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A New Expression for the Passivity Bound
for a Class of Sampled-Data Systems
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Abstract—In this article, we characterize the passivity of
a class of haptic systems modeled as a simple sampled-data
system. We guarantee passivity by ensuring that there is sufficient
damping in the haptic interface. Previous work established a nec-
essary and sufficient bound on damping, but the corresponding
mathematical expressions were complicated, and the derivation
was not completely rigorous. After providing a rigorous proof,
we derive a more tractable expression. Using this improved
expression, we establish passivity conditions for several classes
of transfer functions representing virtual environments, including
some special cases with time delay. The original results assumed
that the operator can be modeled by a passive but otherwise
arbitrary transfer function. This assumption is weakened to allow
the operator model to have a shortage of passivity. This requires
only a slight modification of the passivity bound.

Index Terms—Haptics and Haptic Interfaces, Telerobotics and
Teleoperation

I. INTRODUCTION

PASSIVITY is an important approach to ensuring stability
of a haptic device [1], [2], [3], [4], [5], [6]. Colgate and

Schenkel [7] used a passivity-based approach to establish a
necessary and sufficient condition for the passivity of a sam-
pled data system corresponding to a 1-DOF haptic interface.
Their passivity condition was given by a lower bound on
the viscous damping of the actuator, with necessity proved
using Nyquist plane methods and sufficiency proved using an
energy-based argument. Other research involving viscous or
Coulomb friction include [8], [9], [10], [11]. Hulin et al. [12]
derived stability boundaries while taking into account human
operator dynamics. Nonlinear virtual environments [13], which
can also be analyzed using energy-based arguments to prove
passivity, and multiple degree-of-freedom haptic systems [6],
[14] have also been the subject of study. Mashayekhi et al. [15]
presented a stability analysis of a haptic device experiencing
time delay using a frequency response function analysis via
a continuous time model of the system. Other works taking
into account time delay include [16], [17], [18]. Pecly and
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Fig. 1: Model of a 1-DOF haptic system. The system consists
of a haptic interface modeled as a combination of a rigid body
of mass m with viscous damping b > 0, an ideal sampler
operating at a sampling rate of 1/T , a virtual environment
(feedback controller) represented by a stable linear, shift-
invariant transfer function H(z), a zero order hold, a unilateral
constraint, and a human operator modeled by a transfer
function ZO(s).

Hashtrudi-Zaad [19] analyzed the passivity and uncoupled
stability of haptic systems when a viscoelastic virtual envi-
ronment is implemented using a two-parameter Tustin-like
general discretization method. A Routh-Hurwitz approach was
described in [20].

In this article, we reexamine the approach in [7]. In par-
ticular, we clarify some of the proofs, introduce an improved
expression for the passivity bound, and analyze a broader class
of virtual environments. The haptic system that we will study
is shown in Fig. 1. It consists of a haptic interface modeled as a
combination of a rigid body of mass m with viscous damping
b > 0, an ideal sampler operating at a sampling rate of
1/T , a virtual environment (feedback controller) represented
by a stable linear, shift-invariant transfer function H(z), a
zero order hold, a unilateral constraint, and a human operator
modeled by a passive but otherwise arbitrary transfer function
ZO(s). Amplifier and sensor dynamics, nonlinearity, and noise
are ignored.

A necessary and sufficient condition for the passivity of the
sampled data system in Fig. 1 without the unilateral constraint
is presented in [7] in terms of a lower bound for the damping
constant b. In particular, it was shown that the system without
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the unilateral constraint is passive if and only if

b >
T

2

Re{(1− e−jωT )H(ejωT )}
1− cosωT

for 0 ≤ ω ≤ ωN (1)

where ωN = π/T is the Nyquist frequency. Although the anal-
ysis was performed without the unilateral constraint, (1) still
implies passivity for the system with the unilateral constraint
[7].

In this paper, we reexamine the haptic system shown in
Fig. 1. In particular, we more rigorously justify the passivity
analysis in [7] and introduce a simpler expression for the
passivity bound for b that leads to the analysis of virtual
environments that would not have been tractable with the
previous passivity bound expression.

The remainder of the paper is outlined as follows. In the
next section, we review relevant background and formulate
the problem. Earlier work [7] used an intermediate result
that was not properly justified. In Section III, we provide
a correct proof of this important result used to prove that
(1) is a necessary condition for passivity provided that the
operator can be considered a passive system. In Section IV,
we demonstrate that (1) is also a sufficient condition. In
Section V, we introduce an equivalent but much simpler
expression for (1) and employ it in Section VI to derive closed
form expressions for several classes of H(z) transfer functions
including cases where time delay is present. These bounds
would have been difficult to determine using the prior passivity
bound expression. In Section VII, we weaken the assumption
that the operator model is passive to the assumption that
the operator model may have a shortage of passivity. Lastly,
conclusions appear in Section VIII.

II. PROBLEM FORMULATION

The passivity problem for the system shown in Fig. 1 is
formulated in the following way. We initially assume that the
unilateral constraint is not present. If the transfer function
corresponding to the operator block is denoted ZO(s), then
the upper portion of the block diagram excluding the sampler,
unilateral constraint, and the transfer function H(z), can be
replaced with the single transfer function

G(s) =
1− e−sT

s2
1

ms+ b+ ZO(s)
. (2)

The transfer function G(s) incorporates the zero order hold,
the operator, the haptic device, and the integrator. The system
in Fig. 1 contains an ideal sampler that samples the signal
x(t) with a sampling period T . The necessary sampling
theory background for discrete-time control systems is based
on modeling the ideal sampler using a pulse train δT (t) =∑∞

n=0 δ(t− nT ) where δ(t) is the unit impulse function and
T is the sampling period [21]. The pulse train captures the
sampled values of the signal x(t) shown in Fig. 1:

xS(t) = x(t)δT (t) =
∞∑
k=0

x(kT )δ(t− kT ).

The Laplace transform of xS(t) is then given by

XS(s) =
∞∑
k=0

x(kT )e−ksT =
1

T

∞∑
n=−∞

X(s+ jnωs) (3)

where ωs = 2π/T and where X(s) is the Laplace transform
of x(t). The right hand side of (3) follows from sampling
theory [21]. In a similar way, the ideal sampler requires a
modification of the transfer function G(s) given by (2):

G∗(s) =
1

T

∞∑
n=−∞

G(s+ jnωs). (4)

Equation (4) is called the starred transform of G(s) [21].
Without the unilateral constraint, the closed loop characteristic
equation of the sampled data system is

1 +G∗(s)H(esT ) = 0. (5)

Equation (5) determines the stability of the system and will
be used in the next section to derive a necessary condition for
passivity. The fact that (5) is also a sufficient condition will
be proved using an energy argument in Section IV.

III. NECESSARY CONDITION

Several steps are required to show that (1) is a necessary
condition. These steps are illustrated in Fig. 2. First, observe
that the passivity of ZO(s) means that the values of ZO(jω)
lie in the closed right half plane. Since passivity is the only
requirement specified for ZO(s), we consider the whole closed
right half plane when studying the possible range of the human
operator model ZO(jω) as indicated in Fig. 2(a). Adding
mjω + b to ZO(jω) has the effect of shifting the area of
interest, i.e., the closed right half plane, to the right by b.
Taking the reciprocal, we find that the image of

G0(s) =
1

ms+ b+ ZO(s)

as s = jω varies over all real ω is equal to R1 = D̄ 1
2b
( 1
2b )

where D̄r(z0) denotes the closed disk in the complex plane
of radius r centered at z0. This follows from the fact that the
function 1/z maps {z ∈ C | Re(z) ≥ b} to R1. These two
plane operations are shown in Fig. 2(b) and (c), respectively.

We next determine the range of possible values of G∗(jω).
Since ωs = 2π/T and ej(ω+nωs)T = ejωT , we can write

G∗(jω) =
∞∑

n=−∞
an(ω)bn(ω)

where

an(ω) =
1

T

e−jωT − 1

(ω + nωs)2
= T

e−jωT − 1

(ωT + 2nπ)2
(6)

and
bn(ω) = G0(jω + jnωs). (7)

The an(ω) terms are fixed while the bn(ω) terms depend
on ZO(s) but can take on any values in R1. Using this
notation, we can write RG∗(jω), the range of possible values
of G∗(jω), as

RG∗(ω) =

{ ∞∑
n=−∞

an(ω)bn(ω)

∣∣∣∣ bn(ω) ∈ R1

}
.
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It was pointed out in [7] that RG∗(ω) = r(jω)R1 where

r(jω) =
∞∑

n=−∞
an(ω) =

∞∑
n=−∞

1

T

e−jωT − 1

(ω + nωs)2
,

but a rigorous derivation was not provided and some of the
underlying assumptions need to be modified for the argument
to hold. We now present a formal statement and proof of this
result.

Theorem 1. RG∗(ω) = r(jω)R1.

Proof. Let an(ω) and bn(ω) be given by (6) and (7), re-
spectively. We follow the standard approach of proving the
equality of two sets by demonstrating that each contains the
other. First, we show that r(jω)R1 is contained in RG∗(ω).
Let c(ω) ∈ r(jω)R1. Then there is a d(ω) ∈ R1 such that

c(ω) = r(jω)d(ω) =
∞∑

n=−∞
an(ω)d(ω). (8)

Since d(ω) ∈ R1, we can choose ZO(s) so that bn(ω) in (7)
equals d(ω) for each integer n. Hence, the term on the right-
hand side of (8) is clearly in RG∗(ω). This proves the first
inclusion, i.e., r(jω)R1 ⊂ RG∗(ω).

To prove the other set inclusion, we define r̂(ω) as

r̂(ω) =
r(jω)

T (e−jωT − 1)
=

∞∑
n=−∞

1

(ωT + 2nπ)2
. (9)

Assume that r̂(ω) is finite. Since r̂(ω) ≥ 0, it follows that

r̂(ω)R1 = r̂(ω)D̄ 1
2b

(
1

2b

)
= D̄ r̂(ω)

2b

(
r̂(ω)

2b

)
. (10)

Next, note that for bn(ω) ∈ R1, n = 0,±1,±2, . . ., we have∣∣∣∣ ∞∑
n=−∞

bn(ω)

(ωT + 2nπ)2
− r̂(ω)

2b

∣∣∣∣ =

∣∣∣∣ ∞∑
n=−∞

bn(ω)− 1
2b

(ωT + 2nπ)2

∣∣∣∣
≤

∞∑
n=−∞

|bn(ω)− 1
2b |

(ωT + 2nπ)2

≤
∞∑

n=−∞

1
2b

(ωT + 2nπ)2

=
r̂(ω)

2b
(11)

where we have used the fact that bn(ω) ∈ R1 = D̄ 1
2b
( 1
2b ) to

obtain the second inequality. Equations (11) and (10) imply
that

∞∑
n=−∞

bn(ω)

(ωT + 2nπ)2
∈ D̄ r̂(ω)

2b

(
r̂(ω)

2b

)
= r̂(ω)R1. (12)

On the other hand, if r̂(ω) is infinite, then it can be shown
that r̂(ω)R1 is the open right half plane along with the origin
and (12) still holds. Lastly, we note that

G∗(jω) =
∞∑

n=−∞
an(ω)bn(ω)

= T (e−jωT − 1)
∞∑

n=−∞

bn(ω)

(ωT + 2nπ)2

∈ T (e−jωT − 1)[r̂(ω)R1] = r(jω)R1,

Fig. 2: Sequence of Nyquist plane transformations mapping
the possible range of the passive operator transfer function
ZO(jω) to the closed unit disk.

proving that RG∗(ω) ⊂ r(jω)R1. Together with the other
inclusion result, this implies that RG∗(ω) = r(jω)R1. This
completes the proof.
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A careful examination of the above proof shows that the
property that the an(ω) terms all have the same phase for a
fixed ω is critical. Because of this, r̂(ω) was real and positive,
so that (10) holds. If, for example, a first order hold were
used instead of a zero order hold, the corresponding an(ω)
terms would not have this property and the situation would
be more complicated. This observation implies that, while the
theorem is true, the approach described in [7] needs further
clarification.

By Theorem 1, the range of G∗(jω) is a rotated and scaled
version r(jω)R1 for R1 as shown in Fig. 2(d). It then follows
by scaling G∗(jω) by 2b/r(jω) and shifting by −1 that the
range of −1 + 2b

r(s)G
∗(s) is the closed unit disk as shown in

Fig. 2(e). The authors of [7] use this fact to derive the bound
in (1) by noting that one can write

1 +G∗(s)H(esT )

1 + r(s)
2b H(esT )

= 1 + Z1(s)Z2(s) (13)

where

Z1(s) = −1 +
2b

r(s)
G∗(s)

and

Z2(s) =
r(s)H(esT )

2b+ r(s)H(esT )
.

The authors of [7] apply the small gain theorem [22] to obtain
a necessary and sufficient condition for stability. The key point
is that (13) and the closed loop characteristic equation (5) have
the same unstable roots provided that b is properly bounded.
First, note that the poles of H(esT ) are also roots of (13)
but are assumed to be stable. The function r(s) introduces
imaginary poles at integer multiples of the sampling frequency.
The only situation that we need to address is when there is
a value of ω for which |Z2(jω)| ≥ 1. In that case, there
would exist a passive operator transfer function ZO(s) such
that Z1(jω) = −1/Z2(jω), i.e., 1 + Z1(s)Z2(s) = 0. Hence,
we must have |Z2(jω)| < 1, i.e.,∣∣∣∣ r(jω)H(ejωT )

2b+ r(jω)H(ejωT )

∣∣∣∣ < 1. (14)

This expression can be rewritten as |r(jω)H(ejωT )| < |2b +
r(jω)H(ejωT )|, and since the imaginary parts of r(s)H(esT )
and 2b+ r(s)H(esT ) are equal, it follows that (14) is equiv-
alent to

b > Re

{
− r(jω)H(ejωT )

}
= −Φ(ω)

∞∑
n=−∞

1

(ω + nωs)2

(15)
where

Φ(ω) = Re{(e−jωT − 1)H(ejωT )/T}.

We thus conclude that satisfying (15) for 0 ≤ ω ≤ ωN is a
necessary requirement for passivity. It will be shown in Section
V that (15) is equivalent to (1).

IV. SUFFICIENT CONDITION

The fact that (1) is a sufficient condition for passivity was
proved in [7] using an energy argument. This approach was
extended in [23] to determine a passivity criterion for a class
of sampled-data bilateral teleoperation systems. However, the
proofs provided in [7] and [23] are lengthy and require several
non-obvious steps that are difficult to motivate. While such an
analysis is necessarily involved, we introduce a more concise
and straightforward approach. First, we describe an energy-
based approach to passivity to determine a sufficient criterion.
We then reformulate the proposed passivity bound into an
equivalent form that is more amenable to the energy arguments
of [7] and [23]. Once this is done, we derive the necessary
inequalities to guarantee passivity.

A. An Energy Based Argument to Prove Passivity

It is well known that a passive system connected to a strictly
passive system is passive. Since we assume that the operator
transfer function ZO(s) is passive, we only need to show that
the remaining part of Fig. 1 without the operator branch is a
strictly passive system. In that case, the force f is considered
to be the system input. The intuitive statement for passivity
is that the kinetic energy of the mass is never as great as the
total energy input by the source f(t):

1

2
mv2(t) <

∫ t

0

f(τ)v(τ) dτ. (16)

The equation corresponding to the output of the differencer in
Fig. 1 is

mv̇ + bv = f − u.

Multiplying by v and integrating yields

1

2
mv2(t) =

∫ t

0

f(τ)v(τ) dτ−
∫ t

0

u(τ)v(τ) dτ−
∫ t

0

bv2(τ) dτ,

which, combined with equation (16), gives∫ t

0

u(τ)v(τ) dτ + b

∫ t

0

v2(τ) dτ > 0.

The limits of integration can be extended to all positive and
negative values of t by introducing a function vθ(τ) which is
equal to v(τ) for 0 ≤ τ ≤ θ and equal to zero otherwise:∫ ∞

−∞
u(τ)vt(τ) dτ + b

∫ ∞

−∞
v2t (τ) dτ > 0.

By Plancherel’s theorem, this is equivalent to∫ ∞

−∞
U(jω)V (jω) dω + b

∫ ∞

−∞
V (jω)V (jω) dω > 0 (17)

for admissible V (jω) where U(jω) and V (jω) are the Fourier
transforms of u(τ) and vt(τ), respectively. Note that V (jω)
denotes the complex conjugate of V (jω). From Fig. 1 and
equation (3), we observe that X(s) = V (s)/s,

XS(jω) =
1

T

∞∑
n=−∞

V (jω + jnωs)

jω + jnωs
,
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and

U(jω) =
F (ω)

−jω

∞∑
n=−∞

V (jω + jnωs)

jω + jnωs

where we have introduced

F (ω) = (e−jωT − 1)H(ejωT )/T. (18)

For convenience, we will use the standard inner product
notation

⟨f(t), g(t)⟩ =
∫ ∞

−∞
f(t)g(t) dt

and corresponding norm

∥f(t)∥ =
√
⟨f(t), f(t)⟩,

which we will use for both the time and frequency domains.
It should be clear which domain the inner product and norm
refer to from the context of the discussion, but it should
be noted that the inner products in the time and frequency
domains are related by Plancherel’s theorem as ⟨f(t), g(t)⟩ =
1
2π ⟨F (jω), G(jω)⟩. The passivity condition (17) can then be
written as

⟨U(jω), V (jω)⟩+ b∥V (jω)∥2 > 0. (19)

B. Reformulating the Passivity Bound (15)

Before reformulating the proposed passivity condition, we
make some observations concerning the maximum and min-
imum operators of two numbers: max{x, y} and min{x, y}.
Observe that any real number x satisfies

(i) x = max{x, 0}+min{x, 0}
(ii) max{x, 0} ≥ 0 and min{x, 0} ≤ 0

(iii) max{−x, 0} = −min{x, 0}
(iv) min{ax, 0} = amin{x, 0} for a > 0.
More generally, any real-valued function f(t) can be
written as f(t) = f+(t) + f−(t) where f+(t) =
max{f(t), 0} ≥ 0 and f−(t) = min{f(t), 0} ≤ 0. Further-
more, max{−f(t), 0} = −min{f(t), 0} and for any positive
number a, min{af(t), 0} = amin{f(t), 0}.

Since the damping parameter b of the interface is positive,
the bound (15) is equivalent to

b > max

{
− Φ(ω)

∞∑
n=−∞

1

(ω + nωs)2
, 0

}
(20)

for 0 ≤ ω ≤ ωN . Applying the above observations about the
maximum and minimum operators to (20), we can rewrite the
proposed passivity bound as

b > −Φ−(ω)
∞∑

n=−∞

1

(ω + nωs)2
for 0 ≤ ω ≤ ωN

where Φ−(ω) denotes min{Φ(ω), 0} ≤ 0, Φ+(ω) denotes
max{Φ(ω), 0} ≥ 0, and Φ(ω) = Φ+(ω) + Φ−(ω). In
particular, we have that the second term in (19) satisfies

b∥V (jω)∥2 > −
∫ ∞

−∞
Φ−(ω)

∞∑
n=−∞

|V (jω)|2

(ω + nωs)2
dω. (21)

C. An Inequality for ⟨U(jω), V (jω)⟩
The proposed bound (1) is given in terms of the real part of

a function of ω. Taking a cue from this observation, we show
that part of the integrand of ⟨U(jω), V (jω)⟩ can be replaced
by its real part. Consider

⟨U(jω), V (jω)⟩ =
∞∑

n=−∞
Ln[F (ω)] (22)

where we have interchanged integration and summation and
introduced a sequence of linear operators

Ln[F (ω)] =

∫ ∞

−∞
F (ω)

V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]
dω.

Now F (ω), which was defined in (18), has two important
properties, viz., F (ω + nωs) = F (ω) and F (−ω) = F (ω),
which together imply that F (−ω − nωs) = F (ω). Using the
change of variables −ω−nωs for ω, we find that Ln[F (ω)] =
Ln[F (ω)]:

Ln[F (ω)]

=

∫ ∞

−∞
F (−ω − nωs)

V (−jω)

−jω

[
V (−jω − jnωs)

−jω − jnωs

]
dω

=

∫ ∞

−∞
F (ω)

V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]
dω

= Ln[F (ω)],

which implies that

Ln[Re{F (ω)}] = Ln[(F (ω) + F (ω))/2] = Ln[F (ω)].

Consequently, we can replace F (ω) by Re{F (ω)} = Φ(ω) in
(22) to obtain

⟨U(jω), V (jω)⟩

=

∫ ∞

−∞
Φ(ω)

∞∑
n=−∞

V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]
dω.

We next write ⟨U(jω), V (jω)⟩ in terms of Φ+(ω) and
Φ−(ω) as

⟨U(jω), V (jω)⟩ = I1 + I2 (23)

where

I1 =

∫ ∞

−∞
Φ+(ω)

∞∑
n=−∞

V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]
dω (24)

and

I2 =

∫ ∞

−∞
Φ−(ω)

∞∑
n=−∞

V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]
dω. (25)

Since Φ+(ω) is real, non-negative, and periodic with period
ωs, we can write

I1 =

∫ ∞

−∞

∞∑
n=−∞

Z(ω + nωs)Z(ω) dω (26)

where Z(ω) =
√
Φ+(ω)V (jω)/(jω). Furthermore, by

Plancherel’s theorem,

I1 = ⟨TZT (ω), Z(ω)⟩ = 2πT ⟨zT (t), z(t)⟩ (27)
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where ZT (ω) = 1
T

∑∞
n=−∞ Z(ω + nωs) is the sampled

version of Z(ω) in the frequency domain and z(t) and zT (t) =∑∞
k=−∞ z(t)δ(t − kT ) are the time domain expressions for

Z(ω) and ZT (ω), respectively. Applying the sifting property
to ⟨zT (t), z(t)⟩, we find that

I1 = 2πT

∫ ∞

−∞

∞∑
k=−∞

z(t)δ(t− kT )z(t) dt

= 2πT
∞∑

k=−∞

|z(kT )|2 ≥ 0. (28)

In other words, as one would expect from a signal correlation
interpretation, the inner product of a sampled signal with its
original signal is non-negative.

Turning our attention to I2, we observe that

−I2 =
∞∑

n=−∞
⟨Fn(ω), Gn(ω)⟩ (29)

where
Fn(ω) =

√
−Φ−(ω)

V (jω + jnωs)

jω
,

and
Gn(ω) =

√
−Φ−(ω)

V (jω)

jω + jnωs
,

and where
√
−Φ−(ω) is the positive square root of the non-

negative real-valued function −Φ−(ω). Applying the integral
version of the Cauchy-Schwarz inequality gives

−I2 ≤
∞∑

n=−∞
AnBn (30)

where

An =

√∫ ∞

−∞
−Φ−(ω)

|V (jω + jnωs)|2
ω2

dω (31)

and

Bn =

√∫ ∞

−∞
−Φ−(ω)

|V (jω)|2
(ω + nωs)2

dω.

Applying the summation version of the Cauchy-Schwarz in-
equality to (30) gives

−I2 ≤

√√√√ ∞∑
n=−∞

A2
n

√√√√ ∞∑
n=−∞

B2
n. (32)

Lastly, using the change of variables of ω−nωs for ω in (31)
and using the fact that Φ(ω) = Φ(ω − nωs), we find that
An = B−n, and equation (32) becomes

−I2 ≤
∞∑

n=−∞
B2

n =
∞∑

n=−∞

∫ ∞

−∞
−Φ−(ω)

|V (jω)|2

(ω + nωs)2
dω.

Since I1 ≥ 0 and

I2 ≥
∫ ∞

−∞
Φ−(ω)

∞∑
n=−∞

|V (jω)|2

(ω + nωs)2
dω,

it follows that

⟨U(jω), V (jω)⟩ ≥
∫ ∞

−∞
Φ−(ω)

∞∑
n=−∞

|V (jω)|2

(ω + nωs)2
dω. (33)

D. Proving Sufficiency

Combining (21) and (33) gives the passivity condition (19),
which implies that (20), and equivalently, (1), is a sufficient
condition for passivity.

V. NEW EXPRESSIONS FOR r(jω) AND THE PASSIVITY
BOUND FOR b

A. Expressions for r(jω)

Now that it has been established that the bound b >
Re{−r(jω)H(ejωT )} for 0 ≤ ω ≤ ωN is a necessary and
sufficient condition for the haptic system described in [7] to
be passive, we turn our attention to finding a particularly nice
closed form expression for

r(jω) =
∞∑

n=−∞
T

e−jωT − 1

(ωT + 2nπ)2
. (34)

Expressions for r(jω) were presented in [7] and [24] as

r(jω) =
T

2

e−jωT − 1

1− cosωT
(35)

and
r(jω) = (e−jωT − 1)

T

4
csc2(ωT/2), (36)

respectively. Before presenting what we propose is the best
expression r(jω), we introduce simplifications of (35) and
(36).

Using the fact that e−jωT − 1 = 2 sin(ωT/2)e−j(ωT+π)/2,
it is easy to show that (36) can be written as

r(jω) =
T

2
csc(ωT/2)e−j(ωT+π

2 ). (37)

Similarly, applying suitable trigonometric identities to (35),
we find that r(jω) can be written as

r(jω) =
−T

2

(
1 + j cot

ωT

2

)
. (38)

Not only are these last two expressions simpler, but they
also provide better geometric insight into the s-domain rep-
resentation of the haptic system. It is pointed out in [7] and
[24] that one can view r(jω)R1 as a scaled, rotated version of
R1. The new expressions derived in (37) and (38) make this
especially obvious. Since 0 ≤ ωT ≤ ωNT = π, it follows that
csc(ωT/2) > 0 so that the polar form for (37) is

r(jω) =
T

2
csc(ωT/2)∠

−ωT − π

2
. (39)

Hence r(jω) rotates R1 by 90◦ to 180◦ clockwise as ω varies
from 0 to π/T while at the same time scaling by T

2 csc(ωT/2).
Expression (38) provides similar insight since the real part of
r(jω) is the fixed negative number −T/2 and the imaginary
part goes from negative infinity to zero as ω varies from 0
to π/T . From this observation we can conclude the same
rotational properties of r(jω) as we did from (39).

While expressions (38) and (39) are insightful for visualiz-
ing how R1 is rotated and, in the case of (39), scaled, we are
more interested in the role that r(jω) plays in the passivity
bound (15) for 0 ≤ ω ≤ ωN = π/T . This motivates our next
goal: finding simpler expressions for r(jω) and the passivity
bound.
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B. New Expressions for r(jω) and the Passivity Bound for b

Previous formulas for r(jω) have relied on bringing out
the T (ejωT −1) term from the summation in (34) and finding
a closed form expression for the resulting summation term,
i.e., by finding a closed form expression for r̂(jω) in (9).
We will take a different approach and derive a much simpler
expression for r(jω) using a sampling based argument that
takes advantage of the time delay interpretation of e−sT . Let

k(s) = (1− e−sT )r(s). (40)

Using the fact that e−(s+jnωs)T = e−sT , we have that

k(s) =
1

T

∞∑
n=−∞

(1− e−sT )2

(s+ jnωs)2

=
1

T

∞∑
n=−∞

(1− e−(s+jnωs)T )2

(s+ jnωs)2
. (41)

From sampling theory [21], we can write (41) as

k(s) = C∗(s) =
1

T

∞∑
n=−∞

C(s+ jnωs) =

∞∑
k=0

c(kT )e−ksT

(42)
where

C(s) =
(1− e−sT )2

s2
=

(
1− e−sT

s

)2

and

c(t) = L−1[F (s)] =


t 0 ≤ t < T

2T − t T ≤ t ≤ 2T

0 otherwise.

(43)

Equation (43) follows from the observation that C(s) can be
interpreted as the Laplace transform of the convolution of two
unit rectangular pulses with support [0, T ] so that c(t) is a
triangular function with support [0, 2T ] and height T . Since
c(kT ) equals T for k = 1 and equals 0 for all other integer
values of k, there is only one nonzero term in the last infinite
sum in (42). Consequently, we avoid the need for evaluating
an infinite sum and simply obtain k(s) = Te−sT . This fact
along with (40) implies that

r(jω) =
T

ejωT − 1
. (44)

It is easy to verify that (44) and the earlier expressions for
r(jω) are all equal to one another. However, equation (44) is
significantly simpler and gives a more tractable version of the
passivity bound (1):

b > Re

{
TH(ejωT )

1− ejωT

}
for 0 ≤ ω ≤ ωN = π/T. (45)

In the next section, we take advantage of the greater
simplicity of (45) to determine passivity bounds for a larger
family of digital controllers H(z) than previously studied.

VI. CLOSED FORM PASSIVITY BOUNDS FOR CERTAIN
CLASSES OF TRANSFER FUNCTIONS H(z)

In [7], the passivity bound is investigated in detail for
a digital controller H(z) corresponding to a virtual spring
and damper modeled using a backward difference approach.
Together with a unilateral constraint operator, this setup can
be used to implement a virtual wall. In this section, we will
use (45) to find closed form expressions for the lower bound
of b for some other special cases of transfer functions H(z).

Example 1: Transfer Functions Based on Backward Difference
Differentiation

We can model a difference equation version of an n-th order
differentiation using backward difference differentiation by

Hn(z) =

(
z − 1

Tz

)n

.

For H0(z) = 1 with z = ejωT , we have

Re

{
TH0(z)

1− z

}
=

1

2

[
T

1− z
+

T

1− z−1

]
=

1

2

[
T (1− z)

1− z

]
=

T

2

where we have used the fact that the complex conjugate z of
z is z = z−1 for z = ejωT . Next consider H1(z), which
corresponds to a velocity estimate obtained via backward
difference differentiation of position. In this case, we have

Re

{
TH1(z)

1− z

∣∣∣∣
z=ejωT

}
= Re{−e−jωT } = − cosωT ≤ 1

where equality is achieved for ωT = π. More generally, for
higher order derivative estimates Hn(z),

THn(z)

1− z
=

1

Tn−1

[
− z−1(1− z−1)n−1

]
=

1

Tn−1

n−1∑
k=0

(
n− 1

k

)
(−1)k+1z−k−1.

For z = ejωT and n ≥ 2, we have that

Re

{
THn(z)

1− z

}
=

1

Tn−1

n−1∑
k=0

(
n− 1

k

)
(−1)k+1 cos(k+1)ωT

is also maximized by ωT = π, giving the tight bound

Re

{
THn(z)

1− z

}
≤

(
2

T

)n−1

.

Hence,

b >
N∑

n=0

αn

(
2

T

)n−1

(46)

is a necessary and sufficient condition for passivity when

H(z) =
N∑

n=0

αnHn(z)

where αn ≥ 0 for n = 0, 1, 2, . . . , N and at least one of the
αn coefficients is positive.
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We have as an important special case the virtual wall
example considered in [7]:

H(z) = K +B
z − 1

Tz
.

In this case, the bound given by (46) becomes

b >
KT

2
+B.

Before proceeding to our next example, we note that due
to the 1 − z in the denominator of (45), one would expect
that except for the addition of a constant term B, H(z) would
typically need a z−1 or 1−z term in its numerator to prevent
(45) from going to infinity as z approaches 1. To avoid such
difficulties, H(z) will have a zero at z = 1 in the remaining
examples except of course when H(z) contains an isolated
constant term. Interestingly, in the case of H0(z) = 1, while
the term T/(1−z) approaches infinity as z = ejωT approaches
1, it can be shown that the real part of T/(1−z) remains fixed
at T/2 as can be seen from (38).

Example 2: Special Cases of FIR Filters
We next consider finite impulse response transfer functions

of the form

H(z) = (1− z)

N∑
n=0

αnz
−n. (47)

In this case,

Re

{
TH(z)

1− z

∣∣∣∣
z=ejωT

}
= T

N∑
n=0

αn cosnωT ≤ T
N∑

n=0

|αn|,

(48)
and we obtain a passivity bound

b > T
N∑

n=0

|αn|, (49)

which is not generally tight unless the αn coefficients satisfy
a certain sign structure. If the αn’s are non-negative with
at least one being positive, then each summand in the first
summation in (48) is maximized when ωT = 0, in which
case b > T

∑N
n=0 αn is a tight bound. For example, if

H(z) = (1 − z)
∑N

n=0 z
−k, then the passivity requirement

is b > (N + 1)T .
The situation is not as straightforward if one or more αk

coefficients are negative. However, if the coefficients satisfy
the alternating sign structure α0 ≥ 0, α1 ≤ 0, α2 ≥ 0, ... with
at least one αi being nonzero, the maximum would occur when
ωT = π, i.e., z = −1, in which case T

∑N
n=0 αn cosnωT =

T
∑N

n=0(−1)nαn = T
∑N

n=0 |αn| and (49) is a tight bound.
An interesting special case with all negative αk’s that still has
a relatively tight bound is

H(z) = (z − 1)
N∑

n=0

z−n.

In this case,

Re

{
TH(z)

1− z

∣∣∣∣
z=ejωT

}
= −T

N∑
n=0

cosnωT, (50)

requiring us to find a lower bound for
∑N

n=0 cosnωT due to
the minus sign in (50). Fortunately, this sum is related to the
Dirichlet kernel, DN (x) = 1+2

∑N
k=1 cos kx, which has been

studied extensively in the theory of Fourier series. It is known
that for relatively large N , minx DN (x) ∼ −C(2N+1) where
C = 0.2172336282 [25]. We thus conclude that

min
x

N∑
n=0

cosnx ∼ 1− C(2N + 1)

2

and that b > (CN − D)T is an approximate lower bound
for b for sufficiently large N where D = (1 − C)/2 =
0.3913831859. The Dirichlet kernel will also play a role in
Example 4 when we consider time delay.

Example 3: Special Cases of IIR Filters
We next apply the improved passivity bound expression to

some special cases of infinite impulse response filters. Suppose
that

H(z) =
z − 1

z + a

where |a| < 1. With some straightforward algebra, it can be
shown that for z = ejωT ,

Re

{
T

1− z

(
z − 1

z + a

)}
= −T

cosωT + a

a2 + 2a cosωT + 1
. (51)

Since |a| < 1, the denominator in (51) is strictly positive and
it can be shown that (51) decreases as cosωT increases so
that (51) is maximized by cosωT = −1, i.e., ωT = π. Hence
the passivity bound becomes

b >
T

1− a
.

The situation is similar for

H(z) =
1− z

z + a

with |a| < 1 except now Re{H(z)T/(1 − z)} increases as
cosωT increases and is maximized for ωT = 0 giving a
passivity bound of

b >
T

1 + a
.

The solution for a = 1, when the pole is on the unit circle
rather than inside the open unit disk, has a different form. In
this case, equation (51) becomes Re{−T/(1 + z)} = −T/2
and is hence independent of ω. This is further confirmed from
the expression

T

1− z

(
z − 1

z + 1

)∣∣∣∣
z=ejωT

=
−T

2
[1− j tan(ωT/2)]. (52)

While (52) does approach infinity as ωT approaches π, its
real part remains fixed at −T/2, once again implying that the
passivity bound in this case is b > −T/2. This is similar to the
situation discussed at the end of Example 1 for the constant
transfer function H0(z).

Equation (52) is related to Tustin’s approximation

s =
2

T

z − 1

z + 1
,
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also known as the bilinear transformation. Applying Tustin’s
approximation to H(s) = K + Bs gives an approximate
discrete transfer function

H(z) = K +B
2

T

z − 1

z + 1

that can be used to model a virtual wall. In this case, the
passivity bound (45) becomes [19], [26]

b >
KT

2
−B.

Although the above bound implies that no damping b is
needed if B > KT/2, one should remember that Tustin’s
approximation is an ideal case and that the above result
ignores effects such as the inherent computational time in an
actual implementation of Tustin’s approximation. Indeed, if
we introduce a time delay td in the analysis of Section III, we
obtain for the Tustin case

Re{ T
1−z (

2
T

z−1
z+1 )e

−jωtd}

= Re

{[
− 1 + j tan

ωT

2

][
cosωtd − j sinωtd

]}
= − cosωtd + sinωtd tan

ωT

2
.

For 0 < td < T , this expression approaches positive infinity
as ωT approaches π due to the sinωtd tan

ωT
2 term. Hence,

the necessary condition of Section III is violated and the
system is not passive for a small time delay when using the
Tustin approximation. A similar analysis for H(z) = 1 and
Hm(z) = ( 1−z

Tz )m shows that they do not suffer the same
problem as the Tustin approximation. Other authors have also
expressed concern about using Tustin’s approximation for this
application [26]. It is interesting to note that, as shown in
Example 4 below, the above analysis is not a problem for the
Tustin case when td is a multiple of the sampling period T .

Example 4: Special Cases with Time Delay
In this example we will continue to consider the effect that

time delay has on the passivity bound [17], [18]. Once again
note that a time delay of td is modeled by introducing a block
with transfer function e−tds into the lower portion of Fig. 1.
If we restrict ourselves to time delays that are multiples of
the sampling period, i.e., td = nT , then the delay would be
modeled by z−n = e−jnωT . Consequently, the passivity bound
would become b > Re{TH(z)z−n/(1− z)} where z = ejωT

for 0 ≤ ω ≤ ωN . The following are some examples illustrating
the effect that a time delay td = nT has on the passivity
bound.

We first note that introducing a time delay td = nT does not
fundamentally change the form of the general solution to the
FIR examples described in Example 2. Equation (47) becomes
H(z)z−n = (1− z)

∑N
k=0 αnz

−k−n and the passivity bound
analysis is similar to the case when there was no delay.

We next consider virtual systems modeled by backward
difference differentiation. Using the partial fraction expansion

1

(1− z)zn
=

1

1− z
+

1

z
+

1

z2
+ · · ·+ 1

zn
,

we can show that for

Hm(z) =

(
z − 1

Tz

)m

,

we have
Re

{
TH0(z)

(1− z)zn

}
=

T

2
Dn(ωT ),

where Dn(u) = 1 + 2 cosu+ 2 cos 2u+ · · ·+ 2 cosnu is the
Dirichlet kernel,

Re

{
TH1(z)

(1− z)zn

}
= − cos(n+ 1)ωT,

and more generally,

Re

{
THm(z)
(1−z)zn

}

=
1

Tm−1

m−1∑
k=0

(
m− 1

k

)
(−1)k+1 cos(n+ k + 1)ωT

≤
(
2

T

)m−1

.

For the important case H(z) = K +B z−1
Tz , we have

Re

{
TH(z)

(1− z)zn

}
=

KT

2
Dn(ωT )−B cos(n+ 1)ωT. (53)

A conservative bound for (53) is b > (2n + 1)kT/2 + B.
The maximum value of (53) depends on KT , B, and n. For
example, if n = 1,

Re

{
TH(z)

(1− z)z

}
= Re

{
KT

1− z
+

KT

z
− B

z2

}
=

KT

2
+KT cosωT −B cos 2ωT

=
KT

2
+B +KT cosωT − 2B cos2 ωT

where we have used the identity cos 2ωT = 2 cos2 ωT − 1
to obtain an expression that is a quadratic in cosωT . Finding
the passivity bound for b is simply a constrained quadratic
optimization problem that is maximized by cosωT = KT

4B if
KT < 4B and by cosωT = 1 if KT ≥ 4B. Hence, the
passivity bound when there is a delay of td = T is

b >

{
KT
2 +B + (KT − 2B) if KT ≥ 4B

KT
2 +B + K2T 2

8B if KT < 4B.

Tustin’s approximation model for differentiation is handled
in a similar manner. For H(z) = K +B 2

T
z−1
z+1 ,

Re

{
TH(z)

(1− z)zn

}
=

KT

2
Dn(ωT )−B(−1)nDn(ωT + π).

For the special case when n = 1,

Re

{
TH(z)

(1− z)z

}
=

KT

2
+B + (KT − 2B) cosωT,

and the passivity bound becomes

b >
KT

2
+B + |KT − 2B|.

It should once again be noted that the Tustin approximation
can be sensitive to arbitrary time delays including the small
time delay case analyzed in Example 3.
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Fig. 3: The possible range of ZO(jω) for the case when the
operator corresponds to a non-passive system with a shortage
of passivity η.

VII. NON-PASSIVE OPERATORS

In the previous sections, we only considered passive transfer
functions ZO(s). However, it has been shown in the literature
that this assumption does not always hold [27], [28]. We now
consider the case when the operator transfer function has a
shortage of passivity η > 0, i.e., when the range of ZO(jω)
is to the right of −η as shown in Fig. 3.

One can address the necessary condition for passivity using
the same approach described in Section III except that ZO(s)
needs to be shifted an additional η units to the right and the
passivity bound becomes

b > Re

{
TH(ejωT )

1− ejωT

}
+ η for 0 ≤ ω ≤ ωN = π/T. (54)

This demonstrates that (54) is a necessary condition. Modi-
fying the analysis in Section IV to show that this is also a
sufficient condition requires more creativity.

To address sufficiency, we write ZO(s) = −η + ZP (s)
where ZP (s) = ZO(s) + η corresponds to a passive transfer
function. We then replace the operator block ZO(s) with a
parallel connection of blocks with transfer functions ZP (s)
and −η as shown on the left hand side of Fig. 4. The −η block
can then be connected in a negative feedback configuration
with the 1/(ms + b) block so that these two blocks together
are equivalent to the single block 1/(ms+b−η). Consequently,
the two block diagrams shown in Fig. 4 are equivalent.
Substituting the second block diagram of Fig. 4 into the
original block diagram of Fig. 1, one obtains Fig. 5. Hence,
the previous analysis for both the necessary and sufficient
conditions would still hold with b replaced by b − η, and
we obtain the result that (54) is a necessary and sufficient
condition for passivity when the shortage of passivity of ZO(s)
is η.

VIII. CONCLUSIONS

In this article, we provided a rigorous justification of a well-
known passivity bound for a class of sampled-data systems.
Such systems can serve as a simple model of a haptic system.
We also presented a concise derivation of the passivity bound
using a sample-based approach that resulted in a significantly
simpler expression. Previous studies based on the earlier

Fig. 4: The two block diagrams shown have the same transfer
functions. The block diagram on the left shows the shortage of
passivity η present in the operator block. The parameter η is
redistributed to the haptic interface block in the block diagram
on the right.

Fig. 5: An equivalent block diagram of the 1-DOF haptic
device shown in Fig. 1 for the shortage of passivity case using
the block on the right in Fig. 4.

bound were limited to simple virtual spring/damper systems.
Using the more tractable expression established in the paper,
we derived closed form passivity bounds for three classes
of transfer functions corresponding to virtual environments.
We also presented bounds for simple virtual spring/damper
systems experiencing a time delay. Lastly, we considered the
possibility that the operator may correspond to a non-passive
system and modified the passivity bound for the case when
the operator transfer function has a shortage of passivity.
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