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Song in oscine birds is learned across generations, and aspects of the song-learning process parallel
genetic transmission: variation can be introduced into both cultural and genetic traits via copy error, and
both types of traits are subject to drift and selective pressure. Similarly to allele frequencies in population
genetics, observing frequencies of birdsong features can improve our understanding of cultural trans-
mission and evolution. Uniquely, community science databases of birdsong provide rich spatiotemporal
data with untapped potential to evaluate cultural evolution in songbirds. Here we use both community
science and field study recordings of chipping sparrows, Spizella passerina, to examine trends across
nearly seven decades of song. We found that some syllable types tended to persist in the population for
much longer than others. Persistent songs tended to contain more syllables of shorter duration than
songs that were observed across fewer years. To draw inferences about the effects of learning biases on
chipping sparrow syllables, we constructed a spatially explicit agent-based model of song learning. By
comparing our empirical analysis to simulated song distributions using three different song-learning
strategies (neutral transmission, conformity bias and directional selection), we suggest that chipping
sparrows are unlikely to select tutors neutrally or with a conformity bias and that they learn their songs
with a remarkably low copy error rate.

© 2024 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

For oscine songbirds, song has many important functions,
including territory defence, species identification and mate
attraction (Catchpole & Slater, 2003; Searcy & Andersson, 1986). In
contrast to a closely related outgroup (suboscines), oscines must
learn their songs, making the process of song learning critical to the
reproductive success of individuals across this diverse clade
(Kroodsma & Miller, 1996; Kroodsma et al., 1982; Mason et al,,
2017; Thorpe, 1958). The evolutionary dynamics of learned song
exhibit parallels to those of human cultural evolution, where long-
lasting traditions can coexist (Aplin, 2016; Hoppitt & Laland, 2013;
Kandler & Laland, 2009; Tomasello et al., 1993; Whiten, 2017). By
studying song learning, we can better understand which aspects of
human learning and cultural evolution are shared with other spe-
cies and which properties are unique.

The transmission of information between individuals underpins
both human and avian cultural evolution. Laboratory and field
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studies have shed light on how song is transmitted in avian pop-
ulations. Some of these studies have measured the properties of
cultural transmission: the similarity between learned song and
tutor song, error rates in song matching, the invention of new songs
and the frequency of songs in a population, among other factors
(Cardoso & Atwell, 2016; Marler & Peters, 1982; Marler & Tamura,
1962; Slater, 1986; Thorpe, 1958). Others have used field site data to
address questions of song change over time. For example, some
studies have tracked cultural evolution using recordings taken in
one population over multiple decades (Ju et al., 2019; Williams
et al., 2013), and other studies have demonstrated that temporal
changes in song are discerned by the current population by
showing that birds react more strongly to modern recordings than
to historical ones (Derryberry, 2007, 2011). Field study recordings
can ensure coverage of local song repertoires, facilitate direct
observation of song tutors and provide samples from the entire
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site's population. Due to the limits on the time period and
geographical range they can cover, field studies are snapshots of the
cultural evolution of syllables, and larger-scale studies can help
bridge the gap between local behaviours and cultural evolution.

By tracking songs and reproductive success over time, as well as
by determining which song features correspond to stronger re-
sponses in current populations, researchers have gained insight
into the types of selective pressures that operate on song
(Derryberry, 2007, 2011; Williams et al., 2013). In parallel, evolu-
tionary biologists and population geneticists, generally without
access to time series data, have synthesized evolutionary models
with evidence from existing distributions of allele frequencies to
understand whether regions of the genome have undergone se-
lection (Bamshad & Wooding, 2003; Bustamante et al., 2001; Ford,
2002; Gutenkunst et al., 2009; Nielsen, 2005; Williamson et al.,
2005). A genetic variant can become more frequent in a popula-
tion because it is associated with a fitness advantage (selection) or
due to random chance (genetic drift). A genetic region under se-
lection will tend to have a different distribution of allele frequencies
than those regions not under selection (Nielsen, 2005). Thus, one
approach in population genetics is to simulate the evolution of a
trait under different selection pressures and population histories.
By comparing data from real populations to predictions from
evolutionary models, researchers have identified which of these
models best explains the data (Akashi & Schaeffer, 1997;
Gutenkunst et al., 2009; Kryazhimskiy & Plotkin, 2008; Williamson
et al., 2005). Some researchers apply this theoretical approach to
the cultural evolution of song by examining the distribution of song
within populations (Lynch & Baker, 1993, 1994; Lynch et al., 1989;
Mcgregor & Krebs, 1982; Parker et al., 2012) and by developing
individual-based or agent-based simulations of song learning that
are compared to field site data (Crozier, 2010; Ellers & Slabbekoorn,
2003; Lachlan et al., 2018; Lachlan & Slater, 2003; Slater, 1986;
Wheelwright et al., 2008; Youngblood & Lahti, 2022). Such agent-
based simulations have been used in conjunction with birdsong
data to infer the learning strategies used by swamp sparrows,
Melospiza georgiana, and house finches, Haemorhous mexicanus
(Lachlan et al., 2018; Youngblood & Lahti, 2022). With these com-
parisons of field recordings and results, researchers found evidence
for different cultural transmission biases in different species. For
example, swamp sparrows showed evidence of conformity bias, a
type of frequency bias in which common song variants are
disproportionately preferred (Lachlan et al., 2018). However, house
finches showed evidence of content bias, in which certain song
elements are preferentially learned regardless of their frequency in
the population, a form of directional selection on the basis of a
feature of the song (Youngblood & Lahti, 2022).

Here, we present an extension to this approach by developing a
model of cultural transmission of birdsong and comparing the re-
sults of this model to a large-scale song analysis of community
science recordings. We suggest that utilizing community science
data is a time- and cost-effective supplement to field studies in the
study of birdsong evolution. Specifically, community science data,
which can cover a large geographical area over many years, can
provide a unique insight into patterns of song transmission across
large spans of time or space, particularly when these data are
considered alongside evolutionary models. Researchers have ana-
lysed community science data to examine avian behaviours,
whereas other studies have compared spatially explicit models to
song recordings from the field to examine evolutionary hypotheses
(Bolus, 2014; Dennhardt et al., 2015; Goodenough et al., 2017;
Kaluthota et al., 2016; Newson et al., 2016; Robinson et al., 2018;
Silvertown et al., 2011). We synthesized these approaches by
examining community science data via models of song learning,
providing insights into cultural evolutionary patterns.

As a focal species for this study, we chose the chipping sparrow,
Spizella passerina, which has a simple repertoire of one repeated
syllable. As a result, the full vocal repertoire of an adult bird can be
captured by a single community science recording. Since cultural
transmission includes mechanisms of mutation, selection and drift
similar to those found in genetics, we employ techniques from
population genetics, in particular, adaptations of site frequency
spectra (Bustamante et al., 2001; Nielsen, 2005), to study song
evolution. We identify unique syllable types that characterize the
songs in a population and use the occurrence and life spans of these
syllables to gain a deeper understanding of chipping sparrow
learning. Since different learning strategies result in different dis-
tributions of syllables, with many replicates of the same syllable
persisting over time if birds learn based on a conformity bias and
potentially a relatively small number of syllables with desirable
characteristics in the case of a directional bias, the frequency at
which syllables occur in nature carries information about these
biases. We compared the occurrence and longevity of songs to
distributions produced by a computational model. This model
simulates the transmission of syllables in a population under three
types of learning: neutral evolution, conformity bias and direc-
tional selection. We demonstrate how analysis of community sci-
ence data in association with a model can supplement field studies
and extend the understanding of birdsong evolution.

METHODS
Categorization of Chipping Sparrow Syllables into Types

In a previous study, we gathered and analysed field site and
community science recordings of chipping sparrows across the
species' entire breeding range (Appendix, Fig. A1), measuring
numerous acoustic features of each song and classifying the sylla-
bles into distinct types and categories (Searfoss, Liu et al., 2020;
Searfoss, Pino et al., 2020). A number of recorded songs in our
previous analysis (Searfoss, Liu et al., 2020) did not have a recording
date listed; however, by revisiting the original field recording notes,
we were able to find the years for all recordings for our study
presented here. We categorized songs as follows: all songs were
viewed as spectrograms in Audacity (https://audacityteam.org/) on
a fixed frequency and timescale (see Supplementary Table S1). A
single syllable was then selected as representative of a song, since
chipping sparrow songs are fully characterized by repetition of a
single syllable. We manually classified 820 syllables into 112
chipping sparrow syllable types based on the shape of the syllable
(Supplementary Table S1; similar to methods of Borror, 1959;
Leitner & Catchpole, 2004; Liu, 2001; Vargas-Castro et al., 2012; for
examples of spatial syllable distributions, see Supplementary
Fig. S14). We further grouped these syllable types into broader
categories based on the syllable shape: up—down (up-slur followed
by down-slur), down—up (down-slur followed by up-slur), sweep
(single up-slur or down-slur), complex (more than two slurs),
doubles (a slur with multiple frequencies) and buzz (syllable con-
taining a noisy and/or high-entropy section, generally termed
‘buzzy’). To ensure that we were correctly categorizing the repeated
element, particularly in the case of up—down versus down—up
syllables, we examined the beginning and end of the song to
determine which part of the syllable came first.

In addition, we used the song analysis software Chipper
(Searfoss, Pino et al., 2020) to extract eight song features from
each recording: mean intersyllable silence duration, mean syllable
duration, mean syllable frequency range, mean syllable minimum
and maximum frequency, duration of song bout, mean syllable
stereotypy and total number of syllables. Chipper allows the user
to visualize each song bout and it predicts where syllable



Y. Pichkar et al. / Animal Behaviour 210 (2024) 331—345 333

boundaries are located using fluctuations in the amplitude of the
signal (Searfoss, Pino et al., 2020). The user can change the signal-
to-noise threshold, apply low-pass and high-pass filters to exclude
high-frequency and low-frequency noise, respectively, and
manually correct these syllable boundaries if necessary. Then,
Chipper analyses the signal within each identified syllable and
outputs a matrix of features for each song (see Searfoss, Pino et al.,
2020 for more details on how each song feature is extracted from
the spectrogram).

For the catalogue numbers, database, recordist, URL and licence
for the 820 song files, see Supplementary Table S1. For the metadata
including recording latitudes and longitudes and the 8 song fea-
tures (all log transformed except mean stereotypy of repeated
syllables and the standard deviation of note frequency modulation),
see Supplementary Table S2.

Calculating and Analysing the Life Span of Chipping Sparrow
Syllable Types

The observed ‘life span’ of a syllable type was defined as the
period between the earliest and latest years in which a syllable type
was recorded. To explore the properties of these life spans, we
plotted the distribution of syllable life spans and the number of
times in which these syllables were identified. We proceeded to
compare syllable features between songs that contained short-
lived (recorded life span = 1 year) versus long-lived (recorded life
span > 50 years) syllable types. We performed Wilcoxon rank-sum
tests on short- versus long-lived syllables for the eight song fea-
tures extracted from each recording. For stringency, we conducted
a Bonferroni correction for multiple hypothesis testing by dividing
the P value threshold for significance (« = 0.05) by the number of
tests. Overall, we performed one test on eight song features, so the
threshold for significance was lowered to aadj = 6.25 x 1073, In
addition to our previously observed geographical patterns in
chipping sparrow songs (Searfoss, Liu et al., 2020), we also con-
ducted Wilcoxon rank-sum tests to determine whether short- or
long-lived syllables are more frequent on an east—west axis.

Model Design

We developed an agent-based simulation to model song
learning in the chipping sparrow population. The entirety of the
model was implemented in Python 3.7 and uses the following
primary packages: NumPy version 1.16.3, Matplotlib version 3.0.3,
Pandas version 0.24.2 and SciPy version 1.2.1 (https://github.com/
Creanzalab/ChippingSparrowCulturalEvolutionModel). With this
model, we simulated syllable transmission in a spatially structured
population under three learning regimes: neutral transmission,
conformity bias and directional selection. Under a neutral model of
song learning, a juvenile randomly chooses a tutor's song to
imitate; with conformity bias, a juvenile is disproportionately likely
to choose a tutor with the most common song; and directional
selection operates to favour certain song properties such as rate of
syllable production or greater frequency bandwidth (Podos, 1997;
Podos & Nowicki, 2004), such that juveniles are more likely to learn
songs that exemplify better performance. Here, directional selec-
tion is somewhat analogous to the content bias observed in house
finches (Youngblood & Lahti, 2022) since juveniles are choosing to
learn a syllable based on its properties and not on its frequency of
occurrence. Chipping sparrows only learn a single syllable, so in our
model, directional selection operates on a continuous feature of a
syllable, the rate of syllable production, instead of the selection of
certain syllable types to compose a song.

As illustrated in Fig. 1, we initialized each model with a
500 x 500 matrix of syllable types that represented a population of

birds (we performed additional analyses with matrix sizes of
400 x 400, 600 x 600 and 700 x 700). Each matrix location rep-
resents a single bird that sings a single syllable, a categorical value
that was initially assigned randomly from a discrete uniform dis-
tribution {1:500}. For the directional selection model, we used an
additional matrix of identical size, containing continuous values
representing a syllable feature (the rates of syllable production)
randomly sampled from a truncated normal distribution confined
to the values observed in nature, i.e. a minimum of five syllables/s
and a maximum of 40 syllables/s, with mean of 22.5 syllables/s and
variance of 25 syllables/s (X ~ N(22.5, 25), 5 < X < 40; Searfoss, Liu
et al, 2020). In each time step, roughly corresponding to a year,
the following steps take place: a fraction of birds die, juvenile birds
are tutored and fill the empty territories and a portion of the
population disperses (Fig. 1). Note that there is a substantial burn-in
period (discussed below; see Sampling the Simulated Bird
Population), so initial distributions of syllables and song rates
have minimal impact on final sampled values.

More specifically, in each time step, first a fixed percentage of
the birds are randomly selected for death. We set this mortality
rate to 40% based on similar avian models (Lachlan et al., 2018;
Slater, 1986). For every bird that is eliminated, a new juvenile
bird replaces it; the new bird's repertoire is either a novel syl-
lable in the case of copy error, or a syllable learned from one of its
neighbours (namely, the birds present at the beginning of the
time step and adjacent to its hatching location in the two-
dimensional matrix, up to eight birds). To maintain a spatial
arrangement representative of natural territories, the matrix
boundaries do not wrap, so birds at the edges of the matrix have
fewer neighbours. Maintaining father—juvenile relationships was
not necessary in our model, as oblique transmission of song,
rather than vertical song transmission from parent to offspring,
appears to be predominant in chipping sparrows. In a well-
studied population in the northeastern U.S., juveniles learned a
song before their first migration but often changed their song
after migration to better match a neighbour, leading to a spatial
pattern in which the syllable types of neighbours often differ but
occasionally match closely; an individual's song did not change
further after the first year (Liu & Kroodsma, 2006; Liu &
Nottebohm, 2007). Although the phenomenon of postmigration
song modification has not been studied in other chipping spar-
row populations, the pattern of occasional neighbour matching
was also observed in chipping sparrows in Mexico (Marler &
[saac, 1960). Once all juveniles learn a syllable (see next sec-
tions for the three learning strategies), the new syllable types
replace the matrix elements of the birds that died, representing
juveniles moving into vacant territories. Each new syllable was
represented by a new integer, such that all syllable types could be
uniquely identified. All territories vacated by birds that died are
filled simultaneously, after tutor selection occurred for that time
step. Since deaths in nature occur throughout the year and
learning takes place over a short time, all birds present at the
beginning of the time step can influence the learning of juveniles
during that time step.

In addition, birds have an opportunity to disperse: some
portion of birds (termed the ‘dispersal fraction’) is selected to
move to a nearby location on the matrix. This promotes the
mixing of regionally common syllable types with the larger
population. Dispersal may sustain the local syllable diversity seen
in chipping sparrow populations (Liu & Kroodsma, 2006). The
addition of this dispersal step reflects what has been observed in
the field: adults occasionally move to a new location, especially
when they share a song with a neighbour (Liu & Kroodsma,
2006). We tested dispersal fractions between 0 and 1 in 0.1 in-
crements, where 0.5 means that half of birds attempt to swap
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Figure 1. Model schematic with illustrated representation of learning biases. For neutral learning, the frequency of a syllable type among the juvenile's adjacent neighbours is
proportional to the probability that it will be learned by the juvenile (equal weight for all neighbours; identical arrows). Conformity bias modifies this probability by taking
probabilities to the power of a conformity factor c, such that more common syllables are preferred. In our implementation of directional bias, syllable rate is the song characteristic
that is selected for (although this could easily represent any song feature): the neighbour with the highest syllable rate is chosen as the tutor. Both the syllable type (for all learning
models) and the syllable rate are learned with some probability of error; if the syllable type is incorrectly copied, a new syllable is invented.

places with a bird that has not yet changed places, chosen
randomly from a location within a set radius (up to 11 matrix
units). These dispersal fractions and radius values were informed
by field studies describing chipping sparrow territory size and
dispersal patterns (Liu, 2004; Liu & Kroodsma, 2006; Swanson
et al.,, 2004). For each set of parameters, the simulation is run
for 1000 time steps, of which the final 68 are used for sampling
(to compare with the 68 years of available community science
data) and the first 932 are a long burn-in period prior to
sampling.

Model Implementation of Neutral Tutor Selection

During each time step, birds that die are replaced by a juvenile
bird at each location. For neutral tutor selection, the syllable type
learned by this juvenile is chosen at random from its eight imme-
diate neighbours (or fewer, at edges and corners). To account for
some likelihood of the new bird producing a novel syllable, we
include a probability of error in learning. The probability of learning
syllable type i in the case of neutral tutor selection can be repre-
sented as
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P o f(i) (1-e),

where f(i) is the frequency of occurrence of a syllable type i among
neighbours and ¢ is the chance the syllable is copied incorrectly. We
varied this error rate parameter (¢) to explore the ranges of plau-
sible error rates for each learning model (10~%%, 107°%, 0.0001%,
0.001%, 0.01%, 0.1% and 1.0%). We also ran several models in which
an error meant that, instead of inventing a novel syllable, a bird
produced a random syllable from the original set of syllables {1,
500}. For these models of syllable reinvention, called homoplasy,
we added a larger error rate of 10%. Since only about 0.5% of
observed songs were recorded only once (see Results), we did not
test values of new syllable invention higher than 1%.

Model Implementation of Conformity Bias

Under conformity bias, juveniles preferentially learn more
frequent songs. Each juvenile surveys the syllable types sung by his
neighbours. The probability of learning syllable type i in the case of
conformist tutor selection can be represented as

P; « f(i)(1—¢),

where c is the conformity bias factor. In the simulations we report
below, a conformity factor ¢ =2 means that each syllable's fre-
quency is squared. These values are then normalized to represent
the likelihood of selecting each syllable, such that more common
syllable types are learned more often than they appear among
neighbours. We tested a series of other conformity factors including
less severe conformity biases (¢ = {1.2, 1.4, 1.6, 1.8, 2.0}) and a weak
novelty bias (c=0.8). The learning error and dispersal were
examined identically to those of the neutral tutor selection model.

Model Implementation of Directional Tutor Selection

For directional tutor selection, learning is based not on the fre-
quencies of syllable types, but on a continuous variable repre-
senting the rate of syllable production. The probability of learning
syllable type i under directional selection is given by

P; o (1—¢) if r; = max(R) and P; = 0 otherwise,

where R is the set of all neighbours' syllable rates r;. This process
mimics a type of directional selection that has been proposed for
chipping sparrows, in which the preferred song is most difficult to
produce. This model could accommodate directional selection on
any continuous song feature; as a case study, we use a simple
metric, the rate of syllable production, also called trill rate, as our
putative feature that is under selection. This feature has been hy-
pothesized to be relevant in chipping sparrows (Goodwin & Podos,
2014), but we note that our previous analysis showed a relatively
wide distribution of trill rates in natural chipping sparrow
recordings over time, ~5—40 syllables/s. In the model, the juvenile
selects a tutor, the neighbour with the fastest syllable rate, and
attempts to copy both the syllable type and the syllable rate of this
tutor. The learning error for syllable type operates identically to the
neutral and conformity models. With directional selection, there is
also a learning error for syllable rate that is weighted such that it is
more difficult to replicate or improve upon the tutor's performance
than to perform worse than the tutor (as in Henrich, 2004). Thus,
juveniles are most likely to sing at a slightly slower rate than the
tutor, and the syllable rates are restricted to values observed in our
chipping sparrow song database (1—40 syllables/s). Therefore, the
learned song is sung at a rate similar to that of the tutor with an
error drawn from a uniform distribution between —2 and 0.25 and

has either an identical or a novel syllable type. It is important to
note that while we describe the song feature under selection as
‘syllable rate’, it can be interpreted that any continuously varying
song feature is undergoing directional selection.

Sampling the Simulated Bird Population

The method of data collection from the model population was
chosen to replicate the sampling that occurred when songs were
recorded by community scientists. For each learning model, the
simulated population was sampled such that the number of birds
sampled per time step was equal to the number of recordings we
had from each year. Our recording data spanned 68 years
(1950—2017), with some years having no recordings; thus, some
number of birds (possibly 0) were selected at random from the
model population for each of the last 68 of 1000 iterations of the
model (here, the first 932 time steps served as a burn-in, which
minimized the effects of initialization for variables such as the
number and distribution of syllables). For each bird sampled from
the simulated population, the iteration from which it was collected
and the syllable type were documented. This was to ensure the life
spans and the counts of syllable types of this sampled model
population could be calculated in the same manner as the recording
data.

We sampled syllables from our simulations to compare the
model to three similarly sized regions of the range chosen for their
high sampling density. For regions of approximately 100 000 km?,
we chose three regions with the highest density of song recordings.
These regions were defined as the area within a rectangle bounded
by latitudes and longitudes; these included the Michigan/Ohio re-
gion, U.S.A. (85°—82°W, 39°—43°N, containing 172 song recordings
over ~100 000 km?), the New York region, US.A. (77°—73°W,
40°—43°N, containing 88 songs over ~100 000 km?) and the New
England region, U.S.A. (74°—69°W, 41°—45°N, containing 210 songs
over ~130 000 km?). We estimated the chipping sparrow popula-
tion density in the U.S. to be about 13.3 birds/km?, calculated as the
population size of chipping sparrows (estimated as 100 million
chipping sparrows in the U.S.; Will et al., 2020) divided by the area
of the continental U.S. (~7.5 million km?). We assumed that our
sampled regions would likely have at least this average density, so
we used a range of 13.3—25 birds/km? for our calculations. For a
breeding region of 100 000 km?, we thus estimated a population
size of about 1.3—2.5 million chipping sparrows. Of these, approx-
imately half are males, and not all males are adults with territories:
likely only one in three chipping sparrows is a territorial male.
Given their sizes, each region likely has 444 000 to 833 000 terri-
tories, compared to the 160 000 territories in the smallest simula-
tions (400 x 400) and 490 000 in the largest (700 x 700). All these
regions are concentrated towards the east of the chipping sparrow
range, as equivalently sized regions in the west had a much smaller
number of recordings (22 in California’s Central Valley, and fewer in
Oregon, U.S.A.). To estimate the syllable life spans and counts that
each model produced for each region, we sampled syllable types
from every model 50 times.

Quantitatively Comparing Model Results to Empirical Data

For each simulation, we visualized and compared our results
using the site frequency spectrum technique from population ge-
netics (Nielsen, 2005; Pepperell et al., 2013; Zhu & Bustamante,
2005) and created a ‘syllable frequency spectrum’, the frequency
of birds that sing various syllable types in the sample, to compare
our model results with empirical data. Additionally, we used a
similar visualization to compare the frequencies of syllable type
lifetimes for each model across a range of learning error rates.



336 Y. Pichkar et al. / Animal Behaviour 210 (2024) 331—345

40 ] No. of recordings per syllable type
5 O1-2 m7-12
g b3-6 MW13-38
v 30
)
S
B
B 20
g
2
g
Z 10
0 ﬂ—ﬂm. . ol e o B o o e e, B g W
1 5 10 15 20 25 30 35 40 45 50 55 60 65

Syllable life span (years)

Figure 2. Distribution of chipping sparrow syllable types according to their life spans. For our database of 820 recordings of 112 syllable types, we plot the number of syllable types
versus syllable life span across the entire range. Each syllable type is also shaded by the total number of recordings of that syllable type, illustrating that longer-lived syllable types

are also more common, although less common long-lived syllables exist.

Specifically, we aimed to identify whether one or more tutor se-
lection models would be able to produce results similar to the
empirical data, across both syllable frequency of occurrence and
syllable lifetime distributions. These distributions had similarities to
the empirical data: there were several frequent long-lasting sylla-
bles, many syllables observed very few times and a small number of
syllables with intermediate observed life spans (see Results). These
intermediate life span syllables were most difficult to replicate
among these song-learning models in a way that could be detected
by direct comparison of distributions, such as via two-sample
Kolmogorov—Smirnov and k-sample Anderson—Darling tests; the
sparsely populated intermediate values of syllable frequency and life
span contained most of the relevant differences between models,
whereas most values used in comparisons of distributions were at
the extremes (see Results). Instead of manually assigning categories
of short longevity, intermediate longevity, etc., we placed the
empirical data into bins using an algorithm; it assigned bin edges by
minimizing the combined variance of bin count and bin width. First,
we placed syllables that were recorded only once (for the syllable
frequency spectrum) or only in a single year (for the distribution of
syllable life spans) into their own category, and all others were
initially placed into six equally spaced bins. Then, the edges of these
bins were progressively shifted 10® times (the edges were moved,
and variances of the resulting bins’ sizes and their number of data
points were calculated). If the combined variance was lower, this
became the new set of bins for the next permutation (see https://
github.com/CreanzaLab/ChippingSparrowCulturalEvolutionModel
for details).

In this way, we used an algorithm to place the empirical chip-
ping sparrow data into bins by syllable type using the optimally
found edges, and the simulated samples were placed into the same
bins to compare their distributions with the empirical data. On the
binned syllable type and life span spectra, we conducted Fisher's
exact tests between the empirical data (null hypothesis) and all
simulated data sets to determine which combination of learning
strategy, learning error and dispersal fraction resulted in syllable
type and life span distributions concordant with patterns found in
the chipping sparrow population.

Ethical Note

All recordings were gathered from open access databases of
recordings or published studies from the wild. Playback may have

been used to elicit these songs, which can affect bird behaviours in
the wild (Harris & Haskell, 2013). The short- and long-term effects
of field playbacks are understudied and likely differ by species, but
the limited use of playbacks (i.e. when precautions are taken not to
unduly disturb birds and relatively few playbacks are presented at a
reasonable volume and duration) is thought to be an important part
of an ethical birdwatching practice (Sibley, 2011; Watson et al.,
2019). Recordists uploading to community science repositories
are encouraged to document their use of playbacks, and few of our
recordings were noted to be collected in response to playback.

RESULTS
Syllable Types and Cultural Analysis

We categorized syllables from 820 recordings into 112 distinct
syllable types (Supplementary Table S1; also see previous analysis
Searfoss, Liu et al., 2020). We found that syllable types that
continued to exist for much longer than the lifetime of a chipping
sparrow (less than 9 years) were also those that were most
commonly observed, whereas other syllables were transient and
observed rarely (Fig. 2). In other words, syllables that were found in
many recordings always existed for a long period. To identify dif-
ferences between long- and short-lived syllables, we classified
syllable types as short-lived (life span = 1 year) or long-lived (life
span > 50 years) and compared the features of these syllables
(Fig. 3). We found that long-lived syllable types were significantly
shorter in duration than short-lived syllables (P < 3.29 x 1073)
(Fig. 3a, Table 1), and songs with a long-lived syllable type con-
tained significantly more repetitions of that syllable per bout
(P < 1.33 x 10~3) (Fig. 3b). We also found that geographical differ-
ences did not explain the trends in longevity, since the longitude of
recordings of different syllable types did not significantly differ
between the two life span categories (P = 0.844). Additionally, buzz
syllables tended to be long-lived, whereas double or complex syl-
lables tended to be short-lived, with up—down, down—up and
sweep syllables being prominent in both life span groups (Fig. 3c).

Model Results

Here, we ran several models of song transmission in order to test
which model produced patterns most similar to empirical data.
Since the entire chipping sparrow range contains approximately
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Figure 3. Syllable categories and song properties of short- and long-lived chipping sparrow syllable types. Songs with long-lived syllable types have >50-year life span; songs with
short-lived syllable types have 1-year life span; here we show (a) mean syllable duration and (b) total number of syllables for these songs. *P < 6.25 x 10~> (Wilcoxon rank-sum

tests). (c) The number of short- and long-lived syllable types in each syllable category.

240 million individuals (Will et al., 2020), we compared the dis-
tributions of syllable occurrences and syllable lifetimes from our
model to several focal regions that had high rates of sampling. We
conducted a series of parameter sweeps, running the simulation for
each of the three learning strategies with multiple error rates (or
invention rates) spanning 10~%% to 1.0% and with territory dispersal
fractions spanning 0 to 1 (i.e. 0—100% of individuals swap territories

Table 1
Results of the Wilcoxon rank-sum tests between short- and long-lived syllable types

Song features Short- vs long-lived P value

Mean intersyllable silence duration 0.449
Mean syllable duration 0.003
Mean syllable frequency range 0.802
Mean syllable minimum frequency 0.476
Mean syllable maximum frequency 0.475
Duration of song bout 0.010
Mean stereotypy of repeated syllables 0.653
Total number of syllables 0.001

Bold indicates P < 6.25 x 107>,

every time step with a bird that has not already dispersed). We
sampled the simulated syllables at the same frequencies as in the
empirical data. We quantitatively determined which combinations
of parameters (song-learning strategy, learning error rate, dispersal
fraction) produced results that did not deviate from the null hy-
pothesis (empirical data).

We provide the syllable type and syllable lifetime frequency
spectra for the best-fit model for each learning type. We deter-
mined a ‘best-fit’ model by first ranking the P values (from least to
greatest) for both the analysis of syllable type frequencies and the
analysis of syllable life spans and then combining the two ranks for
each parameter set and choosing the one with the highest aggre-
gate ranking, i.e. the largest sum of the two rankings (Appendix,
Table A1, Fig. 4). (We note that the results of the Fisher's exact
test indicated that the model results were potentially drawn from
the same distribution as the real data when the null hypothesis was
not rejected; when the P value was not significant, the results of the
model were statistically indistinguishable from the empirical data).
For one of our focal regions, New York, we found that the best-fit
model for each learning type was neutral tutor selection with
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10~°% learning error and 0.3 dispersal fraction (syllable frequency
distribution P=5.7 x 10713, life span frequency distribution
P=9.5 x 10~%), conformity bias with 103% learning error and 0.1
dispersal fraction (P=4.5 x 1078 and P= 8.2 x 10~4, respectively,
with conformity factor ¢ = 1.2) and directional selection with 10~%%
learning error and 0.5 dispersal fraction (P = 0.0044 for occurrence
spectra and statistically indistinguishable from the empirical life-
time data, P=0.123; Fig. 5, see Supplementary Fig. S1 for corre-
sponding unbinned spectra). For the other two focal regions, the
best-fit parameters for each model were similar (Appendix,
Table A2, for spectra see Supplementary Fig. S3, for parameter
sweeps in other regions see Supplementary Figs S8—S10).

We measured the effect of changing several model parameters,
including the strength of conformity selection, matrix size and
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syllable reinvention. To measure the strength of conformity bias
during selection, we varied the conformity factor c. Neutral selec-
tion (equivalent to ¢ = 1) and strong conformity selection (¢ = 2)
performed poorly, whereas an intermediate strength of conformity
selection (c= 1.2) performed best (Supplementary Figs S6—S7,
Appendix, Table A1). However, even the simulation of conformity-
biased learning with the best performance (c = 1.2, 1073% learning
error and 0.1 dispersal fraction) produced distributions of syllable
occurrences and lifetimes dissimilar to those observed in any re-
gion. To observe how varying the modelled population would affect
the distributions of syllables, we simulated several population
matrix sizes. We found that the larger the population matrix, the
more difficult it was for our model to approximate the syllable
lifetime distributions derived from the community science data
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Figure 4. Statistical comparison of (a—c) syllable frequency and (d—f) lifetime spectra between computational models and empirical data for one focal region (New York) with a
matrix size of 500 x 500. Sets of parameters (learning error and dispersal rate) for which the models and empirical data produced similar spectra distributions have P values greater
than 0.05 (shown in black). All simulations with neutral learning (a, d) and conformity bias (b, e; with conformity factor ¢ = 1.2) produced results that were statistically different
from the empirical data (P < 0.05). Some simulations with directional selection (c, f) produced lifetime spectra statistically indistinguishable from the empirical data (f) (P> 0.05),
although this was not true for occurrence spectra (c). For other regions, see Supplementary Fig. S5.
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Figure 5. Comparison of binned syllable frequency and syllable life span spectra between empirical data and samples from best-fit models from one focal region (NY: New York): (a)
The number of times a syllable was sampled and (b) syllable lifetimes (i.e. 1 + (the last year) — (the first year in which the syllable type was sampled)). Each panel includes data from
the best-fit models of each of the three song-learning strategies: neutral tutor selection, conformity bias and directional selection. Data from community science recordings are also
provided. (See Methods for how bins were calculated.) For unbinned data, see Supplementary Figs S1—S2; for frequency and life span spectra from other regions, see Supplementary

Figs S3—54.

(Appendix, Table A3, Supplementary Figs S12g, h, S13g, h, S14g, h)
and that smaller matrices reproduced the empirical syllable life-
time distribution at a wide array of values (Supplementary Figs
S12e—S14e). Finally, we modelled whether homoplasy, the rein-
vention of syllable types, affects these distributions. Since homo-
plasy could only occur as the result of an error in song learning, the
differences between models with and without syllable reinvention
were greatest when error rates were high (Supplementary Figs
S8—S11). The best-fit models with homoplasy had higher
dispersal rates (Appendix, Table A4, Supplementary Figs S8—S11),
but models with homoplasy did not describe the observed pa-
rameters better than models without homoplasy: models with high
learning error, which homoplasy affected the most, did not fit the
empirical data for any combination of parameters.

Our regional models could not reproduce both the syllable
counts and lifetimes found in the empirical data (Fig. 4a—c,
Appendix, Tables A1—A2). The best-fit model (of those with a matrix
size of 500 x 500 territories), which relied on directional selection,
low learning error (107%% in New York and Ohio/Michigan and
10~%% in New England) and intermediate dispersal fraction (0.5 in all
regions), only reproduced the life spans found from the community
science sampling (New York: P = 0.123; Ohio/Michigan: P = 0.076;
New England: P=0.055; Appendix, Table A2, Supplementary

Fig. S3). These models did not reproduce the empirical occurrence
spectrum in any region (New York: P = 0.0044; Ohio/Michigan:
P=0.0037; New England: P=14x 104 Fig. 4, Appendix,
Table A2). The simulation with directional selection of tutors
appeared to most closely match the frequency of syllable types
found in our empirical data, similar to the distribution of singletons
and a long, flat tail (Supplementary Fig. S2e—h). While long-lived
syllable types arose in all three song-learning models, directional
selection had an enrichment for these syllable types compared to
the neutral model, whereas conformity bias had an abundance of
long-lived syllables and few syllables with intermediate life spans;
thus, directional selection's frequency spectrum of syllable type life
spans best reflected what we observed in our community science
data sample (Fig. 5b).

DISCUSSION

Here, we performed an analysis of chipping sparrow song re-
cordings across nearly seven decades to identify long-term pat-
terns. We extended the use of computational approaches to cultural
evolution (Youngblood, 2019) with techniques from population
genetics and rapidly growing community science data (Searfoss, Liu
et al., 2020) to assess cultural change and stability in birdsong.
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Community science recordings provide broad spatiotemporal
coverage of a species’ range, resulting in a data set in which tem-
poral changes could be identified across the entire population. By
comparing these rich data sets with the predictions of cultural
evolutionary models, we were able to evaluate the possible stra-
tegies underlying the social transmission of song. Specifically, we
constructed a spatially explicit model of cultural transmission of
chipping sparrow songs with different types of learning bias:
neutral evolution (unbiased transmission), directional selection
(favouring a certain characteristic of song) and conformity bias
(favouring locally common songs). By comparing our empirical and
simulated results, we found that a directional model most closely
replicated the patterns of both syllable longevity and counts pro-
duced by chipping sparrow song learning. In addition, our
computational analyses agreed with evidence from field research in
finding that chipping sparrows had high-fidelity song learning
(predicted new syllable invention rate of less than 0.1% in focal
region analyses) and likely dispersed to new territories (a dispersal
rate of 0.1 or greater, most likely near 0.5) after initial learning
(Fig. 4f, Appendix, Table A2, Supplementary Fig. S5).

Past studies have examined the diversity in syllables within the
chipping sparrow population. For example, in the 1950s, Borror
classified chipping sparrow syllables from 58 recordings into cat-
egories and further subdivided the 58 recordings into 28 syllable
types, demonstrating great song diversity and few observations of
each syllable type (Borror, 1959). In a later analysis, the syllables of
157 chipping sparrows from the eastern U.S. were analysed and
placed into around 30 distinct syllable types by eye (Liu, 2001).
With 820 songs, we identified 112 syllable types (Supplementary
Table S1). While our larger community scientist-informed sam-
pling was far smaller than the current chipping sparrow popula-
tion, which is on the scale of 240 million, our analysis contained
syllables that existed for decades (in the entire range, see Fig. 2, and
in focal regions, see Fig. 5b, Supplementary Fig. S3e—f) and
captured variation in birdsong that could not be identified via field
studies of a species with such a large range (Supplementary
Fig. S15). It is possible that the sampled chipping sparrow sylla-
bles appeared identical by chance rather than by common descent
as a result of syllable reinvention, a sort of cultural homoplasy.
However, when we modelled syllable reinvention, models with
homoplasy did not fit the empirical data better than models
without it for any form of selection (Appendix, Table A4,
Supplementary Figs S8—S11, (a)—(f) versus (g)—(1)). Given the high
fidelity of pupil learning (Liu & Kroodsma, 2006), the presence of
geographically clustered syllables (Supplementary Fig. S15)
(Searfoss, Liu et al., 2020) and the results of our models, we posit
that learning errors rarely result in birds reproducing an existing
syllable elsewhere in the chipping sparrow range. These data have
allowed us to explore trends in chipping sparrow song over time
that will inform future studies of their song and cultural evolution.

With our analysis of chipping sparrow syllables sampled from
their entire range, we found that many syllable types appeared to
be rare and short-lived, whereas others were quite common and
persisted for decades (Fig. 2). This was true both for the entire re-
gion and when dividing the entire range into focal regions (Fig. 5b,
Supplementary Fig. S3e—f). Furthermore, we found evidence that
some broad characteristics were associated with longer syllable life
spans. Buzz syllables tended to be long-lived whereas complex
syllables tended to be short-lived, and songs with long-lived syl-
lable types had more repetitions of shorter syllables, which would
be consistent with predictions that songs with faster syllable rep-
etitions might be favoured in birds (Byers et al., 2010). Notably, this
pattern of shorter and faster syllables being long-lived was
geographically distributed: the distribution of short- versus long-
lived syllables was independent of longitude (Wilcoxon rank-sum

test: P=0.992) despite songs having more shorter syllables on
average than songs in the western U.S./Canada than in the eastern
U.S./Canada (Searfoss, Liu et al., 2020). Our results demonstrate that
the diversity of chipping sparrow syllable types was not fully
sampled in previous studies, and it is likely that other syllable types
will be discovered as contributions of song recordings to commu-
nity science databases become more widespread. These results
raise an important question: are syllables common and long-lived
because of neutral transmission (similar to genetic drift), cultur-
ally favourable properties (i.e. certain syllables are inherently
salient or associated with successful birds) or conformity bias (i.e.
common syllables are preferred when learning song)?

Selectively neutral processes of song learning, such as unbiased
learning of a song with a relatively high rate of error, are predicted
to result in a simple pattern of syllable prevalence: most sampled
syllable types would be sung by only one bird, fewer syllables
would be sung by two birds, even fewer by three birds, and so on,
until only a small handful of syllables might be sung by many birds
(Slater, 1986). Slater observed this distribution of syllables in
chaffinches, Fringilla coelebs: in a population of 36 chaffinches,
most songs were sung by only one bird, but one song was sung by
22 birds. Furthermore, he modelled the song-learning process with
a simulation in which newly settled birds learned a random nearby
song with some error; this simulation demonstrated that a neutral
learning process with a predictable rate of copy error was sufficient
to replicate the observed distribution of chaffinch syllables. A
similar pattern is regularly observed in genetic data in a stable
population in the absence of selection pressures: most genotypes
are rare, and few genotypes predominate (Nielsen, 2005). Thus, for
both genotypes and song types, one does not need to invoke se-
lection pressures to explain a pattern in which one or very few
types are widespread but most are observed only once.

The question of whether directional selection plays a strong role
in chipping sparrow song evolution has been a topic of debate in
the literature (Akcay & Beecher, 2015; Goodwin & Podos, 2014,
2015; Kroodsma, 2017). In chipping sparrows, syllable rate in
particular has been shown to be correlated with displays of terri-
tory defence: ‘birds responded more vigorously when simulated
intruders sang the more difficult to produce, faster songs, and also
when there was a stronger disparity between intruder trill rates
and their own’ (Goodwin & Podos, 2014, p. 4). Some evidence
suggests that chipping sparrows are subject to a performance
constraint, specifically one in which there is a trade-off between
large sweeps in frequency (Hz) and a high rate of syllable delivery
(Goodwin & Podos, 2014; Podos, 1997). It has been proposed that
physiological constraints contribute to this balance in song per-
formance (Podos, 1996, 1997). Other studies have suggested that a
performance trade-off between frequency bandwidth and syllable
rate could be meaningful: under the stress of competing with the
noise of an urban environment, chipping sparrows under-
performed, singing ‘twice as far below the trade-off frontier’ than
those in less noisy environments (Davidson et al., 2017). Kroodsma
presented a contrary view based on results from field studies
demonstrating that juvenile chipping sparrows imitate their
neighbours with great success, and he suggested that physiological
constraints do not inhibit juveniles from performing fast songs
(Kroodsma, 2017). Instead, he suggested that their performance is
determined by that of their neighbour.

Our analysis is a step towards resolving the debate between
performance-driven and neighbour-dependent hypotheses. These
results suggest that chipping sparrows select which of their
neighbours will be a tutor based on some aspect of their song
performance: certain tutors may be preferred for reasons other
than how frequently their song is heard locally. Our analysis of
recorded songs and song-learning models points to directional
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selection as the best explanation for chipping sparrow song di-
versity. In nature, juvenile chipping sparrows sing several neigh-
bours' songs before selecting a final song, which suggests that a
selective process is taking place (Liu & Nottebohm, 2007). This
selective process, along with juveniles’ modification of their song
during the plastic phase of song learning, have been proposed to
play a part in determining their final song (Podos, 2017). The extent
to which these potential selective processes affect song learning is
controversial, suggesting that the combination of song data with
learning simulations could shed light on the evolutionary dynamics
of vocal learning.

Our 70-year sampling time span gave us the opportunity to
analyse the observed longevity of chipping sparrow syllable types
and their frequency of occurrence. We found that it was difficult to
reproduce the distribution of syllable occurrences in our regional
analyses (Figs 4—5) and the distribution of syllable life spans was
only reproduced by models of directional selection. This divergence
seems to be driven by the models predicting a large number of
uncommon, short-lived syllables. Overall, these spectra of syllable
properties favour the directional model of song transmission in
chipping sparrows, such that some quality of the song, rather than
the song's frequency of occurrence in the local population, is under
selection. Lachlan et al. (2018) demonstrated a model of conformity
bias in swamp sparrows leading to a qualitatively similar life span
distribution as ours, in which certain syllables tended to be longer-
lived, even predicting that these syllables were maintained for
upwards of 500 years. In contrast to their model of swamp spar-
rows, our chipping sparrow model supports directional selection as
the more likely source of the observed patterns of syllable life span
(New York: Figs 4—5; all other regions: Supplementary Figs S3—S4).
A major difference between our model and that of Lachlan et al. is
that we explicitly modelled the spatial structure of songbird pop-
ulations, such that conformity bias only acted on the syllables found
among neighbours. As a result, the conformity factor that we found
to be most appropriate (¢ = 1.2) cannot be directly compared to the
parameter o. used by Lachlan et al., which they found fitted their
swamp sparrow data best at o = 1.316.

We compared the results of our model to empirical data from
three focal regions, each having a high density of song recording
coverage, and we found that the same patterns applied to all of
these regions. Directional selection produced the best result in all
three regions, consistently favouring low learning error rates (<0.1%
error) and some amount of dispersal (dispersal rate >0.1) (for a
heatmap of the New York region, see Fig. 4; for Ohio/Michigan and
New England, see Supplementary Fig. S5g—r; for best-fit results for
all regions, see Appendix, Table A2). The comparison of the model
to the entire range produced different results: in this case,
conformity-biased learning can also reproduce the empirical dis-
tribution of syllable lifetimes (Supplementary Fig. S5e). The direc-
tional model of selection consistently produced the syllable
lifetimes found in all regions, including a number of long-lived
syllables. However, the directional learning strategy never pro-
duced a good fit for the empirical frequencies of syllable occurrence
for a matrix size of 500 x 500. Even the best-fit models tended to
underestimate the number of very common syllable types (Fig. 5,
Supplementary Fig. S3). Stronger selective pressures may cause
syllables to be more common in these models, leading to better
estimates of syllable occurrences and life spans.

Several reasons for the differences between the model results
and empirical data are suggested by the patterns in our results. We
found that smaller models of directional selection (with 160 000
territories) effectively described the empirical distributions of song
occurrences and lifetimes for a wide range of parameters
(Supplementary Fig. S14), whereas models with population sizes
closer to our estimates (up to 490 000 territories, compared to

250 000 in most of our models, and from 444 000 to 833 000 in
these regions) were less effective (Appendix, Table A3,
Supplementary Figs S12—S14). A major factor that can explain this
discrepancy is the difference in sampling: the community science
samples were not randomly distributed, whereas those of our
model were. Song recordings were most common at the intersec-
tion of high human and high chipping sparrow population den-
sities. This sampling discrepancy could mean that the empirical
samples capture a much smaller effective population of chipping
sparrows than exists in the entire region. In addition, the range of
song rates (~36.5—40 syllables/s) observed in the entire simulated
population (before sampling) was much higher and narrower than
that observed in the chipping sparrow population (~5—38 syllables/
s) (Searfoss, Liu et al., 2020). This supports our intuition that syl-
lable rate is not under directional selection on its own, since we
previously observed a wide range of syllable rates in chipping
sparrow songs that persisted over many years in nature (Searfoss,
Liu et al., 2020).

This model did not reproduce the entire song-learning process
and, since there has been a single detailed study on the chipping
sparrow song-learning process (Liu & Kroodsma, 2006), we do not
know whether chipping sparrows learn identically across their
range. However, our results suggest that chipping sparrows learn
songs with a preference for one or several song features in at least
part of their range. The presence of significant local diversity (Liu &
Kroodsma, 2006; Marler & Isaac, 1960) and the distribution of
multiple syllables across the country and overlapping in the same
region (Searfoss, Liu et al., 2020) also suggests that chipping spar-
rows do not have a strong conformist bias in their learning. Our
results can be compared to those in house finches, which demon-
strate content bias, certain syllables are more likely to be learned
because of their acoustic features, not because of their frequency of
occurrence in the population (Youngblood & Lahti, 2022). In chip-
ping sparrows, since only one syllable is learned per bird, we
tracked potential selection on the acoustic features themselves to
test whether directional selection favouring the learning of faster
songs could explain the observed distribution of syllables.

Sparrow species such as the white-throated sparrows, Zono-
trichia albicollis, sing in their wintering grounds, allowing for rapid
transmission of birdsong after these birds migrate north (Otter
et al,, 2020). We did not include this effect, since all of our songs
from breeding ranges were recorded outside the winter months
(Searfoss, Liu et al., 2020), and chipping sparrows are not known to
sing regularly during winter months (Liu & Kroodsma, 1999). Song
learning on the wintering grounds may explain some of the
observed song variation, including songs that were widely
dispersed (Supplementary Fig. S15), as birds may have more tutors
to learn from. This additional learning step may homogenize the
population or increase the strength of a conformity bias (causing
common songs to become more common among birds sharing
wintering grounds).

The divergences between our model and the community science
data suggests that more complex evolutionary pressures or cultural
transmission biases might be at play, such as performance trade-
offs or differing selection pressures for tutor selection compared
to mate choice, which could be integrated into the model for future
research. One such explanation is a hypothesized performance
trade-off in chipping sparrow song between frequency bandwidth
and the rate of syllable delivery (Podos, 1996, 1997); due to physi-
ological constraints, a high-performance song might have a large
frequency bandwidth but a slower syllable rate, or a faster syllable
rate but a reduced frequency bandwidth. In this case, directional
selection likely occurs on multiple axes and operates on both traits
at once. If there is a trade-off between two song parameters under
selection, we would not expect to see tight distributions of a single
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syllable parameter (syllable rate or frequency modulation) as there
will be a boundary along which the properties are balanced.
Furthermore, although long-lived syllables had significantly
shorter durations overall, we found a wide distribution of mean
syllable durations, implying that both long and short syllables can
persist over time.

It is difficult to determine whether a certain song feature is
being favoured by directional selection without corresponding field
experiments. We framed directional tutor selection in our model
such that a parameter was the determining factor for the learned
syllable type. As a result, our simulations only suggest that a song
characteristic could be under directional selection, not that syllable
rate in particular is under selection. To test which song features
might be favoured in learning and tutor selection, we propose
playback experiments to determine whether there is a difference in
juveniles' responses to recordings of different song rates, frequency
bandwidths and syllable complexities as well as to historical versus
current song recordings (as in Derryberry, 2007). These results
could then be compared to females' responses to determine
whether tutor selection and mate choice favour similar song
characteristics. Ideally, this would be carried out at multiple loca-
tions across the chipping sparrow's range, given the geographical
patterns observed earlier. We aim to extend this model to incor-
porate content bias more broadly, allowing selection on the sylla-
bles themselves rather than on aspects of syllable production such
as syllable rate, as this may better align with empirical data in
which buzz syllable types are long-lived. To execute this extension
to the model, it would be necessary to create a measure of syllable
quality to drive tutor choice.

We demonstrate that coupling an agent-based model with an-
alyses of community science data is a tool to better understand the
evolution of behaviour in a songbird. By developing a model of
cultural transmission of song and comparing patterns produced by
three learning strategies to those found in our empirical data, we
demonstrate that the observed distributions of chipping sparrow
syllable types show evidence of transmission bias. In particular, our
results are indicative of a song-learning strategy in which tutor
selection is under directional selection pressure in the chipping
sparrow population, with juveniles preferentially selecting tutors
with certain song features, and in which copy errors or invention
rates are quite low (<0.1%). While our simulation does not specify
the specific features of syllables or songs that are under selection,
we found that neutral song-learning processes and conformity-
biased learning, both of which have been observed in other spe-
cies (Lachlan et al.,, 2018; Slater, 1986), cannot explain the distri-
bution of songs observed in chipping sparrows. Despite their
deceptively simple song, our computational analyses suggest that
chipping sparrows appear to be exhibiting learning biases and
complex cultural transmission patterns, warranting further inves-
tigation in the field.
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Appendix

Table A1
Best parameters for different models in the New York region

Model type Best parameters Counts P value Lifetimes P value
Learning error rate Dispersal fraction

Neutral 107° 0.3 5.63x10° 13 9.46x10°6
Conformity (c=1.2) 0.001 0.1 456x10°8 8.20x10°%
Conformity (c=1.4) 0.01 0.6 3.22x107 11 1.48x1074
Conformity (c=1.6) 0.1 0.9 6.53x10713 6.02x107°
Conformity (c=1.8) 107> 0.3 3.44x10°13 3.15x107>
Conformity (c=2) 0.01 0.4 3.44x10°13 3.15x107°
Novelty (c=0.8) 107> 0.1 1.1x10°1° 1.09x10°¢
Directional 1076 0.5 0.00441 0.0123

P values representing simulated data statistically indistinguishable from the empirical data in bold. For best parameters of other regions, see Table A2.

Table A2
Best parameters for different models and regions

Model type Region Best parameters Counts P value Lifetimes P value
Learning error rate Dispersal fraction
Neutral Entire range 0.001 1.0 1.76x10~4? 9.25x10~%
NY 107> 0.3 5.63x10713 9.46x107°
OH/MI 0.0001 0.1 6.34x10"%2 3.16x10°8
New England 0.0001 0.6 471x10728 3.63x107°
Conformity (c=1.2) Entire range 0.001 0.1 6.91x10717 0.109
NY 0.01 0.4 3.44x10°13 3.15x107°
OH/MI 0.001 0.1 1.07x10°1° 1.35x10°4
New England 0.001 0.1 5.82x10° 13 3.63x107°
Directional Entire range 0.01 0.5 3.08x10°4 0.136
NY 1076 0.5 0.00441 0.123
OH/MI 1076 0.5 0.00367 0.0762
New England 0.0001 0.5 1.41x1074 0.0545

OH/MI: Ohio/Michigan. All models are for a matrix size of 500 x 500. P values representing simulated data statistically indistinguishable from the empirical data in bold.

Table A3
Best parameters for different models and different matrix sizes for the New York region

Model type Matrix dimension Best parameters Counts P value Lifetimes P value
Learning error rate Dispersal fraction
Neutral 400 0.0001 1.0 1.62x10°12 1.73x1074
500 107 0.3 5.63x10°13 9.46x10°6
600 0.001 0.6 1.84x10°14 2.50x1076
700 103 0.8 2.15x1071° 8.32x1077
Conformity (c=2) 400 0.001 0.7 1.67x1071° 4.36x10*
500 0.01 0.4 3.44x10°13 3.15x107°
600 1073 0.2 3.37x10° 522x10°°
700 0.001 0.6 1.82x10°1° 6.15x1077
Directional 400 1074 0.4 0.189 0.345
500 1076 0.5 0.00441 0.123
600 107> 0.5 1.73x107° 0.00871
700 0.001 0.5 7.90x107° 0.00222

P values representing simulated data statistically indistinguishable from the empirical data in bold.
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Table A4
Best parameters for different models of syllable learning error
Model type Homoplasy Best parameters Counts P value Lifetimes P value
Learning error rate Dispersal fraction
Neutral No 107° 03 5.63x10713 9.46x107°
Yes 0.0001 0.6 8.58x107 1 1.134x107°
Conformity (c=2) No 0.01 0.4 3.44x10°13 3.15x107°
Yes 107° 0.7 1.20x10714 231x107°
Directional No 1076 0.5 0.00441 0.123
Yes 0.01 1.0 0.00270° 0.0809

In the standard model, errors result in novel syllable invention; in the model with homoplasy, syllables are chosen from a fixed set of 500 syllables, identical with the syllables
from the model initialization. All values represent those for the New York region with a matrix size of 500 x 500. P values representing simulated data statistically indis-
tinguishable from the empirical data in bold.

@ 1950-1959
@ 1960-1969
@ 1970-1979
© 1980-1989
O 1990-1999
O 2000-2009
O 2010-2017

Figure A1l. Locations and decades of collection for the 820 chipping sparrow recordings. The geographical map was made using ArcMap v.10.7 and country outlines are from ESRI
(Environmental Systems Research Institute, Redlands, CA, U.S.A., map projection, North_America_Lambert_Conformal_Conic, WKID: 102009).
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