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Abstract Large spatio-temporal gradients in the Congo basin vegetation and rainfall are observed.
However, its water-balance (evapotranspiration minus precipitation, or ET — P) is typically measured at basin-
scales, limited primarily by river-discharge data, spatial resolution of terrestrial water storage measurements,
and poorly constrained E7. We use observations of the isotopic composition of water vapor to quantify the
spatio-temporal variability of net surface water fluxes across the Congo Basin between 2003 and 2018. These
data are calibrated at basin scale using satellite gravity and total Congo river discharge measurements and then
used to estimate time-varying ET — P over four quadrants representing the Congo Basin, providing first
estimates of this kind for the region. We find that the multi-year record, seasonality, and interannual variability
of ET — P from both the isotopes and the gravity/river discharge based estimates are consistent. Additionally, we
use precipitation and gravity-based estimates with our water vapor isotope-based ET — P to calculate time and
space averaged ET and net river discharge within the Congo Basin. These quadrant-scale moisture flux
estimates indicate (a) substantial recycling of moisture in the Congo Basin (temporally and spatially averaged
ET/P > 70%), consistent with models and visible light-based ET estimates, and (b) net river outflow is largest in
the Western Congo where there are more rivers and higher flow rates. Our results confirm the importance of ET
in modulating the Congo water cycle relative to other water sources.

Plain Language Summary Rainfall and vegetation vary substantially across the Congo Basin.
However, the spatial variations, seasonality, and interannual variability of the net water balance, (the difference
between evapotranspiration and rainfall) is not well quantified. Atmospheric observations of the isotopic
composition of water vapor are sensitive to the balance of evapotranspiration (ET) and precipitation (P). We
calibrate new observations of the isotopic composition of water vapor to ET — P that is based on satellite gravity
measurements and ground-based river discharge measurements to quantify ET — P across four quadrants of the
Congo basin. When combined with satellite measurements of rainfall, we show that ET is the largest source of
Congo basin water vapor. As ET is about 70% of observed rainfall, vegetation therefore plays an outsized role on
the Congo water cycle. Additionally, when combined with satellite measurements of gravity, we show that river
discharge is higher in the western part of the basin, where there are more rivers and stronger flows.

1. Introduction

The Congo Basin, home to the world's second largest tropical rainforest and river by discharge volume, as well as
the largest peatland complex in the tropics, is a crucial region for the Earth's water and carbon cycles (e.g., Alsdorf
et al., 2016; Dargie et al., 2017). The basin accounts for approximately 30% of Africa's total rainfall and nearly
half of its freshwater discharge to the Atlantic Ocean (e.g., Brummett et al., 2009; Laraque et al., 2013; N'kaya
et al., 2022). Previous studies have documented decadal changes in rainfall, changes in its rainy season onsets and
length, and declines in terrestrial water storage within the basin since the beginning of the 21st century (e.g., Jiang
et al., 2019; Nicholson et al., 2022; Zhou et al., 2014). As carbon and water cycles in the tropics are tightly
coupled (e.g., Gentine et al., 2019; Green et al., 2017), these changes to the water cycle can have significant
effects on vegetation in the Congo Basin (e.g., Fung et al., 2005; Saeed et al., 2013; Zhou et al., 2014). The
difference between evapotranspiration minus precipitation (ET — P), provides a measure of the net water flux
leaving the soil to the atmosphere (e.g., Feng & Zhang, 2015; Fung et al., 2005; Shi et al., 2022). Consequently,
ET — P estimates are directly sensitive to the coupling between the atmosphere and terrestrial vegetation (e.g.,
Davis et al., 2019; Dong et al., 2020; Guan et al., 2015; Hakamada et al., 2020) with positive values (ET — P > 0)
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indicating soil moisture deficits and subsequent plant stress (e.g., Aragdo et al., 2007; Guan et al., 2015; Tao
et al., 2022; Zemp et al., 2017).

However, data set uncertainties and sampling remain a challenge for accurately closing the Congo terrestrial
water balance and its corresponding fluxes (e.g., Azarderakhsh et al., 2011; Moreira et al., 2019; Sheffield
et al., 2009), especially as the water balance represents the difference between two large fluxes:

Q ds
ET—P=-="——" 1
A dt )

where ET is evapotranspiration, P is precipitation, Q is the volumetric river discharge, A is the area of the basin
studied, S is the water storage anomaly within the basin expressed as an equivalent water height, and 7 is time.

Satellite-based estimates of P and ET in the Congo Basin are subject to large uncertainties due to cloud cover and
rainfall interference (e.g., Chambers et al., 2007; Shi et al., 2022; Wan, 2008), leading to large disparities between
data sets (e.g., Nicholson et al., 2018; Weerasinghe et al., 2020). As a result, many studies have turned to the water
balance as an alternative, combining river discharge and changes in terrestrial water storage to estimate ET — P
(e.g., Azarderakhsh et al., 2011; Burnett et al., 2020; Moreira et al., 2019; Rodell, Famiglietti, et al., 2004, Rodell,
Houser, et al., 2004; Rodell et al., 2011; Sheffield et al., 2009; Shi et al., 2022). While changes in terrestrial water
storage recently available via GRACE gravity estimates (Wahr et al., 2004) are mainly precision-limited and
provide information on below-ground water fluxes, they have relatively coarse resolution compared to other P
and ET estimates (e.g., Landerer & Swenson, 2012; Reager et al., 2016; Wahr et al., 2004). Additionally, the
uncertainty of in-situ river discharge measurements across the Congo Basin, is unknown (e.g., Alsdorf
etal., 2016; Burnett et al., 2020). Consequently, water balance estimates using these surface-based measurements
typically are of the entire Congo Basin (Burnett et al., 2020).

However, we should expect that water balance in the Congo Basin exhibits significant spatial and temporal
variation because P varies substantially across the basin at seasonal to decadal time scales (e.g., Nicholson, 2022).
The northern hemisphere region experiences bi-annual rainy seasons with a very weak summer dry season in
June, July, and August, while the southern hemisphere region experiences a single rainy season in the boreal fall
(September-October-November) and winter (December-January-February) (Figure 1). The southern hemisphere
receives less rainfall during the dry season and more rainfall during the peak of the rainy season, resulting a
greater seasonal variation than that of the northern hemisphere. P seasonality and interannual variations also differ
between the western and eastern basin (e.g., Balas et al., 2007; Mba et al., 2022), particularly as mesoscale
convective systems that provide much of the rainfall for the basin increase in frequency toward the equator and the
interior of the continent (Jackson et al., 2009).

River flows within the seven identified sub-basin drainage systems also exhibit significant spatial and temporal
variation (e.g., N'kaya et al., 2022). The Northwest quadrant (Quad,,) contains parts of the Lower Congo,
Middle Congo, Oubangui, and Sangha and Ruki sub-basins, and fully contains the Sanga River. The Northeast
quadrant (Quad,) contains parts of the Oubangui, Middle Congo, Ruki, Upper Congo, and a small part of the
Tanganyika sub-basins. The Southwest quadrant (Quadyy,) contains parts of the Kasai, Ruki, Lower Congo, and
“Below Kinshasa-Brazzaville” Congo sub-basins, and fully contains the Kasai river. The Southeast quadrant
(Quadgg) contains parts of the Kasai, Lomami, Upper Congo, and Tanganyika sub-basins (Alsdorf et al., 2016;
N'kaya et al., 2022). However, contemporary discharge data only exists for three out of the six drainage systems.
The Cuvette Centrale in the northwestern basin, which hosts the tropic's largest peatland complex in the world
(Dargie et al., 2017), lacks in situ measurements in general. Many studies rely on indirect approaches such as
remote sensing and modeling to estimate river discharge for many of these drainage systems (e.g., Alsdorf
et al., 2016; N'kaya et al., 2022; Tshimanga & Hughes, 2014). Therefore, observation-based data limitations have
prevented the systematic evaluation of these spatial and temporal differences in the water budget and their
relationship with biomass within the Congo Basin.

In this manuscript, we employ a newly developed approach (Bailey et al., 2017; Shi et al., 2022; J. Worden
et al., 2019) for quantifying ET — P using satellite observations of the isotopic composition of water vapor. We
improve upon prior estimates of ET — P averaged over the entire Congo Basin using gravity and river discharge
data (e.g., Burnett et al., 2020). Those estimates are limited to the entire basin, whereas the satellite isotope
measurements can resolve spatial gradients in the atmospheric water balance (Shi et al., 2022). We show using the
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Figure 1. (a) Satellite-based observations of above-ground biomass (AGB) averaged over 2000-2019. The black outline
represents the area of the Congo Basin, and the dashed lines divide the basin into four subbasin quadrants: Quad,,, Quad,,
Quadyy, and Quadg; (b)—(e) Seasonal precipitation averaged over 2003-2018 for the four quadrants. The different
quadrants are separated by a vertical dashed line at 23°E and a horizontal dashed line at 2°S. Error is the standard error of the
mean.

isotopically-enabled version of the Community Atmospheric Model Version 5 (iCAM) climate model (Sec-
tion 2.3) that these data can resolve ET — P in four quadrants of the Congo basin (we describe this as “quadrant
scale”). In addition, both the gravity-based terrestrial water storage and isotope data are essentially precision
limited (Aumann et al., 2019; Rodell, Famiglietti, et al., 2004: Rodell, Houser, et al., 2004) for the spatial scales
considered here, allowing for improved confidence in the monthly to interannual to decadal variation of atmo-
spheric water balance in these regions. We use these water balance estimates to calculate new time and space-
averaged, quadrant-scale ET and net river discharge estimates additionally using measurements of quadrant-
scale P and terrestrial water storage (TWS) changes. We can then use these estimates to examine space and
time variability in key moisture fluxes within the basin as well as compare our ET estimates to other ET estimates
that are calculated using modeling and/or reanalysis. While we cannot deduce whether our estimated £7 — P, ET,
and net river discharge are more accurate than existing products because of a lack of validation data, we can
compare those products to our estimates to check for consistency.
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2. Data and Methods

In this section, we first discuss the sources of data for our study (2.1). We then demonstrate how we can use
satellite observations of water vapor isotopes (or deuterium content of water vapor) to quantify E7 — P using
simulations from iCAM (Sections 2.2-2.3).

2.1. Data Sources

We list our data sources for ET, P, changes in terrestrial water storage, river discharge, and aboveground biomass
(AGB). We use multiple different sources for ET and P to compare to our calculated ET — P and ET products as
well as explore the spread in ET and P products over the Congo Basin. The data sources for the water vapor
isotopes are described in Section 2.2. The data sources for model verification of our methodology are described in
Section 2.3.

ET: We use the following ET data sets in our study:

1. We use the Global Land Evaporation Amsterdam Model (GLEAM) v3.6b total ET, which is based on satellite
data and the Priestly Taylor model (e.g., Martens et al., 2017; Miralles et al., 2011) to separately estimate the
different components of ET.

2. We use the Global Land Data Assimilation System (GLDAS) L4 v2.1 GLDAS_NOAHO025_M ET product
available between 2000 and 2022 at monthly time steps (Beaudoing and Rodell, 2019; Rodell, Famiglietti,
et al., 2004; Rodell, Houser, et al., 2004).

3. We use the Priestly Taylor- Jet Propulsion Laboratory (PT-JPL) ET data that is created by combining rean-
alysis and the Moderate Resolution Imaging Spectroradiometer (MODIS) observations (Fisher et al., 2008).

4. We use the MODIS MOD16A3GF_006_ET_500m total yearly ET product, which is based on the Penman-
Monteith equation (Running et al., 2021).

5. We use the Fifth Generation of the European Center for Medium-Range Weather Forecasts (ECMWF)
Reanalysis (ERAS) monthly mean of daily means of the surface latent heat flux, which is then converted to ET.
The reanalysis combines observations with model forecasts to estimate dynamic and thermodynamic atmo-
spheric quantities (Hersbach et al., 2020).

P: We use the following P data sets in our study:

1. We use the Tropical Rainfall Measuring Mission (TRMM) 3B43 gridded, monthly P estimates that are
generated using a combination of microwave and radar sensors calibrated with gauge data from the Global
Precipitation Climatology Center (GPCC) (Huffman et al., 2007). We use TRMM P estimates to evaluate
ET — P and ET in this study as this data set performs well in this region (Nicholson et al., 2018); a comparison
of other P products to TRMM P is found in the Supplementary.

2. We use the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Version 2.0 monthly P
available from 1981 to near-present (Funk et al., 2015).

3. We use the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-
Climate Data Record (PERSIANN-CDR), monthly P produced using the PERSIANN algorithm on infrared
satellite data and trained on National Centers for Environmental Prediction (NCEP) P data (Ashouri
et al., 2015).

Gravity-Based Water Storage Anomalies: In addition, basin-scale water storage anomalies (S) come from the
GRACE satellite (Landerer & Swenson, 2012) calculated by Burnett et al. (2020) using the arithmetic mean of the
GRACE solutions on 1° grids from GeoForschungsZentrum Potsdam (GFZ), Jet Propulsion Laboratory (JPL),
and Center for Space Research at the University of Texas at Austin (CSR) (e.g., Burnett et al., 2020; Sakumura
et al., 2014; Wahr et al., 2006). Quadrant-scale water storage anomalies come from the same centers, GFZ, JPL,
and CSR, and are the GRACE/GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height RLO6
V2 at 0.5° spatial resolution available between 2002 and 2021 (Landerer et al., 2020; Loomis et al., 2019;
Save, 2020; Save et al., 2016; Watkins et al., 2015; Wiese et al., 2019).

Water storage anomalies (S) from GRACE are converted to dS/dt using a centered-difference approach at the
monthly timescale (Khorrami et al., 2023; Landerer et al., 2010; Lehmann et al., 2022):
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ﬁ — (Sn+l - Sn—l) (2)
dt, 2At

where At is 1 month. The uncertainty of the dS/dt is calculated as half the difference between the highest and
lowest dS/dt values from the three GRACE § solutions in any given month (Burnett et al., 2020; Lee et al., 2011).

River Discharge: River discharge estimates come from the SO-HYBAM river discharge (Q) measurements from
a station located at Kinshasa-Brazzaville. The area of the Congo Basin (A) is found using the HydroSHEDS 15
arcsec boundary for the Congo Basin, which produces a total basin area of 3,705,220 km? (Burnett et al., 2020;
Lehner et al., 2008). Error in river discharge measurements is poorly characterized within this region (e.g.,
Alsdorf et al., 2016; Burnett et al., 2020; Kitambo et al., 2022). Prior studies have noted a range of uncertainties
between 5% and 20% for these discharge measurements (Burnett et al., 2020; O’Loughlin et al., 2020). We as-
sume a 20% error in the Q/A measurements to be consistent with Burnett et al. (2020) as we use some of their
provided estimates in our study; however, this is likely to be conservative especially as the observed gauge is quite
inland and can provide a good representation of the upstream discharge (e.g., Alsdorf et al., 2016).

AGB: AGB is estimated by Xu et al. (2021) using a combination of lidar, global modeling, and satellite data. The
following steps were taken to produce these estimates: (a) Ground inventory plots (>100,000 in number) are
integrated with airborne and satellite data, with models used to relate lidar-derived metrics and radar backscatter
to AGB estimates from ground plots; (b) Spatially aggregated samples of woody vegetation AGB mean and
variance at 10-km spatial resolution are developed using satellite and airborne lidar as training data; and (c) AGB
is estimated by using the training data in spatial-temporal machine learning models. The satellite data used in the
process come from the Ice, Cloud, and land Elevation Satellite (ICESAT), the Shuttle Radar Topography Mis-
sions (SRTM), the Advanced Land Observing Satellite (ALOS), Landsat, the Moderate Resolution Imaging
Spectroradiometer (MODIS), and QuikSCAT (QSCAT). More details on this product can be found in Xu
et al. (2021).

2.2. Deuterium Content of Water (6D) and dd04

Bailey et al. (2017) and Shi et al. (2022) have demonstrated the use of satellite observations of tropospheric water
vapor deuterium content in estimating E7 — P. This can be achieved by normalizing the deuterium content to a
representative water vapor value in the free troposphere. Covariation between the normalized deuterium content
and ET — P holds in tropical regions with significant mixing between the surface and atmosphere. The deuterium
content of water is expressed as the relative ratio of the number of HDO molecules to the total number of H,O
molecules in parts per thousand (%o) relative to the isotopic composition of ocean water as shown below
(Equation 3):

3)

R—R
5D = 1000 X (—’d)

std

where R is the ratio of the number of HDO molecules to the total number of H,O molecules and R, is the
corresponding ratio in a reference standard, taken here to be the Vienna Standard Mean Ocean Water:
R, =3.11 x 107* (e.g., Wright et al., 2017 and references therein). A mixture of air parcels originating from
different sources influences the isotopic composition of water vapor in the free troposphere (Galewsky, 2018;
Galewsky & Hurley, 2010). Through analysis of the isotopic compositions of air parcels, we can trace their
sources to either vegetation or ocean because 6D values contributed by ocean evaporation are distinctively
different from those by rainforest E7. A further discussion on 6D estimates can be found in J. Worden
et al. (2021).

To calculate 6D, we use single pixel tropospheric retrievals of HDO and H,O between 230 and 912 hPa from the
Atmospheric Infrared Sounder (AIRS) radiances using the optimal estimation. We use AIRS data instead of those
from the Tropospheric Emission Spectrometer (J. Worden et al., 2007) due to its longer record and greater
sampling. The AIRS data is bias corrected as suggested by Herman et al. (2020) due to smoothing and systematic
errors, as well as instrument noise. We first normalize the deuterium content of water vapor to a reference water
vapor concentration of 4 mmol mol™' by (a) regressing the observed HDO profile against the observed H,0
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4 mmol/mol (Bailey et al., 2017). From the resulting HDO and H,O values,
we obtain a proxy for atmospheric water balance that we refer to as dd04.

2.3. iCAM Model Relationships Between dd04 and ET — P in the Congo
Basin

In this section, we demonstrate the linear relationship between dd04 and
ET — P in the Congo Basin on basin and quadrant-scale using the isotopically

-260

— Actual

-240 -220  -200 . . .
dd04 (%eo) soglu et al., 2020; Shi et al., 2022). We demonstrate the linear regression

enabled version of the Community Atmosphere Model 2 (iCAM; Danaba-

—— Prediction between modeled dd04 and ET — P on a basin-scale in Figure 2a. To compare

ET-P (cm/month)

RMSE=3.141

to the AIRS dd04 data, we calculate an “AIRS view” of the iCAM model
dd04, as recommended in the TROPESS AIRS HDO/H20 Level 2 User
Guide and Validation Document (J. Worden et al., 2019). We thus project the
iCAM model HDO and H,O profiles through the AIRS observation operator
provided with the AIRS data. Additionally, we use iCAM and AIRS HDO/
H20 data between 230 and 912 hPa, as we find that the iCAM regression

c)

2004 2006

2008

2010 2012 2014 2016 performs better using this pressure range compared to the suggested AIRS
pressure range for this data in the User Guide, 400-825 mb (not shown). As

ET-P (cm/month)
& o

it
)

2
3

RMSE=2.25

illustrated in Figure 2, the modeled ET — P and dd04 exhibit a well-correlated
relationship (R = 0.876). Using this basin-scale linear regression, we find
ET — P using iCAM measurements via the following equation:

ET — P =0.31 X dd04 + 64.29 4

d)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec In Figures 2b-2d, we compare the ET — P iCAM record from 2003 to 2017,

[}

ET-P (cm/month)
o

|
[¢)]

RMSE=1.664

its seasonality, and interannual variations to those calculated using Equa-
tion 4. Note that the RMSE for Figure 2d applies to the IAVs rescaled
temporally to the seasonal level to better visually compare the predicted
versus actual ET — P IAVs. The RMSE value for the monthly IAV's can be
found in the Supplementary. This ET — P/dd04 relationship exhibits the
strongest performance during dry season months, but the weakest perfor-

2004 2006

2008

2010 2012 2014 2016 mance during wet season months (Figure 2c). This weaker performance could
be due to additional isotopic processes that are more frequent during rainy

Figure 2. (a) Linear regression of the iCAM dd04 estimates (after projecting seasons and can change measured oD (e.g., Galewsky et al., 2016) and masks
through the AIRS observation operator) and the iCAM ET — P on a basin the original isotopic signal. For example, heavier water vapor isotopes pref-

scale; (b)—(d): Multi-year, seasonal cycle, and inter-annual variations (IAVs)
of model estimates of ET — P compared to regression-based ET — P. IAVs
have been resampled to a seasonal resolution to better compare; the monthly

erentially condense, thus depleting 6D during rainfall events. Furthermore,
large-scale convergence of air masses during deep convection can bring in

resolution and associated RMSE are described in the Supplementary. relatively depleted water vapor that overtakes any enrichment from surface

ET. More descriptions of how these processes can affect the isotopic
composition of water vapor, or possible confounding factors of this rela-
tionship can be found in Galewsky et al. (2016) and Bailey et al. (2017).

As discussed previously, basin-scale river discharge estimates limit water balance estimates based on gravity and
river discharge data to the entire basin. Similar to the approach taken by Shi et al. (2022) in the Amazon, the new
deuterium-based estimates of ET — P offer an opportunity to improve on the spatial knowledge of ET — P, ET, and
Q
A
storage and river discharge data. Then, using these same regression coefficients, with dd04 averaged over the four

estimates in the Congo. We first calibrate the basin-scale, deuterium-based ET — P with the terrestrial water

quadrants (Figure la), we estimate ET — P in the four quadrants. We use these same regression coefficients,
instead of re-calculating these coefficients for each quadrant, because the river discharge measurements are only
available on a basin scale. We choose to limit this calculation to four quadrants as the basin-scale linear regression
coefficients do not perform well at estimating ET — P on smaller than quadrant scale (not shown).

To evaluate the uncertainty of this method, we calculate the RMSE between modeled and actual ET — P within the
basin using iCAM data, following the methodology outlined in Shi et al. (2022), as lack of data in this region
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Figure 3. Multi-year record of iCAM ET — P (black) and regression-estimated ET — P (green) using the basin-scale
regression equation for each quadrant: (a) Quadyy; (b) Quady; (c) Quadyy,; and (d) Quadg.

prevents us from evaluating this uncertainty empirically. Figures 3—5 show the difference between ET — P over
each quadrant using iCAM, as well as the calculated RMSE between the predicted ET — P and modeled ET — P
for the long-term record, seasonal, and interannual variations, respectively. To improve visual ease of compar-
ison, we scale the interannual variability to seasonal values; the monthly IAVs are shown in the Supplementary.
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Figure 4. Seasonality of iCAM ET — P (black) and regression-estimated ET — P (green) using the basin scale regression
equation for each quadrant: (a) Quadyy,; (b) Quady,; (¢) Quadyy,; and (d) Quadyy.
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Figure 5. Interannual variations (IAVs) of iCAM ET — P (black) and regression-estimated ET — P (green) using the basin-
scale regression equation for each quadrant: (a) Quadyy,; (b) Quady; (c) Quadyy,; and (d) Quady.

The regressions perform best in capturing the interannual variability and show better overall performance in the
southern hemisphere than in the northern hemisphere. The regression is less effective in Quad,, which has the
highest RMSE errors (Figures 3-5). It is possible that these higher errors are introduced because mesoscale
convective systems are more prominent within this region (e.g., Jackson et al., 2009), which could introduce large
scale changes in 6D from convective processes such as rainfall re-evaporation without large scale changes in
atmospheric humidity (Bailey et al., 2017). Additionally, model error could add to these uncertainties.

3. Results
3.1. Observationally-Based, Basin-Scale Relationships Between dd04 and ET — P

We can expect that a linear relationship between dd04 measurements and ET — P exists because the sensitivity of
water vapor isotopes to large-scale water cycle processes can be used to distinguish evaporation versus precip-
itation dominated environments. These environments determine large scale moisture flux diverge or convergence,
such that when normalizing the isotope ratio to a fixed specific humidity, water vapor isotopes should be able to
distinguish between these two regimes (Bailey et al., 2017). Previous studies thus show that this relationship
exists most strongly within the tropics, but also persists globally (Shi et al., 2022; Singh et al., 2023).

However, because there is a considerable range of ET and P products in the Congo Basin, as discussed in several
studies (da Motta Paca et al., 2019; Negrdn Juérez et al., 2009; Nicholson & Klotter, 2021; Pan et al., 2020; Sun
et al., 2018; Weerasinghe et al., 2020, Supplementary), using ET and P directly from these data to estimate water
balance is less reliable. Instead, we utilize the surface water balance (right hand side of Equation 1) to quantify a
linear relationship. Basin-scale % and % data are taken from a public data set generated by Burnett et al. (2020);

their sources are described in the previous section.

Using these basin-scale measurements, we calculate ET — P using the following equation:
ET — P =0.12 X dd04 + 12.12 5)

Figure 6 illustrates the linear relationship between —% - % and dd04 derived from AIRS, along with the multi-
year record, seasonality, and IAVs of our calculated ET — P. A comparison between our results and other
remotely-sensed and reanalysis ET and P products is available in the Supplementary. We calculate both the

accuracy and precision errors of our estimated ET — P using the AIRS dd04 estimates. We assume that the
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Figure 6. (a) Basin-scale linear regression between AIRS dd04 measurements and —% - ‘Zl—f; (b) long-term record of our
calculated ET — P compared to —AQ - % as well as a scatter plot showing the linear relationship between them; (c) seasonality
of our calculated ET — P compared to —% - %; and (d) interannual variations of our calculated ET — P compared to —% - % as

well as a scatter plot showing the linear relationship between them.

accuracy errors in the GRACE terrestrial water storage estimates, as well as the errors in the AIRS dd04 estimates

are small compared to the river discharge error, which is unknown and has been assigned an estimated error of

20% (Burnett et al., 2020; Landerer & Swenson, 2012; Shi et al., 2022). Therefore, we assume that the error in the
Q_ds Q_ds

Q/A estimates dominates the error in —% — >. However, this error in — — ¢ will change based on the season. As

there are certain times within the year when % = 0, we choose a final accuracy error of 0.2 x% to apply to our
ET — P estimates. Therefore, we report a time-averaged accuracy error of 0.56 cm/month. For the precision error,
we calculate the error using first principles:
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Table 1 -
ET and ET/P Averaged Over Time and the Entire Congo Basin for Different (ET-P),, = 0 + CLS 6)
ET Data Sets o dten

Mean ET (cm/month) Mean ET/P
Regression-Based 9.71 £ 0.94 0.77 £ 0.02
ET,,, (Burnett et al., 2020) 9.75 £ 0.94 0.76 £+ 0.02
MODIS 10.25 £ 0.04 0.83 £ 0.01
Fisher et al. (2008) 83413 0.67 £ 0.02
GLEAM 947 £1.93 0.77 £ 0.02
GLDAS 9.60 £ 0.04 0.77 £ 0.01
ERA5 11.12 £ 0.04 0.90 £ 0.01

Note. Precipitation comes from TRMM.

The precision error for basin-scale ET — P is 0.91 cm/month.

Our calculated ET — P (Figure 6b) compares well with —% — % (hereafter
referred to as discharge/gravity water balance) although it does not generally
capture extreme discharge/gravity water balance values. We examine both the
seasonality and IAVs to determine the cause. Our calculated seasonal ET — P
(Figure 6¢) remains below zero throughout the year, whereas the seasonal
discharge/gravity water balance goes above zero during May-June. While the
overall seasonal change agrees are consistent between the deuterium and
gravity based measurements, the deuterium based E7 — P does not capture the
same extreme highs and lows as the discharge/gravity water balance esti-
mates. On the other hand, the interannual variability of the deuterium-based

water balance is consistent with the discharge/gravity water balance, generally matching the sign of the anom-

alies and how they change over time: both over short-time scales (within a year) and over long-term time scales,

that is, over the whole record. For example, both data sets show higher values in the earlier part of the record,

lower values near 2007, and similar variations near zero thereafter. Furthermore, discharge/gravity water balance

IAVs indicate large atmospheric water balance variability between 2015 and 2017, during which an extreme El
Niflo event (Santoso et al., 2017) induced severe drought within the basin via increases in both soil moisture and
atmospheric water stress (Rifai et al., 2019). Our calculated ET — P IAVs match the direction but not the
magnitude of the anomalies.

3.2. Estimates of ET and E7/P for the Entire Congo Basin

We next estimate basin-scale ET estimates using our regression-based water balance estimates. Simply adding P

to our calculated ET — P yields an unrealistic ET seasonality, as we find that P dominates the atmospheric water

balance variability (Supplementary). Only when we additionally average in time does our calculated ET compare
well with other existing ET estimates. We compare our calculated ET to the following data sets: MODIS ET,
water-balance calculated ET from Burnett et al. (2020), GLDAS ET, PT-JPL ET from Fisher et al. (2008), and
GLEAM ET (Table 1).

We calculate the errors for the following ET data sets using the time-averaged standard error of the mean:
MODIS, GLEAM, ERAS, PT-JPL (Fisher et al., 2008), and GLDAS ET products. The error in ETy,; and
regression-based ET is calculated using first principles, with the regression-based ET error in particular calcu-

lated by:

RMSE;;_p?
ETerr = Q (\/—ETP + Per) (7)
n

where the RMSE is the RMSE between the iCAM ET — P and iCAM regression-based ET — P, n is the length of

the time series, and P

err

is the standard error of the mean of the TRMM P estimates. We additionally use this to

calculate the error on ET on quadrant scales.

Our calculated ET, 9.71 cm/month, compares well with water-balance ET, GLEAM ET, and GLDAS ET with a
range of 9.47-9.75 cm/month. MODIS and ERAS ET are higher, 10.25 cm/month and 11.12 cm/month,
respectively. ET estimates from Fisher et al. (2008), which combines MODIS and reanalysis ET products, has the
lowest ET estimate at 8.34 cm/month.

We also compare the contribution of ET to P (ET/P) using TRMM P and ET from the previously mentioned data
sets. We use the following to calculate the error in % :
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Figure 7. ET — P multi-year record for each quadrant calculated using the basin-scale linear relationship.

g = ETErrz + Perr2 (8)
P, ET " P

is the error in the ET products as described above. We use this to additionally calculate the error in

where ET,

err

ET/P on quadrant scales.

Our analysis reveals a large contribution (67%-90%) of ET toward P, consistent with previous studies (e.g., Sori
etal., 2022, S. Worden et al., 2021; Risi et al., 2013). This suggests that the contribution of atmospheric moisture
flux convergence (MFC) to P (@), should range between 10% and 33%. While no MFC observations exist over
the Congo Basin, ERAS reanalysis estimates suggest that MFC contributes about 18% contribution of MFC to P
on a basin-scale. MODIS ET best closes this moisture flux budget (83% contribution of ET to P), but our
calculated ET estimates, GLEAM, and GLDAS also perform well in closing this budget.

3.3. Estimating ET — P in Four Quadrants

We next calculate quadrant-scale ET — P using quadrant-averaged dd04 measurements in the basin-scale linear
regression equation (Equation 5). Because we do not have river discharge at these scales, we estimate the accuracy
in ET — P by applying the RMSEs shown in the iCAM model (Section 2.3) for our ET — P multi-year record,
seasonality, and IAVs (Figures 7-9).

Seasonally, ET — P is greater than zero in January and February in the northern hemisphere, consistent with low P
(less than 5 cm/month, Figure 1b). However, P is only slightly greater during December when the seasonal ET — P
is less than zero, indicating an increase in E7T during January and February as the Congo transitions to its spring
rainy season. In the southern hemisphere, seasonal P drops to near-zero during JJA (Figure 1b); seasonal ET — P
also near or above zero (Figures 8c and 8d) indicates that ET decreases significantly during the JJA dry season as
well. This is consistent with observed decreases in solar-induced fluorescence (SIF), a proxy for photosynthesis
and hence ET (Frankenberg et al., 2011), over the Southern Congo during this period (Jiang et al., 2023).

3.4. Estimating ET, ET/P, and /A in Each Quadrant

We next calculate quadrant-scale ET, ET/P, and Q/A using the deuterium-based ET — P estimates. We compare
our estimates to other ET products. Such estimates are useful for examining quadrant-scale variabilities in the
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Figure 8. ET — P seasonal cycle for each quadrant calculated using the basin-scale linear relationship.

Congo Basin moisture fluxes that could indicate different moisture regimes, and hence different responses to
climatic changes such as the observed decline in April-June rainfall (Nicholson et al., 2022). We calculate ET by
adding P to ET — P for each quadrant. Similarly, we calculate net river discharge (Q/A) by adding GRACE dS/dt

estimates to ET — P for each quadrant. All calculations are averaged over both space and time.

We calculate the error in Q/A by:
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Figure 9. ET — P IAV's for each quadrant calculated using the basin-scale linear relationship.
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between the different quadrants. Furthermore, the part of the Congo River in Quadyy, that outlets to the Atlantic
Ocean has the highest modeled daily flow rate (Munzimi et al., 2019).

4. Discussion and Conclusions

A range of factors, including climate change, land use and land cover change, and more, affect the atmospheric
water balance, ET — P. These changes can directly impact ET and/or P, or affect river discharge and terrestrial
water storage (e.g., Suryatmojo et al., 2013). We confirm that mean ET is the second highest moisture flux across
the basin compared to P (the highest moisture flux), river discharge, and moisture flux convergence. This in-
dicates that a significant portion of the moisture that enters the basin undergoes high recycling (Risi et al., 2013;
Sori et al., 2017, 2022; S. Worden et al., 2021). Changes in ET from climate or anthropogenic activities could
therefore substantively alter the Congo water balance. For example, increased land cover and land use changes to
accommodate increasing logging demands, clearing for subsistence agriculture, and a rising need for natural
resources due to population growth (Bele et al., 2015; Fuller et al., 2019; Kleinschroth et al., 2019; Tyukavina
et al., 2018) can significantly alter forest composition. Frequent and large-scale fires in Africa (e.g., Andela & van
der Werf, 2014; Andela et al., 2019), including the Congo Basin, also change forest composition via processes
such as directly removing carbon (e.g., Jiang et al., 2023), altering nutrient availability (Bauters et al., 2018,
2021), inducing soil degradation (Juarez-Orozco et al., 2017), and creating edge effects that change local energy,
water, and carbon fluxes (Zhao et al., 2021). The anthropogenic fingerprint on the Congo Basin can therefore
significantly affect ET in the Congo Basin and hence the future of its water cycle.

We anticipate that the Congo Basin water cycle response to climate change and land cover and land use
changes may differ from that of the Amazon, where the contribution of ET to P is lower, (ET/P ~ 40%-50%;
Baker et al., 2021; Swann & Koven, 2017; Xu et al., 2019) and anthropogenic activities differ in their extent
(e.g., N'kaya et al., 2022). Furthermore, a lack of observationally-based data prevents us from understanding
spatial heterogeneities in this response. This represents a key gap in our understanding of water and carbon
cycle changes in the Congo Basin especially considering high spatial differences in its water cycles and
vegetation (e.g., Burnett et al., 2020; Nicholson, 2022; N'kaya et al., 2022; Verhegghen et al., 2012), as well as
human disturbance (e.g., Adams & Garcia-Carreras, 2023; Jiang et al., 2023). Our study provides new infor-
mation on quadrant-scale water flux heterogeneity; however, further research is necessary to develop new,
observationally-based water flux data sets that allow us to investigate water and carbon cycle heterogeneity on
smaller spatial scales.

Data Availability Statement

GLEAM v3.6b ET estimates can be downloaded via the GLEAM website: https://www.gleam.eu/.
GLDAS L4 2.1 ET estimates, TRMM 3b43 P estimates, can downloaded using NASA GES DISC: https://disc.
gsfc.nasa.gov. Fisher et al. (2008) PT-JPL ET estimates can be found at: http://josh.yosh.org/. MODIS
MOD16A3GF_006_ET_500m ET products can be found at: https://lpdaac.usgs.gov/products/mod16a3gfv006/.
ERADS surface latent heat flux can be found at: https://cds.climate.copernicus.eu/cdsapp#!/home. CHIRPS P data
can be found at: https://www.chc.ucsb.edu/data/chirps. PERSIANN-CDR P data can be found at: https://www.
ncei.noaa.gov/products/climate-data-records/precipitation-persiann. Basin-scale changes in terrestrial water-
storage estimates and river discharge estimates taken from Burnett et al. (2020) can be found at: https://osf.io/
jpvmb/. JPL. GRACE Mascon products can be found at: https://podaac.jpl.nasa.gov/grace-fo. GFZ GRACE
Mascon products can be found at: https://isdc.gfz-potsdam.de/grace-isdc/. CSR GRACE Mascon products can be
found at: https://www2.csr.utexas.edu/grace/RL0O6_mascons.html. AIRS dd04 measurements can be found at:
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/TES/.AIRs/. iCAM model estimates, ET — P estimates, and
other data produced by this paper can be made available upon request to the lead author, Sarah Worden (sar-
ahrw27@g.ucla.edu).
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