

AAS-PROVIDED PDF • OPEN ACCESS

A Report on Stellar Companion Mass Estimates within Our Solar Neighborhood

To cite this article: Sangeeta Kumar and Maïssa Salama 2024 *Res. Notes AAS* **8** 123

Manuscript version: AAS-Provided PDF

This AAS-Provided PDF is © 2024 The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
<https://creativecommons.org/licenses/by/4.0>

Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.

View the [article online](#) for updates and enhancements.

1 DRAFT VERSION APRIL 22, 2024
Typeset using L^AT_EX default style in AASTeX631

A Report on Stellar Companion Mass Estimates Within Our Solar Neighborhood

2 SANDEEP KUMAR ¹ AND MAÏSSA SALAMA ²

3 ¹ *Astronomy Department, University of California, Berkeley, CA, USA*

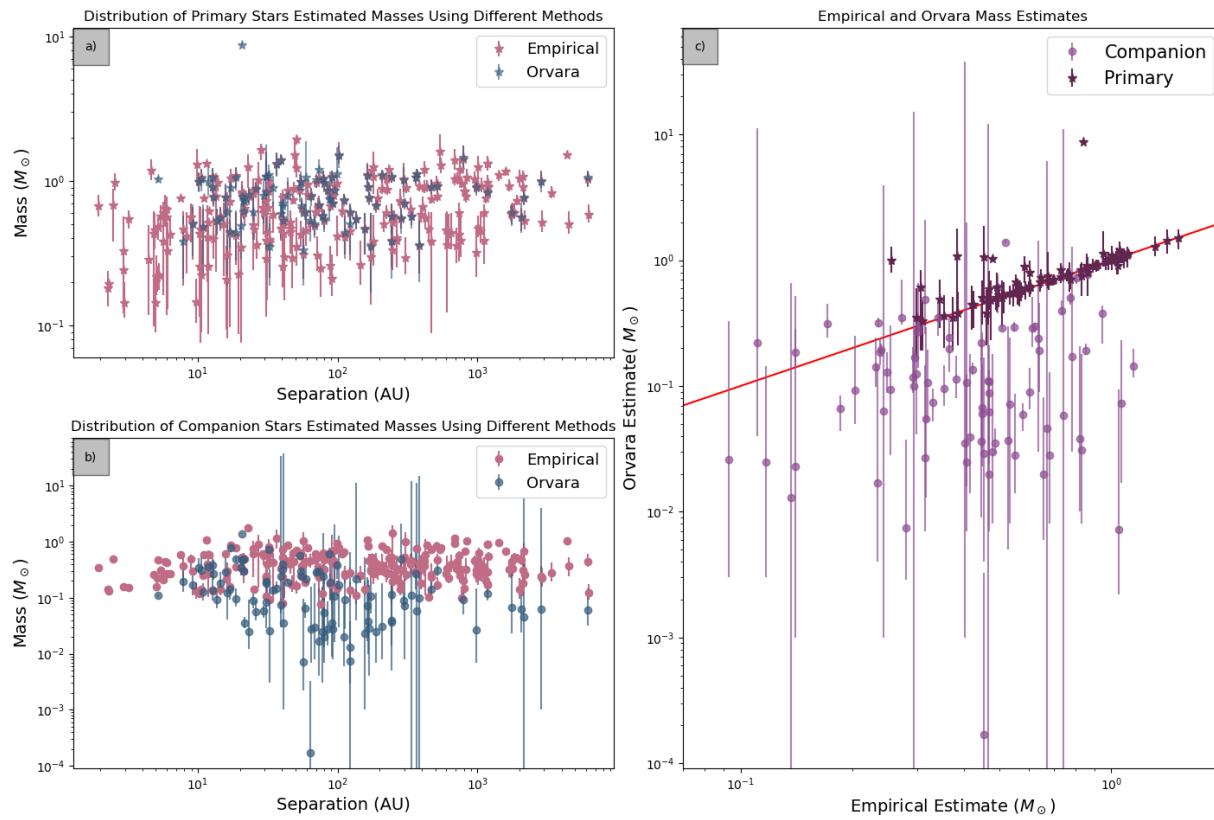
4 ² *Astronomy & Astrophysics Department, University of California, Santa Cruz, CA 95064, USA*

5 ABSTRACT

6 We present mass estimates and companion demographics on stellar multiples within 25 pc, using
7 a survey of stars of all spectral types done by Robo-AO and supplemented by Gaia. The survey
8 combined direct imaging by Robo-AO, a robotic adaptive optics instrument for 2-m class telescopes,
9 to detect tight companions ($< 4''$ separation) and with Gaia astrometry to detect wider co-moving
10 companions. We estimated the masses for 267 companions using empirical relations and, for a subset of
11 97, dynamical mass estimates. We utilized previous mass-magnitude models using contrasts measured
12 from Gaia and Robo-AO to estimate the mass and also used the *orvara* python package, a Markov-
13 Chain Monte Carlo (MCMC) orbit fitter using the companion astrometry and Hipparcos-Gaia proper
14 motion accelerations, to estimate dynamical masses. We compare agreements and discrepancies in
15 mass estimates from these two methods.

16 **Keywords:** binaries: close – instrumentation: adaptive optics – techniques: high angular resolution –
17 methods: data analysis – methods: observational

18 1. INTRODUCTION


19 Studying the orbital dynamics in stellar multiples allows us to calculate properties of the individual stars, such
20 as their masses, which are fundamentally linked to a star's formation, composition, and evolution sequence. The
21 Hipparcos-Gaia Catalog of Accelerations (HGCA; [Brandt 2018](#)) is a list of stars with accelerations calculated from the
22 change in proper motions measured by the Gaia spacecraft and Hipparcos satellite. An orbiting companion causes an
23 acceleration on the primary star, the strength of which correlates with the companion's mass and separation. However,
24 a massive more widely separated companion, could cause the same acceleration signal on the primary star as a smaller,
25 closer-in companion, leading to a mass-separation degeneracy. Direct imaging confirms the presence of a companion
26 and helps break the mass-separation degeneracy by measuring the on-sky separation.

27 We used the result from the Robo-AO Solar Neighborhood Survey ([Salama et al. 2022](#)) which utilizes Robo-AO
28 ([Baranec et al. 2014](#)), a robotic adaptive optics instrument used for a volume-limited survey which directly imaged
29 over 1200 stars within 25 pc and detected 299 stellar multiples. The survey is also supplemented with Gaia data to
30 confirm physical association and to search for companions wider than $4''$. We calculated the masses for the companions
31 in two ways: using empirical photometry-mass relations and orbital fits to astrometry data, when available. These two
32 methods of calculating masses led us to estimate masses for 267 companions, 118 of which are at separations within
33 $< 4''$.

34 2. COMPANION MASS CALCULATIONS

35 We used empirical photometry-mass relations and orbit fits to estimate masses from the [Salama et al. \(2022\)](#) survey.
36 For the former we interpolated the color-Teff grids from [Pecaut & Mamajek \(2013\)](#) and [Kraus & Hillenbrand \(2007\)](#)
37 which reported empirical relations between masses and stellar magnitudes. For the latter we used *orvara* ([Brandt
38 et al. 2021](#)), a python package which fits orbits utilizing the Markov Chain Monte Carlo method, using accelerations
39 from HGCA, their epochs, and relative astrometry from Robo-AO and/or Gaia companion detections.

40
2.1. *Mass estimates from photometry data*41
42
43
44
45
46
47
48
49
We used empirical relations from [Pecaut & Mamajek \(2013\)](#) and [Kraus & Hillenbrand \(2007\)](#) relating stellar magnitudes to stellar masses and temperatures, to estimate masses from photometry. Using Gaia parallaxes, we converted our apparent magnitudes to absolute magnitudes and then estimated the masses of our companions by interpolating across the absolute magnitude-mass relations. Mass estimates for Robo-AO detected companions measured in the *i*-band were done using relations from [Kraus & Hillenbrand \(2007\)](#). For companions resolved by Gaia, we estimated their masses using their absolute G magnitudes and Gaia colors (Bp-Rp and G-Rp). Thirty companions had mass estimates from all four magnitudes and colors, 153 companion masses were estimated from the Gaia filters, and 41 companions had only estimates from *i'*-band magnitudes. The final reported empirical mass estimate is the average mass across filters.50
51
52
53
We propagated the magnitude uncertainties, reported by Gaia and Robo-AO, and the distance uncertainties, reported by Gaia parallaxes, to calculate our mass estimate uncertainties. We do not have empirical mass estimates for 46 companions as there was insufficient photometry information. However, for 14 of those, we have dynamical mass estimates from HGCA and relative astrometry data.54
2.2. *Dynamical mass estimates from astrometry*55
56
57
58
59
60
61
The HGCA reports accelerations between the Hipparcos and Gaia proper motion measurements of the primary stars where one of the likely causes of this acceleration is the presence of an orbiting companion ([Brandt 2021](#)). In the [Salama et al. \(2022\)](#) survey the HGCA was used to analyze trends between the acceleration of the primary star and the presence of a companion. In this work we used `orvara`, a python package developed by [Brandt et al. \(2021\)](#), to estimate the individual component masses of our stellar binaries. `orvara` fits Keplerian orbits to data from radial velocity, relative astrometry, and/or accelerations from HGCA. We use `orvara` to fit orbits from our survey to have a more comprehensive mass analysis for the secondary companions.62
63
64
65
66
We utilized HGCA accelerations and relative astrometry from Robo-AO and Gaia as inputs for `orvara`. The primary mass estimates and their associated errors from the mass-luminosity relations were given to `orvara` as initial parameters. Then we ran orbit fits for systems with significant measured accelerations, defined as having a $\chi^2 > 11.8$. There were 187 primary stars with acceleration measurements in the HGCA, 97 of which met the χ^2 threshold and were thus eligible for the dynamical mass estimates.67
68
69
Using `orvara`, we measured masses for 97 companions, 35 of which had separation and position values from both Gaia and Robo-AO. This constrained the orbit more by giving `orvara` two relative astrometry positions rather than one. We then retrieved the resulting MCMC best fit for the primary and companion masses.70
2.3. *Discussion*71
72
73
74
75
76
77
There is a greater distribution of companion masses from `orvara` compared to the empirical method. Figure 1b compares the masses between the empirical and `orvara` methods, where `orvara` tended to converge to lower mass estimates compared to the empirical mass estimates for the companions. Figure 1c shows the discrepancies between the dynamical and empirical estimates which could be due to only having 1-2 epochs when using `orvara`, which does not allow for a well-constrained orbit. It is expected that the primary mass estimates from `orvara` and the empirical method are similar, as seen in Figure 1a, since we used primary mass estimates as priors for `orvara`. However, it is still worthwhile to note these masses since it gives a sense of the mass range.78
3. CONCLUSION87
88
89
90
91
92
We estimated masses for 267 companions detected by the Robo-AO survey of 1200 stars within 25pc. Using empirical mass relations derived from [Kraus & Hillenbrand \(2007\)](#) and [Pecaut & Mamajek \(2013\)](#), we estimated masses using available photometry in the G-band, Bp-Rp, G-Rp colors, and/or *i*-band. We then used `orvara`, an orbit-fitting tool which uses HGCA accelerations and relative astrometry points from Robo-AO and/or Gaia, to estimate dynamical masses for 97 companions. We selected multiples whose primary star had a $\chi^2 > 11.8$. The `orvara` fits is not well constrained due to the limited number of epochs used. In order to get better constrained dynamical mass

Figure 1: Distribution of estimated masses from the empirical and orvara methods. Plots *a* and *b* show the primary and companion masses, respectively, as a function of the companion's projected separation. Plot *c* compares the different methods of estimating individual component masses. **Data behind this figure(Gaia IDs, separations, and mass estimates) are available in the electronic version.**

estimates for these systems using orbital fitting methods, more observations will be needed to track the orbit over time.

This research has made use of the SIMBAD database, operated by Centre des Données Stellaires (Strasbourg, France), and bibliographic references from the Astrophysics Data System maintained by SAO/NASA.

This work has made use of data from the European Space Agency (ESA) mission *Gaia* (<https://www.cosmos.esa.int/gaia>), processed by the *Gaia* Data Processing and Analysis Consortium (DPAC, <https://www.cosmos.esa.int/web/gaia/dpac/consortium>).

We thank Professor Rebecca Jensen-Clem on her insight and mentorship throughout this project. **This work would not have been possible without the funding and opportunity by the Lamat REU Program supported by the National Science Foundation under Grant No.1852393.**

Facilities: PO:1.5m (Robo-AO)

REFERENCES

96 Baranec, C., Riddle, R., Law, N. M., et al. 2014, ApJL, 790, L8, doi: [10.1088/2041-8205/790/1/L8](https://doi.org/10.1088/2041-8205/790/1/L8)

97 Brandt, T. D. 2018, ApJS, 239, 31, doi: [10.3847/1538-4365/aaec06](https://doi.org/10.3847/1538-4365/aaec06)

98 100 —. 2021, ApJS, 254, 42, doi: [10.3847/1538-4365/abf93c](https://doi.org/10.3847/1538-4365/abf93c)

99 101 Brandt, T. D., Dupuy, T. J., Li, Y., et al. 2021, AJ, 162, 186, doi: [10.3847/1538-3881/ac042e](https://doi.org/10.3847/1538-3881/ac042e)

¹⁰³ Kraus, A. L., & Hillenbrand, L. A. 2007, AJ, 134, 2340,
¹⁰⁴ doi: [10.1086/522831](https://doi.org/10.1086/522831)

¹⁰⁵ Pecaut, M. J., & Mamajek, E. E. 2013, ApJS, 208, 9,
¹⁰⁶ doi: [10.1088/0067-0049/208/1/9](https://doi.org/10.1088/0067-0049/208/1/9)

¹⁰⁷ Salama, M., Ziegler, C., Baranec, C., et al. 2022, AJ, 163,
¹⁰⁸ 200, doi: [10.3847/1538-3881/ac53fc](https://doi.org/10.3847/1538-3881/ac53fc)