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Abstract

We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to
2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data,
this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We
derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic
galaxies and expect our search to be complete to My ~ (—7, —10) mag for galaxies at D = (0.3, 2.0) Mpc. We find
no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf

0.05

galaxy at a distance of 2.27373 Mpc, a potential satellite of the Local Volume galaxy NGC 55, separated by 47’
(physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absolute V-band magnitude of
—8.0703 mag and an azimuthally averaged physical half-light radius of 2.2"9- kpc, making this one of the lowest
surface brightness galaxies ever found with p = 32.3 mag arcsec™2. This is the largest, most diffuse galaxy known
at this luminosity, suggesting possible tidal interactions with its host.

Unified Astronomy Thesaurus concepts: Local Group (929); Low surface brightness galaxies (940); Dwarf

galaxies (416)

1. Introduction

Dwarf galaxies are the most abundant galaxies in the
Universe, and their demographics offer a unique probe into
galaxy formation and feedback processes, reionization, and the
nature of dark matter. The brightest Local Group (LG) galaxies
were historically discovered predominantly in visual searches
of photographic plates (Shapley 1938a, 1938b; Harrington &
Wilson 1950; Wilson 1955; Cannon et al. 1977; Irwin et al.
1990; Ibata et al. 1994). Large digital sky surveys have since
allowed for fainter systems to be discovered using statistical
matched-filter techniques, identifying faint dwarf galaxies as
arcminute-scale overdensities of old, metal-poor stars (Willman
et al. 2005a, 2005b; Belokurov et al. 2006, 2007, 2008, 2009,
2010; Grillmair 2006, 2009; Sakamoto & Hasegawa 2006;
Zucker et al. 2006a, 2006b; Irwin et al. 2007; Walsh et al.
2007). Searches using these matched-filter techniques have
been applied to the current generation of wide imaging surveys
to detect yet fainter and more distant systems (Bechtol et al.
2015; Drlica-Wagner et al. 2015; Kim & Jerjen 2015; Kim
et al. 2015a, 2015b; Koposov et al. 2015, 2018; Laevens et al.
2015a, 2015b; Martin et al. 2015; Homma et al
2016, 2018, 2019; Torrealba et al. 2016a, 2016b, 2018,
2019; Luque et al. 2017; Mau et al. 2020; Cerny et al.
2021b, 2023a, 2023b; Smith et al. 2023).

Ultrafaint dwarf galaxies (My 2 —7.7; Simon 2019) are the
most dark matter—dominated systems known and represent the
extreme limit of the galaxy formation process, likely inhabiting
the lowest-mass dark matter halos capable of hosting star
formation (Jethwa et al. 2018; Wheeler et al. 2019; Nadler et al.
2020; Applebaum et al. 2021). Recent systematic searches for
ultrafaint Milky Way (MW) satellite galaxies over ~80% of the
sky have allowed for robust inferences about the population of
such galaxies within the virial radius of the MW (Koposov
et al. 2008; Drlica-Wagner et al. 2020). This census has
allowed for the first constraints on the galaxy—halo connection
for dark matter halos below 10® M., including evidence for the

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

statistical impact of the Large Magellanic Cloud (LMC) on the
MW satellite population (Nadler et al. 2020), and limits on the
properties of several alternative dark matter models (Kim et al.
2018; Newton et al. 2018, 2021; Nadler et al. 2021; Mau et al.
2022).

However, the population of LG galaxies beyond the MW
virial radius (300 kpc) is less explored. Dwarf galaxies
dominate the Universe by number, yet a precise census of
these objects remains challenging due to their inherently faint
nature and the limited sensitivity of observational surveys. In
the nearby Universe, these low-luminosity dwarf galaxies are
detected in optical imaging surveys as arcminute-scale
statistical overdensities of individually resolved stars. Previous
searches for distant dwarf galaxies have primarily been targeted
searches of the halos of larger host galaxies, typically out to
their virial radii. A satellite census has been performed for M31
(McConnachie et al. 2008, 2009; Martin et al. 2009,
2013, 2016) and for several other large galaxies within the
Local Volume (D <11 Mpc; Chiboucas et al. 2013; Merritt
et al. 2014; Sand et al. 2014; Crnojevi¢ et al. 2016a; Toloba
et al. 2016; Smercina et al. 2018; Taylor et al. 2018; Bennet
et al. 2019, 2020; Miiller et al. 2019; Martinez-Delgado et al.
2021; Carlsten et al. 2022; Mutlu-Pakdil et al. 2022). Targeted
searches have also been performed around smaller, Magellanic
Cloud—analog galaxies more nearby in the LG as part of the
Magellanic Analog Dwarf Companions and Stellar Halos
(MADCASH) project (Carlin et al. 2016, 2021) and the DEEP
component of the DECam Local Volume Exploration
(DELVE-DEEP; Drlica-Wagner et al. 2021).

Recent studies of the LMC and its impact on the MW
satellite population have indicated that these targeted searches
are likely to be fruitful, since the LMC fell into the MW with its
own satellite population (Kallivayalil et al. 2018; Nadler et al.
2020; Patel et al. 2020). However, in addition to the prediction
of faint satellites around field galaxies in the Local Volume
(Dooley et al. 2017b), cosmological zoom-in simulations of
MW- and LG-like systems also predict the existence of low-
mass halos outside the virial radii of a larger host (Garrison-
Kimmel et al. 2014, 2019a; Nadler et al. 2020; Joshi et al.
2023). These isolated halos are either “field” halos, having
never passed within the virial radius of a larger host halo,


http://astrothesaurus.org/uat/929
http://astrothesaurus.org/uat/940
http://astrothesaurus.org/uat/416
http://astrothesaurus.org/uat/416
http://creativecommons.org/licenses/by/4.0/

THE ASTROPHYSICAL JOURNAL, 961:126 (17pp), 2024 January 20

“splashback™ halos which have orbited once within the virial
radius of a larger host but today reside outside (Adhikari et al.
2014; Diemer & Kravtsov 2014; More et al. 2015), or
“Hermean” halos that passed through the halos of both the
MW and M31 at early times (Newton et al. 2022). Known
highly isolated dwarf galaxies around the LG are cataloged in
Martinez-Delgado et al. (2018), and are all relatively bright
(My < -10 mag).

Simulated field dwarf populations agree with observations at
the bright end, matching subhalo mass functions for M, >
10° M. in hydrodynamic simulations including baryonic
feedback (Fattahi et al. 2016; Sawala et al. 2016; Garrison-
Kimmel et al. 2019a; Applebaum et al. 2021); however, an
unobserved gopulation of low-mass dwarf galaxies with
M, =10°-10° M, also exists in these simulations (Garrison-
Kimmel et al. 2019a; Fattahi et al. 2020). Discovering and
characterizing these low-mass isolated field dwarfs could lend
insight into the “too-big-to-fail” (TBTF) problem (Boylan-
Kolchin et al. 2011, 2012), which is present for field galaxies
beyond the MW and beyond the LG entirely (Papastergis et al.
2015; Papastergis & Shankar 2016). The existence of low-
density systems in question for TBTF tensions could be
interpreted as evidence for alternative dark matter models; in
particular, strongly self-interacting dark matter (SIDM) models
diversify low-mass halo populations relative to cold dark matter
(CDM), predicting both underdense and overdense outliers
among LG isolated dwarfs (Robles et al. 2017; Fitts et al. 2019;
Yang et al. 2023). The Tucana dwarf galaxy, which may be a
tidally affected splashback system of M31 (Santos-Santos et al.
2023), was originally thought to be an example of such an overly
dense system (Fraternali et al. 2009; Gregory et al. 2019),
although more recent analyses have found a central density
profile consistent with other LG dwarfs (Taibi et al. 2020).

Blind searches for resolved dwarf galaxies in the LG field
(D=~0.3-2 Mpc) offer separate challenges from targeted
satellite searches. In particular, the 3D search volume is much
larger. Lacking a strong prior on the heliocentric distance
distribution of these isolated systems requires us to scan over
the line-of-sight distance at each sky location. Additionally, a
field search requires much broader sky coverage. Until
recently, wide optical surveys have not been sensitive enough
to detect faint dwarf galaxies at these distances. However,
recent discoveries of relatively isolated LG ultrafaint dwarf
galaxies (Collins et al. 2022, 2023; Martinez-Delgado et al.
2022; McQuinn et al. 2023a, 2023b) have been made in
imaging from the DESI Legacy Imaging Survey (Dey et al.
2019), a DECam survey reaching depths of ~24 mag in the
optical bands, comparable to the apparent magnitude of red
giant branch (RGB) stars in dwarf galaxies 1 Mpc. The
recently processed data from the 6 yr Dark Energy Survey
(DES Y6), another DECam survey ~0.5 mag deeper than the
DESI Legacy Imaging Survey (Abbott et al. 2021), will
similarly be sensitive to the brightest members of this distant
population.

Here we report on a wide-area search for a field population
of faint dwarf galaxies beyond the MW virial radius. We
performed a search over the entire 5000 deg” DES footprint
using the same search algorithm employed in previous wide-
area DES searches (Drlica-Wagner et al. 2020) as well as in the
recent discoveries of several new nearby ultrafaint stellar
systems (e.g., Mau et al. 2020; Cerny et al. 202la,
2021b, 2023b; Section 2). We optimized the algorithm for
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the detection of more distant systems by including multiband
photometry and searching the footprint on a finer spatial grid,
and injected synthetic galaxies into the DES data to quantify
the search sensitivity. The search yielded a single high-
significance candidate, designated DES J0015-3825, based on a
stellar population consistent with the tip of the RGB of an old,
metal-poor stellar population at a distance of ~2 Mpc
(Section 3). We use deeper follow-up DECam images of the
candidate to confirm and characterize it. The proximity of
DES J0015-3825 to the LMC-mass galaxy NGC 55 suggests
the presence of a low-luminosity central-satellite system and
possible tidal interactions between the two galaxies; we
therefore refer to the candidate dwarf galaxy as NGC 55-dwl
throughout this paper. Finally, we discuss the implications for
the total galaxy population within 2 Mpc and the outlook for
searches with future wide-area imaging surveys (Section 4).

2. Wide-area Search
2.1. Data

The wide-area search used data from the DES, an optical and
near-infrared ground-based wide-area imaging survey covering
~5000 deg” of the Southern high—Galactic latitude sky. DES
utilizes the Dark Energy Camera (DECam; Honscheid &
DePoy 2008; Flaugher et al. 2015), a 3 deg® field-of-view
camera installed at the prime focus of the 4 m Blanco telescope
at the Cerro Tololo Inter-American Observatory. In this paper
we made use of the full 6 yr of DES wide-area survey
observations (DES Y6). This data set was released publicly as
the second public data release (DR2) of DES data (Abbott et al.
2021). Image reduction and processing were performed by the
DES Data Management system (DESDM; Morganson et al.
2018) at the National Center for Supercomputing Applications
(NCSA). The processed images from this pipeline are used to
build a coadded catalog of astronomical objects, with point-
spread function (PSF) model fitting performed by PSFEx
(Bertin 2011) and source detection and measurement per-
formed by SourceExtractor (Bertin & Arnouts 1996).
Internal photometric calibration was performed using FGCM
(Burke et al. 2018) to obtain a uniformity of better than 2
mmag across the survey footprint (Rykoff et al. 2023). The
estimated coadded imaging depth in the optical bands, defined
as having a signal-to-noise ratio (S/N) = 10, is 24.7, 24.4, and
23.8 mag in each of gri, respectively (Abbott et al. 2021).

The stellar sample used in this work comes from a
preliminary version of a Y6 Gold data set that expands upon
data products included in DES DR2, analogous to the ensemble
of Y3 Gold data products for the first 3 yr of DES data (Sevilla-
Noarbe et al. 2021). Photometric measurements use the
multiepoch, multiband fitting algorithm fitvd based on a
combined fit of grizY measurements, considering the PSF
model results for the stellar sample. Objects for the stellar
sample are selected using a morphological classification based
on a comparison between PSF and extended models with
fitvd, using a threshold in the size parameter BDF_T that
maximizes Matthew’s correlation coefficient in each S/N bin.
For the 0.2% subset of objects without robust £itvd extended
model measurements, we use the SourceExtractor
WAVG_SPREAD_MODEL_TI or SPREAD_MODEL_TI morpholo-
gical measurements for star—galaxy classification as described
in Abbott et al. (2021). We select quality objects using
the FLAGS_GOLD =0 criterion. The effects of interstellar
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extinction are taken into account by dereddening flux
measurements using the Schlegel et al. (1998; SFD) dust map
as described in Abbott et al. (2021).

We limit the analysis to regions of the DES footprint that
have at least 50% coverage in the intersection of the griz bands,
and at least two exposures in each of the griz bands, as
measured within arcminute-scale spatial pixels; survey proper-
ties are represented using HEALPix maps at resolution
nside =4096 (Abbott et al. 2021). The total area of the
footprint used in the search is 4838 deg” in a single contiguous
region.

2.2. Search Algorithm

Our search employed an automated algorithm similar to
previous works searching for ultrafaint galaxies (e.g., Drlica-
Wagner et al. 2020; Mau et al. 2020; Cerny et al. 2023a), but
modified to be more sensitive to distant dwarf galaxies. This
search algorithm, simple,55 uses a simple isochrone filter to
remove the foreground field of MW stars and enhance the
contrast of substructures at a given distance. simple is
inspired by the matched-filter methods of Koposov et al. (2008)
and Walsh et al. (2009), and this specific implementation builds
on the technique described by Bechtol et al. (2015) and Drlica-
Wagner et al. (2015).

Since the member stars of the distant systems we aim to
discover sit near the depth limit of our data, we used multiband
photometry to help facilitate star—galaxy classification beyond
the morphological classifiers included in the DES Y6 data. In
particular, we require that objects be detected in all of the gri
bands. This is in contrast to previous implementations of the
simple algorithm which only used photometry from two
bands, generally g and r (e.g., Drlica-Wagner et al. 2020; Cerny
et al. 2023a). As a basic quality selection, we required that
objects be brighter than r=24.5mag and i=24.25mag,
consistent with previous implementations of simple on
DES data and adjusted to reflect the increased depth of DES
Y6. We further required that objects lie near the stellar locus in
color—color space. Specifically, we required the straight-line
distance d between an object’s (g —r, r—i) coordinate in
color—color space and the best-fit line to the stellar locus satisfy
d< \/0.152 + Uﬁ + 02+ O’iz, where o, is the uncertainty in
the g-band magnitude and so on for the other bands. The
selection was chosen to be inclusive enough to ensure almost
all correctly classified stars will still be included while
simultaneously excluding point-like sources whose color
clearly identifies them as galaxies.

A matched-filter search for old, metal-poor stars was
performed over distance moduli ranging from 22.5<
m— M < 26.5 mag in steps of 0.5 mag, corresponding to a
search between heliocentric distances of 316 < D < 2000 kpc.
This range begins at the MW virial radius (~300 kpc) and ends
at the approximate distance modulus beyond which too few
RGB stars will lie above the survey’s depth limit to enable
confident detection. At each distance modulus, we selected
stars with g-, r-, and i-band magnitudes consistent with the
synthetic isochrones of Bressan et al. (2012) with metallicity
Z=0.0001 and age 7= 12 Gyr. In particular, we applied two
separate isochrone filters: one using g — r color versus g-band
magnitude, and another using r—i color versus r-band
magnitude. In each case we required that the color difference

3 https://github.com/sidneymau /simple /tree /simple3
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between each star and the template isochrone be within 0.1
mag, accounting for uncertainties in the magnitudes, i.e.,
Ag —r) < JO.I> + O'§ + o2,

The DES footprint was partitioned into nside = 32 HEAL-
Pix pixels (~3.4 deg®), and each pixel was analyzed
individually. For each pixel and distance modulus step, the
color and isochrone filters were applied as previously described
to the central HEALPix pixel along with the eight surrounding
pixels, creating a map of the filtered stellar density field in the
region of interest. The eight surrounding pixels are necessary to
estimate the average stellar density in the region more
accurately. This density field was smoothed by a Gaussian
kernel with o = 1’. Crucially, the spatial bin size for the
density map and the smoothing kernel were smaller in our
implementation of simple relative to previous searches to aid
in the detection of distant galaxies whose angular size is small
relative to more nearby MW satellites with similar structural
parameters. We perform a first-pass search for local density
peaks in the smoothed map by iteratively raising the density
threshold until there are fewer than 10 disconnected peaks
above the threshold. For each peak identified, we estimate the
local field density using an annulus between 18’ and 30’
centered on the peak. We account here for the survey coverage
which is mapped at square-arcminute scales. We then iterate
through circular apertures with radii from 0 18 to 18’ and
compute the Poisson significance for the observed stellar count
within the aperture relative to the local field density, identifying
the angular size of the aperture which maximizes the
significance. Spatially coincident peaks at different distance
moduli are consolidated, identifying the modulus with the
largest significance as an estimate of distance.

2.3. Results

The simple search algorithm returned the locations of
several thousand stellar density peaks. The distribution of these
“hotspots” falls steeply with increasing significance. In
previous searches using the simple algorithm for the
detection of MW satellites, most high-significance peaks
coincide with real stellar systems, regions of small-scale spatial
variance in extinction or stellar density, or survey artifacts
(Drlica-Wagner et al. 2020). Since this search is instead
designed to identify distant, faint objects at the edge of
detectability, the ratio of false positives is likely to be higher
than in those searches. Therefore to filter through the large
number of potential galaxy candidates, we applied extra layers
of selection criteria for the hotspots. These selections, detailed
in the following paragraphs, are designed to be relatively
permissive, while still removing hotspots most likely to be
spurious due to low statistical significance or their location in
problematic areas of the survey footprint. A visual inspection
of the remaining hotspots is necessary as a final step to
determine any potential new candidate galaxies.

First, we apply a significance threshold of o > 6.0, consistent
with previous applications of the simple algorithm. Second,
we apply a foreground mask encompassing several geometric
criteria. Although we include the effects of reddening in the
search algorithm, regions of high reddening tend to trace
regions of high MW stellar density. In these regions the stellar
field density and reddening often vary over small spatial scales,
which can pose problems for the search algorithm in
identifying real stellar overdensities. Therefore we restrict our
search to regions of low interstellar extinction, E(B — V) < 0.2
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Figure 1. Spatial distribution of stars near NGC 55-dw1. Left: classified stars in our final data set comprising DES, DELVE-DEEP, and one night of additional
DECam follow-up (see Section 3.1). Only stars which passed our quality cuts are shown, indicated with gray dots. Large black dots show stars additionally passing the
isochrone and color—color filters. The red annulus indicates the region used to calculate the background stellar density. Middle: a smoothed spatial map of the stars
passing the quality cuts as well as passing the isochrone and color—color filters. A small region containing NGC 55 has been removed for clarity; the approximate
location of NGC 55 is indicated by the ellipse. Note that for both the left and middle panels, the deepest data are only available in a 3 deg” region centered on NGC 55-
dwl, corresponding to the DECam field of view. Right: radial density profile of stars passing all selection criteria, centered at the location of NGC 55-dw1. The blue

curve shows a Plummer profile with a scale radius of @, = 5! 2 (Section 3.2).

(SFD). Since the DES footprint primarily covers the high—
Galactic latitude sky, this removes a negligible amount of sky
area, ~0.2 degz.

We also masked regions near known astronomical objects
that can cause spurious hotspots. These include nearby galaxies
that are resolved into individual stars (Nilson 1973; Web-
bink 1985; Corwin 2004; Bica et al. 2008; Kharchenko et al.
2013), MW globular clusters (Harris 1996, 2010 edition),
open clusters (WEBDA),>® and bright stars (Hoffleit &
Jaschek 1991). We additionally masked regions around nearby
MW satellite galaxies and other LG galaxies (McConna-
chie 2012; Drlica-Wagner et al. 2020) as well as overdensities
in two narrow stellar streams, ATLAS (Koposov et al. 2014;
Shipp et al. 2018) and Phoenix (Balbinot et al. 2016; Tavangar
et al. 2022). For extended objects, the masked region covers the
half-light radii of those objects, with a minimum masked radius
of 0.05 deg. For bright stars and other objects without size
information, a circular region of 0.1 deg radius is masked.
These masks cover a total of 96 deg®, ~2.5% of the DES
footprint.

Applying these selections reduces the set of potential
hotspots to ~300. While this number far exceeds any expected
number of true detections (see Section 4.2), a visual inspection
of the results shows that many of these were obvious artifacts,
predominantly due to data quality at the edge of the survey
footprint. While the search algorithm does take into account
survey coverage in the calculation of local stellar field density,
the nature of the data quality at the outer border or near holes in
the DES footprint led to many purportedly high-significance
detections in these regions. These artifacts are easily identified
and discarded.

After a visual inspection of diagnostic plots of spatial, color—
magnitude, color—color, and morphological size distributions
generated for each hotspot, we identified six previously
undetected stellar systems which pass our selection criteria,
only one of which stood out as highly significant and of
particular interest. This system, NGC 55-dwl, is the most
statistically significant candidate identified in the search at
0 =9.6, exceeding our nominal threshold by several o. Its

36 https: //webda.physics.muni.cz

large, diffuse nature makes it an extreme outlier in surface
brightness and clearly distinguishes it upon visual inspection
from common spurious overdensities picked up by the search
algorithm which tend to be extremely compact. This unique
structural profile, coupled with its proximity the the Local
Volume galaxy NGCS55, make NGC 55-dwl a particularly
interesting target for further follow-up. Figure 1 shows the
spatial stellar distribution in the vicinity of NGC 55-dwl, as
well as an azimuthally averaged radial profile centered on its
location; a more detailed analysis of the candidate galaxy is
given Section 3.

The other systems had much lower Poisson significance,
barely passing our nominal ¢ > 6 threshold. Furthermore, a
search run over a previous version of the DES Y6 catalog
identified a similar number of systems, but only two were
found in both versions of the search. One is the previously
noted NGC 55-dwl, which appeared at high significance in
both searches. The second system, located at («, §) =
(347.0, —2.0), sits very near the edge of the DES footprint
and was identified at significance o =6.02. Upon further
investigation, the data quality was found to be inconsistent in
this region of sky, making background estimation more
difficult. Coupled with the fact that the remaining systems
only appeared in one run of the search, we found it likely that
these were spurious hotspots, and therefore chose to only
consider NGC 55-dw1 for further investigation.

2.4. Sensitivity Analysis

To estimate the sensitivity of our detection algorithm to
distant dwarf galaxies in the DES Y6 data, we simulate
galaxies with a range of luminosities and sizes at distances
beyond the MW virial radius. These galaxies were simulated at
the catalog level as collections of individually resolved stars.
We assessed the stellar completeness of the DES Y6 catalog by
comparison with data from Hyper Suprime Cam (HSC) SSP
DR1 (Aihara et al. 2018). In particular, we match the DES
object catalog to stellar catalogs of the combined HSC Wide
VVDS, Deep DEEP 2-3, and UltraDeep SXDS fields in a ~20
deg?® region where the two data sets overlap. We calculate both
the detection efficiency and stellar completeness as functions of
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Figure 2. Left: stellar completeness model for the DES Y6 data set, validated against HSC-SSP DR1. The dashed line indicates detection efficiency only, while the
solid line indicates detection and correct star—galaxy classification. Right: photometric uncertainty model for the DES Y6 data set. The dashed line corresponds to
statistical uncertainty alone, while the solid line includes a minimum photometric uncertainty of 0.01 mag.

DES r-band magnitude. The results are shown in the first panel
of Figure 2.

We assigned photometric uncertainties to the simulated
stellar magnitudes based on the depth and interstellar extinction
at the location of each star according to the formula

on =001 4+ 10/@m), (1)

Am = m — myy, is the difference between the apparent
magnitude m of a star and the 100 survey magnitude limit at the
star’s location my;,,. The function f(Am) maps this difference to
the median magnitude uncertainty. We derive f by fitting the
median magnitude uncertainty as a function of magnitude and
magnitude limit. The photometric error model is shown in the
second panel of Figure 2. We impose a conservative 0.01 mag
uncertainty minimum to ensure realistic representation of DES
photometry for bright objects.

To generate realistic catalogs, we use probabilistic models
for the spatial and flux distributions of the member stars of each
synthetic galaxy. The spatial distribution of stars was sampled
from a Plummer profile (Plummer 1911), and the initial masses
were drawn from a Chabrier (2001) initial mass function (IMF).
These have both been found to be good descriptions for known
MW satellite galaxies (Belokurov et al. 2006; Sand et al. 2010;
Gennaro et al. 2018a, 2018b; Simon 2019). A lower mass
bound set to the hydrogen-burning limit of 0.08 M. was
imposed when sampling from the IMF. We used PARSEC
isochrones (Bressan et al. 2012) to derive stellar photometry in
the g, r, and i bands from the initial stellar masses. We convert
these absolute magnitudes into apparent magnitudes using the
distance modulus of the simulated galaxy. Interstellar extinc-
tion was applied consistent with the real DES data as outlined
in Section 2.1.

We inject each galaxy’s synthetic stellar catalog into the
DES Y6 data and run the simple search algorithm using the
same search configuration used in the search over real data. In
the typical use case of a search for undiscovered galaxies in real
data, the algorithm scans over spatial location and distance
modulus near an identified peak in stellar density to maximize
its detection significance. However, to save on computational
time, we only search at the known spatial locations and
distance moduli of the simulated galaxies. This ignores
the possibility that background fluctuations or statistical

fluctuations in the simulated stellar photometry could slightly
increase the significance at different locations or distances, and
therefore provides a conservative estimate of a galaxy’s
detectability. In a previous analysis of DES data using the
simple search algorithm, this choice only impacted the
detection probability by at most a few percent for satellites
close to the detection threshold (Drlica-Wagner et al. 2020).

The results of this analysis for galaxies located at
heliocentric distances of 0.5, 1.0, 1.5, and 2.0 Mpc are shown
in Figure 3. At each distance slice, we simulate 100 galaxies for
each (a;/,, My); Figure 3 represents ~10° total simulated
systems. Note that galaxies with absolute magnitudes brighter
than My = —12 mag were not fully simulated and instead
assumed to be detected at the maximum significance.

Due to its extreme size, the discovery of NGC 55-dw1 seems
unexpected given our sensitivity at 2 Mpc. However, NGC 55-
dw1 happens to lie in an area of sky where the local density of
classified stars (~1.2 stars arcminfz) is about 50% lower than
the mean across the footprint (~1.8 stars arcmin2), resulting
in NGC 55-dw1 being detected at high significance relative to
the local background despite its diffuseness.

Since we inject galaxies at the catalog level, our predicted
detection probabilities do not account for effects of blending in
regions of high stellar density which may affect the detection
and photometric measurement of member stars. For very bright
or very compact galaxies, central stellar densities can exceed
100 stars arcmin 2, roughly the density beyond which
individual stars cannot be resolved by the DESDM pipeline
(Wang et al. 2019). To assess the impact of blending on our
sensitivity, we injected 175 galaxies at the image level, with
absolute magnitudes My € [—8, —12] mag and physical half-
light radii ry s, € [100, 1230] pc at D ~ 2 Mpc. We compute the
discrepancy between each galaxy’s absolute magnitude upon
image-level injection and upon recovery by SourceEx-
tractor as a function of density of injected stars brighter
than i = 27 mag within one half-light radius. The black hatches
in Figure 3 denote regions of parameter space where this
reduction in flux is likely to decrease the detection probability
below 50%. Galaxies in these regions were detected at high
significance when injected at the catalog level; however, the
likely nondetection of stars in their central regions due to
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Figure 3. Expected detection efficiency of dwarf galaxies in our wide-area survey, evaluated by injecting simulated dwarf galaxies into the real DES data. The
background color shows detection probability, defined as the fraction of simulated galaxies with Poisson significance o > 6; detection significance for galaxies
brighter than My = —12 mag is assumed without simulation. The black hatched region contains galaxies which are likely undetectable due to blending effects in their
central regions. NGC 55-dw1 is denoted with a large yellow star. Andromeda XIX, Antlia II, and Crater II are the only known galaxies occupying a similar region of
parameter space, and ESO 294-010 may be gravitationally associated with NGC 55 (Section 4.1). Tucana B, located at D = 1.4 Mpc within the DES footprint, was not
found by our search likely due to blending effects. Sizes and luminosities of other LG galaxies are marked in the distance panel they are closest to: MW satellites, all
much nearer (<370 kpe), with circles (Drlica-Wagner et al. 2020; Cerny et al. 2021b, 2023b); M31 satellites with squares (McConnachie 2012; Martin et al. 2016);
and other LG galaxies with crosses (McConnachie 2012; Collins et al. 2022, 2023; Sand et al. 2022; McQuinn et al. 2023a, 2023b).

blending would effectively dim the galaxies’ magnitudes,
decreasing their significance to below the detection threshold.

Of note is the recently discovered TucanaB, an isolated
ultrafaint dwarf galaxy at a distance D = 1.4 Mpc (Sand et al.
2022), which was not identified in our search despite being
located within the DES footprint. Tucana B was discovered in a
visual search of the DESI Legacy Imaging Surveys Data
Release 9 (Dey et al. 2019). As noted by the authors of the
discovery paper, Tucana B is not well resolved in the DES g-
band data and instead appears primarily as diffuse light. This is
not particularly surprising, since as shown in Figure 3
Tucana B is compact enough relative to its magnitude that
blending may cause difficulty for photometric measurements in
its central region. Since our search algorithm only identifies
overdensities in the resolved stellar catalog, we are unable to
find Tucana B and similarly unresolved objects.

3. Detailed Analysis of NGC 55-dw1l

The initial search over the DES data yielded one high-
significance candidate, NGC 55-dwl. This candidate’s dis-
tance, low surface brightness, and proximity to the Local
Volume galaxy NGCS55 compelled us to acquire deeper
imaging to confirm the detection and to obtain accurate

measurements of its distance, luminosity, and structural
parameters. Here we describe the additional DECam imaging
data used to characterize NGC 55-dw1 and the results of that
analysis.

3.1. Deep Imaging for Candidate Characterization

One piece of this deeper imaging comes from DELVE
(Drlica-Wagner et al. 2021), a wide-area survey that seeks to
assemble contiguous DECam coverage of the Southern sky.
One component of the DELVE survey, DELVE-DEEDP, targets
four isolated Magellanic Cloud—analog galaxies, including
NGC55. DELVE-DEEP imaging covers the halos of each
target to a So depth of g = 26.0 mag and i = 25.0 mag, and our
galaxy candidate lies within the area imaged in this program as
part of its observations of NGC 55. This depth was achieved
with 12 x 300 s g-band exposures and 7 x 300 s i-band
exposures in addition to previous imaging done by DES. The
DECam data taken as part of DELVE is processed consistently
with the DES data through the DESDM pipeline.

We also obtained dedicated DECam imaging to follow up
NGC 55-dwl; these observations were made during the first
half of the nights of 2021 October 23 and 24 under Proposal ID
2021B-0307 (PI: Keith Bechtol). In order to improve our
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ability to characterize the system’s distance, age, and
metallicity, we observed in all of gri, taking 300 s exposures
with three dither locations to alleviate the effects of chip gaps.
This set of observations added 25, 40, and 32 exposures in the
g, r, and i bands, respectively. The exposures were processed
through the same DESDM pipeline as the previous exposures
taken as part of the DES and DELVE surveys. With the
addition of the DELVE-DEEP observations near NGC 55 and
our dedicated follow-up, we achieved a total exposure time of
~3.5 hr in each observing band, reaching 50 depths of 26.8,
26.4, and 25.9 mag in gri, respectively.

With the addition of these deeper data, it was necessary to
have a stellar classifier which could be applied to the entire data
set comprising all of the DES, DELVE-DEEP, and further
DECam follow-up. The DELVE-DEEP catalog does not
include a built-in stellar classifier; a stellar classifier has been
developed for the wide DELVE DR2 public data release based
on the SourceExtractor SPREAD_MODEL quantity, but
this classifier’s efficiency falls steeply deeper than g =22 mag
(see Drlica-Wagner et al. 2022, Figure 8). This classifier did
not perform well when applied to the full deep data set, with the
stellar sample dominated by galaxy contamination at the faint
end. Therefore we created a custom morphological star—galaxy
classifier to be used when fitting the candidate galaxy, in
addition to the color—color criterion which was also used in the
DES search. We compared the distribution of the BDF_T size
parameter (see Section 2.1) for all objects brighter than i =26
mag in two fields, one with high stellar density very close to
NGC 55 and one background field with relatively low stellar
density. The first field, separated by 10’ from NGC 55,
overlapped the region of NGCS55 where its stars are
individually resolved. The second field 60’ from NGC 55 was
distant enough that it was representative of the background in
this region of sky. We derived the BDF_T distribution of an
approximately pure stellar sample by subtracting the BDF_T
distribution of the background from that of the high stellar
density field. We found that a threshold of BDF_T < —0.02
included ~80% of the pure stellar sample, and we used this
cutoff as a criterion to select a stellar sample for the entire
region containing our candidate galaxy.

3.2. Analyzing Deep Follow-up Imaging of NGC 55-dwl

We reran the simple algorithm over a small sky area
covering the location of NGCS55-dwl where we have
additional data from DELVE-DEEP plus additional DECam
follow-up. In the initial search, the candidate overdensity was
most significant at the extreme distant end of the search space
at a modulus of 26.5 mag; therefore, combined with having
access to deeper data, we extended the allowed distance
modulus parameter space an additional 1.0 mag. Shown in
Figures 1 and 4, the result is a clearly visible overdensity with
Poisson significance o = 11.4 relative to nearby background at
m — M = 27.0 mag, consistent with the tip of the RGB of an
old, metal-poor population. Given that all but the brightest
likely member stars are near the depth limit of our data, the
somewhat broad distribution about the matching isochrone is
consistent with a coherent stellar population accounting for our
photometric errors.

We obtained best-fit stellar population and morphological
parameters for NGC 55-dwl using the unbinned maximum
likelihood formalism implemented in the Ultrafaint Galaxy
Likelihood (ugali) software (Bechtol et al. 2015; Drlica-
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Figure 4. Reddening-corrected color-magnitude diagram for the candidate
dwarf NGC 55-dwl1 identified in the search of DECam data. All stars within a
0.5 deg radius (~6 ay,) are shown: field stars outside of the 6! 6 best-fit spatial
aperture in light gray and stars within the aperture in black. Stars brighter than a
g =26 mag limit with ugali membership probability greater than 5% are
colored by their respective probabilities. The dashed curve shows a PARSEC
isochrone (Bressan et al. 2012) for a stellar population at heliocentric distance
D = 2.2 Mpc with age 7= 6.5 Gyr and metallicity Z = 0.00027, the best-fit
parameters from an MCMC fit—note that age and metallicity were not well
constrained. Median errors are indicated along the left side of the plot.

Wagner et al. 2020).°” We fit the system’s color—-magnitude
distribution against a set of PARSEC (Bressan et al. 2012)
isochrones assuming a Chabrier IMF (Chabrier 2001), and the
2D spatial stellar distribution was modeled with a Plummer
profile. We simultaneously constrained the age (7), metallicity
(Z2), and distance modulus (m — M) of the isochrone, and the
centroid location (azggg, 62000), SEMimajor axis (ay,), ellipticity
(e), and position angle (P.A.) of the Plummer profile by
sampling the posterior distribution of each parameter using a
Markov Chain Monte Carlo (MCMC) ensemble sampler
(emcee; Foreman-Mackey et al. 2013).

From these values we estimated the system’s azimuthally
averaged half-light radius (angular r, and physical r;/,),
absolute V-band magnitude (My), average surface brightness
within the half-light radius (u), total stellar mass (M,), and
mean metallicity ([Fe/H]). Table 1 lists the properties of
NGC 55-dwl. This object’s large physical size is especially
noteworthy; NGC 55-dwl1 is nearly the same size as the Small
Magellanic Cloud. The only other faint galaxies with
comparable sizes are AntliaIl and Andromeda XIX, both >1
mag brighter (Martin et al. 2016; Torrealba et al. 2019).

We also calculate the membership probability for each star
based on its Poisson probability of belonging to NGC 55-dwl
based on its flux, photometric uncertainty, and spatial position,
given an empirical model of the local background stellar
population and of a candidate dwarf galaxy. Likely member
stars above the magnitude limit used for our characterization
analysis (g =26 mag) are shown overlaid on the sky image in

57 https://github.com/DarkEnergySurvey /ugali
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5arcmin -

Figure 5. Coadded image of NGC 55-dw1 from our combined gri DECam data
set with probable member stars indicated. Higher-confidence members with
membership probability greater than 50% are highlighted in bright green
circles, while stars with membership probability greater than 5% are shown in
dashed circles. The member stars are all clearly resolved in our stellar catalog.

Table 1

Candidate Galaxy Properties
Parameter Value Units
Q2000 3.87470913 deg
62000 —38.41910007 deg
m—M 26.7175% mag
Distance 2201095 Mpc
a, 52442 arcmin
I 3.4408 arcmin
/2 22483 kpc
¢ 056019
PA. 15613 deg
T 6.5133 Gyr
z 27058 x 1074
My —8.0793 mag
Ly 24108 10° L,
m 323 mag arcsec >
M, 142798 10° M.,
[Fe/H] —-1.8 dex
l 334.370109% deg
b —76.43259013 deg

Figure 5. The Appendix shows the posterior probability
distributions for each parameter.

Due to the relatively large photometric uncertainties for all
but the brightest likely member stars, the age and metallicity of
the stellar population are not well constrained by our fit. In
comparison to other satellites in the Local Volume, our best-fit
age of 6.5f§:§ Gyr is very young. However, the age posterior is
especially broad, including ages as old as 10.8 Gyr within the
68% confidence interval and remaining roughly constant from
10.8 to 13.5 Gyr. The metallicity distribution also skews
heavily toward the metal-poor end of the parameter space, and
NGC 55-dwl therefore remains consistent with an old metal-
poor stellar population. The distance modulus posterior
displays a slight bimodality: the distribution is sharply peaked
around m—M =267 (D=22 Mpc), but with a small
secondary hump near m — M =26.3 (D = 1.8 Mpc).

McNanna et al.

4. Discussion

4.1. Interpretation of NGC 55-dwl as a Possible Satellite
Galaxy of NGC 55

Of particular note is our candidate galaxy’s proximity to
NGC55, an LMC analog approximately codistant with
NGC 55-dwl. The distance modulus of NGC 55 is measured
to be 26.58 mag using the tip of the RGB method (Tanaka et al.
2011); recent studies of Cepheid variables (Gieren et al. 2008)
and blue supergiants (Kudritzki et al. 2016) lead to estimates of
26.43 and 26.85 mag, respectively. Our candidate’s best-fit
distance modulus of 26.71f8_‘?§ mag sits comfortably within
these estimates. The two galaxies are separated on the sky by
approximately 47’. Assuming the two galaxies are both located
at a heliocentric distance of 2.2 Mpc, they would be separated
by a physical distance of only 30 kpc.

The large spatial extent ry,, = 22792 kpe relative to its
My = —8.0793 mag luminosity makes NGC 55-dw1 unusual
among the known population of Local Volume dwarf galaxies.
NGC 55-dw1 falls in a similar portion of parameter space to the
MW satellites AntliaIl (Torrealba et al. 2019) and Crater IT
(Torrealba et al. 2016a), as well as the M31 satellites And XIX,
And XXI, and And XXIII (Martin et al. 2016). Intense tidal
stripping has been proposed as a formation mechanism for such
large, diffuse galaxies (Sanders et al. 2018; Collins et al.
2019, 2021; Torrealba et al. 2019), and tidal features have been
observed in Antlia IT and tentatively in Crater II (Ji et al. 2021;
Vivas et al. 2022). ScI-MM-Dw2, a satellite of the Local
Volume galaxy NGC253, is brighter than NGC 55-dwl
(My=—12 mag) but has similar structural properties
(r1/2=2.9 kpc, ¢ =0.66) and is being tidally disrupted by its
host (Toloba et al. 2016; Mutlu-Pakdil et al. 2022). Our
candidate’s large, diffuse nature, high ellipticity, and proximity
to its potential host galaxy are similarly suggestive of tidal
interactions with NGC 55. While the small bimodality in the
distance modulus posterior is likely attributable to photometric
uncertainty, it could be interpreted as weak evidence of the
presence of tidal features. However, recent N-body simulations
have found that tidal effects alone may not be sufficient to
explain the extreme sizes of these galaxies, indicating that they
may not be bound systems at equilibrium or that their inner
density profiles deviate significantly from expectations (Bor-
ukhovetskaya et al. 2022; Errani et al. 2022). Due to the depth
limitations of our ground-based optical imaging, confirmation
of tidal stripping or measurement of stellar kinematics will
require further follow-up.

If NGC 55-dwl is interpreted as a satellite of NGC 55 its
discovery is not entirely surprising. By applying the best-fit
galaxy—halo connection model from Nadler et al. (2020;
described in Section 4.2) to the LMC-mass zoom-in simula-
tions from the Symphony compilation (Nadler et al. 2023), we
predict that isolated LMC-mass halos host ~<one satellite of
NGC 55-dw1’s absolute magnitude, on average, among a total
satellite population of =10 with My < —3, consistent with
predictions from other studies (e.g., Dooley et al. 2017a). Thus,
NGC 55-dwl may naturally be interpreted as one of the
brightest satellites of NGC 55, perhaps along with the
My~ —11 mag ESO294-010, separated from NGC 55 by
120 kpc (Karachentsev et al. 2002). This scenario can be
confirmed by precise distance measurements and a deep search
for other galaxies in NGC 55’s immediate vicinity.
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4.2. Wide-area Search Implications for the Total Population of
Galaxies within 2 Mpc

To characterize the expected population of observable galaxies
beyond the MW virial radius, we examine a set of high-resolution
cosmological dark matter—only (DMO) zoom-in simulations of
LG-like volumes. These simulations are a subset of the Exploring
the Local Volume in Simulations (ELVIS) DMO suite, which
contains pairs of MW-M31-size dark matter halos within a high-
resolution volume spanning 2-5 Mpc with subhalos resolved
down to peak virial masses Mpey =6 X 107 M., (Garrison-
Kimmel et al. 2014). For each of the three MW-M31-analog
systems we analyze (nicknamed Romeo & Juliet, Thelma &
Louise, and Romulus & Remus), we populate the z =0 dark
matter halo and subhalo populations in each simulation with
galaxies according the galaxy—halo connection model described in
Nadler et al. (2019, 2020).

This model flexibly extrapolates abundance-matching rela-
tions between galaxy luminosity, galaxy size, and halo
properties (specifically, peak maximum circular velocity and
virial radius at accretion) and accounts for the disruption of
subhalos due to MW-mass central galaxies using the random
forest classifier developed in Nadler et al. (2018). We evaluate
the model using the best-fit parameters derived from DES and
Pan-STARRS1 MW satellite observations in Nadler et al.
(2020).°® Note that this galaxy—halo connection model is
defined using halo properties defined at or before infall. Thus,
although its parameters are fit to MW satellite data, we expect
the model to apply to the population of field dwarfs
surrounding the MW; moreover, the underlying abundance-
matching model is calibrated on the Galaxy and Mass
Assembly field luminosity function (Loveday et al. 2015) at
the bright end (M, < —13 mag; Nadler et al. 2019).

We note the existence of more recent hydrodynamic
simulations of LG-like systems, expanding on the ELVIS suite
by applying Feedback In Realistic Environments (FIRE;
Hopkins et al. 2014, 2018; Garrison-Kimmel et al.
2017, 2019a, 2019b). However, our galaxy—halo connection
model was calibrated on DMO simulations, and populating the
DMO suite with synthetic galaxies via our model allows us to
consider fainter systems than those resolved in the hydro-
dynamic versions of ELVIS, which have baryonic particle
masses ranging from 3500 to 7000 M, and thus only resolve
galaxies down to stellar masses of ~10° M.... Sufficiently high-
resolution hydrodynamic simulations of MW-like environ-
ments out to ~750 kpc do exist (Applebaum et al. 2021), and
extensions of such simulations encompassing the entire LG are
an important avenue for future works.

In order to characterize the detectability of the synthetic
galaxies by DES, we first orient the population relative to the
two most massive halos in the simulation, which we
respectively map onto M31 and the MW. We take the
coordinates of the MW-analog host as the observer location,
and measure the distance to each (sub)halo relative to this
origin. To capture the influence of the location of the M31
analog on the isolated halo populations correctly, we place the
DES footprint on the sky relative to the location of the M31-
analog host to mirror their relative locations in the actual LG.

58 For any halos that are isolated (i.e., are not within the virial radius of a larger
halo) at z =0, we neglect disruption by the central galaxy that would occupy
the MW and M31 analogs; this choice has a negligible impact on the expected
number of galaxies detectable in our DES search because the contribution of
splashback halos to the total field population is small.
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Table 2
Summary Statistics of Detectable Galaxies in the ELVIS Simulations Given
Our DES Search Sensitivity

Simulation Range Median Mean Standard Deviation
Romeo & Juliet 0-6 3 2.6 1.6
Thelma & Louise 0-42 8 11.6 11.2
Romulus & Remus 0-14 5.5 6.2 33

Note. For each simulation, we place the mock DES footprint in 60 different sky
locations corresponding to 60 equally spaced rotations about the analog MW-—
M31 axis. Shown here is the range, median, mean, and standard deviation
about the mean of the number of detectable galaxies within the footprint among
those realizations.

For the galaxies located inside the DES footprint and within
our nominal distance range of 300 kpc—2 Mpc, we produce
mock stellar catalogs derived from the luminosity, physical
size, and distance of each galaxy by the same procedure
described in Section 2.4. We inject this mock stellar catalog
into the real DES Y6 data at their appropriate location on the
sky, and pass this data through the simple search algorithm.
Note that due to computational limits we search only at the
simulated galaxies’ known locations and distances.

There is wide variation in the predicted detectable distant
dwarf galaxy population among the three MW-M31-analog
systems and among particular realizations of any given system.
For one system, Romeo & Juliet, the distribution of field
galaxies outside of the mock MW and M31 virial radii is
relatively uniform; for the other two systems, the distribution is
inhomogeneous, with galaxies often clustered together spa-
tially, particularly in the case of Thelma & Louise. Although
we can fix the DES footprint correctly relative to the location of
the M31 analog, this still leaves an arbitrary rotation about the
MW-M31 axis to determine the sky area covered by the
footprint. Due to their spatial inhomogeneity, the number of
galaxies inside the DES footprint is highly dependent on this
chosen line of sight. A summary of the detectable galaxy
population is given in Table 2, and one chosen realization for
each of the three simulations is demonstrated in Figure 6.

Due to the broad range of detectable galaxies predicted by
our realizations of the ELVIS simulations and the small number
of systems that pass the detection thresholds, it is difficult to
draw strong conclusions about the galaxy—halo connection
based on our search. However, we note that our result of only
one newly discovered galaxy likely located just beyond our
nominal 300 kpc—2 Mpc search range is statistically consistent
with all three mock LG analog simulations. The LG contains
six known galaxies within this distance range visible in the
DES footprint, listed in Table 3. The system with the most
homogeneous population, Romeo & Juliet, predicts the
lowest number of detectable LG field dwarfs (median of three),
most closely matching our search results. In the case of the
most inhomogeneous system, Thelma & Louise, some lines
of sight led to a much higher expectation (as many as 42) for
the number of detectable galaxies; however, the variation is so
high that even a null result would have been consistent with the
prediction. Reducing this uncertainty using constrained simula-
tions, which are tailored to match the specific environment of
the LG (e.g., Carlesi et al. 2016; Libeskind et al. 2020; Sawala
et al. 2022), is therefore a valuable avenue for future work.

There is also significant theoretical uncertainty in the faint-end
galaxy—halo connection itself (see, e.g., Bullock & Boylan-
Kolchin 2017; Wechsler & Tinker 2018; Sales et al. 2022 for



THE ASTROPHYSICAL JOURNAL, 961:126 (17pp), 2024 January 20

Romeo & Juliet

o odr et e
+120°+60° 0°

-60° -120°

Romulus & Remus

+120°+60° 0°

-60° -120°

McNanna et al.

Thelma & Louise

+120°+60° 0° -60° -120°

400 600 800 1000 1200

Distance (kpc)

1400

1600

1800 2000

Figure 6. One realization of the nearby dwarf galaxy population for each of the three simulations from the ELVIS suite. Each marker represents a galaxy predicted by
applying the Nadler et al. (2019) galaxy—halo connection model, with best-fit parameters derived from the MW satellite population (Nadler et al. 2020), to the
simulations’ subhalo catalogs. Galaxies are colored by heliocentric distance D, with larger stars indicating galaxies which should be detectable by DES if they were
located in the footprint (gray outline). Galaxies within the approximate virial radius of the M31 analog (300 kpc, large ®) are not shown; an arbitrary rotation about an
axis through the M31 analog’s location could be made without changing its relative location to the DES footprint. Top left: the relatively homogeneous Romeo &
Juliet simulation, with the line of sight chosen such that five detectable galaxies fall within the footprint. Rotating about the M31 pole often leads to no detectable
galaxies for this simulation. Top right: Thelma & Louise contains several spatially clustered groups of galaxies. In this realization, one such cluster lies on the
western edge of the DES footprint. Rotating this and other clusters into or out of the footprint has dramatic effects on the number of expected detectable galaxies.
Bottom left: in this realization of Romulus & Remus, only one detectable galaxy falls inside the DES footprint.

Table 3
LG Galaxies between D = 300 kpc and D = 2 Mpc inside the DES Footprint
Name Distance (kpc) My, (mag) r1/2 (pc) o
Eridanus II 370 -7.1 277 37.5
Phoenix 420 -9.9 454 37.5
IC 1613 760 —15.2 1496 37.5
Tucana 890 -9.5 284 234
Tucana B 1400 —6.9 80 S
ESO 410-005G 1920 —11.5 280 10.9

Note. o is the Poisson significance (maximum 37.5) recovered by the simple
algorithm during our wide-area search of DES Y6. Properties for Eridanus II
are taken from Crnojevi¢ et al. (2016b) and Martinez-Vazquez et al. (2021);
Tucana B from Sand et al. (2022); and all other galaxies from an updated
catalog of McConnachie (2012).

reviews). Here, we fixed our galaxy—halo connection model to the
best fit derived using the MW satellite population in Nadler et al.
(2020), and therefore neglected the associated theoretical
uncertainty in the number of predicted detectable galaxies. It will
be interesting to refine this analysis in order to test whether the
galaxy-halo connection inferred from MW satellites is consistent
with that inferred from isolated galaxies throughout the LG.

4.3. Outlook

This search pushed the limits of current, wide, ground-based
imaging sensitivity. We used the full 6 yr DES data set with a
search algorithm redesigned for use in the context of distant,
compact dwarf galaxies, and still needed additional follow-up
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data and a specialized stellar classification metric to confirm the
existence of a galaxy at the faintest end of our search. Pushing
any further out in distance is generally limited by star—galaxy
confusion and photometric uncertainties, and searching for
undiscovered galaxies by identifying spatial stellar over-
densities is further hampered by blending effects and variation
in the apparent density of stars due to variation in the depth and
delivered image quality across the footprint at the faint end.

However, the next generation of telescopes coming online in
the very near future will greatly expand our ability to obtain a
full census of the ultrafaint dwarf galaxy population in the
nearby Universe. Two space-based observatories, the visible to
near-infrared Euclid (Racca et al. 2016; Euclid Collaboration
et al. 2022b) and the Nancy Grace Roman Space Telescope
(formerly WFIRST; Akeson et al. 2019), are set to begin
observations within the next 5 yr. The unprecedented combina-
tion of survey area, depth, spatial resolution, and low sky
background of these surveys will be able to deliver precise
astrometric measurements for faint sources (WFIRST Astro-
metry Working Group et al. 2019), improved detection of linear
structure of resolved stars (Pearson et al. 2022), improved
detection of extended low surface brightness structure (Euclid
Collaboration et al. 2022a), and competitive constraints on the
MW’s dark matter subhalo population via its microlensing
signatures (Pardo & Doré 2021). These improvements will
contribute significantly to our ability to discover and characterize
the remaining dwarf galaxy population of the LG and to our
understanding of the dark matter substructure which these
galaxies inhabit.
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The ground-based Vera C. Rubin Observatory (Rubin)
Legacy Survey of Space and Time (LSST) will follow directly
in the footsteps of DES, imaging the entire Southern sky in
visible to near-infrared ugrizy filters, expected to reach a 5o
point source image depth of (g, r, i) = (27.4, 27.5, 26.8) in the
visible bands after the 10 yr survey (Ivezic et al., 2019). Mutlu-
Pakdil et al. (2021) present a preview of the faint dwarf galaxy
discoveries that will be possible in the next decade with Rubin
and Subaru HSC by combining images from the Panoramic
Imaging Survey of Centaurus and Sculptor (PISCeS; Sand et al.
2014; Crnojevi€ et al. 2016a, 2019; Toloba et al. 2016; Hughes
et al. 2021) with extensive image simulation. In particular,
next-generation deep surveys will be able to resolve horizontal
branch stars of galaxies within a fiducial distance of 1.5 Mpc,
uncovering low surface brightness systems down to py o~
30 mag arcsec” 2 for My = —6 and Ly~ 29 mag arcsec” ~ for
My = —5. Similar depth surveys will be able to reach ~2 mag
below the tip of the RGB for systems as distant as 5 Mpc,
enabling a secure census of dwarf galaxies brighter than
My ~ —8 mag. Furthermore, a matched-filter search technique
similar to the one employed in this paper remains powerful for
identifying ultrafaint systems.

In addition to undiscovered ultrafaint dwarfs, recent studies also
predict an undetected population of isolated, spatially extended
ultradiffuse galaxies (My < —8, p = 24 mag arcsec™2) within
the LG, which should also be found by a full-sky survey with the
sensitivity of LSST (Newton et al. 2023). Studies of faint systems
outside the MW and beyond the LG are necessary to build up a
robust sample of galaxies populating dark matter halos from a
broad range of environments. Detecting and accurately character-
izing these systems is needed to test fully the astrophysics relevant
to the formation and evolution of dwarf and diffuse galaxies (e.g.,
baryonic feedback, tidal stripping, reionization, etc.) and to test the
ACDM model on increasingly smaller scales. There is likely a
large population of such systems awaiting discovery, and near-
future studies will continue to push the frontier of discovery
deeper.

5. Summary

We performed a search over the DES Y6 data for faint field
dwarf galaxies with heliocentric distances D = 0.3-2 Mpc using
the simple matched-filter search algorithm. This algorithm
identifies galaxies as arcminute-scale overdensities of individu-
ally resolved stars. We assessed the completeness of our search
by the injection and recovery of synthetic galaxies inserted into
the DES data at the catalog level, with a small number of
galaxies being inserted at the image level to assess blending
effects. For smaller ultrafaints (physical half-light radius
<100 pc), we expect completeness to roughly My, = —6.5 mag
for galaxies with D=0.5 Mpc and My = —10.5 mag for
galaxies with D =2 Mpc. For larger galaxies (physical half-light
radius >1000 pc), we expect completeness to roughly
My = —8.5 mag for galaxies with D < 1.0 Mpc and My =
—10.0 mag for galaxies with D =2 Mpc.

We do not find any new dwarf galaxies within our search
space. Based on a set of high-resolution cosmological zoom-in
simulations of LG-like volumes, this result is not entirely
inconsistent with expectations despite these simulations often
predicting the existence of several detectable galaxies visible to
our survey. With the exception of the unresolved Tucana B, we
do recover the known galaxies within our search volume at
high significance.
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We do detect a high-confidence galaxy just beyond our
nominal search bounds. We report the discovery of NGC 55-
dwl, an ultradiffuse galaxy located at D =2.2 Mpc with
absolute magnitude My = —8.0 mag and azimuthally averaged
physical half-light radius r;,, =2.2 kpc. We obtained deep
follow-up DECam imaging to confirm the system and measure
its properties. This is the largest, most diffuse galaxy known at
this luminosity. It is separated by only 47’ from the LMC-mass
NGC 55; assuming the two are roughly codistant, they are
separated by only 30 kpc. NGC 55-dw1’s proximity to a more
massive host may explain its extreme structural properties: tidal
interactions are a possible explanation for its large size, high
ellipticity (e =0.56), and extremely low surface brightness
(11 =732.3 mag arcsec °).

Future wide-area surveys such as Rubin LSST will continue to
fill the gaps in our knowledge of the ultrafaint dwarf population of
the Local Volume. The continued discovery and study of these
galaxies in nearby and distant environments will play an important
role in our understanding of the nature of dark matter and of the
assembly history of our local corner of the Universe.

Acknowledgments

M.M. and K.B. acknowledge support from NSF grant AST-
2009441. Research by D.C. is supported by NSF grant AST-
1814208. A.B.P. is supported by NSF grant AST-1813881. J.L.
C. acknowledges support from NSF grant AST-1816196. C.E.
M.V. is supported by the international Gemini Observatory, a
program of NSF’s NOIRLab, which is managed by the
Association of Universities for Research in Astronomy
(AURA) under a cooperative agreement with the National
Science Foundation, on behalf of the Gemini partnership of
Argentina, Brazil, Canada, Chile, the Republic of Korea, and
the United States of America. D.J.S. acknowledges support
from NSF grants AST-1821967 and AST-2205863. J.A.C.-B.
acknowledges support from FONDECYT Regular N 1220083.

This project used data obtained with the Dark Energy
Camera (DECam), which was constructed by the Dark Energy
Survey (DES) collaboration. Funding for the DES Projects has
been provided by the U.S. Department of Energy, the U.S.
National Science Foundation, the Ministry of Science and
Education of Spain, the Science and Technology Facilities
Council of the United Kingdom, the Higher Education Funding
Council for England, the National Center for Supercomputing
Applications at the University of Illinois at Urbana-Champaign,
the Kavli Institute of Cosmological Physics at the University of
Chicago, the Center for Cosmology and Astro-Particle Physics
at the Ohio State University, the Mitchell Institute for
Fundamental Physics and Astronomy at Texas A&M Uni-
versity, Financiadora de Estudos e Projetos, Fundagdo Carlos
Chagas Filho de Amparo a Pesquisa do Estado do Rio de
Janeiro, Conselho Nacional de Desenvolvimento Cientifico e
Tecnolégico and the Ministério da Ciéncia, Tecnologia e
Inovacdo, the Deutsche Forschungsgemeinschaft, and the
Collaborating Institutions in the Dark Energy Survey.

The Collaborating Institutions are Argonne National Labora-
tory, the University of California at Santa Cruz, the University
of Cambridge, Centro de Investigaciones Energéticas, Med-
ioambientales y Tecnolégicas-Madrid, the University of
Chicago, University College London, the DES-Brazil Con-
sortium, the University of Edinburgh, the Eidgendssische
Technische Hochschule (ETH) Ziirich, Fermi National Accel-
erator Laboratory, the University of Illinois at Urbana-



THE ASTROPHYSICAL JOURNAL, 961:126 (17pp), 2024 January 20

Champaign, the Institut de Ciencies de I’Espai (IEEC/CSIC),
the Institut de Fisica d’Altes Energies, Lawrence Berkeley
National Laboratory, the Ludwig-Maximilians Universitit
Miinchen and the associated Excellence Cluster Universe, the
University of Michigan, the NSF’s National Optical-Infrared
Astronomy Laboratory, the University of Nottingham, The
Ohio State University, the University of Pennsylvania, the
University of Portsmouth, SLAC National Accelerator Labora-
tory, Stanford University, the University of Sussex, Texas
A&M University, and the OzDES Membership Consortium.

The DELVE project is partially supported by Fermilab
LDRD project L2019-011 and the NASA Fermi Guest
Investigator Program Cycle 9 No. 91201.

Based on observations at Cerro Tololo Inter-American
Observatory, NSF’s National Optical-Infrared Astronomy
Laboratory (2012B-0001, PIL: J. Frieman; 2019A-0305, PI: A.
Drlica-Wagner; and 2021B-0307, PI: K. Bechtol) which is
operated by the Association of Universities for Research in
Astronomy (AURA) under a cooperative agreement with the
National Science Foundation.

The DES data management system is supported by the
National Science Foundation under Grant Nos. AST-1138766
and AST-1536171. The DES participants from Spanish
institutions are partially supported by MINECO under grants
AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-
2016-0588, SEV-2016-0597, and MDM-2015-0509, some of
which include ERDF funds from the European Union. IFAE is
partially funded by the CERCA program of the Generalitat de
Catalunya. Research leading to these results has received
funding from the European Research Council under the

13

McNanna et al.

European Union’s Seventh Framework Program (FP7,/2007-
2013) including ERC grant agreements 240672, 291329, and
306478. We acknowledge support from the Brazilian Instituto
Nacional de Ciéncia e Tecnologia (INCT) e-Universe (CNPq
grant 465376,/2014-2).

We use simulations from the FIRE-2 public data release
(Wetzel et al. 2023). The FIRE-2 cosmological zoom-in
simulations of galaxy formation are part of the Feedback In
Realistic Environments (FIRE) project, generated using the
Gizmo code (Hopkins 2015) and the FIRE-2 physics model
(Hopkins et al. 2018).

This work used data from the Symphony suite of simulations
(http:/ /web.stanford.edu/group/gfc/symphony /).

This manuscript has been authored by Fermi Research
Alliance, LLC under Contract No. DE-AC02-07CH11359 with
the U.S. Department of Energy, Office of Science, Office of
High Energy Physics.

Facility: Blanco.

Software: Astropy (Astropy Collaboration et al. 2013),
emcee (Foreman-Mackey et al. 2013), HEALPix (Gorski
et al. 2005),59 healpy,()O matplotlib (Hunter 2007),
numpy (van der Walt et al. 2011), Scikit-Learn
(Pedregosa et al. 2011), scipy (Virtanen et al. 2020), and
ugali (Bechtol et al. 2015; see footnote 57).

Appendix
Posterior Distributions of NGC 55-dw1’s Parameters

The posterior probability distributions for the parameters of
NGC 55-dw1 as defined in Section 3.2 are shown in Figure 7.

59 https:/ /healpix.sourceforge.ne
60 https://github.com/healpy /healpy
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Figure 7. Posterior probability distributions for each parameter fit by the MCMC sampling described in Section 3.2. Age and metallicity are not well constrained due
to lack of precise photometry for stars beyond the magnitude limit of our data set.
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