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ABSTRACT

Motivation: Clusters of hydrophobic residues are known to promote structured protein stability and drive protein aggregation.
Recent work has shown that identifying contiguous hydrophobic residue clusters (termed “blobs”) has proven useful in both
intrinsically disordered protein (IDP) simulation and human genome studies. However, a graphical interface was unavailable.
Results: Here, we present the blobulator: an interactive and intuitive web interface to detect intrinsic modularity in any protein
sequence based on hydrophobicity. We demonstrate three use cases of the blobulator and show how identifying blobs with
biologically relevant parameters provides useful information about a globular protein, two orthologous membrane proteins,
and an IDP. Other potential applications are discussed, including: predicting protein segments with critical roles in tertiary
interactions, providing a definition of local order and disorder with clear edges, and aiding in predicting protein features from
sequence.

Availability: The blobulator GUI can be found at www.blobulator.branniganlab.org, and the source code with pip
installable command line tool can be found on GitHub at www.GitHub.com/BranniganLab/blobulator.

Keywords:  sequence-structure relationship, single-nucleotide polymorphism, computational methods, hydrophobicity,
protein sequence organization, intrinsically disordered proteins

1 INTRODUCTION

Hierarchical frameworks play a critical role in the conceptual understanding of protein structure, function, and evolution. The
classic structural hierarchy (primary, secondary, tertiary, quaternary structure) remains central to designing and interpreting
biophysical studies that span the proteome. Consequently, many broadly-applicable informatics analyses rely explicitly on
structural modularity, either experimentally determined [1] or predicted from sequence [2, 3]. Others implicitly neglect protein
modularity by arbitrarily defining a “local” sequence to the residue of interest and neglecting distant residues.

Structural hierarchies present conceptual limitations when detecting the organization implicit within protein sequences. The
classical structural hierarchy is best suited for proteins with known structures and excludes intrinsically disordered proteins
(IDPs) entirely [4]. Additionally, it discounts salient collective features of tertiary structure, such as solvent-accessible surface
area, while also implicitly under-emphasizing unresolvable residues found in random coil and linking regions. Approximately
one-third of the eukaryotic proteome does not fit easily into the classic structural hierarchy [5], requiring other approaches to
detect organization in protein sequences.

Most tools that extract information innate to protein sequences either utilize the structural hierarchy framework or work
without a hierarchical framework. Examples include predicting disease-associated mutations [6—12], predicting solubility
[13—15], detecting aggregating regions [16—20], predicting intrinsic disorder [18, 21-25], designing protein sequences with
specific features [26-28], and comparing sequences [29, 30]. Some of these tools use a fixed-width moving window to define
local sequence context, which artificially places the considered residue at the center of its “local sequence” and ignores any
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natural boundaries present within proteins. Alternatively, under the classical structural hierarchy, a residue’s local sequence
context is typically considered to be its associated secondary structure element. This can be defined in several ways: using a
protein’s solved structure, a secondary structure predictor, or a tertiary structure predictor that predicts secondary structure.
However, tools for predicting secondary structure in those proteins without solved structures (as well as IDPs) have limited
accuracy [31-34]. Tertiary structure predictors such as AlphaFold do predict secondary structure, but this is not their primary
function, and any potential biases in detecting secondary structure remain unclear.

To address some of these limitations, we previously developed an algorithm called “blobulation” to segment protein
sequences based on hydrophobicity. We have already used blobulation to meaningfully segment an IDP in order to measure
tertiary interactions in simulation data [35], and later demonstrated its use in providing a meaningful definition of “local context”
in a study on disease-associated mutations in the human exome [36]. Given an amino acid sequence, blobulation outputs residue
clusters, termed “blobs” as inspired by polymer physics [37].

In this paper, we introduce the blobulator, a graphical user interface (GUI) for blobulating protein sequences. This GUI
allows users to view protein sequence properties with varying levels of granularity in real-time by interactively adjusting the
analysis parameters. Additionally, the user can introduce mutations into the sequence and visualize how these changes affect
the blob topology. After giving an overview of the underlying algorithm and the blobulator GUI, we provide examples of
how one might use the blobulator to gain insight into various types of proteins, specifically a globular protein, two membrane
proteins, and an IDP.

2 THE BLOBULATION ALGORITHM
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Figure 1. Blobulation algorithm. Figure adapted from Lohia et al. 2022 [36]. A) First, the sequence is digitized. Residues are
classified as either hydrophobic (blue) or non-hydrophobic (orange) by comparing their hydropathy to the user-selected
threshold, H*. B) The sequence is then segmented into one of three categories: longer than L, and hydrophobic (h-blobs,
blue), longer than L,;, and non-hydrophobic (p-blobs, orange), or shorter than L,;, and non-hydrophobic (s-blobs, green).

Whole-sequence blobulation consists of two steps: digitization and clustering.

1. In the digitization step, the algorithm defines a given residue as hydrophobic or non-hydrophobic as follows:

(a) The user selects a normalized (0 to 1) hydrophobicity scale, and sets a threshold hydrophobicity (H*) on this scale.
The default settings are the Kyte-Doolittle hydrophobicity scale [38] and a H* of 0.4.

(b) The hydropathy for each individual residue (i) is calculated based on the normalized hydrophobicity scale.

(c) The hydropathies are smoothed for each residue i and the residues adjacent to it in sequence (i — 1, i, and i+ 1),
yielding the smoothed hydropathy H;.

(d) Residue i is classified as hydrophobic (H; > H*) or non-hydrophobic (H; < H*), shown in Fig. 1A.
2. In the clustering step, subsequences termed “blobs” are defined as follows:

(a) Subsequences of at least Ly, sequential hydrophobic residues are classified as hydrophobic blobs (h-blobs)(Fig.
1B).

(b) All other linking sequences are then classified based on their Ly, as either non-hydrophobic blobs (p-blobs,
L > Lip) or short blobs (s-blobs, L < Ly;,) (Fig. 1B).
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Though there are default settings for the initial blobulation, the user can tune various parameters. For example, while
previous studies from our lab [35, 36] used the Kyte-Doolittle scale, the user may select the Eisenberg-Weiss scale [39]. More
hydrophobicity scales will be added in the future. Different combinations of H* and L,;, will also detect blobs with varying
properties, which may be useful depending on one’s research question (some examples are shown in the Applications section).
While there are no “correct” settings for H* and Ly,,, choosing biologically relevant parameters is critical. Varying parameters
may also reveal different layers of organization. Very high thresholds (H* approaching 1) will return one large p-blob, and very
low thresholds (H* approaching 0) will return one large h-blob, while moderate thresholds will reveal intrinsic segmentation
within the protein sequence. High L, will only give meaningful results with a low to moderate H*.

The higher-order organization of blobs can also reveal useful information. For example, “blob groups” are h-blobs separated
only by s-blobs (some examples of these are shown in the globular protein and IDP application sections). While blob groups are
not explicitly labeled in the GUI, they are labeled as follows in the blobulator’s CSV output: by their type (h, p, s) and group
number (1, 2, 3) and, if necessary, a sub-group letter (a, b, ¢c) which form a unique label for every blob. This is shown in Fig.
3G (hla, s1, hlb, pl, etc). We also refer to the order, number, and length of blobs in a protein sequence as its “blob topology”.

3 THE BLOBULATOR GUI
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Figure 2. Screenshot of the blobulator home page. Protein sequences are submitted via UniProt ID, ENSEMBL ID (Option 1:
ID Entry), or the protein sequence and sequence name (Option 2: Manual Entry). Default values are for alpha-synuclein.
Available at www.blobulator.branniganlab.org

Blobulation of any amino acid sequence can be done using the blobulator found at www.blobulator.branniganlab.
org. On the “New Query” tab of the homepage (Fig. 2), the user can submit either a database ID or manually enter a protein
sequence for blobulation (Fig. 2). From here, a user can blobulate any protein or amino acid sequence using an accepted ID or
manually entering the sequence directly, as well as toggle to other information tabs. Figure 3 illustrates blobulation of insulin, a
peptide hormone that promotes glucose absorption by cells.

After blobulation, the user can interactively tune some of the parameters. For example, they can change the hydrophobicity
scale used for digitization (Fig. 3A) or interactively modify the H* threshold and Ly, cutoff (here we use H*= 0.4 and L =4,
respectively) to segment the protein into components with varying hydrophobicity and length properties. This can be done by
adjusting the respective sliders or manually entering a value (Fig. 3B and C). A user may also introduce a mutation by selecting
one of the black triangles or manually entering the position and alternate amino acid in the “mutate residue” field (Fig. 3D). All
changes update dynamically. Users can download both an image of the output as a PDF and the raw data (in CSV format) used
to generate the GUI output (Fig. 3E).

Each residue’s smoothed hydropathy H; (as discussed in section 2) is shown in the first outputted track (Fig. 3F) along with
the H* threshold (blue line). The next track shows the output of the clustering step (Fig. 3G), where blobs are colored by their
blob type. Blobulation of insulin using the settings H*= 0.4 and Ly,j,= 4 identifies 8 h-blobs, 5 p-blobs, and 3 s-blobs. If a
UniProt ID is provided, known disease-associated mutations are obtained from UniProt and displayed on every track as black
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Figure 3. Partial screenshot of the interactive blobulator results page. Several settings are available: A) hydrophobicity scale
(drop-down menu); B) hydropathy cutoff (H*) (text entry, slider, or selecting a residue name); C) minimum blob size (Ly;,)
(text entry, or slider); and D) the protein sequence can be mutated (toggle: check box, mutate from: first drop-down, mutate to:
second drop-down). E) Download the results page as a pdf, download the underlying data as a csv, or reset the zoom for all
tracks, or clear any mutations. F) Each residue’s hydrophobicity (grey bars) compared to the threshold H* (blue, horizontal
line). Residues can be mutated with the black triangles (only available with UniProt ID) and the sequence can be zoomed
(zoom in: click and drag, zoom out: double click or click "Reset Zoom” (E)). G) Blob type is represented by both height
(shown on the y-axis) and color. Height is preserved in subsequent tracks to indicate blob type. Controls are as in F. The
example protein is insulin (UniProt ID: PO1308).
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triangles (Fig. 3). Hovering over these with the cursor will display the effect of the mutation on the amino acid, its reference
SNP cluster ID (rsid), and link to the Single Nucleotide Polymorphism Database (dbSNP).

The GUI includes a series of tracks in which blobs are colored by additional information relating to charge composition,
hydrophobicity, length, or some combination of the three. As shown in figures 4, 5, and 6, these include tracks displaying blob
charge and globular tendency, a track showing the predicted sensitivity of each blob to deleterious mutations, and two tracks
showing the predicted order and disorder of each blob, respectively.
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Figure 4. Charge-based tracks. Blobulation of insulin as in Fig. 3. A) Blobs colored according to net charge per residue:
positive (blue) or negative (red). B) Blobs colored by their Das-Pappu phase [40]: phase 1 (globular, green), phase 2
(Janus/boundary, yellow), phase 3 (strong polyelectrolyte, purple), phase 4 (strong polyanion, blue), or phase 5 (strong
polycation, red).

The first two of these tracks are colored by calculations based solely on blob charge content: mean net charge per residue
and globular tendency. (Fig. 4). In the mean net charge per residue track (Fig. 4A), blobs are colored by the average charge of
all the residues within each blob. The use of this track is demonstrated in the example in section 4.2. In the globular tendency
track (Fig. 4B) blobs are colored based on the region they occupy in the Das-Pappu diagram, which predicts globular tendency
based on charge content [40]. The use of this track is demonstrated in section 4.1.

The predicted mutation sensitivity track is colored based on an enrichment calculation that includes both blob hydrophobicity
and length (Fig. 5). This track colors blobs based on the enrichment of disease variants in blobs with the same properties found
in our previous study [36]. This study used a dataset containing 70,000 human disease-associated and non-disease-associated
missense mutations.

The final pair of tracks discussed here are colored based on calculations that include both blob hydrophobicity and net
charge to estimate the disorder of each blob (Fig. 6). The first of these tracks colors blobs by their signed distance from
the order/disorder boundary defined by the Uversky-Gillepse-Fink boundary plot [41] (shown on the right) using its mean
hydrophobicity and mean net charge per residue (Fig. 6A). The use of this track is examined in section 4.3. The next track
colors blobs by the PV2 predicted disordered fraction [42] (Fig. 6B), stored in the database of disordered prediction (D2P2)
and retrieved from UniProt. We note that there is generally a lack of consensus among disorder predictors for whether or not a
given group of residues are disordered [43]. Additionally, if the user does not access the protein sequence using a UniProt ID,
this track will not appear.

4 EXAMPLE APPLICATIONS

In this section, we present the blobulation of three different types of proteins: a globular protein, a membrane protein, and an
IDP. For each protein, we demonstrate how blobulation adds additional context to the known properties of these proteins.
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Enrichment of deleterious mutations in blobs with similar properties
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Figure 5. Predicted enrichment of disease-associated SNPs (dSNPs). Left: enrichment of dSNPs in hydrophobic blobs based
on analysis of a large dataset of human SNPs [36]. The hydrophobicity cutoff (H* = 0.4) used is indicated (black, horizontal
line). Right: Blobulation of insulin as in Fig. 3 colored by dSNP enrichment (blue: enriched, red: depleted) based on analyses
from [36].
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Figure 6. Disorder-based tracks. Blobulation of insulin as in Fig. 3. A) Blobs colored according to the Uversky-Gillepse-Fink
boundary plot (right)[41]. B) Blobs colored according to their predicted fraction of disordered residues, according to PV2 as
provided by the Database of Disordered Protein Prediction (D2P2).
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Figure 7. Blobulation of lysozyme (UniProt ID P00720). A) Blobulation track using default settings (H*= 0.4, Lyi,= 4).
Annotations indicate catalytic residues (red) and the substrate binding site (purple). B) Molecular image of lysozyme
(PDB:2LZM) with peptidoglycan (green) colored by the substrate binding site (left, residues found within 7A of peptidoglycan)
or by blob type (right, h-blob: blue, p-blob: orange, s-blob: green). C) Blobulation under increasingly stringent settings (H*=
0.4 and 0.5, Liyin= 4 and 8). H-blobs are shown as surfaces. Molecular images were generated in VMD [44, 45].
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4.1 Globular Protein: Lysozyme

In an aqueous environment, most globular proteins have a highly hydrophobic core surrounded by a solvent-accessible
surface. One such protein is lysozyme, an antibacterial enzyme that cleaves peptidoglycan’s sugar component from its peptide
component. Lysozyme has two catalytic residues near the N-terminus and several substrate contact sites along the sequence
(represented by pink and purple dots respectively in Fig. 7A). To provide an example of how one might detect hydrophobic
blobs that correspond to the hydrophobic core of a globular protein, we blobulated bacteriophage T4 lysozyme and varied both
the hydrophobicity threshold and minimum length (Fig. 7B). Higher H* and Ly, eliminate the h-blobs that are detected at
the surface of the protein when using more relaxed settings. Blobulation using the most stringent settings shown here (H*=
0.5, Liin= 8) reveals two h-blobs at the protein’s center, away from the solvent-accessible surface. By gradually increasing
parameter thresholds, we are able to detect the longest and most hydrophobic parts of a globular protein that correspond to the
core, as well as the shorter and less hydrophobic blobs that interact at the protein’s surface.

We also identified blobs containing contact residues within 7A of peptidoglycan (shown in Fig. 7). When using a shorter
Lnin (Lmin=4), a set of the detected h-blobs are found in proximity to peptidoglycan along its entire length. However, when
using a longer Ly, (Lmin= 8), the only substrate-binding h-blobs detected are those interacting with peptidoglycan’s sugar
component. Stabilization of this sugar ring is vital for the enzyme’s ability to cleave peptidoglycan [46] and we find this ring
wedged between two long hydrophobic blobs (Fig. 7B), providing an example of long hydrophobic blobs with interactions that
are critical for function.
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1 1
h1 pi h2a h2b p2 h3 p3 h4 ps hsah5b h5c h5d hS5e p5 h6  p6 h7  p7
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Figure 8. Blob groups in T4 lysozyme. A) Structural view (PDB:2LZM) blobulated using default settings (H*= 0.4, Lyin=4).
Groups are grey, ungrouped h-blobs are blue, and p-blobs are orange ribbons. B) Blobulation of T4 lysozyme under
increasingly stringent settings. Annotations indicate blob identifiers and blob groups. Molecular images were generated in
VMD [44, 45].
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Blobulation of lysozyme using “relaxed” settings (H*= 0.4 and L,j,= 4) reveals two examples of “blob groups”: sets of
h-blobs separated only by s-blobs (as defined in section 2, shown in grey in Fig. 8A). Both groups are found near the center of
lysozyme, surrounded by ungrouped h-blobs and p-blobs. Additionally, each group contains an h-blob that remains detected
under increasingly stringent settings (Fig. 8B). The groups detected here are akin to synergistic tertiary elements formed from
secondary structure elements, like alpha-helical bundles. This is an example of hierarchical blob clustering, where highly
hydrophobic blobs are found in the protein core surrounded by less hydrophobic blobs within the same group, which are in turn
surrounded by individual h-blobs.

To provide an example of how blobulation adds context to the effect of mutations, we blobulated the S117V and T1571
mutants, which both affect the temperature sensitivity of lysozyme’s stability through altering intraprotein hydrophobic
interactions. S117 makes the protein more stable at higher temperatures by altering hydrophobic residue interactions in the
substrate binding cleft [47], while T1571 makes the protein less stable at higher temperatures and disrupts hydrogen bonding at
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Figure 9. Globular tendency of T4 lysozyme blobs. Blobulation using default parameters (H*= 0.4, Lyi,=4). S117V
increases thermostability and joins two h-blobs into one. T1571 decreases thermostability and creates a s-blob and an additional
h-blob. Colored as in Fig. 4B [40]. Red diamonds indicate mutated residues.

the periphery of the protein [48]. We find that both mutations change the blob topology (Fig. 9): S117V merges two h-blobs
and T157I creates a new h-blob four residues in length. We have previously found that mutations that split, dissolve, or merge
h-blobs are enriched for deleterious mutations [36], and this result is consistent with that finding. Additionally, the h-blob
introduced by the T157] mutation is classified as a Janus region on the Das-Pappu diagram. Janus proteins often have degenerate
conformations and switch between ordered and disordered depending on their environment [40], which may cause a change to
this blob at higher temperatures and lead to less stability overall for the protein. Finally, it is noteworthy that blobulation is able
to detect a change from both mutations, whereas tools such as AlphaFold (which predict atomic coordinates and not necessarily
interactions) do not detect structural differences between these mutants and the wildtype (average backbone root mean squared
deviation of predicted wildtype and mutant structures is 0.09A).

4.2 Membrane Proteins: Pentameric Ligand-Gated lon Channels (pLGICs)

Unlike soluble globular proteins, which enclose their hydrophobic residues inside a hydrophilic shell, integral membrane
proteins use exposed hydrophobic regions as anchors in the cell membrane. The pentameric ligand-gated ion channel (pLGIC)
protein family is responsible for neurotransmitter reception in the nervous system of the bilateria, but representatives are also
found in many other eukaryotes and some prokaryotes [49]. Despite relatively low sequence identity and diverse environmental
and ligand requirements, pLGICs are highly structurally conserved [50-54]. The N-terminal extracellular domain consists of a
beta-sandwich, which is responsible for ligand sensing and much of the substrate selectivity (Fig. 10A-B). When the protein’s
ligand is bound, the signal is transmitted to the transmembrane helical bundle (Fig. 10D), which changes conformation to
permit ions to pass through the channel formed by the five pore-lining helices. In this example, we will compare the blobulation
of two structural models of the pLGIC family: first, the Caenorhabditis elegans glutamate-gated chloride channel (GIuCl); and
second, the proton-gated Gloeobacter ligand-gated cation channel (GLIC).

Starting from the N-terminus, both GluCl and GLIC contain disordered N-terminal extensions which include signal
sequences (Fig. 11). GluCl has an additional hydrophobic blob in the N-terminal extension. P-blobs dominate the extracellular
beta-sandwich in both cases. The two additional hydrophobic blobs in GluCl correspond to $1 and 35, which contain two
of the four residues that contact glutamate during binding. GLIC, in contrast, is proton-gated via titratable residues mostly
in the ECD [51] and lacks these extracellular h-blobs. The transmembrane domains of both GluCl and GLIC consist of four
transmembrane helices per subunit [49], each about 19 residues long. This length corresponds to the typical thickness of a
plasma membrane[55]. These helices are clearly identified using H* = 0.33 and Ly, =~ 19. The extended p-blob seen in the
blobulation of GluCl (Fig. 10) corresponds to a disordered intracellular domain common in eukaryotic pLGICs [51].

As ion channels, electrostatic interactions are important for the function of all pLGICs. Although GIuCl has a net positive
charge in its ECD, GLIC has a net negative charge 11. This is consistent with, and may contribute to, the anion conductivity of
GluCl and the cation conductivity of GLIC. Similarly, the pore-lining M2 helix is positively charged in GluCl, but negative in
GLIC. More granular settings (e.g. H* = 0.7, Ly, = 1) reveal that the charges in the M2 blob are mostly on the intracellular
side, close to the M1-M2 loop (data not shown). GLIC has an additional positive charge near the M2-M3 loop due to lysine
290, which can be seen by using the blobulator’s zoom feature. Finally, the M4 helix of each protein has a net positive charge,
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Figure 10. Blobulation of GluCl, a pentameric ligand-gated ion channel. A) Blobulation of UniProt ID G5EBR3 using
settings to detect transmembrane regions (H* = 0.33, L,j, = 19). B) A cartoon representation of GluCl (PDB:3RHW) colored
according to blob type and ID: beta 1 blob (light blue), beta 5 blob (dark blue), transmembrane blobs (intermediate blue),
terminal s-blobs (green), p-blobs (orange). The first two blobs in the sequence are absent from the structure. The black lines
represent the lipid membrane. C) GluCl showing h-blobs in surface view to better show blob-blob contacts. Colored as in B. D)
Extracellular views of the TMDs of the proteins shown in B (upper) and C (lower). Molecular images were generated in
VMD [44, 45].
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Figure 11. Comparative blobulation of GluCl, an anion-conducting pLGIC, and GLIC, a cation-conducting pLGIC. Net
Charge Per Residue (NCPR) tracks for GluCl (UniProt: GSEBR3) and GLIC (UniProt: Q7NDNS) blobulated using settings to
detect transmembrane regions (H* = 0.33, Ly, = 19). Tracks are aligned by the beginning of the h-blob containing the M2
(pore-lining) helix. Annotations indicate important sequence features available on UniProt. Signal sequences are indicated in
pink, ECD regions are indicated in blue, and transmembrane helices (M1 to M4) are indicated in red.

consistent with experimental observations that M4 binds anionic lipids [56, 57]. These results suggest the blobulator’s utility
in interpreting membrane proteins either individually or within a larger evolutionary context. At present, only one protein
can be blobulated at a time via the GUI, but future plans include the ability to compare two or more blobulated sequences
simultaneously.

4.3 IDP: a-~synuclein
Intrinsically disordered proteins (IDPs) fulfill critical roles despite lacking stable tertiary structure (as reviewed in Ref[58]). One
such IDP is a-synuclein. Although its function is not fully understood, it forms aggregates thought to play a role in Parkinson’s
disease [59, 60]. It contains a helix-turn-helix motif at its N-terminal and a random coil near its C-terminal. Although residues
throughout the helical region of this protein interact with other a-synucleins, residues 71 to 82 are the necessary aggregating
motif [61] (Fig. 12 B). We blobulated a-synuclein using the settings H*= 0.4 and L,;,= 4 and find that @-synuclein’s h-blob
group coincides with this aggregating motif (Fig. 12 A). This result demonstrates that the blobulation of IDPs with transient
secondary structure elements can reveal hydrophobic clusters that may coincide with impactful tertiary interactions.
Blobulation can aid in predicting the effects of sequence mutations that change the interactions of IDPs with their
environments. The helix-turn-helix motif of a-synuclein (Fig. 12B) also interacts with cell membranes [62], but the mechanism
driving this interaction is unknown [62]. We consider the known disease-causing mutations A30P and A53T. When expressed
in yeast, AS3T and wildtype -synuclein initially bind to the membrane before forming cytoplasmic aggregates, whereas A30P
a-synuclein is dispersed throughout the cytoplasm [63]. The A30P mutant has a shorter and less ordered third h-blob than
AS3T and wildtype a-synuclein (Fig. 13 C). Because the order classification considers residue hydrophobicity, and proline is
less hydrophobic than alanine, a decrease in order is expected because predicted order increases with hydrophobicity on the
Uversky-Gillepse-Fink boundary plot [41]. This is also consistent with the finding that while this mutant’s helical domain is
partially disrupted, its N-terminus is more dynamic than the wildtype [64]. In contrast to the wildtype, no blobs are shortened
in the A53T mutant protein, and the order of the blob containing the mutated residue is only minimally altered.

5 CONCLUSION

The classical structural hierarchy has both conceptual and practical limitations, some of which we have sought to address with
our web tool - the blobulator. The blobulation algorithm can be used either with the webtool or the command-line tool found
on our GitHub https://GitHub.com/BranniganLab/blobulator, though we note that the interactive webtool is
helpful for building an intuition for blobulation. The blobulator works by detecting intrinsic organization in protein sequences
using contiguous hydrophobicity and can be used in various research contexts. Here, we introduced the blobulator and showed
example applications in various proteins where it can provide salient information. Examples included tuning parameters to

11/15


https://doi.org/10.1101/2024.01.15.575761
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.15.575761; this version posted January 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A Membrane Binding
|

Aggregating

Klo  E20 A0 Va0  HS0 K60 V70  KBO A0  L100 E110 Pl20  E130  Al40

Residue

B
Membrane Binding M\W\M
ouJ’“w
Aggregating
C

‘ *A30P

Figure 12. Blobulation of a-synuclein, an intrinsically disordered protein. A) a-synuclein (UniProt ID: P37840) blobulated
using default settings (H*= 0.4, Lj,= 4). Annotations indicate the membrane-interacting region (purple) and the
protein-interacting region (pink). B) a-synuclein structure (PDB: 1XQ8), labeled by the membrane-interacting region (purple
and pink) and the aggregating region (pink). C) Changes to blobs (blue and purple surfaces) caused by the A30P mutant
compared to the wildtype. Molecular images were generated in VMD [44, 45].
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Figure 13. Order predictions for blobs of a-synuclein. Wildtype, A53T, and A30P mutants colored by blob disorder as
calculated using each blob’s signed distance from the order/disorder boundary of the Uversky-Gillepse-Fink boundary plot [41].
Mutations are indicated: A53T and A30P (red diamonds and arrows), and other known disease-associated mutations (black
triangles). Blobulation done using default settings (H*= 0.4, Ly,in=4).
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detect blobs with certain properties, comparing blobs between orthologs with low sequence but high structural homology, and
investigating whether known function-altering mutations also alter blob topology. We believe that future studies may benefit
from taking these same principles and using the blobulator on much larger datasets than the handful of examples shown here.
These studies could include predicting protein segments with critical roles in tertiary interactions, defining local order and
disorder with clear edges, and predicting protein features from sequence. Future development plans include options for viewing
nucleotide sequences and molecular structures, comparing two blobulated sequences within the same output window, and
outputting results in BED format.
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