds

pi.S) = Y qG.T). (14)
Te2C: T2S

There follows from the previous equation

qi.T) = > (=1 p(, ), (15)
Se2€: soT

by an application of the M6bius inversion to the partially ordered
set ({S € Cli € S}, C) (see for example van Lint & Wilson,
2001). By its definition in Eq. (13), q(i, T) is nonnegative on Pg;
therefore for all pairs (i, T) in E and p in P,Slc

> (=D p(,s) = o. (16)
Se2C: soT
For |T| = 2, Block and Marschak (1960) prove that the last

inequality holds for the MCM, and Falmagne (1978) extends the
result to all T’s. Just above, we followed Fiorini (2004) to derive
the validity of (16) for P,SIC. Falmagne’s Theorem states that the
system on RE formed by all these affine inequalities, for (i, T) € E,
together with the obvious equations for S in 2€

> opi.s) =1 (17)
ieS
has Pﬁlc as solution set. Next comes a summary of Fiorini’s proof.
Consider the network DY, = (2€, <, @, C) where the nodes are
the subsets of C, the arcs are the covering pairs of the inclusion
relation on 2¢ (that is, all pairs (T \ {i},T) fori € T € 2°), the
source is the empty set &, and the sink is C. Denote by J—‘(Dfo)
the flow polytope of the network Dfo, which lies in the space R?
for A =<. Define now a mapping p by

p:RESRY: pr>, (18)
where for (T \ {i}, T) in A we set
r(T\{i},T) == q(i,T) (19)
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with q(i, T) as in (15). Note that p is a linear mapping (each
coordinate of p(p) is a linear combination of coordinates of p).
Moreover, p has an inverse equal to the mapping

o: R*5>RE: r—p, (20)

with p(i, S) given by a rewriting of (14):
pii,S) = Y r(T\{i},T) (21)

Te2C:SCT

The mapping p induces a bijection from the vertices of the
multiple choice polytope P,ﬁlc to the vertices of the flow polytope
F(DE,): for any order L with

i] > i2 > . > in (22)

p maps the vertex p" of PG onto the vertex of F(DS,) which is
the characteristic vector of the s-t path

(®5 {“})5 ({il}v{ihiz})s RN ({i17i25'~'9in—1}»c) (23)

(so the beginning sets of L are the nodes on the @-C path, in the
same order). Consequently, the invertible linear mapping p from
RE to R* (where A =<) transforms the multiple choice polytope
P,Slc into the flow polytope }‘(Dfo). Falmagne’s Theorem now

follows at once from Theorem 2.3'3 for the particular network
(2¢, <, @, C).

Fiorini (2004) proof shows the interest of flow polytopes to
solve formal problems appearing in mathematical psychology.
More flow polytopes play a central role in Davis-Stober et al.
(2018) (see our Section 9). Very recently, flow polytopes make
their apparition in theoretical economics papers: for instance, Tu-
ransick (2022) uses them to analyze the identification of the
multiple choice model. Also, Chang et al. (2022) refers in a proof
to the adjacency of vertices on the multiple choice polytope.

In the next section we characterize the adjacency on any flow
polytope, thus covering the adjacency on the multiple choice
polytope as a particular case.

4. Adjacency of vertices on a flow polytope

In this section and the next three ones, we consider the flow
polytope F(D) of a network D = (N, A, s, t). We may assume that
D has at least one s-t path, because otherwise F(D) is empty. A
characterization of the adjacency of vertices on a flow polytope is
the object of Proposition 4.2 below. By Theorem 2.3, the vertices
of F(D) are the characteristic vectors x” of the s-t paths P of D.
Lemma 4.1. Let x™1, x"2, ..., x"« be vertices of the flow polytope
F(D), that is, the characteristic vectors of s-t paths Py, P, ..., Py of
the network D. The vertices of the smallest face of F(D) containing
xP1, xP2, ..., xP are exactly the vertices xR for R an s—t path such
that RC PyUP,U---UP,.

Proof. Let U := Py UP, U---U Py, and F be the face of 7(D)
defined by the inequality

Z x(a) > 0. (24)

aeA\U

Any vertex of F(D) equals x” for some s-t path P; this vertex
x" belongs to F if and only if a ¢ P for each a € A\ U (so that the
coordinate x(a) takes value 0 at x"), that is, if and only if P C U.

It remains to prove that the face F is the smallest face of 7(D)
containing x"1, x2, ..., x™. Let G be any facet of F(D); thus G
is defined by the inequality x(b) > 0 for some arc b of D. If G

13 Fiorini (2004) rather refers to the total unimodularity of a certain matrix.
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contains x"1, "2, ..., x" then b € A\U. Therefore F C G (because
if (24) is satisfied with equality at some point x of F(D), then
x(b) = 0). Hence any facet containing x1, x"2, ..., x% includes F.
Thus F is the smallest face of F(D) containing x™, x'2,..., ™. O

Proposition 4.2. Let P and Q be two s — t paths of a network
D = (N, A,s,t). The vertices x” and x© of (D) are adjacent if and
only if

(x) whenever P and Q pass through a common internal node
v, then P and Q coincide either before v or after v.

Note that when the s — t paths P and Q do not share any
internal node, the vertices x” and x¢ are adjacent (because (x)
then trivially holds). This case is covered by the arguments in the
proof.

Proof. By Lemma 4.1, a vertex x® of F(D) (for some s-t path R)
belongs to the smallest face containing x” and x© if and only if
RCPUQ.

If P and Q do not satisfy (x) for some common internal node v,
we form a walk R from s to t by following P from s to v, next Q
from v to t. Because of acyclicity, R must be an s-t path, and so
the vertex x® belongs to the smallest face containing x” and x <.
Because x* differs from both x” and x2, the two latter vertices
are nonadjacent.

Conversely, assume that () holds. We prove that the smallest
face of F(D) containing the vertices x” and x¢ does not contain
any further vertex. Proceeding by contradiction, assume such a
third vertex x® does exist. Then R is an s-t path such that R C
PUQ andR # P, Q.

Now let (u, u’) be the first arc of R which lies outside P or
outside Q. Assume (u, u’) ¢ Q, and thus (u, u’) € P (otherwise,
exchange the notations P, Q). Because R # P, there must be a
first arc (v, v’) in R after (u, u’) such that (v, v') ¢ P.So (v, v') € Q
in view of R C P U Q. Then the node v shows that Condition (%)
does not hold, a contradiction. O

Remark 4.3. In the notation of the second paragraph of the proof
above, we can create a second s-t path S by following Q from s
to v, next P from v to t. We have then (x” + x2)/2 = (x® +
x5)/2 because the equality holds for each coordinate x(a), where
a € A. Consequently, the flow polytope F(D) is a combinatorial
polytope in the sense of Naddef and Pulleyblank (1981): it is a
0/1-polytope in which for any pair of nonadjacent vertices, there
is another pair of vertices having the same midpoint as the first
pair.

As a matter of fact, the last assertion follows also from Mat-
sui and Tamura (1995). Any flow polytope F(D) is an equality
constraint polytope, that is, its set of vertices is the set of 0-1
points satisfying a given system of affine equations (in our case,
the equalities in the canonical description of F(D)). It is thus also
a polytope satisfying Properties A and B of Matsui and Tamura.
Consequently all the findings of Matsui and Tamura hold for F(D),
for instance those about linear optimization, or the fact that 7(D)
is a combinatorial polytope. However, the results we present on
flow polytopes (in particular on the MCP) differ in that they
refer to s-t paths and thus require the networks from which the
polytopes are built.

Example 4.4. For the network D in Fig. 3, it is an exercise to
check that the flow polytope F(D) is a d-dimensional 0/1-cube
(the vertices of F(D) are completely specified by the values, 0
or 1, of the coordinates x(u1, wy), X(uz, wy), ...X(Ug_1, wg_1), and
x(ugq, t)). As announced in Remark 4.3, it is indeed a combinatorial
polytope. Moreover, the diameter of (the graph of) the flow
polytope equals d.
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Fig. 3. A network for Example 4.4, for each natural number d with d > 1.
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Fig. 4. On the left, a nonreduced network; on the right, its reduction.

5. The dimension of a flow polytope

Consider again the flow polytope F(D) of a network D =
(N, A, s, t), assuming that D has at least one s-t path. Let A denote
the subset of A formed by all arcs of D that belong to at least one
s-t path, and let N be the subset of N formed by all nodes of D
that appear on at least one arc in A. The network D = (N, A, s, t)
is called the reduced network of D, or the reduction of D (for
an illustration, see Fig. 4). For any node u of N, denote with

8~ (u), resp. 81 (u), the sets of arcs in A with head, resp. tail u. By
Theorem 2.2, the flow polytope F(D) satisfies x(a) = 0 for any arc
in A\A Thus the flow polytopes F(d) and F(D) are essentially the
same polytope (they become equal when we naturally assimilate
the space R* with the linear subspace of the space RA specified
by x(a) = 0 for all a € A\ A). A network D is reduced if D = D.

Proposition 5.1. Suppose the network D = (N, A, s, t) has at least
one s—t path, and let d = (N, A, s, t) be its reduced network. Then
the dimension of the flow polytope F(D) equals |A| — [N| + 1.

Proof. As we saw in the paragraph before the statement we may
assimilate 7(D) with J—‘(D a polytope lying in RA, By definition,
F(D) is the solution set of the system on R?

X3 () — x(5(v)) 0, VYveN\{st},
xX(87(s)) — x(87(s)) 1, N (25)
x(a) 0, Va € A.

Vol

Hence f(a) lies in the subspace of RA defined by the |N| —1 affine
equations in (25). We first show that the subspace has dimension
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at most |Z| — (|N| — 1) by establishing that the |N| — 1 affine
equations are independent. It suffices to exhibit, for each of the
equalities in (25), a point in R* which satisfies all_equalities in
(25) but the one considered. Let first v be a node in A\ {s, t}. Take
any path U in (N, A, s, t) from s to v (such a path exists because
v is on some s-t path). The characteristic vector xY satisfies all
inequalities in (25) as well as all equalities but the one for v.
Second, assume v = s. The null vector in R does the job.

From the previous paragraph dim ]—‘(E) < |Z| (|ﬁ | —1).T
prove the opposite inequality, we show the existence of 1+ |A|
(JN] — 1) affinely independent vertices in F(d) (Remark 5.2 below
provides an alternate argument). Because the reduced network d
is acyclic, it admits a topological sort L of its nodes, say

uq > U > > Up, (26)

with u >; v for any arc (u, v) in A and m :~|1'\7| (necessarily
u; = s and u, = t in view of the definition of d). Now for each
node u distinct from u4, paint in green one arbitrarily chosen arc
in A with head u. Thus |[N| — 1 arcs were just painted in green;
paint in blue all the other arcs.

Form a first s—-t path P; using only green arcs. This path is
uniquely determined: its last arc is the green arc (u, u,) with
head u,, (for some unique k), the arc before (uy, u,) is the green
arc with head u, etc. -

Next, for any of the |A| (]N|— 1) blue arcs, say (u, v), form an
s—t path by first following green arcs from s to u (there is only one
suitable sequence of green arcs), next follow the blue arc(u, v)
and finally arcs (green or blue) from v to t (such arcs do exist
because v is on some s-t path). The characteristic vectors of the
resulting s-t paths, in number 1 + |A| (|N| — 1), are affinely
independent, as we next show.

Build as follows a list M of the |A| |N| + 2 s-t paths we just
constructed: M collects first, in any order, all the s-t paths formed
for the blue arcs with tail u; (if any); next in any order the s-t
paths formed for the blue arcs with tail u, (if any); ...; the s-t
paths formed for the blue arcs with tail u,_, if any; finally, the
last item in the list M is the s-t path P consisting only of green
arcs. Then the characteristic vector of any s-t path P in M distinct
from Pg is affinely independent from the characteristic vectors of
all the s-t paths listed in M after P. Indeed, if P was formed for
the blue arc (u, v), then (u, v) belongs to P but not to any of the
s-t paths listed after P in M. Thus the characteristic vector x”
satisfies x(u, v) # 0 while all the characteristic vectors of the s-t
paths after P in M satisfy x(u, v) =0. O

Remark 5.2. The proof of the second inequality can be replaced
with a call to Theorem 5.6 of Schrijver (2003). Because no in-
equality x(a) > 0, for a € A is satisfied with equality by F(D),
the dimension of F( ) equals |A| (the dimension of the space in
which F(d) lies) minus the rank of the matrix of coefficients of
the variables in the affine equations in (25) From the first half of
the proof, we know that the rank equals |N| -1

6. The facets of a flow polytope

We now aim at recognizing the facets of the flow polytope
F(D) of a network D = (N,A,s,t). In view of the canonical
description of F(D) in (2), any facet is for sure defined by an
inequality x(a) > 0 for some arc in A (remember from Section 5
that for b € A\ A, the flow polytope F(D) satisfies x(b) = 0).
Proposition 6.6 below characterizes the arcs a such that x(a) > 0
defines a facet of F(D), referring to the notions of ‘corridors’ and
‘good arcs’ (see Example 6.2 and Fig. 4 for an illustration).

_ For a node u in the network D = (N, A, s, t), set d™(u) =
|87 (u)l and d*(u) = [67(u)l.
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Definition 6.1. A corridor of the network D is a path of the
reduced network d = (N A s, t)

(ur,u2), (uz,u3), ..., (Um—1,Un) (27)
such that
d(up) = d*(uy) = d~(u3) = d*(us)

= o=d (Up 1) =d (Uup1) =1 (28)

which is maximal (w.r.t. the inclusion of arc sets) for this prop-
erty, that is

(d(u) # 1ord () # 1) and (d(um) # 1 or d*(un) # 1).
(29)
The corridor in (27) is good when H*(uﬂ > 2 and E*(um) > 2.

An arc is good if it belongs to some good corridor. We call arcs or
corridors bad if they are not good.

Example 6.2. The network D on the left in Fig. 4 is not reduced.
Its reduction d is on the right. Both networks have three good
corridors, namely

((s. 1)), (w,w)), and  ((u,v), (v,w)), (30)
and two bad corridors, namely
((ssw) and  ((w,1)). (31)

Definition 6.1 implies that no arc in A \ A belongs to any
corridor, while each arc a in A belongs to a unique corridor
(sometime reduced to itself), which we denote as cor(a). Said
otherwise, the corridors of the network D = (N, A, s, t) form a
partition of A. Moreover, if an s-t path contains any arc of some
corridor, then it includes the whole corridor.

For the corridor in (27), the flow polytope satisfies

x(up, up) = x(up,u3) = -+ = X(Up-1, Up) (32)

(because of the conservation law at nodes u,, us, ..., Up_1).
In the canonical clescription of J-‘(D), from all the inequalities
x(uji_q1,u;) > 0 fori = 2, 3, ..., m, we need to keep only one
(chosen as we wish).

Lemma 6.3. Let D = (N, A, s, t) be a network, and (u, v) be an arc
in A satisfying at least one of the two following conditions:

(dW#1 and d*(u)=1
(i) d-(v) =1 and d*(v) # 1.

Then the face F of the flow polytope F(D) defined by the inequality
x(u, v) > 0 cannot be a facet of F(D).

Proof. We consider only Assumption (ii), the proof under As-
sumption (i) being similar. A priori, there are three cases for
V.

If v = t, then we have for each point x of F(D) (because the
net inflow at t equals 1, see Eq. (3))

xu,v) = 1+ Y (x(t, w)| (£, w) € 57(0). (33)

Even if there is no term in the summation, the last equation
implies that x(u, v) = 0 is impossible, so F is the empty face.
For the empty set to be a facet of F(D), it must be that D has a
single s—t path. This contradicts (ii).

The case v = s is impossible because of the acyclicity of D
(remember that (u, v) € A means that (u, v) belongs to some s-t
path).

Letting now v # s, t, we prove that F cannot be a facet. From
the present assumptions (u, v) € A v # t, and d+( ) £ 1, we
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derive E+(v) > 2. For any flow x in (D), the conservation law at
v gives

x(u,v) = Z{X v, w)| (v, w)

Hence x(u, v) = 0 if and only if x(v, w) = O for all (v, w) € E*(v).
Thus the face defined by x(u, v) > 0 is the intersection of the faces
defined by x(v, w) > 0, for (v, w) € §*(v), each of the latter faces
being proper because §"(v) < A. Moreover, at least two such
faces must differ because any s-t path P containing (u, v) contains
exactly one arc (v, w) in 5+(v), hence the vertex xP satisfies
x(v, w) # 0 and also x(v, w’) = 0 for (v, w’) € §*(v)\ {(v, w)}.
We conclude that F cannot be a facet. O

e 3t (34)

For most networks, the next Proposition 6.6 states that the
inequality x(a) > 0 defines a facet of F(D) if and only if the
arc a is good. The next lemma helps understand the proof of the
Proposition.

Lemma 6.4. Let D = (N, A, s, t) be a network. For the two arcs a
and b of A, assume that both inequalities x(a) > 0 and x(b) > 0 on
R? define facets F, and F, of F(D) respectively. Then F, = F, if and
only if a and b belong to the same corridor.

Proof. If cor(a) = cor(b), then x(a) = x(b) for any flow x in F(D)
and so F, = Fy,.

To prove the converse, assume F, = Fp,. Because an empty
polytope has no facet, D must have at least one s-t path. If D has
a single s-t path, a and b belong for sure to the unique corridor
of D. Assume from now on that D has at least two s-t paths.
There exists some s-t path P containing the arc a (because the
facet F, must exclude some vertex of F(D)). Because F, and F,
avoid exactly the same vertices, P must also contain b; say that a
comes before b in P (otherwise relabel a and b). Now cor(a) and
cor(b) are subsets of P. If they differ, we derive a contradiction as
follows. The last node v on cor(a) must then come along P before
cor(b) (here v_can be the head of a and/or the tail of b). We have
d~(v)>2or dt(v) > 2.

If d(v) > 2, there exists some arc (u, v) in :S‘*(v) not in cor(a).
The arc (u, v) is in some s-t path Q. Following Q from s to v, and
next P from v to t, we get an s-t path R (in view of the acyclicity
of D) As R excludes the arc a but contains the arc b, the vertex
xR is in F, but not in Fy, a contradiction.

Ifd- (v) < 2,thend (v )_1andd+( ) > 2. Let u be this time
the node preceding v on P. Then x(u, v) > 0 also defines the facet
F, (because the arcs (u, v) and a belong to the same corridor). By
Lemma 6.3(ii), F, cannot be a facet, a contradiction. O

Remark 6.5. In the proof of sufficiency in Lemma 6.4 (from right
to left) we do not need the assumption that F, and F;, are facets,
faces is enough. To the contrary, the necessity part (left to right)
of Lemma 6.4 does not remain true if we replace ‘facet’ by ‘face’
in the statement. This is shown by the arcs (s, u) and (w, t) in
the network D displayed in Fig. 4. Here the flow polytope F(D)
has three vertices. Its three facets are respectively defined by the
inequalities x(s, t) > 0, x(u, w) > 0, x(u, v) > 0 (or x(v, w) > 0).
Both inequalities x(s, u) > 0 and x(w,t) > 0 define the same
0-dimensional face; however, they are in distinct corridors.

Proposition 6.6. Given an arc a in the network D = (N, A, s, t),
the inequality x(a) > O defines a facet of the flow polytope F(D) if
and only if the arc a belongs to A and moreover either the network
D has a single s-t path, or the arc a is good.

Proof. When a belongs to some s-t path, we assume that the
successive arcs in cor(a) (the corridor containing a) are

(U], uz)a (u27 U3), R (um—17 um)' (35)
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For all arcs b in cor(a) the polytope F(D) satisfies x(a) = x(b)
(as in (32)). Therefore, in the canonical description of F(D), we
keep only one of the inequalities x(b) > O for b € cor(a), namely
x(a) > 0.

To prove sufficiency, first note that if D has a single s-t path,
then F(D) has only one point and moreover x(a) > 0 defines
here the empty face, a facet of F(D). Now suppose that the arc
a is good, which in the notation of (35) means d*(u;) > 2 and
d~(uyn) > 2. To show that the inequality x(a) > 0 defines a
facet, it suffices to exhibit some point y of R? that satisfies all the
affine equations and inequalities of the canonical description of
F(D) except for the inequality x(a) > 0. Take some arc (u, uy) in
87 (um) \ {(tm—1, um)}. Thus there exists some s-t path containing
(u, um), and so also a path M starting at s with last arc (u, up).
Now take some arc (uy, v) in 8 (uq)\ {(u1, uy)}. There exists some
s—t path containing (uq, v), and so a path P with first arc (uq, v)
and ending at t. Set C := cor(a). The pointy = M + x” — x% in
RA has the desired property (even if M and P pass through some
common nodes and/or share some arcs).

To prove necessity, assume that the inequality x(a) > 0 defines
a facet. First note that a must belong to some st path otherwise
the facet defined by x(a) > 0 would contain all vertices of F(D).
Hence a € A. Assume further that the arc a is bad. Then for
its corridor cor(a) written as in (35), there holds~d+(u1) =1lor
d~(up) = 1. In the first case, we must also have d~(u;) # 1 (by
(29)), and so a contradiction follows from Lemma 6.3(i). In the
second case, we have d*(u,) # 1, and a contradiction follows
from Lemma 6.3(ii). O

Corollary 6.7. The number of facets of the flow polytope F(D) of
a network D equals the number of good corridors of D.

Proof. This follows at once from Proposition 6.6 and
Lemma 6.4. O

From Proposition 5.1 and the proof of Proposition 6.6 we
derive a minimum-size affine description of F(D). Let B be a
subset of A which is a transversal of the collection of corridors,
that is, B contains exactly one arc from each corridor. The system

0. VaecA\A

0, Yv e N\ {s, t},
1

0

= =

)

s Vb € B

>
is an affine description of F(D) having minimum size.
7. The adjacency of facets of a flow polytope

By definition, two facets of a polytope are adjacent if their
intersection is a face of dimension equal to the dimension of
the polytope minus 2. See Fig. 5 for an illustration of the next
characterization of (non-)adjacency of facets of a flow polytope.

Proposition 7.1. For two good arcs a and b in a network D =
(N,A,s,t), let F; and F, be the facets of the flow polytope F(D)
respectively defined by x(a) > 0 and x(b) > 0. The facets F, and
Fy are not adjacent if and only if at least one of the two following
conditions holds:

(i) the corridors cor(a) and cor(b) have the same initial node, say
v, with d*(v) = 2, and

(1) either d=(v) > 2,
(2) or 8~ (v) = {(u, v)} and the initial node of cor(u, v) has
in-degree at least 2;
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(ii) the corridors cor(a) and cor(b) have the same terminal node,
say u, with d—(u) = 2, and

(1) either d*(u) > 2,
(2) or 6" (u) = {(u, v)} and the terminal node of cor(u, v)
has out-degree at least 2.

Proof (Necessity). For any polytope, two of its facets F and G are
not adjacent if and only if there exists some facet K such that
F NG C K with K distinct from F and G.

In view of Proposition 6.6, nonadjacency of the given facets
F, and F, of F(D) implies the existence of some good arc c for
which the facet F. defined by the inequality x(c) > 0 includes
F, N Fy and is distinct from F, and F, (note that F, # F, implies
that the network has more than one s-t path). Then by Lemma 6.4
cor(c) # cor(a), cor(c) # cor(b). All vertices of the face F,NF, are
vertices of F., equivalently all s-t paths containing c also contain
aorb.

Take some s-t path P containing c (there exists such a P
because F. # F(D)). Say that P contains a (if P does not contain g,
exchange the notation a and b), then P includes cor(a). In P, the
arc a comes either after the arc ¢ or before c. Treating only the
second case, we will derive (ii) (in a similar way, the first case
leads to (i)).

Let u be the terminal node of cor(a), and v be the terminal
node of cor(b). We first prove u = v. Because a is good, there
exists some arc (¢/, u) in A outside cor(a), thus also outside P. Take
an s-t path Q containing the arc (u’, u). Following Q from s to u,
next P from u to t we get an s—t path R containing ¢ which avoids
a and passes through u. Then R must contain b, thus R includes
cor(b). Now if u # v, we derive a contradiction in each of the two
remaining possible positions of v in R with respect to cor(c):

(o) v comes in R after the last node of cor(c). Then the initial
node v; of cor(b) comes on R at or after the last node of
cor(c). Because the arc b is good, there is some arc (vq, w)
in 3*(1)1) outside cor(b). Following R from s to vq, next
(v1, w), finally some path from w to t, we obtain an s-t
path containing ¢ but neither a nor b, a contradiction.

v comes in R before or at the initial node of cor(c). Because
the arc b is good, there is an arc (v’, v) outside cor(b), thus
an s-t path containing (v’, v). Following this last path from
s to v, next R from v to t, we get an s-t path S containing ¢
but not b. If S happens to avoid a, we have a contradiction.
If S contains a, then a must be before b on S and we can
then similarly build an s-t path S containing ¢ but neither
b nor a, the same contradiction.

=

We have thus proved u = v. In view of cor(a) # cor(b), there
holds d~(u) > 2. If d~(u) > 2 were true, there would exist some
arc (w, u) outside cor(a)U cor(b). Following some s-t path from s
to w, next (w, u) and finally the part after u of the path R (as
above), we form an s-t path containing ¢ but neither b nor g,
contradiction. Thus d~(u) = 2.

Next assuming (1) were not true, we prove (2) still referring
to the arc ¢ and the s-t path R met in previous paragraph. Note
|8 (u)] > 1 because of the arc c. Now if §t(u) = {(u, v)}, then
cor(u, v) is on the s-t path R and entirely before the arc ¢ (we
cannot have cor(u, v) = cor(c) because c is a good arc and the
assumption §T(u) = {(u,v)}). Let w be the terminal node of
cor(u, v). If w had out-degree less than 2, then w would have in-
degree as least 2 (by the definition of cor(u, v)). Any arc (w’, w)
in Z\ cor(u, v) is on some s-t path. Following the latter from s to
w, then R to t, we get an s-t path containing ¢ but avoiding both
a and b: contradiction.

(Sufficiency). For any polytope, two of its facets F and G are
not adjacent if and only if there exists some proper face K such
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cor(b)

cor(a)

v

cor(u, v)

Fig. 5. An illustration of Proposition 7.1: on top, Condition (i) with the half-circle indicating H"’(v) = 2; on bottom, Condition (ii) with the half-circle indicating

d~(u)=2.

that FN' G € K and moreover K € F and K € G (indeed, any
facet including K is a facet which includes F N G and differs from
F and G).

Assuming (ii) (assuming (i) leads to similar arguments), either
(1) or (2) holds:

(1) If d*(u) > 2, let (u, v) and (u, v') be arcs in 8+ (u). For the
face K defined by x(u, v) > 0, we have F, N F, C K (because in
view of d~(u) = 2, any s-t path containing (u, v) contains a or
b). Moreover K Z F, (an s-t path including cor(a) and containing
(u, v") gives a vertex in K but not in F;), and similarly K Z Fj.
Thus the ~facets F; and F, are not adjacent.

(2) If §7(u) = {(u, v)}, let w be the terminal node of cor(u, v).
By assumption, E+(w) > 2, so let (w, z), (w, z') be two arcs in A
Letting K be the face defined by x(w, z) > 0, we conclude as in
previous paragraph that the facets F, and F;, are not adjacent. O

Remark 7.2. For many networks D, the facets of the flow poly-
tope F(D) are two by two adjacent: it suffices that the network
has no node of in- or out-degree equal to 2.

8. Consequences for the multiple choice polytope

We saw in Section 3 that the multiple choice polytope Pﬁc is
affinely isomorphic to the flow polytope F(D,)) of the network
DS, = (2°, <, @, C); we keep this notation here, with n = |C|.
By Proposition 5.1, the dimension of both F(D{,) and P equals
2" 1(n — 2) + 1. Proposition 4 of Chang et al. (2022) also implies
this result.

The vertices of the multiple choice polytope P,\C,lc are the points
p', where L is a linear ordering of the set C of alternatives. The
linear mapping (as in (18))

p: RESRY: p>1,  withr(T\{i}, T) = q(i,T) (37)

maps the vertex p' of P onto the vertex x° of F(DS,), where if
L is given by

i] > iz >r e >L in (38)
then P is the @-C path
(o,{i1}), (i1} (i1, i2)), ..., (i1, i2, ..., 001}, C). (39)

To determine when two vertices of P are adjacent, we rather
look at their images by p in F(Df).

Proposition 4.2 states when two vertices of any flow polytope
are adjacent. Its particularization to F(DY,) translates as follows
to the MCP:

Proposition 8.1. For any two linear orderings L, and L, of C, the
vertices pt and p"2 of P are adjacent if and only if

whenever a nontrivial'* subset S of C is a beginning set of both

Ly and L, then Ly and L, coincide in S orin C \ S.

For |c| = 2,3, the graph of the flow polytope F(D{;) has
diameter 1 (the polytope is a segment, a 5-dimensional simplex
respectively).

Corollary 8.2. For |C| > 4, the diameter of the graph of the flow
polytope F(D,) equals 2.

Proof. Again, we work on the flow polytope F (Dfo). Given two
@—-C paths P and Q, we show the existence of a @-C path R
such that the vertex x* is adjacent to both vertices x” and x <. If
(@, {i1}) and (@, {j1}) are the two first arcs on respectively P and
Q, we consider two cases. If iy = j;, we let R be any @-C path

14 Recall that A is a nontrivial subset of B when o #A CB.
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with last arc (C \ {i1}, C). If iy # j; we let R be any @-C path with
two last arcs (C \ {i1,j1},C \ {i1}) and (C \ {i1}, C). Then no node
on R, distinct of both @ and C, is on P (because the only node
on R that contains i; is C, while every node on P distinct from &
contains iy). Similarly, the only node on R, distinct of both @ and
¢, which could be on Q is ¢ \ {i;} (because the only nodes on R
that contain j; are C\ {i;} when i; # ji, and C, while every node of
Q distinct from @ contains j;). By Proposition 8.1 x® is adjacent
to both x” and x¢. O

We now turn to the adjacency of facets of the MCP, and again
reason on the flow polytope F(D%,)). By Proposition 6.6, a facet of
the latter polytope is defined by an inequality x(a) > 0 where a
is a good arc in the network Dfo (as soon as |C| > 3 all corridors
consist of a single arc, hence distinct good arcs define distinct
facets). For the network Dfo, the arc a = (T \ {i}, T) is good if
and only if 2 < |T| < |C| — 1. We deduce that an inequality as in
(16), that is for (i, T) e E (ori € T € 2€)

> (=0 p,s) = o,

§e2€: 52T

(40)

defines a facet of PG if and only if 2 < |T| < |c| — 1 (Suck, 1995,
unpublished, and Fiorini, 2004). We derive from Proposition 7.1:

Proposition 8.3. Assume |C| > 4. Consider the two facets of P,f,lc
defined by inequalities as in (40), for the two distinct pairs (i, T) and
(7, T")in E with 2 < |T|, |T’| < |c| — 1. The two facets are adjacent
if and only if neither of the two following cases occurs:

) T=c\{{yand T' =\ {i};
(i) T =T = {i, ).

For n [c| = 4, it readily follows that the adjacency
graph on the collection of facets of P,Slc is the complete graph
on 2n(2"2 — 1) nodes minus n(n — 1) two by two disjoint links;
thus the graph has diameter 2. For n < 3, the graph is complete.

8.1. Identifiability in the MCM

It is well known that the MCM is not identifiable (see Fal-
magne, 1978; Fishburn, 1998 collects several results and refer-
ences). In terms of (7), it means the existence of at least one
predicted point p in PISIC for which there exists more than one
point Pr in A(LO¢) such that f(Pr) = p; in this situation, we
say that the point p is non-identifying, and the points Pr are
non-identified.'> Proposition 1 in McClellon (2015) states that
all points in the relative interior of P are non-identifying.
Theorem 2 in Turansick (2022) characterizes as follows the non-
identified points in A(LO¢), in terms of beginning sets of linear
orderings (beginning sets were defined in (11)).

Proposition 8.4 (Turansick, 2022). In the MCM, the distribution Pr
on LO¢ is identified if and only if there is no pair of linear orderings
L, L' of C such that

(1) Pr(L) > 0 and Pr(L’) > 0;
(2) there exist alternatives i, j, k with

> k, j>L k, i>L’ k, and j>L/ k,

)i
) i#J;

) L7(k) # L™ (k);
) L™

(a
(b
(c
(d) L=()) = L'().

15 Asin Doignon et al. (2018), the term “non-identifiable” is currently used
in both cases, but we prefer to reserve it to qualify the model.
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Here is a geometric interpretation of Condition (2) from Propo-
sition 8.4. Recall that Pr! designates the distribution on £O¢ that
is concentrated on the linear ordering L; in other terms, Pr’ is
a vertex of the simplex A(LOc). Moreover, the vertices of the
polytope PIS[C are the images by f of the vertices of A(LO¢); we

set p- = f(Prt).

Proposition 8.5. The three following conditions on two linear
orderings L and L' of C are equivalent:

(A) L and L’ satisfy Conditions (2) in Proposition 8.4;
(B) there exists a nontrivial subset U of C such that

(a) U is a beginning set of both L and L', and
(B) L and L' do not coincide on U nor on C \ U;

(C) the vertices p* and p* of PS. are not adjacent.

Proof. (A) = (B) Letting U = L (i), we prove that U satisfies («)
and (B). Necessarily i € U, and because L (i) = L'"(j), also j € U.
Moreover, i and j being distinct and also the smallest elements
in U for respectively the orderings L and L, the two orderings do
not coincide on U. Next, because by (a) we have k ¢ U, (c) implies
that L and L’ do not coincide on C \ U.

(B) = (A) Among all the nontrivial subsets U of C satisfying
() and (B), take the minimum one w.r.t. set inclusion. Then
U = L~ (i) = L'~(j) for some i, j in C; moreover by the minimality
requirement, i # j. Because L and L’ do not coincide on ¢\ U, there
must be some alternative k in ¢ \ U which is ranked differently
by L and L'. The alternatives i, j and k “do the job”.

The equivalence of (B) and (C) is the object
Proposition 8.1. O

of

Thus Turansick’s result (here Proposition 8.4) states in a hid-
den way that the point Pr in A(LO¢) is identified if and only if
for any two linear orderings L and M of C

Prl)>0 APr(M)>0 =
the vertices p* and p" of Py are adjacent.

In a future project, we intend to search for a more efficient
characterization of adjacency.

9. Consequences for some other particular flow polytopes

The multiple choice polytope appears in Davis-Stober et al.
(2018) as an ‘extended formulation’ for the ‘linear order poly-
tope’ (we refer the reader to this paper for the definitions of
technical terms used only in the present section). Three more
flow polytopes appear there, also as extended formulations, these
times for the ‘weak order polytope’, the ‘interval order polytope’
and the ‘semiorder polytope’. We provide characterization of the
adjacencies of vertices and of facets for the three flow polytopes.

9.1. An extended formulation for the weak order polytope

Consider the network D, = (2¢, C, @, C), where the arcs are
pairs (S, T) of subsets of C with S C T. The @-C path P equal to
(where So = @ and Sy = C)

(S0, S1), (51,82), ..., (Sk=1,Sk)

derives from exactly one weak order on C (a weak order is a binary
relation which is transitive and complete), namely the weak order
W whose equivalence classes are

S1\So  >w  $2\51

A beginning set of a weak order W on C is any subset S of C such
thati € S and i >y j implies j € S (this extends the definition

(41)

>w >w Sk \ Sk-1. (42)
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{1} {2}

16}

Fig. 6. The network in Example 9.1.

given in (11) for linear orders). The weak order W characterized
in (42) is the weak order whose beginning sets are

So, S, S, v, Sk (43)

We say that the vertex x” of the flow polytope ]—‘(D\CNO) corre-
sponding to the @-C path P also corresponds to the weak order
w.

Example 9.1. For ¢ = {1, 2}, the network D$,, = (2¢, C, 2, C)
is displayed in Fig. 6. The flow polytope }‘(D\‘}vo) is a triangle.

Note that for |C| > 3, all corridors of the network (2¢, C, @, C)
have size 1. Proposition 4.2 becomes here the next result.

Proposition 9.2. Assume |C| > 3. The two vertices of the flow
polytope J-‘(DS\,O) corresponding to the two weak orderings W, and
W, of C are adjacent if and only if when a nontrivial subset S of C
is a beginning set of both Wy and W>, then Wy and W, coincide in
SorinC\S.

Corollary 9.3. When |C| > 3, the diameter of the flow polytope
F(DG,0) equals 2.

Proof. The weak order C x C (with C as its single equivalence
class) produces a vertex of ]—‘(DSVO) which is adjacent to all other
vertices. O

Propositions 6.6 and 7.1 directly imply the next results.

Proposition 9.4. Assume |C| > 3. An inequality x(a) > 0, for
a= (S, T)withS C T C ¢, defines a facet of the flow polytope
F(DG,o) if and only if @ # S and T # C. Any two facets of F(Dg,,)
are adjacent.

More terminology is needed to describe the next two flow
polytopes. To keep the length of this paper (hopefully) acceptable,
we state our results without repeating all definitions from Davis-
Stober et al. (2018).

9.2. An extended formulation for the interval order polytope

For any set C of n alternatives, the network Dﬁ) = (N,A,s,t)
is defined as follows (see Fig. 7 for |C| = 2):

N={X.V)]ycxce,
XCZ YCT, and
either |Z| = |X|+ 1,
A=3(X,Y),(Z,T)eNxN IT| =1|Y]| )
or |Z| =IX|,
IT| = 1|Y|+ 1
s = (o, 9),
t = (C,C).

The flow polytope Fi (Dﬁ)) is an extended formulation of the inter-
val order polytope (the vertices of the last polytope are the char-
acteristic vectors of the interval orders on C), see Davis-Stober
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({1.2},{1,2})

(1.2}, {1}) ({12}, {2}

({1} {1 ({2} {2

({1}, 2) {2}.2)

(2,2)

Fig. 7. The network D, used in the investigation of interval orders, for |c| = 2.
The label of the central node is ({1, 2}, @).

et al. (2018). The numbers of nodes and arcs in the network Dﬁ)
are respectively, for n :=|C|,

INl=3" and |A|=2n3"" (44)

(several (@, @)-(C, C) paths encode the same interval order).

When |C| > 3, all corridors of the network Dl% have size 1. For
the adjacency of vertices, we cannot tell more than the charac-
terization in Proposition 4.2 (note that the vertices of ]—‘(Dﬁ)) do
not have a simple interpretation while the vertices of ]—‘(Dfo) and
F(D§,,) exactly correspond to linear orders and weak orders on
C respectively; see Davis-Stober et al., 2018, for more details on
}‘(DICO)). For the facets we have:

Proposition 9.5. Let a be any arc in D%, with |c| > 3. The
inequality x(a) > 0O defines a facet F, of the flow polytope }‘(Dfo)
if and only if the arc a is good, equivalently a is not of any of the
four forms, for some i € C,

((@,2). ({i}, @), (({i}, @), ({i}, {i})),
((e\{i, e\ {i}). (c. e\ fi})),  ((c.c\{i}), (c,C)).

If the two arcs a and b of DS, are good, then the two facets F, and Fy,
are not adjacent if and only if {a, b} is, for some distinct alternatives
i and j, one of the six pairs of arcs shown in Fig. 8.

Proof. By Proposition 6.6 and because the network Df, has more
than one @-C path, x(v) > 0 defines a facet if and only if the arc
v is good. When |C| > 3, any corridor is formed by a single arc.
Note that a node (X, Y) has in-degree |X| and out-degree |C \ Y]|.
Hence the in-degree of any node v in DICO is at least 2 except when
v equals (@, @), ({i}, @), or ({i}, {i}) for some alternative i (here
again we need |C| > 3, as testified by Fig. 7). Similarly, the out-
degree of any node w in Dﬁ) is at least 2 except when w equals
(c\ {1, c\{}. (c,c\{j}) or (c, C) for some alternative j. It follows
that the only bad arcs are those mentioned in the statement.

Now suppose that the two arcs a and b are good. Referring to
Proposition 7.1, we see that the facets F, and F, are not adjacent
exactly if either a and b have the same initial node, say u, with
d™(u) = 2, or a and b have the same terminal node, say v, with
d~(v) = 2 (here the cases (2) in Proposition 7.1 cannot occur in
view of |[C| > 3). When |C| > 3, the latter happens exactly for any
of the six types of arcs displayed in Fig. 8. O

9.3. An extended formulation for the semiorder polytope
Davis-Stober et al. (2018) introduce still another network

Dgo = (N, A, s, t) with n := |c|, whose flow polytope makes an
extended formulation of the ‘semiorder polytope’. The definition
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€.c\{i}) (€.c\{7j}) (C.C\{i,gh) (C\{i},C\{z}) (C\{i},C\{i5}) (C\{i}C\ {4}
(€,C\{i5}) €\ {ih,e\{i, i} €\ {51\ {e.5})
({i,5},2) (e, 5} {7} ({2, 7} {4, 3})
PN AN
{1}, 2) {5}, 2) SVAREE)) (i.sh 9 (ahdd)  (eah{sh)

Fig. 8. The six types of pairs of arcs producing pairs of nonadjacent facets of F(Dg).

({1.2},{1,2},2)

({12}, {1}, 1) (1.2}, {2}, 1)

({1} {1}, 2) ({2}{2},2)

({1}, 2,1) ({2}, 2, 1)

(2,2,9)

Fig. 9. The network DS, used in the investigation of semiorders, for |c| = 2.
When [X \ Y| < 1, the linear ordering of X \ Y is obvious; we simply write
@ or L for it. The labels of the central nodes are ({1,2},2,1 <; 2) and
({1,2}, @, 2 <, 1) respectively.

of Dgo goes as follows, where L + i means that we append
alternative i at the end of the linear ordering L of some subset
of C excluding i. Moreover L —j denotes the removal of j from the
ground set of the linear order L. As a convention, the only linear
ordering of the empty setis L = &

N = {X,Y, L)|C DX DY, Llinear ordering of X \ Y};
A={(X.Y,L), z.T.M)) e N*|

Z = XUli,
either for someieC\ X : {T =Y,
M = L+,
or for the alternative j in X \ Y which is the first one in L :
Z = X,
:T = YU{}
M = L-j k
= (2,9, 9)
= (c,c, 2).
Each (2, @, 9)-(C, C, &) path is a sequence of 2 n arcs (here,
again, n := |C|). See Fig. 9 for DSO when n = 2.

Lemma 9.6. For any node (X, Y, L) in the network DS,

~ — X1, ifxX=Y,

Xyl = |nd 4
"X, Y. 1) {n—|X|+l, ifFX>Y; (45)
~_ Y], ifX=Y,

XY, 1) {|Y|+l, ifXOY. (46)

12

Proof. The first two equations derive from the definition of arcs
with tail (X, Y, L). To derive the last two equations, rewrite the
definition as follows. For two nodes (Z, T, M) and (X, Y, L), the
pair ((Z, T, M), (X, Y,L)) is an arc if and only if

zZ = X\{ih
fori € X\Y whichisthelastforL: {T = Y, (47)
M = L-—i
or
zZ = X,
for some jinY : T = Y\{}, (48)
M = j+1L.

O

Here again, as for the interval order case, there is no more
about adjacency of vertices that we can say beside Proposi-
tion 4.2. We thus turn to the adjacency of facets.

Proposition 9.7. Assume |C| > 3. All corridors of Dgo consist of
either one arc or two arcs. The corridors of size 2 have central nodes
of the form (C, @, L), for some linear ordering L of C; both of their
arcs are good. An arc ongo is good if and only if it is not of any of
the following types:

(X, o,L), XU{i}, g, L+1)), where X C C,ieC\X;
()
((e\{i}, c\{i}, @), (c,c \ {1} L)) where i € C; (B)

((c,Y,L), (c, Yu {i}, L—j), whereY CcC,jecC\Y.

(8)

Proof. By Lemma 9.6, the only nodes of DS, having both in- and
out-degree 1 are the (C, @, L)’s with L any linear ordering of C.
So the corridors are of size 1 or 2, and the corridors of size 2
have (C, @, L) as their middle nodes. Note moreover that each arc
in a corridor of size 2 is good because both the terminal node
(¢, {j}, L — j) of the corridor (with j the first element in L) has
in-degree at least 2 and the initial node (C \ {i}, @, L — i) of the
corridor (with i the last element in L) has out-degree at least 2.

According to the definition of Dgo, there are two types of arcs,
which we now review for badness:

> If the arc (X, Y, L), (XU{i}, Y, L+1i)) is bad (where i € C\X),
then d~((XU{i}, Y, L+i)) = 1ord™((X, Y, L)) = 1. By Lemma 9.6,
in the first case, (X U {i} = Y and |[Y| = 1) or (Y = @ and
X U {i} D Y). The first eventuality being impossible because by
assumption X 2 Y, we get («). In the second case, again by
Lemma 9.6 and with n := |C|, we have (X = Y and |X| =n—1) or
(X = ¢ D Y). The second eventuality being impossible (because
we need i in C \ X), we get (8).
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> If the arc (X,Y,L),(X,Y U {j},L — j) is bad (where j €
X \ 'Y is the first element in the linear ordering L of X \ Y), then
d (X, YU{},L—j)=1ord"((X,Y,L)) = 1. By Lemma 9.6, in
the first case, X =Y U {j} and |[Y U {j}| = 1) or (X D Y U {j} and
Y = @), so we get (). In the second case, (X = Y and |X| = n—1)
or (X D Y and |X| = n). The first eventuality being impossible (in
view of j € X \ Y), we get (§). O

Proposition 9.8. Assume n := |C| > 3. Take the two facets of
}‘(Dgo) defined by the inequalities x(a) > 0 and x(b) > 0, where a
and b are two good arcs. The two facets are not adjacent if and only
if the corridors cor(a) and cor(b)

(i) have the same tail of the form either (X, X, @) with |X| =
n—2>2o0r(X,Y,L)with | X|=n—1and X #Y,

(ii) or they have the same head of the form either (X, X, @) with
X|=2andn>4,or(X,Y,L)with [Y| =1and X #Y.

Proof. Refer to Proposition 7.1 and Proposition 9.7. O
10. Conclusions

To characterize the adjacency of vertices and the adjacency of
facets on the multiple choice polytope (Propositions 8.1 and 8.3),
we established the similar results for all network flow polytopes
(Propositions 4.2 and 7.1). As byproducts, we also derived in
Section 9 related results on other polytopes which are extended
formulations of the weak order, semiorder and interval order
polytopes. The introduction of network flow polytopes in the
investigation of random utility models from psychology and/or
economics is due to Fiorini (2004), when he designed another
proof of Falmagne’s Theorem.

In our eyes, the relevance of our paper for the (mathematical)
psychology and economics communities lies in the importance of
the multiple choice model (based on linear orders, as in Falmagne
work, or on other order relations, for instance weak orders, in-
terval orders and semiorders, as in recent work by Marley &
Regenwetter, 2017). Statistical tests of the various models rely
on an understanding of the associated polytope, formed by all
points predicted by the model under consideration (see Davis-
Stober, 2009 and its references; for recent work, see McCausland
et al,, 2020; McCausland & Marley, 2014; Regenwetter, Dana, &
Davis-Stober, 2011).

So, understanding the structure of the various polytopes is
important for designing better statistical procedures, or simply
for investigating intrinsic properties of the models. For instance,
we arrived at a simple, geometric interpretation of Turansick
(2022) results on the identification question for the multiple
choice model (see after Proposition 8.5).

In other projects, we are now pursuing the application of
the network flow technique. One of our goals is a characteri-
zation of the Multiple Choice Model based on weak orders, a
model in which the subject may select several alternatives in
the choice set. Barbera and Pattanaik (1986) provide without
proof an implicit characterization of the resulting polytope. We
aim at an explicit characterization, working with the network
implementing the boolean lattice. Another of our goals is a better
understanding of identification in the Multiple Choice Model
(based on either linear orders or weak orders). Still another
one concerns the situation where subject’s choices are made
according to a product structure (‘correlated choice’ in the sense
of Chambers et al., 2021).

Although the flow technique happens to be quite effective in
the characterization of several random ordering models, it cannot
handle all of these models. We lack technical reasons explaining
its successes and limitations.
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