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Although primarily studied through the lens of community ecology, phenomena
consistent with priority effects appear to be widespread across many different
scenarios spanning a broad range of spatial, temporal, and biological scales.
However, communication between these research fields is inconsistent and
has resulted in a fragmented co-citation landscape, likely due to the diversity
of terms used to refer to priority effects across these fields. We review these
related terms, and the biological contexts in which they are used, to facilitate
greater cross-disciplinary cohesion in research on priority effects. In breaking
down these semantic barriers, we aim to provide a framework to better under-
stand the conditions and mechanisms of priority effects, and their consequences
across spatial and temporal scales.

Priority effects: moving beyond community ecology

Priority effects (see Glossary), whereby arrival order influences community assembly, can be a
powerful driver of ecological community structure [1-3]. Priority effects can be facilitative (Box 1),
but most research has focused on the role of inhibitory species interactions [4] in which early-
arriving or initially abundant species negatively affect the immigration, establishment, or abundance
of late-arriving species through niche preemption and/or niche modification [5]. Although
primarily studied by community ecologists, patterns consistent with priority effects have been
observed in a wide variety of biological contexts (Figure 1). However, these phenomena have often
been described using a range of different terms (Table 1). This diversity of perspectives can promote
a greater range of discoveries, but a lack of conceptual cohesion because of differences in language
can also hinder our understanding of priority effects as a broader biological phenomenon.

Here, we review the diverse fields where priority effects are relevant and identify outstanding
research questions. We mainly focus on inhibitory priority effects as it has been the primary
focus of most studies. We aim to help accelerate progress in future research on priority effects in
two complementary ways. First, we seek to empower researchers currently studying priority effects
by encouraging drawing on insights, conclusions, and research approaches used in other biolog-
ical fields. Second, we aim to inspire biologists who do not currently study this concept explicitly to
explore the role that priority effects may play in their own study systems.

A history in community ecology

Ecologists have recognized historical contingency in community assembly for the past century
[2]. Following early descriptive studies, the development of a theoretical framework in the mid-to-
late 20th century [1] formulated one form of historical contingency — the role that priority effects
can play in driving variation in species diversity among ecological communities formed from the
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Box 1. Going beyond inhibition: facilitative priority effects

Competition is one of many mechanisms involved in species coexistence and community assembly [5]. Positive interactions can
also lead to contingency in community assembly. For example, facilitative priority effects can occur when a species performs
better in the presence of particular established residents [2,97]. For facilitative priority effects to occur during community assem-
bly, the positive effects of niche modification by early-arriving species must outweigh the negative effects associated with the early
uptake of essential resources that become less available to later-arriving species (niche preemption [2]). Atthough facilitation
effects have been implicated in many ecoevolutionary contexts from ecological succession to macroevolutionary dynamics
[98], it remains unknown how common and strong these facilitative priority effects are in nature [99,100].

For example, for plant communities in harsh environments such as deserts, increased shading by shrubs can facilitate
herbaceous annuals by ameliorating the local microclimate and making it more favorable to more drought-sensitive
species [101]. Species immigrating into the community can also benefit from soil nutrient enrichment by early colonizers,
which can take place via the exudation of nutrient-mobilizing compounds by plant roots or by an increase in soil nitrogen
availability produced by free-living plant-associative No-fixing bacteria [102].

Facilitative priority effects have also been detected in microbial and host-associated systems. In microbial communities, cases
of syntrophy — in which early-arriving species break down complex molecules into smaller molecules that can then be taken up
and used by other microbes — have been found in both infant gut microbiota [45] and marine microbial communities [103].
Facilitative priority effects can also drive the assembly of parasite communities, for example, on host plants (Figure |). Indeed,
early infection by some parasite strains can increase the susceptibility of host plants to future infection by altering their
physiology or immunity [99].

These few examples show that the perception that priority effects can only lead to the exclusion or suppression of later-arriving
species is incomplete. It also challenges the narrow definition of priority effects used in some ecological theories, such as Tiiman's
consumer-resource model (R*) and modermn coexistence theory, in which priority effects are strictly inhibitory and occur when an
early arriver prevents the establishment of a late arriver as a result of positive frequency-dependence of population growth [104].
Future research should aim to better integrate facilitative priority effects into ecological theories (see Outstanding questions).

Trends in Ecology & Evolution

Figure I. Community assembly and priority effects in a host-associated community. In host-associated
communities, and especially among plant hosts, strong within-host interactions between coinfecting parasites can drive
local priority effects. For example, early-establishing strains of the powdery mildew, Podosphaera plantaginis (A), on
leaves of the host plant, Plantago lanceolata (B), can facilitate infection by later-arriving strains, which are less likely to
establish in their absence [99]. Photo credits: Mikko Jalo, Anna-Liisa Laine.
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( A) Synchronous arrival Ordered arrival Glossary

Alternative stable states: different
historical sequences of species entering
a local area leads to different final com-
munity compositions.
Community assembly: the generation
of local communities through
immigration of species from the regional
species pool.
Community composition: the identity
of species present in a community.
Community structure: the
composition of a community, including
the number of species and their relative
abundances.
Facilitative priority effect: when a
species that arrives first positively affects
. the establishment, growth, or
Resu“mg Plant reproduction of a species arriving later.
community Historical contingency: the effect of
the order and timing of past events on

" l\y community assembly.
W & m » \ Inhibitory priority effect: when a
species that arrives first negatively
affects the establishment, growth, or

reproduction of a species arriving later.
-------------------------------------------------------------------- Monopolization: evolution-mediated
‘ priority effect at the population or

l ¢ community level.
Niche modification: early-arriving
= species change the types of niches
available within a local site, and

consequently affect the identities of late-
> arriving species that can colonize the
Assembly over time community.
Niche preemption: earlier-arriving
species reduce resource availability such
that species arriving later are limited in
Extinction event their ability to survive and reproduce.
Priority effects: phenomena in which
the effects of species on one another
depend on the arrival order of species
into a local site.
Regional species pool: the set of
species that could potentially colonize
and establish within a local community
or patch.
Stochasticity: the variability in intrinsic

demographic processes or extrinsic
environmental conditions that affect
community assembly.
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Figure 1. Priority effects transcend spatial, temporal, and biological scales. (A) Inhibitory priority effects of malarial
strains during infection: for example, early-arriving malarial strains can limit the infectious efficacy of later-arriving strains in
infected mice [36]. (B) Inhibitory priority effects in the assembly of local or regional communities: for example, early-arriving

(Figure legend continued at the bottom of the next page.)
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Table 1. Terms related to priority effects and examples of their use®
Terms related to priority effects Biological subfields where terms are used (with example studies)

Alternative stable states, alternative Restoration ecology [61,62], community ecology [63,64]

equilibria

Colonization/invasion/biotic
resistance

Cross-immunity, cross-protection,

induced resistance

Founder control, founder effect

Home-field advantage
Lottery-based assembly
Monopolization

Mutual non-invasibility

Niche incumbency, incumbency
effects

Niche filling
Niche preemption

Positive frequency-dependence
(modern coexistence theory)

Preemptive competition
Priming

Prior-residence advantage

General ecology [65,66], restoration ecology [67], community ecology
[68], immunology [69,70], invasion biology [25]

Immunology [71,72], disease ecology [73,74]

Community ecology [75,76], evolutionary ecology [51], population
genetics [51]

Conservation biology [77], invasion ecology [19], ecosystem ecology [28]
Microbial ecology [78], general ecology [79,80]

Evolutionary ecology [51,52]

General ecology [81,82]

Paleobiology [53,83], macroecology [84], macroevolution [85,86],
community ecology [27]

Macroevolution [83,87]
Macroevolution [87], community ecology [38]

Theoretical ecology [39], experimental ecology [9]

Paleobiology [90], entomology [79], immunology [70]
Disease ecology [91,92], chemical ecology [93]

Population biology [94], community ecology [95]

@Biological phenomena consistent with 'priority effects' have been studied using a wide range of terms. We review here the
terms used in different subfields of biology. Reflecting the traditional focus, most of the terms included concern inhibitory
priority effects, but some terms (e.g., alternative stable states) are used broadly to include both inhibitory and facilitative
priority effects.

same regional species pool (i.e., alternative stable states [6]). In accordance with trends in
community ecology at the time [7], interspecific competition for limiting resources was considered
to be the primary mechanism for many of these priority effects which occur when the per capita
strength of interspecific competition exceeds that of intraspecific competition [1]. Consequently,
the majority of research on priority effects has centered on their inhibitory roles, whereby early-
arriving species negatively affect the establishment or abundance of subsequent immigrant
species, primarily through exploitative competition [8]. Inhibitory priority effects are also a cen-
tral component of the modern coexistence theory [9] — a framework for understanding how
species niche and fitness differences can promote coexistence and maintain species diversity.
More recently, there has been a greater appreciation that other types of biotic interactions can
also lead to similar ecological patterns (e.g., plant—soil feedbacks [10,11]).

Priority effects transcend scales and disciplines

We suggest that more cross-pollination between studies of priority effects would accelerate
progress in our understanding of priority effects and their wider influence on community assembly
and ecosystem functioning (Box 2). To foster cross-pollination, we offer a twofold approach: first,

species can limit the invasion or establishment success of later-arriving species [96]. (C) Inhibitory priority effects have also
been suggested to influence macroevolutionary dynamics: for example, extensive diversification of some clades may
occur following the removal of incumbent clades that occupy similar ecological niches, demonstrated here by the rapid
diversification of birds and placental mammals following the Cretaceous—Paleogene mass extinction of non-avian
dinosaurs and other archosaurs [53]; this illustration has been conceptually simplified for illustrative purposes.
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Box 2. Information transfer between priority effects studies

Although priority effects are attracting an increasingly diverse range of research attention, a lack of cohesion among studies — likely
driven by the absence of a well-resolved semantic framework (Table 1) — has stifled a broader biological understanding of this
phenomenon. To quantitatively explore trends in the transfer of information between studies on priority effects, we conducted
a co-citation network analysis of studies related to priority effects (1 = 902; see 'Co-citation network analysis' in the supplemental
information online). A co-citation analysis measures how frequently two studies are cited together in a publication, and a network
algorithm identifies clusters of studies that have more within-cluster than between-cluster shared citations (alternative algorithm
analyses are given in Figure S1).

Taken together, our co-citation analysis demonstrates inconsistent cohesion among studies of priority effects and related topics
across disparate biological subfields (Table 1). It highlighted several large clusters that correspond to major biological disciplines
which operate with varying degrees of research connectivity to each other (Figure [). Specifically, the analysis revealed four
disciplines with relatively well-connected citations, which we call (1) general ecology, (2) animal ecology, (3) plant ecology, and
(4) evolutionary ecology (Figure ). The general ecology cluster is primarily constructed of conceptual, mathematical, and statistical
papers of broad ecological relevance, but also contains studies that specialize on specific groups of organisms, mainly bacteria
and fungi, which could be due to their amenability for experimental tests of ecological theory. We collectively refer to this well-
connected set of four primary clusters (i.e., 1-4; Figure |) as the super-cluster of research on priority effects and related topics.

Next to the super-cluster, two additional clusters were identified by the co-citation analysis: (5) parasitology, and (6) polar
biology (Figure ). Although parasitology papers are frequently co-cited with studies from the super-cluster, papers from the
super-cluster are rarely co-cited with papers from the parasitology literature. Although the term priority effects has been increas-
ingly used in recent parasitological publications, other terms were used traditionally (e.g., immune priming [91]), perhaps
explaining this pattern of asymmetric co-citations. In addition, polar biology, as a subfield, seems to have operated amost
completely independently from other studies on priority effects and related topics (Figure l). The reasons for this separation
are unclear but could stem from the notion that polar ecosystems are ecologically too unique to inform or be informed by stud-
ies conducted elsewhere. Similarly, whether these patterns are specific to research on priority effects or are indicative of a
broader pattern of fragmented communication between ecological research fields deserves further comparative analyses.
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Figure . Co-citation network analysis highlighting information transfer between studies on priority effects and
related topics. (A) The co-citation network, where circles represent publications, circle colors represent publication clusters
identified via the Louvain algorithm, and gray lines represent co-citation of two studies. At the bottom (identified by diamonds
in the network) are influential and highly cited papers that serve as network hubs. (B) The proportion of co-citations between
studies either within their own cluster or from separate clusters. (C) Breakdown of co-citation patterns and frequency across
clusters. In panels (B) and (C) numbers in parentheses represent the total number of co-citations for that cluster.
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a literature review highlighting diverse terminologies across subfields consistent with priority
effects (Table 1); second, insights from diverse biological subfields conducting research related
to priority effects.

Restoration ecology

Restoration ecology — the science of how to restore degraded, damaged, or destroyed habitats —
has long recognized the role of priority effects in determining patterns of community structure
[12,13]. In this context, priority effects have been used as a tool for restoration management [14]
by manipulating the order of species introductions to inhibit the ecological success of 'undesirable’
species in an effort to enhance the success of 'desirable’ species [15]. Restoration through human
intervention assumes that a system has been degraded and would benefit from actions that accel-
erate recovery or overcome some type of ecological threshold. Such restoration scenarios have
primarily focused on terrestrial plant communities and have often been studied through the seman-
tic frameworks of 'alternative vegetative states', 'hysteresis', and 'invasion resistance' (Table 1).
Because these terms are predominantly used in restoration studies, some insights from restoration
ecology may be overlooked by biologists outside this subfield.

Although restoration ecology is often focused on terrestrial plants [16], similar scenarios exist in
other ecological contexts such as coral reefs [17] (see Outstanding questions). For example,
the prior establishment of corals during reef assembly can exhibit strong inhibitory priority effects
on competing macroalgae [18], thereby affecting management decisions during coral reef resto-
ration projects [17]. Together, restoration research offers opportunities to study the mechanisms
that drive priority effects, and restoration practitioners would value a better understanding of
priority effects. A greater synthesis of research on priority effects between restoration biologists
and the broader ecology and evolution community would be beneficial, particularly for those
who study ecological succession (Box 1). In addition, a better understanding of the long-term
transient ecological consequences of priority effects (see Outstanding questions) could be a
key contribution from restoration ecology (Box 3).

Box 3. On the temporal nature of priority effects

How long should an effect of arrival order on community assembly last for it to qualify as a priority effect? Early work
emphasized that communities should remain different for longer than at least one complete turnover of individuals to
conclude that the communities are in alternative community states caused by priority effects [105], a condition that is rarely
met in experiments with plants and other long-lived organisms [106]. However, how ephemeral is sufficient to be negligible
is a tricky question. Many mathematical ecologists would say that we need to wait until the community reaches a stable
equilibrium to determine whether priority effects are present. For them, priority effects mean the same thing as the
existence of alternative stable states. With this definition, we would not have a priority effect if communities eventually
converged on a single common stable state no matter how long it takes for the convergence to occur [107]. This
equilibrium-based definition is used because it makes it possible to analyze priority effects mathematically, and not
necessarily because the definition is empirically or ecologically relevant [11,108]. Most real communities are influenced
by disturbance events that move the communities back to an earlier stage of succession, making it unlikely that a stable
state is reached [109]. However, this does not mean that, in the meantime, these transient priority effects cannot have
long-lasting ecosystem consequences via, for example, changes in associated communities (e.g., soil microbial and faunal
communities in the case of transient priority effects in plant communities). In addition, rapid evolution of species traits
during community assembly can change the equilibrium that the community is attracted to [52,110,111], and can
potentially act as an additional factor that keeps the community away from any stable equilibrium. Transient priority effects
may also have long-lasting consequences by producing different starting conditions that determine community trajectories
in response to environmental change, for example anthropogenic stress. Consequently, the strict mathematical definition
of priority effects is unlikely to be relevant in understanding community assembly and in applying this understanding to
practical issues such as conservation, restoration, and medicine. What is mostly lacking and sorely needed to better
understand priority effects is the development of theoretical predictions and empirical tests regarding the long-term
transient dynamics of community assembly, and not only equilibrium outcomes [11,108]. A recent contribution from
Zou and Rudolf [3] discusses some concrete ways in which such development can be accomplished.
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Invasion biology

In the context of species invasions, inhibitory priority effects often operate in two ways, both of which
conceptually overlap with restoration ecology (discussed in the section on restoration ecology,
above). First, the disturbance of native species provides opportunities for invasive species to estab-
lish and gain priority [19], often through the expression of traits associated with strong priority effects
[20]. These invasive species can subsequently threaten the persistence and (re)establishment of
local species, leading to shifts in community composition and ultimately in ecosystem function
[21]. For example, in North American prairies, invasive legumes (e.g., Lespedeza cuneata) can exhibit
strong inhibitory priority effects on multiple native plant species [22], and similar scenarios have been
reported for other taxa (e.g., birds [23] and lizards [24]).

Second, inhibitory priority effects can also be beneficial for invasive species prevention and
management: earlier-established native species can minimize the establishment success of
invaders (commonly termed 'biotic resistance' [25]). These scenarios are well suited for hypothesis
testing in an experimental framework. Furthermore, invasive species as 'natural experiments'
[26,27] might provide some of the best opportunities to gain an understanding of when, where,
how, and why priority effects occur in nature (see Outstanding questions), thereby providing
insights for classic eco-evolutionary theory as well as applied value for conservation biology [19].

Microbial ecology, parasitology, and disease ecology

Evidence is growing for priority effects across many immunological, parasitological, and microbial
community studies, but these studies have traditionally used terms such as 'lottery-based
assembly', ‘cross-immunity’, 'immune priming', ‘colonization resistance’, and 'preemption’
(Table 1). Some of these terms are broad (e.g., preemption) whereas others are more specialized
(e.g., cross-immunity), and the relevance of these studies may therefore be overlooked by
researchers outside these fields. Nevertheless, priority effects in microbial communities can
have major ecological consequences, and can drive differences in the structure and function of
terrestrial and aquatic ecosystems [28-30] as well as influencing the patterns of microbial
community assembly when free-living microbes transfer to associated hosts [31,32]. For this
reason, understanding microbial priority effects has high value for biomedical and bioaugmenta-
tion applications (see Outstanding questions) such as microbiome transplants, bicinoculants,
and probiotics [33]. Similar scenarios in which founder microbes can inhibit the colonization of
other symbionts, pathogens, or parasites exist in plant- [34] and animal-associated systems
[35]. Similarly, in disease ecology, studies have highlighted that early-arriving pathogens can
alter host susceptibility to secondary infection by subsequent pathogens. For example, malarial
strain dominance in mice can be predicted by the order of strain inoculation, such that strains
that remain rare in simultaneous inoculations can dominate when introduced first [36].

Polar biology

Although there is a growing community ecology literature on polar ecosystems, most studies
operate in apparent isolation from other fields (discussed in Box 2), and few studies explicitly
address the role of priority effects in polar environments. Those that do often find evidence for
priority effects. For example, variation in the timing of nutrient availability can influence the strength
of priority effects during Antarctic bacterial community succession [37]. Similarly, in Antarctic
macrobenthic communities, stochastic processes have a stronger explanatory effect on the
assembly patterns than any environmental factor [38], suggesting historical contingency during
community assembly. As these studies show, polar ecosystems represent opportunities for re-
search on priority effects in two ways (see Outstanding questions). First, polar regions generally
have a relatively small number of species, which makes them tractable for experimental commu-
nity ecology. Second, polar environments are changing rapidly in response to contemporary
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climate change [39], and therefore provide opportunities to observe community dynamics result-
ing from species invasions via climate-driven migrations as well as community assembly patterns
as climate change generates new habitat types in situ [40].

Human microbiome ecology

Despite a large research investment in human-associated microbiomes over the past few
decades, surprisingly little attention has been paid to the role of priority effects in these systems
[33] compared to other microbial systems (discussed in the sections on microbial ecology and
food microbiology). The introduction of bacteria intended to restore or maintain a healthy gut
microflora, often referred to as probiotics, has been well studied and implemented, but the histor-
ical contingency that priority effects cause in microbiome assembly has rarely been considered
explicitly in improving the efficacy of probiotics. A small but increasing number of recent studies
have suggested strong priority effects for human-associated microbes using mouse models.
Most studies focus on a particular bacterium that is of medical significance as a pathogen or a
beneficial symbiont (cf [32]), such as Salmonella enterica serovar [41] and Clostridium dlifficile in
the intestine [42], Helicobacter pylori in the stomach [43], Cutibacterium acnes on the skin [44],
and Bifidobacterium species in the infant gut [45].

Studies on human microbiomes are limited by the dearth of possibilities for manipulative experi-
ments directly on humans (see Outstanding questions). However, these biomedical studies
excel in the presentation of multiple layers of evidence regarding the chemical and genetic mech-
anisms that underlie microbial priority effects —an uncommon focus of classic community ecology
studies on priority effects. Even though some of the methods available for studying medically
important microbes are not yet ready to be applied to non-model organisms, these studies
provide guidance as to how to gain insights into the mechanisms leading to priority effects in
microbial organisms as new methods, particularly gene knockouts and associated tools, become
more widely applicable. The combination of these approaches with manipulative experiments
that vary inoculation order in model systems is likely to provide experimental designs that are
especially promising for understanding the importance of priority effects in host-associated
microbiome assembly.

Food microbiology

Microbial interactions are responsible for the flavor, aroma, and nutritional value of many
fermented food products. Food practitioners can manipulate microbial arrival to create desired
taste profiles [46]. For example, liquor flavor has been linked to the arrival order of microbial
starters because they differentially modify the niche space to suppress particular species in a
two-stage brewing process [47]. Similarly, early inoculation with some bacteria that produce
antimicrobial compounds and therefore initiate priority effects through niche modification can
enhance flavor and extend the shelf life of cheese and sourdough [48-50]. Nevertheless, most
studies on food microbiology in this context have operated independently of knowledge of
ecological priority effects. Such situations have been underexploited for research on priority
effects, even though food-associated microbial communities offer well-resolved systems to
examine how and why priority effects occur, and practitioners have historic knowledge of
when, how, and why the use of priority effects has applied value (see Outstanding questions).

Eco-evolutionary dynamics

Evolution can influence ecological community assembly if early-arriving species that rapidly adapt
to environmental conditions subsequently monopolize local resources and prevent the expansion
of later-arriving species through differential biotic interactions (the monopolization hypothesis
[51]). Monopolization is particularly likely when late-arriving species are maladapted or have
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poor dispersal, thereby providing early-arriving species sufficient time for adaptation [51,52].
Evolution-mediated priority effects can also occur intraspecifically, whereby early-arriving
genotypes dictate the evolutionary trajectory of the founding population and inhibit the success
of subsequent genetic lineages (i.e., founder effects) (see Outstanding questions). Although the
ecological significance of microevolutionary dynamics is well supported, incorporating the
study of such processes into field studies on priority effects is logistically challenging because
one needs to study both the ecological and evolutionary dynamics, and it also faces the problem
of inferring processes that operated in the past. A greater synthesis of approaches, combining
field studies — which offer valuable insights into how natural processes unfold in the wild — with
the experimental power of microcosms or microbial systems will be important to improve our
empirical understanding of the relationship between microevolution, priority effects, and commu-
nity assembly.

Paleobiology and macroevolution

In the fossil record, episodes of explosive diversification following the removal of ecologically
similar species have often been taken as evidence for inhibitory priority effects, commonly termed
incumbency effects in paleobiology [53]. For example, following the Cretaceous—Paleogene mass
extinction event, birds and placental mammals explosively radiated into a variety of ecological
niches that were previously occupied by now-extinct non-avian dinosaurs and other archosaurs
[54]. Macroevolutionary priority effects may also occur among members of the same clade
[65,56]. For example, following the earlier Permian-Triassic extinction event, marine ammonoids
diversified into ecological niches that were previously occupied by clade members which
succumbed to the extinction event [57]. Recent attempts to develop theoretical macroevolution-
ary models have supported these observations from the fossil record. Priority effects can influ-
ence niche evolution, speciation, and extinction dynamics, leading to major disparities between
evolutionary lineages and higher patterns of metacommunity diversity. Such studies offer insight
into the macroevolutionary consequences of priority effects at timescales that exceed classic
community ecology, but draw parallels to microbial studies that can operate on analogous time-
scales if expressed as the number of generations [58]. A greater synthesis of the paleontological
literature, which is replete with evidence for incumbency (i.e., priority) effects, but lacks the ability
to test ecological hypotheses owing to the retrospective nature of the field [53], with experimental
evolution involving organisms with short generation times may provide opportunities for testing
and generating new hypotheses (see Outstanding questions). Of course, the focal taxa in paleon-
tological studies and experimental evolution research often have very different life histories, and it
is therefore important to exercise caution when extending conclusions from one field to another.

Concluding remarks: moving forward with cross-disciplinary communication

Our observation of variable communication between studies on priority effects (Box 2) may indi-
cate differences in the spatial and temporal scales of the processes that the studies focus on. For
example, restoration and invasion ecology studies are not only conceptually similar but also
operate at similar spatial and temporal scales, meaning that similar methods and analyses can
be used, further facilitating information transfer between these fields. By contrast, the phenomena
studied by some other fields operate at vastly different scales that require disparate approaches,
such as paleontological studies and those on microbiomes, parasites, and diseases, and have
therefore experienced limited cross-disciplinary communication. In addition, some fields such
as polar biology, animal ecology, and plant ecology appear to have limited communication
even though studies typically operate on similar spatial and temporal scales. This lack of commu-
nication likely represents a rather artificial silo in research and one that would be valuable to
bridge. How can we actually bridge such commmunication gaps between different fields studying
priority effects, especially those operating on vastly different spatial and temporal scales? Our
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Outstanding questions

Do priority effects operate in similar
or dissimilar ways across different
ecosystems?

What are the long-term ecological
consequences of priority effects?

To what extent can invasive species
serve as 'natural experiments' in
contributing to our understanding of
priority effects?

How can a better understanding
of microbial priority effects lead to
practical applications in biomedical and
agricultural research, bioaugmentation,
and/or disease ecology?

What role do priority effects play
during community reassembly under
contemporary climate change?

How widespread are priority effects in
determining the establishment success
of human-associated microbes?

How can knowledge of priority effects
application by food practitioners be
integrated into the ecological framework
of priority effects?

How do intraspecific genetic priority
effects (e.g., the founder effect) influ-
ence the assembly of multi-species
communities?

How can experimental evolution models
be used to investigate the role of priority
effects in driving macroevolutionary
processes?

To what extent and in what ecological
contexts do facilitative priority effects
influence community assembly?

When do priority effects involve niche
preemption versus niche modification?

How does the relative importance
of niche preemption versus niche
modification vary across systems and
scales?
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collation of variable terms related to priority effects (Table 1) represents a first step to break down
semantic barriers between subfields. In providing a list of appropriate keywords to researchers
studying priority effects, we hope that this contribution will provide a launchpad for developing
a unified framework across a broad range of ecological contexts.

Experimental approaches continue to offer the strongest means for making causal inferences re-
garding how and why priority effects occur (see Outstanding questions). However, in situations
where an experimental approach is less viable because of the large scales or ethical consider-
ations involved, such as experimental assembly of vertebrate communities, recent advances in
estimating historical species distributions provide new ways to investigate how priority effects
have operated in the past. For example, new statistical tools to estimate ancestral phylogeo-
graphic [59] and ecological network reconstruction [60] provide better estimates for past patterns
of community assembly or ecological interactions. Further development of these approaches will
help to interpret the processes that led to present-day biodiversity patterns, as well as to forecast
future community dynamics following anthropogenic change or disturbance.
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