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Song in oscine birds is learned across generations, and aspects of the song-learning process parallel

genetic transmission: variation can be introduced into both cultural and genetic traits via copy error, and

both types of traits are subject to drift and selective pressure. Similarly to allele frequencies in population

genetics, observing frequencies of birdsong features can improve our understanding of cultural trans-

mission and evolution. Uniquely, community science databases of birdsong provide rich spatiotemporal

data with untapped potential to evaluate cultural evolution in songbirds. Here we use both community

science and field study recordings of chipping sparrows, Spizella passerina, to examine trends across

nearly seven decades of song. We found that some syllable types tended to persist in the population for

much longer than others. Persistent songs tended to contain more syllables of shorter duration than

songs that were observed across fewer years. To draw inferences about the effects of learning biases on

chipping sparrow syllables, we constructed a spatially explicit agent-based model of song learning. By

comparing our empirical analysis to simulated song distributions using three different song-learning

strategies (neutral transmission, conformity bias and directional selection), we suggest that chipping

sparrows are unlikely to select tutors neutrally or with a conformity bias and that they learn their songs

with a remarkably low copy error rate.

© 2024 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

For oscine songbirds, song has many important functions,

including territory defence, species identification and mate

attraction (Catchpole & Slater, 2003; Searcy & Andersson, 1986). In

contrast to a closely related outgroup (suboscines), oscines must

learn their songs, making the process of song learning critical to the

reproductive success of individuals across this diverse clade

(Kroodsma & Miller, 1996; Kroodsma et al., 1982; Mason et al.,

2017; Thorpe, 1958). The evolutionary dynamics of learned song

exhibit parallels to those of human cultural evolution, where long-

lasting traditions can coexist (Aplin, 2016; Hoppitt & Laland, 2013;

Kandler & Laland, 2009; Tomasello et al., 1993; Whiten, 2017). By

studying song learning, we can better understand which aspects of

human learning and cultural evolution are shared with other spe-

cies and which properties are unique.

The transmission of information between individuals underpins

both human and avian cultural evolution. Laboratory and field

studies have shed light on how song is transmitted in avian pop-

ulations. Some of these studies have measured the properties of

cultural transmission: the similarity between learned song and

tutor song, error rates in songmatching, the invention of new songs

and the frequency of songs in a population, among other factors

(Cardoso & Atwell, 2016; Marler & Peters, 1982; Marler & Tamura,

1962; Slater, 1986; Thorpe, 1958). Others have used field site data to

address questions of song change over time. For example, some

studies have tracked cultural evolution using recordings taken in

one population over multiple decades (Ju et al., 2019; Williams

et al., 2013), and other studies have demonstrated that temporal

changes in song are discerned by the current population by

showing that birds react more strongly to modern recordings than

to historical ones (Derryberry, 2007, 2011). Field study recordings

can ensure coverage of local song repertoires, facilitate direct

observation of song tutors and provide samples from the entire
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site's population. Due to the limits on the time period and

geographical range they can cover, field studies are snapshots of the

cultural evolution of syllables, and larger-scale studies can help

bridge the gap between local behaviours and cultural evolution.

By tracking songs and reproductive success over time, as well as

by determining which song features correspond to stronger re-

sponses in current populations, researchers have gained insight

into the types of selective pressures that operate on song

(Derryberry, 2007, 2011; Williams et al., 2013). In parallel, evolu-

tionary biologists and population geneticists, generally without

access to time series data, have synthesized evolutionary models

with evidence from existing distributions of allele frequencies to

understand whether regions of the genome have undergone se-

lection (Bamshad & Wooding, 2003; Bustamante et al., 2001; Ford,

2002; Gutenkunst et al., 2009; Nielsen, 2005; Williamson et al.,

2005). A genetic variant can become more frequent in a popula-

tion because it is associated with a fitness advantage (selection) or

due to random chance (genetic drift). A genetic region under se-

lectionwill tend to have a different distribution of allele frequencies

than those regions not under selection (Nielsen, 2005). Thus, one

approach in population genetics is to simulate the evolution of a

trait under different selection pressures and population histories.

By comparing data from real populations to predictions from

evolutionary models, researchers have identified which of these

models best explains the data (Akashi & Schaeffer, 1997;

Gutenkunst et al., 2009; Kryazhimskiy & Plotkin, 2008; Williamson

et al., 2005). Some researchers apply this theoretical approach to

the cultural evolution of song by examining the distribution of song

within populations (Lynch & Baker, 1993, 1994; Lynch et al., 1989;

Mcgregor & Krebs, 1982; Parker et al., 2012) and by developing

individual-based or agent-based simulations of song learning that

are compared to field site data (Crozier, 2010; Ellers& Slabbekoorn,

2003; Lachlan et al., 2018; Lachlan & Slater, 2003; Slater, 1986;

Wheelwright et al., 2008; Youngblood & Lahti, 2022). Such agent-

based simulations have been used in conjunction with birdsong

data to infer the learning strategies used by swamp sparrows,

Melospiza georgiana, and house finches, Haemorhous mexicanus

(Lachlan et al., 2018; Youngblood & Lahti, 2022). With these com-

parisons of field recordings and results, researchers found evidence

for different cultural transmission biases in different species. For

example, swamp sparrows showed evidence of conformity bias, a

type of frequency bias in which common song variants are

disproportionately preferred (Lachlan et al., 2018). However, house

finches showed evidence of content bias, in which certain song

elements are preferentially learned regardless of their frequency in

the population, a form of directional selection on the basis of a

feature of the song (Youngblood & Lahti, 2022).

Here, we present an extension to this approach by developing a

model of cultural transmission of birdsong and comparing the re-

sults of this model to a large-scale song analysis of community

science recordings. We suggest that utilizing community science

data is a time- and cost-effective supplement to field studies in the

study of birdsong evolution. Specifically, community science data,

which can cover a large geographical area over many years, can

provide a unique insight into patterns of song transmission across

large spans of time or space, particularly when these data are

considered alongside evolutionary models. Researchers have ana-

lysed community science data to examine avian behaviours,

whereas other studies have compared spatially explicit models to

song recordings from the field to examine evolutionary hypotheses

(Bolus, 2014; Dennhardt et al., 2015; Goodenough et al., 2017;

Kaluthota et al., 2016; Newson et al., 2016; Robinson et al., 2018;

Silvertown et al., 2011). We synthesized these approaches by

examining community science data via models of song learning,

providing insights into cultural evolutionary patterns.

As a focal species for this study, we chose the chipping sparrow,

Spizella passerina, which has a simple repertoire of one repeated

syllable. As a result, the full vocal repertoire of an adult bird can be

captured by a single community science recording. Since cultural

transmission includes mechanisms of mutation, selection and drift

similar to those found in genetics, we employ techniques from

population genetics, in particular, adaptations of site frequency

spectra (Bustamante et al., 2001; Nielsen, 2005), to study song

evolution. We identify unique syllable types that characterize the

songs in a population and use the occurrence and life spans of these

syllables to gain a deeper understanding of chipping sparrow

learning. Since different learning strategies result in different dis-

tributions of syllables, with many replicates of the same syllable

persisting over time if birds learn based on a conformity bias and

potentially a relatively small number of syllables with desirable

characteristics in the case of a directional bias, the frequency at

which syllables occur in nature carries information about these

biases. We compared the occurrence and longevity of songs to

distributions produced by a computational model. This model

simulates the transmission of syllables in a population under three

types of learning: neutral evolution, conformity bias and direc-

tional selection. We demonstrate how analysis of community sci-

ence data in association with a model can supplement field studies

and extend the understanding of birdsong evolution.

METHODS

Categorization of Chipping Sparrow Syllables into Types

In a previous study, we gathered and analysed field site and

community science recordings of chipping sparrows across the

species' entire breeding range (Appendix, Fig. A1), measuring

numerous acoustic features of each song and classifying the sylla-

bles into distinct types and categories (Searfoss, Liu et al., 2020;

Searfoss, Pino et al., 2020). A number of recorded songs in our

previous analysis (Searfoss, Liu et al., 2020) did not have a recording

date listed; however, by revisiting the original field recording notes,

we were able to find the years for all recordings for our study

presented here. We categorized songs as follows: all songs were

viewed as spectrograms in Audacity (https://audacityteam.org/) on

a fixed frequency and timescale (see Supplementary Table S1). A

single syllable was then selected as representative of a song, since

chipping sparrow songs are fully characterized by repetition of a

single syllable. We manually classified 820 syllables into 112

chipping sparrow syllable types based on the shape of the syllable

(Supplementary Table S1; similar to methods of Borror, 1959;

Leitner & Catchpole, 2004; Liu, 2001; Vargas-Castro et al., 2012; for

examples of spatial syllable distributions, see Supplementary

Fig. S14). We further grouped these syllable types into broader

categories based on the syllable shape: upedown (up-slur followed

by down-slur), downeup (down-slur followed by up-slur), sweep

(single up-slur or down-slur), complex (more than two slurs),

doubles (a slur with multiple frequencies) and buzz (syllable con-

taining a noisy and/or high-entropy section, generally termed

‘buzzy’). To ensure that wewere correctly categorizing the repeated

element, particularly in the case of upedown versus downeup

syllables, we examined the beginning and end of the song to

determine which part of the syllable came first.

In addition, we used the song analysis software Chipper

(Searfoss, Pino et al., 2020) to extract eight song features from

each recording: mean intersyllable silence duration, mean syllable

duration, mean syllable frequency range, mean syllable minimum

and maximum frequency, duration of song bout, mean syllable

stereotypy and total number of syllables. Chipper allows the user

to visualize each song bout and it predicts where syllable
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boundaries are located using fluctuations in the amplitude of the

signal (Searfoss, Pino et al., 2020). The user can change the signal-

to-noise threshold, apply low-pass and high-pass filters to exclude

high-frequency and low-frequency noise, respectively, and

manually correct these syllable boundaries if necessary. Then,

Chipper analyses the signal within each identified syllable and

outputs a matrix of features for each song (see Searfoss, Pino et al.,

2020 for more details on how each song feature is extracted from

the spectrogram).

For the catalogue numbers, database, recordist, URL and licence

for the 820 song files, see Supplementary Table S1. For themetadata

including recording latitudes and longitudes and the 8 song fea-

tures (all log transformed except mean stereotypy of repeated

syllables and the standard deviation of note frequencymodulation),

see Supplementary Table S2.

Calculating and Analysing the Life Span of Chipping Sparrow

Syllable Types

The observed ‘life span’ of a syllable type was defined as the

period between the earliest and latest years inwhich a syllable type

was recorded. To explore the properties of these life spans, we

plotted the distribution of syllable life spans and the number of

times in which these syllables were identified. We proceeded to

compare syllable features between songs that contained short-

lived (recorded life span ¼ 1 year) versus long-lived (recorded life

span � 50 years) syllable types. We performed Wilcoxon rank-sum

tests on short- versus long-lived syllables for the eight song fea-

tures extracted from each recording. For stringency, we conducted

a Bonferroni correction for multiple hypothesis testing by dividing

the P value threshold for significance (a ¼ 0.05) by the number of

tests. Overall, we performed one test on eight song features, so the

threshold for significance was lowered to aadj ¼ 6.25 � 10�3. In

addition to our previously observed geographical patterns in

chipping sparrow songs (Searfoss, Liu et al., 2020), we also con-

ducted Wilcoxon rank-sum tests to determine whether short- or

long-lived syllables are more frequent on an eastewest axis.

Model Design

We developed an agent-based simulation to model song

learning in the chipping sparrow population. The entirety of the

model was implemented in Python 3.7 and uses the following

primary packages: NumPy version 1.16.3, Matplotlib version 3.0.3,

Pandas version 0.24.2 and SciPy version 1.2.1 (https://github.com/

CreanzaLab/ChippingSparrowCulturalEvolutionModel). With this

model, we simulated syllable transmission in a spatially structured

population under three learning regimes: neutral transmission,

conformity bias and directional selection. Under a neutral model of

song learning, a juvenile randomly chooses a tutor's song to

imitate; with conformity bias, a juvenile is disproportionately likely

to choose a tutor with the most common song; and directional

selection operates to favour certain song properties such as rate of

syllable production or greater frequency bandwidth (Podos, 1997;

Podos&Nowicki, 2004), such that juveniles are more likely to learn

songs that exemplify better performance. Here, directional selec-

tion is somewhat analogous to the content bias observed in house

finches (Youngblood & Lahti, 2022) since juveniles are choosing to

learn a syllable based on its properties and not on its frequency of

occurrence. Chipping sparrows only learn a single syllable, so in our

model, directional selection operates on a continuous feature of a

syllable, the rate of syllable production, instead of the selection of

certain syllable types to compose a song.

As illustrated in Fig. 1, we initialized each model with a

500 � 500 matrix of syllable types that represented a population of

birds (we performed additional analyses with matrix sizes of

400 � 400, 600 � 600 and 700 � 700). Each matrix location rep-

resents a single bird that sings a single syllable, a categorical value

that was initially assigned randomly from a discrete uniform dis-

tribution {1:500}. For the directional selection model, we used an

additional matrix of identical size, containing continuous values

representing a syllable feature (the rates of syllable production)

randomly sampled from a truncated normal distribution confined

to the values observed in nature, i.e. a minimum of five syllables/s

and a maximum of 40 syllables/s, with mean of 22.5 syllables/s and

variance of 25 syllables/s (X ~ N(22.5, 25), 5 < X < 40; Searfoss, Liu

et al., 2020). In each time step, roughly corresponding to a year,

the following steps take place: a fraction of birds die, juvenile birds

are tutored and fill the empty territories and a portion of the

population disperses (Fig.1). Note that there is a substantial burn-in

period (discussed below; see Sampling the Simulated Bird

Population), so initial distributions of syllables and song rates

have minimal impact on final sampled values.

More specifically, in each time step, first a fixed percentage of

the birds are randomly selected for death. We set this mortality

rate to 40% based on similar avian models (Lachlan et al., 2018;

Slater, 1986). For every bird that is eliminated, a new juvenile

bird replaces it; the new bird's repertoire is either a novel syl-

lable in the case of copy error, or a syllable learned from one of its

neighbours (namely, the birds present at the beginning of the

time step and adjacent to its hatching location in the two-

dimensional matrix, up to eight birds). To maintain a spatial

arrangement representative of natural territories, the matrix

boundaries do not wrap, so birds at the edges of the matrix have

fewer neighbours. Maintaining fatherejuvenile relationships was

not necessary in our model, as oblique transmission of song,

rather than vertical song transmission from parent to offspring,

appears to be predominant in chipping sparrows. In a well-

studied population in the northeastern U.S., juveniles learned a

song before their first migration but often changed their song

after migration to better match a neighbour, leading to a spatial

pattern in which the syllable types of neighbours often differ but

occasionally match closely; an individual's song did not change

further after the first year (Liu & Kroodsma, 2006; Liu &

Nottebohm, 2007). Although the phenomenon of postmigration

song modification has not been studied in other chipping spar-

row populations, the pattern of occasional neighbour matching

was also observed in chipping sparrows in Mexico (Marler &

Isaac, 1960). Once all juveniles learn a syllable (see next sec-

tions for the three learning strategies), the new syllable types

replace the matrix elements of the birds that died, representing

juveniles moving into vacant territories. Each new syllable was

represented by a new integer, such that all syllable types could be

uniquely identified. All territories vacated by birds that died are

filled simultaneously, after tutor selection occurred for that time

step. Since deaths in nature occur throughout the year and

learning takes place over a short time, all birds present at the

beginning of the time step can influence the learning of juveniles

during that time step.

In addition, birds have an opportunity to disperse: some

portion of birds (termed the ‘dispersal fraction’) is selected to

move to a nearby location on the matrix. This promotes the

mixing of regionally common syllable types with the larger

population. Dispersal may sustain the local syllable diversity seen

in chipping sparrow populations (Liu & Kroodsma, 2006). The

addition of this dispersal step reflects what has been observed in

the field: adults occasionally move to a new location, especially

when they share a song with a neighbour (Liu & Kroodsma,

2006). We tested dispersal fractions between 0 and 1 in 0.1 in-

crements, where 0.5 means that half of birds attempt to swap
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places with a bird that has not yet changed places, chosen

randomly from a location within a set radius (up to 11 matrix

units). These dispersal fractions and radius values were informed

by field studies describing chipping sparrow territory size and

dispersal patterns (Liu, 2004; Liu & Kroodsma, 2006; Swanson

et al., 2004). For each set of parameters, the simulation is run

for 1000 time steps, of which the final 68 are used for sampling

(to compare with the 68 years of available community science

data) and the first 932 are a long burn-in period prior to

sampling.

Model Implementation of Neutral Tutor Selection

During each time step, birds that die are replaced by a juvenile

bird at each location. For neutral tutor selection, the syllable type

learned by this juvenile is chosen at random from its eight imme-

diate neighbours (or fewer, at edges and corners). To account for

some likelihood of the new bird producing a novel syllable, we

include a probability of error in learning. The probability of learning

syllable type i in the case of neutral tutor selection can be repre-

sented as

Initialize population

Create matrix of bird territories, 
assigning each bird a syllable type 

(and syllable rate for directional selection) 

Mortality opens new territories
Randomly select 40% of birds to replace 

Generate juveniles

Select tutor from immediate neighbours, influenced by learning bias

Juveniles replace empty territories

Update matrix with new syllable type 
(and syllable rate, if directional selection)

Territory dispersal

Randomly select a fraction of birds to 
swap territories with other nearby birds

Neutral Conformity Directional

If iteration represents year 1950
or later, sample the population

No. sampled = no. of recordings collected that year

P
i
��ƒ

c R

R(i )(1–�) P
i P

i

c
��ƒ (i ) (1–�)

�{ (1–�) if      r i = 
0 otherwise

Where ƒ( ) is the frequency of occurrence of a syllable type   among neighbours,
  is the conformity bias factor,    is the set of all neighbours’ syllable rates   

and � is the chance the syllable is copied incorrectly

max(  )

i i
ri

Figure 1. Model schematic with illustrated representation of learning biases. For neutral learning, the frequency of a syllable type among the juvenile's adjacent neighbours is

proportional to the probability that it will be learned by the juvenile (equal weight for all neighbours; identical arrows). Conformity bias modifies this probability by taking

probabilities to the power of a conformity factor c, such that more common syllables are preferred. In our implementation of directional bias, syllable rate is the song characteristic

that is selected for (although this could easily represent any song feature): the neighbour with the highest syllable rate is chosen as the tutor. Both the syllable type (for all learning

models) and the syllable rate are learned with some probability of error; if the syllable type is incorrectly copied, a new syllable is invented.
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Pi f G(i) (1�ε),

where G(i) is the frequency of occurrence of a syllable type i among

neighbours and ε is the chance the syllable is copied incorrectly. We

varied this error rate parameter (ε) to explore the ranges of plau-

sible error rates for each learning model (10�6%, 10�5%, 0.0001%,

0.001%, 0.01%, 0.1% and 1.0%). We also ran several models in which

an error meant that, instead of inventing a novel syllable, a bird

produced a random syllable from the original set of syllables {1,

500}. For these models of syllable reinvention, called homoplasy,

we added a larger error rate of 10%. Since only about 0.5% of

observed songs were recorded only once (see Results), we did not

test values of new syllable invention higher than 1%.

Model Implementation of Conformity Bias

Under conformity bias, juveniles preferentially learn more

frequent songs. Each juvenile surveys the syllable types sung by his

neighbours. The probability of learning syllable type i in the case of

conformist tutor selection can be represented as

Pi f G(i)c(1�ε),

where c is the conformity bias factor. In the simulations we report

below, a conformity factor c ¼ 2 means that each syllable's fre-

quency is squared. These values are then normalized to represent

the likelihood of selecting each syllable, such that more common

syllable types are learned more often than they appear among

neighbours.We tested a series of other conformity factors including

less severe conformity biases (c ¼ {1.2, 1.4, 1.6, 1.8, 2.0}) and a weak

novelty bias (c ¼ 0.8). The learning error and dispersal were

examined identically to those of the neutral tutor selection model.

Model Implementation of Directional Tutor Selection

For directional tutor selection, learning is based not on the fre-

quencies of syllable types, but on a continuous variable repre-

senting the rate of syllable production. The probability of learning

syllable type i under directional selection is given by

Pi f (1�ε) if ri ¼max(R) and Pi ¼ 0 otherwise,

where R is the set of all neighbours' syllable rates ri. This process

mimics a type of directional selection that has been proposed for

chipping sparrows, in which the preferred song is most difficult to

produce. This model could accommodate directional selection on

any continuous song feature; as a case study, we use a simple

metric, the rate of syllable production, also called trill rate, as our

putative feature that is under selection. This feature has been hy-

pothesized to be relevant in chipping sparrows (Goodwin & Podos,

2014), but we note that our previous analysis showed a relatively

wide distribution of trill rates in natural chipping sparrow

recordings over time, ~5e40 syllables/s. In the model, the juvenile

selects a tutor, the neighbour with the fastest syllable rate, and

attempts to copy both the syllable type and the syllable rate of this

tutor. The learning error for syllable type operates identically to the

neutral and conformity models. With directional selection, there is

also a learning error for syllable rate that is weighted such that it is

more difficult to replicate or improve upon the tutor's performance

than to perform worse than the tutor (as in Henrich, 2004). Thus,

juveniles are most likely to sing at a slightly slower rate than the

tutor, and the syllable rates are restricted to values observed in our

chipping sparrow song database (1e40 syllables/s). Therefore, the

learned song is sung at a rate similar to that of the tutor with an

error drawn from a uniform distribution between �2 and 0.25 and

has either an identical or a novel syllable type. It is important to

note that while we describe the song feature under selection as

‘syllable rate’, it can be interpreted that any continuously varying

song feature is undergoing directional selection.

Sampling the Simulated Bird Population

The method of data collection from the model population was

chosen to replicate the sampling that occurred when songs were

recorded by community scientists. For each learning model, the

simulated population was sampled such that the number of birds

sampled per time step was equal to the number of recordings we

had from each year. Our recording data spanned 68 years

(1950e2017), with some years having no recordings; thus, some

number of birds (possibly 0) were selected at random from the

model population for each of the last 68 of 1000 iterations of the

model (here, the first 932 time steps served as a burn-in, which

minimized the effects of initialization for variables such as the

number and distribution of syllables). For each bird sampled from

the simulated population, the iteration fromwhich it was collected

and the syllable type were documented. This was to ensure the life

spans and the counts of syllable types of this sampled model

population could be calculated in the samemanner as the recording

data.

We sampled syllables from our simulations to compare the

model to three similarly sized regions of the range chosen for their

high sampling density. For regions of approximately 100 000 km2,

we chose three regions with the highest density of song recordings.

These regions were defined as the area within a rectangle bounded

by latitudes and longitudes; these included the Michigan/Ohio re-

gion, U.S.A. (85�e82�W, 39�e43�N, containing 172 song recordings

over ~100 000 km2), the New York region, U.S.A. (77�e73�W,

40�e43�N, containing 88 songs over ~100 000 km2) and the New

England region, U.S.A. (74�e69�W, 41�e45�N, containing 210 songs

over ~130 000 km2). We estimated the chipping sparrow popula-

tion density in the U.S. to be about 13.3 birds/km2, calculated as the

population size of chipping sparrows (estimated as 100 million

chipping sparrows in the U.S.; Will et al., 2020) divided by the area

of the continental U.S. (~7.5 million km2). We assumed that our

sampled regions would likely have at least this average density, so

we used a range of 13.3e25 birds/km2 for our calculations. For a

breeding region of 100 000 km2, we thus estimated a population

size of about 1.3e2.5 million chipping sparrows. Of these, approx-

imately half are males, and not all males are adults with territories:

likely only one in three chipping sparrows is a territorial male.

Given their sizes, each region likely has 444 000 to 833 000 terri-

tories, compared to the 160 000 territories in the smallest simula-

tions (400 � 400) and 490 000 in the largest (700 � 700). All these

regions are concentrated towards the east of the chipping sparrow

range, as equivalently sized regions in the west had a much smaller

number of recordings (22 in California's Central Valley, and fewer in

Oregon, U.S.A.). To estimate the syllable life spans and counts that

each model produced for each region, we sampled syllable types

from every model 50 times.

Quantitatively Comparing Model Results to Empirical Data

For each simulation, we visualized and compared our results

using the site frequency spectrum technique from population ge-

netics (Nielsen, 2005; Pepperell et al., 2013; Zhu & Bustamante,

2005) and created a ‘syllable frequency spectrum’, the frequency

of birds that sing various syllable types in the sample, to compare

our model results with empirical data. Additionally, we used a

similar visualization to compare the frequencies of syllable type

lifetimes for each model across a range of learning error rates.
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Specifically, we aimed to identify whether one or more tutor se-

lection models would be able to produce results similar to the

empirical data, across both syllable frequency of occurrence and

syllable lifetime distributions. These distributions had similarities to

the empirical data: there were several frequent long-lasting sylla-

bles, many syllables observed very few times and a small number of

syllables with intermediate observed life spans (see Results). These

intermediate life span syllables were most difficult to replicate

among these song-learning models in a way that could be detected

by direct comparison of distributions, such as via two-sample

KolmogoroveSmirnov and k-sample AndersoneDarling tests; the

sparsely populated intermediate values of syllable frequency and life

span contained most of the relevant differences between models,

whereas most values used in comparisons of distributions were at

the extremes (see Results). Instead of manually assigning categories

of short longevity, intermediate longevity, etc., we placed the

empirical data into bins using an algorithm; it assigned bin edges by

minimizing the combined variance of bin count and binwidth. First,

we placed syllables that were recorded only once (for the syllable

frequency spectrum) or only in a single year (for the distribution of

syllable life spans) into their own category, and all others were

initially placed into six equally spaced bins. Then, the edges of these

bins were progressively shifted 106 times (the edges were moved,

and variances of the resulting bins’ sizes and their number of data

points were calculated). If the combined variance was lower, this

became the new set of bins for the next permutation (see https://

github.com/CreanzaLab/ChippingSparrowCulturalEvolutionModel

for details).

In this way, we used an algorithm to place the empirical chip-

ping sparrow data into bins by syllable type using the optimally

found edges, and the simulated samples were placed into the same

bins to compare their distributions with the empirical data. On the

binned syllable type and life span spectra, we conducted Fisher's

exact tests between the empirical data (null hypothesis) and all

simulated data sets to determine which combination of learning

strategy, learning error and dispersal fraction resulted in syllable

type and life span distributions concordant with patterns found in

the chipping sparrow population.

Ethical Note

All recordings were gathered from open access databases of

recordings or published studies from the wild. Playback may have

been used to elicit these songs, which can affect bird behaviours in

the wild (Harris & Haskell, 2013). The short- and long-term effects

of field playbacks are understudied and likely differ by species, but

the limited use of playbacks (i.e. when precautions are taken not to

unduly disturb birds and relatively few playbacks are presented at a

reasonable volume and duration) is thought to be an important part

of an ethical birdwatching practice (Sibley, 2011; Watson et al.,

2019). Recordists uploading to community science repositories

are encouraged to document their use of playbacks, and few of our

recordings were noted to be collected in response to playback.

RESULTS

Syllable Types and Cultural Analysis

We categorized syllables from 820 recordings into 112 distinct

syllable types (Supplementary Table S1; also see previous analysis

Searfoss, Liu et al., 2020). We found that syllable types that

continued to exist for much longer than the lifetime of a chipping

sparrow (less than 9 years) were also those that were most

commonly observed, whereas other syllables were transient and

observed rarely (Fig. 2). In other words, syllables that were found in

many recordings always existed for a long period. To identify dif-

ferences between long- and short-lived syllables, we classified

syllable types as short-lived (life span ¼ 1 year) or long-lived (life

span � 50 years) and compared the features of these syllables

(Fig. 3). We found that long-lived syllable types were significantly

shorter in duration than short-lived syllables (P < 3.29 � 10�3)

(Fig. 3a, Table 1), and songs with a long-lived syllable type con-

tained significantly more repetitions of that syllable per bout

(P < 1.33� 10�3) (Fig. 3b). We also found that geographical differ-

ences did not explain the trends in longevity, since the longitude of

recordings of different syllable types did not significantly differ

between the two life span categories (P ¼ 0.844). Additionally, buzz

syllables tended to be long-lived, whereas double or complex syl-

lables tended to be short-lived, with upedown, downeup and

sweep syllables being prominent in both life span groups (Fig. 3c).

Model Results

Here, we ran several models of song transmission in order to test

which model produced patterns most similar to empirical data.

Since the entire chipping sparrow range contains approximately
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Figure 2. Distribution of chipping sparrow syllable types according to their life spans. For our database of 820 recordings of 112 syllable types, we plot the number of syllable types

versus syllable life span across the entire range. Each syllable type is also shaded by the total number of recordings of that syllable type, illustrating that longer-lived syllable types

are also more common, although less common long-lived syllables exist.
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240 million individuals (Will et al., 2020), we compared the dis-

tributions of syllable occurrences and syllable lifetimes from our

model to several focal regions that had high rates of sampling. We

conducted a series of parameter sweeps, running the simulation for

each of the three learning strategies with multiple error rates (or

invention rates) spanning 10�6% to 1.0% andwith territory dispersal

fractions spanning 0 to 1 (i.e. 0e100% of individuals swap territories

every time step with a bird that has not already dispersed). We

sampled the simulated syllables at the same frequencies as in the

empirical data. We quantitatively determined which combinations

of parameters (song-learning strategy, learning error rate, dispersal

fraction) produced results that did not deviate from the null hy-

pothesis (empirical data).

We provide the syllable type and syllable lifetime frequency

spectra for the best-fit model for each learning type. We deter-

mined a ‘best-fit’ model by first ranking the P values (from least to

greatest) for both the analysis of syllable type frequencies and the

analysis of syllable life spans and then combining the two ranks for

each parameter set and choosing the one with the highest aggre-

gate ranking, i.e. the largest sum of the two rankings (Appendix,

Table A1, Fig. 4). (We note that the results of the Fisher's exact

test indicated that the model results were potentially drawn from

the same distribution as the real datawhen the null hypothesis was

not rejected; when the P value was not significant, the results of the

model were statistically indistinguishable from the empirical data).

For one of our focal regions, New York, we found that the best-fit

model for each learning type was neutral tutor selection with
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Figure 3. Syllable categories and song properties of short- and long-lived chipping sparrow syllable types. Songs with long-lived syllable types have >50-year life span; songs with

short-lived syllable types have 1-year life span; here we show (a) mean syllable duration and (b) total number of syllables for these songs. *P < 6.25 � 10�3 (Wilcoxon rank-sum

tests). (c) The number of short- and long-lived syllable types in each syllable category.

Table 1

Results of theWilcoxon rank-sum tests between short- and long-lived syllable types

Song features Short- vs long-lived P value

Mean intersyllable silence duration 0.449

Mean syllable duration 0.003

Mean syllable frequency range 0.802

Mean syllable minimum frequency 0.476

Mean syllable maximum frequency 0.475

Duration of song bout 0.010

Mean stereotypy of repeated syllables 0.653

Total number of syllables 0.001

Bold indicates P < 6.25 � 10�3.
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10�5% learning error and 0.3 dispersal fraction (syllable frequency

distribution P ¼ 5.7 � 10�13, life span frequency distribution

P ¼ 9.5 � 10�6), conformity bias with 10�3% learning error and 0.1

dispersal fraction (P ¼ 4.5 � 10�8 and P ¼ 8.2 � 10�4, respectively,

with conformity factor c ¼ 1.2) and directional selectionwith 10�6%

learning error and 0.5 dispersal fraction (P ¼ 0.0044 for occurrence

spectra and statistically indistinguishable from the empirical life-

time data, P ¼ 0.123; Fig. 5, see Supplementary Fig. S1 for corre-

sponding unbinned spectra). For the other two focal regions, the

best-fit parameters for each model were similar (Appendix,

Table A2, for spectra see Supplementary Fig. S3, for parameter

sweeps in other regions see Supplementary Figs S8eS10).

We measured the effect of changing several model parameters,

including the strength of conformity selection, matrix size and

syllable reinvention. To measure the strength of conformity bias

during selection, we varied the conformity factor c. Neutral selec-

tion (equivalent to c ¼ 1) and strong conformity selection (c ¼ 2)

performed poorly, whereas an intermediate strength of conformity

selection (c ¼ 1.2) performed best (Supplementary Figs S6eS7,

Appendix, Table A1). However, even the simulation of conformity-

biased learning with the best performance (c ¼ 1.2, 10�3% learning

error and 0.1 dispersal fraction) produced distributions of syllable

occurrences and lifetimes dissimilar to those observed in any re-

gion. To observe how varying themodelled populationwould affect

the distributions of syllables, we simulated several population

matrix sizes. We found that the larger the population matrix, the

more difficult it was for our model to approximate the syllable

lifetime distributions derived from the community science data
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Figure 4. Statistical comparison of (aec) syllable frequency and (def) lifetime spectra between computational models and empirical data for one focal region (New York) with a

matrix size of 500 � 500. Sets of parameters (learning error and dispersal rate) for which the models and empirical data produced similar spectra distributions have P values greater

than 0.05 (shown in black). All simulations with neutral learning (a, d) and conformity bias (b, e; with conformity factor c ¼ 1.2) produced results that were statistically different

from the empirical data (P < 0.05). Some simulations with directional selection (c, f) produced lifetime spectra statistically indistinguishable from the empirical data (f) (P > 0.05),

although this was not true for occurrence spectra (c). For other regions, see Supplementary Fig. S5.
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(Appendix, Table A3, Supplementary Figs S12g, h, S13g, h, S14g, h)

and that smaller matrices reproduced the empirical syllable life-

time distribution at a wide array of values (Supplementary Figs

S12eeS14e). Finally, we modelled whether homoplasy, the rein-

vention of syllable types, affects these distributions. Since homo-

plasy could only occur as the result of an error in song learning, the

differences between models with and without syllable reinvention

were greatest when error rates were high (Supplementary Figs

S8eS11). The best-fit models with homoplasy had higher

dispersal rates (Appendix, Table A4, Supplementary Figs S8eS11),

but models with homoplasy did not describe the observed pa-

rameters better thanmodels without homoplasy: models with high

learning error, which homoplasy affected the most, did not fit the

empirical data for any combination of parameters.

Our regional models could not reproduce both the syllable

counts and lifetimes found in the empirical data (Fig. 4aec,

Appendix, Tables A1eA2). The best-fitmodel (of thosewith amatrix

size of 500 � 500 territories), which relied on directional selection,

low learning error (10�6% in New York and Ohio/Michigan and

10�4% inNewEngland) and intermediate dispersal fraction (0.5 in all

regions), only reproduced the life spans found from the community

science sampling (New York: P ¼ 0.123; Ohio/Michigan: P ¼ 0.076;

New England: P ¼ 0.055; Appendix, Table A2, Supplementary

Fig. S3). These models did not reproduce the empirical occurrence

spectrum in any region (New York: P ¼ 0.0044; Ohio/Michigan:

P ¼ 0.0037; New England: P ¼ 1.4 � 10�4; Fig. 4, Appendix,

Table A2). The simulation with directional selection of tutors

appeared to most closely match the frequency of syllable types

found in our empirical data, similar to the distribution of singletons

and a long, flat tail (Supplementary Fig. S2eeh). While long-lived

syllable types arose in all three song-learning models, directional

selection had an enrichment for these syllable types compared to

the neutral model, whereas conformity bias had an abundance of

long-lived syllables and few syllables with intermediate life spans;

thus, directional selection's frequency spectrum of syllable type life

spans best reflected what we observed in our community science

data sample (Fig. 5b).

DISCUSSION

Here, we performed an analysis of chipping sparrow song re-

cordings across nearly seven decades to identify long-term pat-

terns.We extended the use of computational approaches to cultural

evolution (Youngblood, 2019) with techniques from population

genetics and rapidly growing community science data (Searfoss, Liu

et al., 2020) to assess cultural change and stability in birdsong.
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Figure 5. Comparison of binned syllable frequency and syllable life span spectra between empirical data and samples from best-fit models from one focal region (NY: New York): (a)

The number of times a syllable was sampled and (b) syllable lifetimes (i.e. 1 þ (the last year) � (the first year in which the syllable type was sampled)). Each panel includes data from

the best-fit models of each of the three song-learning strategies: neutral tutor selection, conformity bias and directional selection. Data from community science recordings are also

provided. (See Methods for how bins were calculated.) For unbinned data, see Supplementary Figs S1eS2; for frequency and life span spectra from other regions, see Supplementary

Figs S3eS4.
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Community science recordings provide broad spatiotemporal

coverage of a species’ range, resulting in a data set in which tem-

poral changes could be identified across the entire population. By

comparing these rich data sets with the predictions of cultural

evolutionary models, we were able to evaluate the possible stra-

tegies underlying the social transmission of song. Specifically, we

constructed a spatially explicit model of cultural transmission of

chipping sparrow songs with different types of learning bias:

neutral evolution (unbiased transmission), directional selection

(favouring a certain characteristic of song) and conformity bias

(favouring locally common songs). By comparing our empirical and

simulated results, we found that a directional model most closely

replicated the patterns of both syllable longevity and counts pro-

duced by chipping sparrow song learning. In addition, our

computational analyses agreedwith evidence from field research in

finding that chipping sparrows had high-fidelity song learning

(predicted new syllable invention rate of less than 0.1% in focal

region analyses) and likely dispersed to new territories (a dispersal

rate of 0.1 or greater, most likely near 0.5) after initial learning

(Fig. 4f, Appendix, Table A2, Supplementary Fig. S5).

Past studies have examined the diversity in syllables within the

chipping sparrow population. For example, in the 1950s, Borror

classified chipping sparrow syllables from 58 recordings into cat-

egories and further subdivided the 58 recordings into 28 syllable

types, demonstrating great song diversity and few observations of

each syllable type (Borror, 1959). In a later analysis, the syllables of

157 chipping sparrows from the eastern U.S. were analysed and

placed into around 30 distinct syllable types by eye (Liu, 2001).

With 820 songs, we identified 112 syllable types (Supplementary

Table S1). While our larger community scientist-informed sam-

pling was far smaller than the current chipping sparrow popula-

tion, which is on the scale of 240 million, our analysis contained

syllables that existed for decades (in the entire range, see Fig. 2, and

in focal regions, see Fig. 5b, Supplementary Fig. S3eef) and

captured variation in birdsong that could not be identified via field

studies of a species with such a large range (Supplementary

Fig. S15). It is possible that the sampled chipping sparrow sylla-

bles appeared identical by chance rather than by common descent

as a result of syllable reinvention, a sort of cultural homoplasy.

However, when we modelled syllable reinvention, models with

homoplasy did not fit the empirical data better than models

without it for any form of selection (Appendix, Table A4,

Supplementary Figs S8eS11, (a)e(f) versus (g)e(l)). Given the high

fidelity of pupil learning (Liu & Kroodsma, 2006), the presence of

geographically clustered syllables (Supplementary Fig. S15)

(Searfoss, Liu et al., 2020) and the results of our models, we posit

that learning errors rarely result in birds reproducing an existing

syllable elsewhere in the chipping sparrow range. These data have

allowed us to explore trends in chipping sparrow song over time

that will inform future studies of their song and cultural evolution.

With our analysis of chipping sparrow syllables sampled from

their entire range, we found that many syllable types appeared to

be rare and short-lived, whereas others were quite common and

persisted for decades (Fig. 2). This was true both for the entire re-

gion and when dividing the entire range into focal regions (Fig. 5b,

Supplementary Fig. S3eef). Furthermore, we found evidence that

some broad characteristics were associated with longer syllable life

spans. Buzz syllables tended to be long-lived whereas complex

syllables tended to be short-lived, and songs with long-lived syl-

lable types had more repetitions of shorter syllables, which would

be consistent with predictions that songs with faster syllable rep-

etitions might be favoured in birds (Byers et al., 2010). Notably, this

pattern of shorter and faster syllables being long-lived was

geographically distributed: the distribution of short- versus long-

lived syllables was independent of longitude (Wilcoxon rank-sum

test: P ¼ 0.992) despite songs having more shorter syllables on

average than songs in the western U.S./Canada than in the eastern

U.S./Canada (Searfoss, Liu et al., 2020). Our results demonstrate that

the diversity of chipping sparrow syllable types was not fully

sampled in previous studies, and it is likely that other syllable types

will be discovered as contributions of song recordings to commu-

nity science databases become more widespread. These results

raise an important question: are syllables common and long-lived

because of neutral transmission (similar to genetic drift), cultur-

ally favourable properties (i.e. certain syllables are inherently

salient or associated with successful birds) or conformity bias (i.e.

common syllables are preferred when learning song)?

Selectively neutral processes of song learning, such as unbiased

learning of a song with a relatively high rate of error, are predicted

to result in a simple pattern of syllable prevalence: most sampled

syllable types would be sung by only one bird, fewer syllables

would be sung by two birds, even fewer by three birds, and so on,

until only a small handful of syllables might be sung by many birds

(Slater, 1986). Slater observed this distribution of syllables in

chaffinches, Fringilla coelebs: in a population of 36 chaffinches,

most songs were sung by only one bird, but one song was sung by

22 birds. Furthermore, he modelled the song-learning process with

a simulation in which newly settled birds learned a random nearby

song with some error; this simulation demonstrated that a neutral

learning process with a predictable rate of copy error was sufficient

to replicate the observed distribution of chaffinch syllables. A

similar pattern is regularly observed in genetic data in a stable

population in the absence of selection pressures: most genotypes

are rare, and few genotypes predominate (Nielsen, 2005). Thus, for

both genotypes and song types, one does not need to invoke se-

lection pressures to explain a pattern in which one or very few

types are widespread but most are observed only once.

The question of whether directional selection plays a strong role

in chipping sparrow song evolution has been a topic of debate in

the literature (Akçay & Beecher, 2015; Goodwin & Podos, 2014,

2015; Kroodsma, 2017). In chipping sparrows, syllable rate in

particular has been shown to be correlated with displays of terri-

tory defence: ‘birds responded more vigorously when simulated

intruders sang the more difficult to produce, faster songs, and also

when there was a stronger disparity between intruder trill rates

and their own’ (Goodwin & Podos, 2014, p. 4). Some evidence

suggests that chipping sparrows are subject to a performance

constraint, specifically one in which there is a trade-off between

large sweeps in frequency (Hz) and a high rate of syllable delivery

(Goodwin & Podos, 2014; Podos, 1997). It has been proposed that

physiological constraints contribute to this balance in song per-

formance (Podos, 1996, 1997). Other studies have suggested that a

performance trade-off between frequency bandwidth and syllable

rate could be meaningful: under the stress of competing with the

noise of an urban environment, chipping sparrows under-

performed, singing ‘twice as far below the trade-off frontier’ than

those in less noisy environments (Davidson et al., 2017). Kroodsma

presented a contrary view based on results from field studies

demonstrating that juvenile chipping sparrows imitate their

neighbours with great success, and he suggested that physiological

constraints do not inhibit juveniles from performing fast songs

(Kroodsma, 2017). Instead, he suggested that their performance is

determined by that of their neighbour.

Our analysis is a step towards resolving the debate between

performance-driven and neighbour-dependent hypotheses. These

results suggest that chipping sparrows select which of their

neighbours will be a tutor based on some aspect of their song

performance: certain tutors may be preferred for reasons other

than how frequently their song is heard locally. Our analysis of

recorded songs and song-learning models points to directional
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selection as the best explanation for chipping sparrow song di-

versity. In nature, juvenile chipping sparrows sing several neigh-

bours' songs before selecting a final song, which suggests that a

selective process is taking place (Liu & Nottebohm, 2007). This

selective process, along with juveniles’ modification of their song

during the plastic phase of song learning, have been proposed to

play a part in determining their final song (Podos, 2017). The extent

to which these potential selective processes affect song learning is

controversial, suggesting that the combination of song data with

learning simulations could shed light on the evolutionary dynamics

of vocal learning.

Our 70-year sampling time span gave us the opportunity to

analyse the observed longevity of chipping sparrow syllable types

and their frequency of occurrence. We found that it was difficult to

reproduce the distribution of syllable occurrences in our regional

analyses (Figs 4e5) and the distribution of syllable life spans was

only reproduced bymodels of directional selection. This divergence

seems to be driven by the models predicting a large number of

uncommon, short-lived syllables. Overall, these spectra of syllable

properties favour the directional model of song transmission in

chipping sparrows, such that some quality of the song, rather than

the song's frequency of occurrence in the local population, is under

selection. Lachlan et al. (2018) demonstrated a model of conformity

bias in swamp sparrows leading to a qualitatively similar life span

distribution as ours, in which certain syllables tended to be longer-

lived, even predicting that these syllables were maintained for

upwards of 500 years. In contrast to their model of swamp spar-

rows, our chipping sparrowmodel supports directional selection as

the more likely source of the observed patterns of syllable life span

(New York: Figs 4e5; all other regions: Supplementary Figs S3eS4).

A major difference between our model and that of Lachlan et al. is

that we explicitly modelled the spatial structure of songbird pop-

ulations, such that conformity bias only acted on the syllables found

among neighbours. As a result, the conformity factor that we found

to be most appropriate (c ¼ 1.2) cannot be directly compared to the

parameter a used by Lachlan et al., which they found fitted their

swamp sparrow data best at a ¼ 1.316.

We compared the results of our model to empirical data from

three focal regions, each having a high density of song recording

coverage, and we found that the same patterns applied to all of

these regions. Directional selection produced the best result in all

three regions, consistently favouring low learning error rates (<0.1%

error) and some amount of dispersal (dispersal rate �0.1) (for a

heatmap of the New York region, see Fig. 4; for Ohio/Michigan and

New England, see Supplementary Fig. S5ger; for best-fit results for

all regions, see Appendix, Table A2). The comparison of the model

to the entire range produced different results: in this case,

conformity-biased learning can also reproduce the empirical dis-

tribution of syllable lifetimes (Supplementary Fig. S5e). The direc-

tional model of selection consistently produced the syllable

lifetimes found in all regions, including a number of long-lived

syllables. However, the directional learning strategy never pro-

duced a good fit for the empirical frequencies of syllable occurrence

for a matrix size of 500 � 500. Even the best-fit models tended to

underestimate the number of very common syllable types (Fig. 5,

Supplementary Fig. S3). Stronger selective pressures may cause

syllables to be more common in these models, leading to better

estimates of syllable occurrences and life spans.

Several reasons for the differences between the model results

and empirical data are suggested by the patterns in our results. We

found that smaller models of directional selection (with 160 000

territories) effectively described the empirical distributions of song

occurrences and lifetimes for a wide range of parameters

(Supplementary Fig. S14), whereas models with population sizes

closer to our estimates (up to 490 000 territories, compared to

250 000 in most of our models, and from 444 000 to 833 000 in

these regions) were less effective (Appendix, Table A3,

Supplementary Figs S12eS14). A major factor that can explain this

discrepancy is the difference in sampling: the community science

samples were not randomly distributed, whereas those of our

model were. Song recordings were most common at the intersec-

tion of high human and high chipping sparrow population den-

sities. This sampling discrepancy could mean that the empirical

samples capture a much smaller effective population of chipping

sparrows than exists in the entire region. In addition, the range of

song rates (~36.5e40 syllables/s) observed in the entire simulated

population (before sampling) was much higher and narrower than

that observed in the chipping sparrow population (~5e38 syllables/

s) (Searfoss, Liu et al., 2020). This supports our intuition that syl-

lable rate is not under directional selection on its own, since we

previously observed a wide range of syllable rates in chipping

sparrow songs that persisted over many years in nature (Searfoss,

Liu et al., 2020).

This model did not reproduce the entire song-learning process

and, since there has been a single detailed study on the chipping

sparrow song-learning process (Liu & Kroodsma, 2006), we do not

know whether chipping sparrows learn identically across their

range. However, our results suggest that chipping sparrows learn

songs with a preference for one or several song features in at least

part of their range. The presence of significant local diversity (Liu &

Kroodsma, 2006; Marler & Isaac, 1960) and the distribution of

multiple syllables across the country and overlapping in the same

region (Searfoss, Liu et al., 2020) also suggests that chipping spar-

rows do not have a strong conformist bias in their learning. Our

results can be compared to those in house finches, which demon-

strate content bias, certain syllables are more likely to be learned

because of their acoustic features, not because of their frequency of

occurrence in the population (Youngblood & Lahti, 2022). In chip-

ping sparrows, since only one syllable is learned per bird, we

tracked potential selection on the acoustic features themselves to

test whether directional selection favouring the learning of faster

songs could explain the observed distribution of syllables.

Sparrow species such as the white-throated sparrows, Zono-

trichia albicollis, sing in their wintering grounds, allowing for rapid

transmission of birdsong after these birds migrate north (Otter

et al., 2020). We did not include this effect, since all of our songs

from breeding ranges were recorded outside the winter months

(Searfoss, Liu et al., 2020), and chipping sparrows are not known to

sing regularly during winter months (Liu & Kroodsma, 1999). Song

learning on the wintering grounds may explain some of the

observed song variation, including songs that were widely

dispersed (Supplementary Fig. S15), as birds may have more tutors

to learn from. This additional learning step may homogenize the

population or increase the strength of a conformity bias (causing

common songs to become more common among birds sharing

wintering grounds).

The divergences between ourmodel and the community science

data suggests that more complex evolutionary pressures or cultural

transmission biases might be at play, such as performance trade-

offs or differing selection pressures for tutor selection compared

to mate choice, which could be integrated into the model for future

research. One such explanation is a hypothesized performance

trade-off in chipping sparrow song between frequency bandwidth

and the rate of syllable delivery (Podos, 1996, 1997); due to physi-

ological constraints, a high-performance song might have a large

frequency bandwidth but a slower syllable rate, or a faster syllable

rate but a reduced frequency bandwidth. In this case, directional

selection likely occurs on multiple axes and operates on both traits

at once. If there is a trade-off between two song parameters under

selection, we would not expect to see tight distributions of a single
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syllable parameter (syllable rate or frequency modulation) as there

will be a boundary along which the properties are balanced.

Furthermore, although long-lived syllables had significantly

shorter durations overall, we found a wide distribution of mean

syllable durations, implying that both long and short syllables can

persist over time.

It is difficult to determine whether a certain song feature is

being favoured by directional selectionwithout corresponding field

experiments. We framed directional tutor selection in our model

such that a parameter was the determining factor for the learned

syllable type. As a result, our simulations only suggest that a song

characteristic could be under directional selection, not that syllable

rate in particular is under selection. To test which song features

might be favoured in learning and tutor selection, we propose

playback experiments to determine whether there is a difference in

juveniles' responses to recordings of different song rates, frequency

bandwidths and syllable complexities as well as to historical versus

current song recordings (as in Derryberry, 2007). These results

could then be compared to females' responses to determine

whether tutor selection and mate choice favour similar song

characteristics. Ideally, this would be carried out at multiple loca-

tions across the chipping sparrow's range, given the geographical

patterns observed earlier. We aim to extend this model to incor-

porate content bias more broadly, allowing selection on the sylla-

bles themselves rather than on aspects of syllable production such

as syllable rate, as this may better align with empirical data in

which buzz syllable types are long-lived. To execute this extension

to the model, it would be necessary to create a measure of syllable

quality to drive tutor choice.

We demonstrate that coupling an agent-based model with an-

alyses of community science data is a tool to better understand the

evolution of behaviour in a songbird. By developing a model of

cultural transmission of song and comparing patterns produced by

three learning strategies to those found in our empirical data, we

demonstrate that the observed distributions of chipping sparrow

syllable types show evidence of transmission bias. In particular, our

results are indicative of a song-learning strategy in which tutor

selection is under directional selection pressure in the chipping

sparrow population, with juveniles preferentially selecting tutors

with certain song features, and in which copy errors or invention

rates are quite low (<0.1%). While our simulation does not specify

the specific features of syllables or songs that are under selection,

we found that neutral song-learning processes and conformity-

biased learning, both of which have been observed in other spe-

cies (Lachlan et al., 2018; Slater, 1986), cannot explain the distri-

bution of songs observed in chipping sparrows. Despite their

deceptively simple song, our computational analyses suggest that

chipping sparrows appear to be exhibiting learning biases and

complex cultural transmission patterns, warranting further inves-

tigation in the field.
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Appendix

Table A1

Best parameters for different models in the New York region

Model type Best parameters Counts P value Lifetimes P value

Learning error rate Dispersal fraction

Neutral 10e5 0.3 5.63�10�13 9.46�10�6

Conformity (c¼1.2) 0.001 0.1 4.56�10�8 8.20�10�4

Conformity (c¼1.4) 0.01 0.6 3.22�10�11 1.48�10�4

Conformity (c¼1.6) 0.1 0.9 6.53�10�13 6.02�10�5

Conformity (c¼1.8) 10e5 0.3 3.44�10�13 3.15�10�5

Conformity (c¼2) 0.01 0.4 3.44�10�13 3.15�10�5

Novelty (c¼0.8) 10e5 0.1 1.1�10�15 1.09�10�6

Directional 10e6 0.5 0.00441 0.0123

P values representing simulated data statistically indistinguishable from the empirical data in bold. For best parameters of other regions, see Table A2.

Table A2

Best parameters for different models and regions

Model type Region Best parameters Counts P value Lifetimes P value

Learning error rate Dispersal fraction

Neutral Entire range 0.001 1.0 1.76�10�42 9.25�10�4

NY 10e5 0.3 5.63�10�13 9.46�10�6

OH/MI 0.0001 0.1 6.34�10�22 3.16�10�8

New England 0.0001 0.6 4.71�10�28 3.63�10�9

Conformity (c¼1.2) Entire range 0.001 0.1 6.91�10�17 0.109

NY 0.01 0.4 3.44�10�13 3.15�10�5

OH/MI 0.001 0.1 1.07�10�10 1.35�10�4

New England 0.001 0.1 5.82�10�13 3.63�10�5

Directional Entire range 0.01 0.5 3.08�10�4 0.136

NY 10e6 0.5 0.00441 0.123

OH/MI 10e6 0.5 0.00367 0.0762

New England 0.0001 0.5 1.41�10�4 0.0545

OH/MI: Ohio/Michigan. All models are for a matrix size of 500 � 500. P values representing simulated data statistically indistinguishable from the empirical data in bold.

Table A3

Best parameters for different models and different matrix sizes for the New York region

Model type Matrix dimension Best parameters Counts P value Lifetimes P value

Learning error rate Dispersal fraction

Neutral 400 0.0001 1.0 1.62�10�12 1.73�10�4

500 10e5 0.3 5.63�10�13 9.46�10�6

600 0.001 0.6 1.84�10�14 2.50�10�6

700 10e5 0.8 2.15�10�15 8.32�10�7

Conformity (c¼2) 400 0.001 0.7 1.67�10�10 4.36�104

500 0.01 0.4 3.44�10�13 3.15�10�5

600 10e5 0.2 3.37�10�14 5.22�10�6

700 0.001 0.6 1.82�10�15 6.15�10�7

Directional 400 10e4 0.4 0.189 0.345

500 10e6 0.5 0.00441 0.123

600 10e5 0.5 1.73�10�5 0.00871

700 0.001 0.5 7.90�10�9 0.00222

P values representing simulated data statistically indistinguishable from the empirical data in bold.
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Figure A1. Locations and decades of collection for the 820 chipping sparrow recordings. The geographical map was made using ArcMap v.10.7 and country outlines are from ESRI

(Environmental Systems Research Institute, Redlands, CA, U.S.A., map projection, North_America_Lambert_Conformal_Conic, WKID: 102009).

Table A4

Best parameters for different models of syllable learning error

Model type Homoplasy Best parameters Counts P value Lifetimes P value

Learning error rate Dispersal fraction

Neutral No 10e5 0.3 5.63�10�13 9.46�10�6

Yes 0.0001 0.6 8.58�10�14 1.134�10�5

Conformity (c¼2) No 0.01 0.4 3.44�10�13 3.15�10�5

Yes 10e5 0.7 1.20�10�14 2.31�10�5

Directional No 10e6 0.5 0.00441 0.123

Yes 0.01 1.0 0.002703 0.0809

In the standard model, errors result in novel syllable invention; in the model with homoplasy, syllables are chosen from a fixed set of 500 syllables, identical with the syllables

from the model initialization. All values represent those for the New York region with a matrix size of 500 � 500. P values representing simulated data statistically indis-

tinguishable from the empirical data in bold.

Y. Pichkar et al. / Animal Behaviour 210 (2024) 331e345 345


	Detecting cultural evolution in a songbird species using community science data and computational modelling
	Methods
	Categorization of Chipping Sparrow Syllables into Types
	Calculating and Analysing the Life Span of Chipping Sparrow Syllable Types
	Model Design
	Model Implementation of Neutral Tutor Selection
	Model Implementation of Conformity Bias
	Model Implementation of Directional Tutor Selection
	Sampling the Simulated Bird Population
	Quantitatively Comparing Model Results to Empirical Data
	Ethical Note

	Results
	Syllable Types and Cultural Analysis
	Model Results

	Discussion
	Author Contributions
	Declaration of Interest
	Data Availability
	Acknowledgments
	Supplementary Material
	References
	Appendix


