


indicating soil moisture deficits and subsequent plant stress (e.g., Aragão et al., 2007; Guan et al., 2015; Tao

et al., 2022; Zemp et al., 2017).

However, data set uncertainties and sampling remain a challenge for accurately closing the Congo terrestrial

water balance and its corresponding fluxes (e.g., Azarderakhsh et al., 2011; Moreira et al., 2019; Sheffield

et al., 2009), especially as the water balance represents the difference between two large fluxes:

ET − P = −Q

A
− dS

dt
(1)

where ET is evapotranspiration, P is precipitation, Q is the volumetric river discharge, A is the area of the basin

studied, S is the water storage anomaly within the basin expressed as an equivalent water height, and t is time.

Satellite‐based estimates of P and ET in the Congo Basin are subject to large uncertainties due to cloud cover and

rainfall interference (e.g., Chambers et al., 2007; Shi et al., 2022; Wan, 2008), leading to large disparities between

data sets (e.g., Nicholson et al., 2018; Weerasinghe et al., 2020). As a result, many studies have turned to the water

balance as an alternative, combining river discharge and changes in terrestrial water storage to estimate ET − P

(e.g., Azarderakhsh et al., 2011; Burnett et al., 2020; Moreira et al., 2019; Rodell, Famiglietti, et al., 2004, Rodell,

Houser, et al., 2004; Rodell et al., 2011; Sheffield et al., 2009; Shi et al., 2022). While changes in terrestrial water

storage recently available via GRACE gravity estimates (Wahr et al., 2004) are mainly precision‐limited and

provide information on below‐ground water fluxes, they have relatively coarse resolution compared to other P

and ET estimates (e.g., Landerer & Swenson, 2012; Reager et al., 2016; Wahr et al., 2004). Additionally, the

uncertainty of in‐situ river discharge measurements across the Congo Basin, is unknown (e.g., Alsdorf

et al., 2016; Burnett et al., 2020). Consequently, water balance estimates using these surface‐based measurements

typically are of the entire Congo Basin (Burnett et al., 2020).

However, we should expect that water balance in the Congo Basin exhibits significant spatial and temporal

variation because P varies substantially across the basin at seasonal to decadal time scales (e.g., Nicholson, 2022).

The northern hemisphere region experiences bi‐annual rainy seasons with a very weak summer dry season in

June, July, and August, while the southern hemisphere region experiences a single rainy season in the boreal fall

(September‐October‐November) and winter (December‐January‐February) (Figure 1). The southern hemisphere

receives less rainfall during the dry season and more rainfall during the peak of the rainy season, resulting a

greater seasonal variation than that of the northern hemisphere. P seasonality and interannual variations also differ

between the western and eastern basin (e.g., Balas et al., 2007; Mba et al., 2022), particularly as mesoscale

convective systems that provide much of the rainfall for the basin increase in frequency toward the equator and the

interior of the continent (Jackson et al., 2009).

River flows within the seven identified sub‐basin drainage systems also exhibit significant spatial and temporal

variation (e.g., N'kaya et al., 2022). The Northwest quadrant (QuadNW) contains parts of the Lower Congo,

Middle Congo, Oubangui, and Sangha and Ruki sub‐basins, and fully contains the Sanga River. The Northeast

quadrant (QuadNE) contains parts of the Oubangui, Middle Congo, Ruki, Upper Congo, and a small part of the

Tanganyika sub‐basins. The Southwest quadrant (QuadSW) contains parts of the Kasai, Ruki, Lower Congo, and

“Below Kinshasa‐Brazzaville” Congo sub‐basins, and fully contains the Kasai river. The Southeast quadrant

(QuadSE) contains parts of the Kasai, Lomami, Upper Congo, and Tanganyika sub‐basins (Alsdorf et al., 2016;

N'kaya et al., 2022). However, contemporary discharge data only exists for three out of the six drainage systems.

The Cuvette Centrale in the northwestern basin, which hosts the tropic's largest peatland complex in the world

(Dargie et al., 2017), lacks in situ measurements in general. Many studies rely on indirect approaches such as

remote sensing and modeling to estimate river discharge for many of these drainage systems (e.g., Alsdorf

et al., 2016; N'kaya et al., 2022; Tshimanga & Hughes, 2014). Therefore, observation‐based data limitations have

prevented the systematic evaluation of these spatial and temporal differences in the water budget and their

relationship with biomass within the Congo Basin.

In this manuscript, we employ a newly developed approach (Bailey et al., 2017; Shi et al., 2022; J. Worden

et al., 2019) for quantifying ET − P using satellite observations of the isotopic composition of water vapor. We

improve upon prior estimates of ET − P averaged over the entire Congo Basin using gravity and river discharge

data (e.g., Burnett et al., 2020). Those estimates are limited to the entire basin, whereas the satellite isotope

measurements can resolve spatial gradients in the atmospheric water balance (Shi et al., 2022). We show using the
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isotopically‐enabled version of the Community Atmospheric Model Version 5 (iCAM) climate model (Sec-

tion 2.3) that these data can resolve ET − P in four quadrants of the Congo basin (we describe this as “quadrant

scale”). In addition, both the gravity‐based terrestrial water storage and isotope data are essentially precision

limited (Aumann et al., 2019; Rodell, Famiglietti, et al., 2004: Rodell, Houser, et al., 2004) for the spatial scales

considered here, allowing for improved confidence in the monthly to interannual to decadal variation of atmo-

spheric water balance in these regions. We use these water balance estimates to calculate new time and space‐

averaged, quadrant‐scale ET and net river discharge estimates additionally using measurements of quadrant‐

scale P and terrestrial water storage (TWS) changes. We can then use these estimates to examine space and

time variability in key moisture fluxes within the basin as well as compare our ET estimates to other ET estimates

that are calculated using modeling and/or reanalysis. While we cannot deduce whether our estimated ET − P, ET,

and net river discharge are more accurate than existing products because of a lack of validation data, we can

compare those products to our estimates to check for consistency.

Figure 1. (a) Satellite‐based observations of above‐ground biomass (AGB) averaged over 2000–2019. The black outline

represents the area of the Congo Basin, and the dashed lines divide the basin into four subbasin quadrants: QuadNW, QuadNE,

QuadSW, and QuadSE; (b)–(e) Seasonal precipitation averaged over 2003–2018 for the four quadrants. The different

quadrants are separated by a vertical dashed line at 23°E and a horizontal dashed line at 2°S. Error is the standard error of the

mean.
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2. Data and Methods

In this section, we first discuss the sources of data for our study (2.1). We then demonstrate how we can use

satellite observations of water vapor isotopes (or deuterium content of water vapor) to quantify ET − P using

simulations from iCAM (Sections 2.2‐2.3).

2.1. Data Sources

We list our data sources for ET, P, changes in terrestrial water storage, river discharge, and aboveground biomass

(AGB). We use multiple different sources for ET and P to compare to our calculated ET − P and ET products as

well as explore the spread in ET and P products over the Congo Basin. The data sources for the water vapor

isotopes are described in Section 2.2. The data sources for model verification of our methodology are described in

Section 2.3.

ET: We use the following ET data sets in our study:

1. We use the Global Land Evaporation AmsterdamModel (GLEAM) v3.6b total ET, which is based on satellite

data and the Priestly Taylor model (e.g., Martens et al., 2017; Miralles et al., 2011) to separately estimate the

different components of ET.

2. We use the Global Land Data Assimilation System (GLDAS) L4 v2.1 GLDAS_NOAH025_M ET product

available between 2000 and 2022 at monthly time steps (Beaudoing and Rodell, 2019; Rodell, Famiglietti,

et al., 2004; Rodell, Houser, et al., 2004).

3. We use the Priestly Taylor‐ Jet Propulsion Laboratory (PT‐JPL) ET data that is created by combining rean-

alysis and the Moderate Resolution Imaging Spectroradiometer (MODIS) observations (Fisher et al., 2008).

4. We use the MODIS MOD16A3GF_006_ET_500m total yearly ET product, which is based on the Penman‐

Monteith equation (Running et al., 2021).

5. We use the Fifth Generation of the European Center for Medium‐Range Weather Forecasts (ECMWF)

Reanalysis (ERA5) monthly mean of daily means of the surface latent heat flux, which is then converted to ET.

The reanalysis combines observations with model forecasts to estimate dynamic and thermodynamic atmo-

spheric quantities (Hersbach et al., 2020).

P: We use the following P data sets in our study:

1. We use the Tropical Rainfall Measuring Mission (TRMM) 3B43 gridded, monthly P estimates that are

generated using a combination of microwave and radar sensors calibrated with gauge data from the Global

Precipitation Climatology Center (GPCC) (Huffman et al., 2007). We use TRMM P estimates to evaluate

ET − P and ET in this study as this data set performs well in this region (Nicholson et al., 2018); a comparison

of other P products to TRMM P is found in the Supplementary.

2. We use the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Version 2.0 monthly P

available from 1981 to near‐present (Funk et al., 2015).

3. We use the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks‐

Climate Data Record (PERSIANN‐CDR), monthly P produced using the PERSIANN algorithm on infrared

satellite data and trained on National Centers for Environmental Prediction (NCEP) P data (Ashouri

et al., 2015).

Gravity‐Based Water Storage Anomalies: In addition, basin‐scale water storage anomalies (S) come from the

GRACE satellite (Landerer & Swenson, 2012) calculated by Burnett et al. (2020) using the arithmetic mean of the

GRACE solutions on 1° grids from GeoForschungsZentrum Potsdam (GFZ), Jet Propulsion Laboratory (JPL),

and Center for Space Research at the University of Texas at Austin (CSR) (e.g., Burnett et al., 2020; Sakumura

et al., 2014; Wahr et al., 2006). Quadrant‐scale water storage anomalies come from the same centers, GFZ, JPL,

and CSR, and are the GRACE/GRACE‐FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height RL06

V2 at 0.5° spatial resolution available between 2002 and 2021 (Landerer et al., 2020; Loomis et al., 2019;

Save, 2020; Save et al., 2016; Watkins et al., 2015; Wiese et al., 2019).

Water storage anomalies (S) from GRACE are converted to dS/dt using a centered‐difference approach at the

monthly timescale (Khorrami et al., 2023; Landerer et al., 2010; Lehmann et al., 2022):
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dS

dtn
= (Sn+1 − Sn−1)

2Δt
(2)

where Δt is 1 month. The uncertainty of the dS/dt is calculated as half the difference between the highest and

lowest dS/dt values from the three GRACE S solutions in any given month (Burnett et al., 2020; Lee et al., 2011).

River Discharge: River discharge estimates come from the SO‐HYBAM river discharge (Q) measurements from

a station located at Kinshasa‐Brazzaville. The area of the Congo Basin (A) is found using the HydroSHEDS 15

arcsec boundary for the Congo Basin, which produces a total basin area of 3,705,220 km2 (Burnett et al., 2020;

Lehner et al., 2008). Error in river discharge measurements is poorly characterized within this region (e.g.,

Alsdorf et al., 2016; Burnett et al., 2020; Kitambo et al., 2022). Prior studies have noted a range of uncertainties

between 5% and 20% for these discharge measurements (Burnett et al., 2020; O’Loughlin et al., 2020). We as-

sume a 20% error in the Q/A measurements to be consistent with Burnett et al. (2020) as we use some of their

provided estimates in our study; however, this is likely to be conservative especially as the observed gauge is quite

inland and can provide a good representation of the upstream discharge (e.g., Alsdorf et al., 2016).

AGB: AGB is estimated by Xu et al. (2021) using a combination of lidar, global modeling, and satellite data. The

following steps were taken to produce these estimates: (a) Ground inventory plots (>100,000 in number) are

integrated with airborne and satellite data, with models used to relate lidar‐derived metrics and radar backscatter

to AGB estimates from ground plots; (b) Spatially aggregated samples of woody vegetation AGB mean and

variance at 10‐km spatial resolution are developed using satellite and airborne lidar as training data; and (c) AGB

is estimated by using the training data in spatial‐temporal machine learning models. The satellite data used in the

process come from the Ice, Cloud, and land Elevation Satellite (ICESAT), the Shuttle Radar Topography Mis-

sions (SRTM), the Advanced Land Observing Satellite (ALOS), Landsat, the Moderate Resolution Imaging

Spectroradiometer (MODIS), and QuikSCAT (QSCAT). More details on this product can be found in Xu

et al. (2021).

2.2. Deuterium Content of Water (δD) and dd04

Bailey et al. (2017) and Shi et al. (2022) have demonstrated the use of satellite observations of tropospheric water

vapor deuterium content in estimating ET − P. This can be achieved by normalizing the deuterium content to a

representative water vapor value in the free troposphere. Covariation between the normalized deuterium content

and ET − P holds in tropical regions with significant mixing between the surface and atmosphere. The deuterium

content of water is expressed as the relative ratio of the number of HDO molecules to the total number of H2O

molecules in parts per thousand (‰) relative to the isotopic composition of ocean water as shown below

(Equation 3):

δD = 1000 × (R − Rstd

Rstd

) (3)

where R is the ratio of the number of HDO molecules to the total number of H2O molecules and Rstd is the

corresponding ratio in a reference standard, taken here to be the Vienna Standard Mean Ocean Water:

Rstd = 3.11 × 10−4 (e.g., Wright et al., 2017 and references therein). A mixture of air parcels originating from

different sources influences the isotopic composition of water vapor in the free troposphere (Galewsky, 2018;

Galewsky & Hurley, 2010). Through analysis of the isotopic compositions of air parcels, we can trace their

sources to either vegetation or ocean because δD values contributed by ocean evaporation are distinctively

different from those by rainforest ET. A further discussion on δD estimates can be found in J. Worden

et al. (2021).

To calculate δD, we use single pixel tropospheric retrievals of HDO and H2O between 230 and 912 hPa from the

Atmospheric Infrared Sounder (AIRS) radiances using the optimal estimation. We use AIRS data instead of those

from the Tropospheric Emission Spectrometer (J. Worden et al., 2007) due to its longer record and greater

sampling. The AIRS data is bias corrected as suggested by Herman et al. (2020) due to smoothing and systematic

errors, as well as instrument noise. We first normalize the deuterium content of water vapor to a reference water

vapor concentration of 4 mmol mol−1 by (a) regressing the observed HDO profile against the observed H2O
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profile; and (b) calculating the HDO value that matches a reference H2O of

4 mmol/mol (Bailey et al., 2017). From the resulting HDO and H2O values,

we obtain a proxy for atmospheric water balance that we refer to as dd04.

2.3. iCAMModel Relationships Between dd04 and ET − P in the Congo

Basin

In this section, we demonstrate the linear relationship between dd04 and

ET − P in the Congo Basin on basin and quadrant‐scale using the isotopically

enabled version of the Community Atmosphere Model 2 (iCAM; Danaba-

soglu et al., 2020; Shi et al., 2022). We demonstrate the linear regression

between modeled dd04 and ET − P on a basin‐scale in Figure 2a. To compare

to the AIRS dd04 data, we calculate an “AIRS view” of the iCAM model

dd04, as recommended in the TROPESS AIRS HDO/H2O Level 2 User

Guide and Validation Document (J. Worden et al., 2019). We thus project the

iCAM model HDO and H2O profiles through the AIRS observation operator

provided with the AIRS data. Additionally, we use iCAM and AIRS HDO/

H2O data between 230 and 912 hPa, as we find that the iCAM regression

performs better using this pressure range compared to the suggested AIRS

pressure range for this data in the User Guide, 400–825 mb (not shown). As

illustrated in Figure 2, the modeled ET − P and dd04 exhibit a well‐correlated

relationship (R = 0.876). Using this basin‐scale linear regression, we find

ET − P using iCAM measurements via the following equation:

ET − P = 0.31 × dd04 + 64.29 (4)

In Figures 2b–2d, we compare the ET − P iCAM record from 2003 to 2017,

its seasonality, and interannual variations to those calculated using Equa-

tion 4. Note that the RMSE for Figure 2d applies to the IAVs rescaled

temporally to the seasonal level to better visually compare the predicted

versus actual ET − P IAVs. The RMSE value for the monthly IAV's can be

found in the Supplementary. This ET − P/dd04 relationship exhibits the

strongest performance during dry season months, but the weakest perfor-

mance during wet season months (Figure 2c). This weaker performance could

be due to additional isotopic processes that are more frequent during rainy

seasons and can change measured δD (e.g., Galewsky et al., 2016) and masks

the original isotopic signal. For example, heavier water vapor isotopes pref-

erentially condense, thus depleting δD during rainfall events. Furthermore,

large‐scale convergence of air masses during deep convection can bring in

relatively depleted water vapor that overtakes any enrichment from surface

ET. More descriptions of how these processes can affect the isotopic

composition of water vapor, or possible confounding factors of this rela-

tionship can be found in Galewsky et al. (2016) and Bailey et al. (2017).

As discussed previously, basin‐scale river discharge estimates limit water balance estimates based on gravity and

river discharge data to the entire basin. Similar to the approach taken by Shi et al. (2022) in the Amazon, the new

deuterium‐based estimates of ET− P offer an opportunity to improve on the spatial knowledge of ET− P, ET, and
Q
A
estimates in the Congo. We first calibrate the basin‐scale, deuterium‐based ET − P with the terrestrial water

storage and river discharge data. Then, using these same regression coefficients, with dd04 averaged over the four

quadrants (Figure 1a), we estimate ET − P in the four quadrants. We use these same regression coefficients,

instead of re‐calculating these coefficients for each quadrant, because the river discharge measurements are only

available on a basin scale. We choose to limit this calculation to four quadrants as the basin‐scale linear regression

coefficients do not perform well at estimating ET − P on smaller than quadrant scale (not shown).

To evaluate the uncertainty of this method, we calculate the RMSE between modeled and actual ET− Pwithin the

basin using iCAM data, following the methodology outlined in Shi et al. (2022), as lack of data in this region

Figure 2. (a) Linear regression of the iCAM dd04 estimates (after projecting

through the AIRS observation operator) and the iCAM ET − P on a basin

scale; (b)–(d): Multi‐year, seasonal cycle, and inter‐annual variations (IAVs)

of model estimates of ET − P compared to regression‐based ET − P. IAVs

have been resampled to a seasonal resolution to better compare; the monthly

resolution and associated RMSE are described in the Supplementary.
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prevents us from evaluating this uncertainty empirically. Figures 3–5 show the difference between ET − P over

each quadrant using iCAM, as well as the calculated RMSE between the predicted ET − P and modeled ET − P

for the long‐term record, seasonal, and interannual variations, respectively. To improve visual ease of compar-

ison, we scale the interannual variability to seasonal values; the monthly IAVs are shown in the Supplementary.

Figure 3. Multi‐year record of iCAM ET − P (black) and regression‐estimated ET − P (green) using the basin‐scale

regression equation for each quadrant: (a) QuadNW; (b) QuadNE; (c) QuadSW; and (d) QuadSE.

Figure 4. Seasonality of iCAM ET − P (black) and regression‐estimated ET − P (green) using the basin scale regression

equation for each quadrant: (a) QuadNW; (b) QuadNE; (c) QuadSW; and (d) QuadSE.
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The regressions perform best in capturing the interannual variability and show better overall performance in the

southern hemisphere than in the northern hemisphere. The regression is less effective in QuadNE, which has the

highest RMSE errors (Figures 3–5). It is possible that these higher errors are introduced because mesoscale

convective systems are more prominent within this region (e.g., Jackson et al., 2009), which could introduce large

scale changes in δD from convective processes such as rainfall re‐evaporation without large scale changes in

atmospheric humidity (Bailey et al., 2017). Additionally, model error could add to these uncertainties.

3. Results

3.1. Observationally‐Based, Basin‐Scale Relationships Between dd04 and ET − P

We can expect that a linear relationship between dd04 measurements and ET − P exists because the sensitivity of

water vapor isotopes to large‐scale water cycle processes can be used to distinguish evaporation versus precip-

itation dominated environments. These environments determine large scale moisture flux diverge or convergence,

such that when normalizing the isotope ratio to a fixed specific humidity, water vapor isotopes should be able to

distinguish between these two regimes (Bailey et al., 2017). Previous studies thus show that this relationship

exists most strongly within the tropics, but also persists globally (Shi et al., 2022; Singh et al., 2023).

However, because there is a considerable range of ET and P products in the Congo Basin, as discussed in several

studies (da Motta Paca et al., 2019; Negrón Juárez et al., 2009; Nicholson & Klotter, 2021; Pan et al., 2020; Sun

et al., 2018; Weerasinghe et al., 2020, Supplementary), using ET and P directly from these data to estimate water

balance is less reliable. Instead, we utilize the surface water balance (right hand side of Equation 1) to quantify a

linear relationship. Basin‐scale dS
dt
and Q

A
data are taken from a public data set generated by Burnett et al. (2020);

their sources are described in the previous section.

Using these basin‐scale measurements, we calculate ET − P using the following equation:

ET − P = 0.12 × dd04 + 12.12 (5)

Figure 6 illustrates the linear relationship between −Q
A
− dS

dt
and dd04 derived from AIRS, along with the multi‐

year record, seasonality, and IAVs of our calculated ET − P. A comparison between our results and other

remotely‐sensed and reanalysis ET and P products is available in the Supplementary. We calculate both the

accuracy and precision errors of our estimated ET − P using the AIRS dd04 estimates. We assume that the

Figure 5. Interannual variations (IAVs) of iCAM ET − P (black) and regression‐estimated ET − P (green) using the basin‐

scale regression equation for each quadrant: (a) QuadNW; (b) QuadNE; (c) QuadSW; and (d) QuadSE.
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accuracy errors in the GRACE terrestrial water storage estimates, as well as the errors in the AIRS dd04 estimates

are small compared to the river discharge error, which is unknown and has been assigned an estimated error of

20% (Burnett et al., 2020; Landerer & Swenson, 2012; Shi et al., 2022). Therefore, we assume that the error in the

Q/A estimates dominates the error in−Q
A
− dS

dt
.However, this error in−Q

A
− dS

dt
will change based on the season. As

there are certain times within the year when dS
dt
= 0, we choose a final accuracy error of 0.2 × Q

A
to apply to our

ET − P estimates. Therefore, we report a time‐averaged accuracy error of 0.56 cm/month. For the precision error,

we calculate the error using first principles:

Figure 6. (a) Basin‐scale linear regression between AIRS dd04 measurements and −Q
A
− dS

dt
; (b) long‐term record of our

calculated ET − P compared to−Q
A
− dS

dt
as well as a scatter plot showing the linear relationship between them; (c) seasonality

of our calculated ET − P compared to −Q

A
− dS

dt
; and (d) interannual variations of our calculated ET − P compared to −Q

A
− dS

dt
as

well as a scatter plot showing the linear relationship between them.
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(ET − P)err =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Q2

err +
dS

dt

2

err

√
(6)

The precision error for basin‐scale ET − P is 0.91 cm/month.

Our calculated ET − P (Figure 6b) compares well with −Q
A
− dS

dt
(hereafter

referred to as discharge/gravity water balance) although it does not generally

capture extreme discharge/gravity water balance values. We examine both the

seasonality and IAVs to determine the cause. Our calculated seasonal ET − P

(Figure 6c) remains below zero throughout the year, whereas the seasonal

discharge/gravity water balance goes above zero during May‐June. While the

overall seasonal change agrees are consistent between the deuterium and

gravity based measurements, the deuterium based ET − P does not capture the

same extreme highs and lows as the discharge/gravity water balance esti-

mates. On the other hand, the interannual variability of the deuterium‐based

water balance is consistent with the discharge/gravity water balance, generally matching the sign of the anom-

alies and how they change over time: both over short‐time scales (within a year) and over long‐term time scales,

that is, over the whole record. For example, both data sets show higher values in the earlier part of the record,

lower values near 2007, and similar variations near zero thereafter. Furthermore, discharge/gravity water balance

IAVs indicate large atmospheric water balance variability between 2015 and 2017, during which an extreme El

Niño event (Santoso et al., 2017) induced severe drought within the basin via increases in both soil moisture and

atmospheric water stress (Rifai et al., 2019). Our calculated ET − P IAVs match the direction but not the

magnitude of the anomalies.

3.2. Estimates of ET and ET/P for the Entire Congo Basin

We next estimate basin‐scale ET estimates using our regression‐based water balance estimates. Simply adding P

to our calculated ET − P yields an unrealistic ET seasonality, as we find that P dominates the atmospheric water

balance variability (Supplementary). Only when we additionally average in time does our calculated ET compare

well with other existing ET estimates. We compare our calculated ET to the following data sets: MODIS ET,

water‐balance calculated ET from Burnett et al. (2020), GLDAS ET, PT‐JPL ET from Fisher et al. (2008), and

GLEAM ET (Table 1).

We calculate the errors for the following ET data sets using the time‐averaged standard error of the mean:

MODIS, GLEAM, ERA5, PT‐JPL (Fisher et al., 2008), and GLDAS ET products. The error in ETWB and

regression‐based ET is calculated using first principles, with the regression‐based ET error in particular calcu-

lated by:

ETerr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(RMSEET−P̅̅̅

n
√

2

+ P2
err)

√√√ (7)

where the RMSE is the RMSE between the iCAM ET − P and iCAM regression‐based ET − P, n is the length of

the time series, and Perr is the standard error of the mean of the TRMM P estimates. We additionally use this to

calculate the error on ET on quadrant scales.

Our calculated ET, 9.71 cm/month, compares well with water‐balance ET, GLEAM ET, and GLDAS ET with a

range of 9.47–9.75 cm/month. MODIS and ERA5 ET are higher, 10.25 cm/month and 11.12 cm/month,

respectively. ET estimates from Fisher et al. (2008), which combines MODIS and reanalysis ET products, has the

lowest ET estimate at 8.34 cm/month.

We also compare the contribution of ET to P (ET/P) using TRMM P and ET from the previously mentioned data

sets. We use the following to calculate the error in ET
P

:

Table 1

ET and ET/P Averaged Over Time and the Entire Congo Basin for Different

ET Data Sets

Mean ET (cm/month) Mean ET/P

Regression‐Based 9.71 ± 0.94 0.77 ± 0.02

ETwb (Burnett et al., 2020) 9.75 ± 0.94 0.76 ± 0.02

MODIS 10.25 ± 0.04 0.83 ± 0.01

Fisher et al. (2008) 8.34 ± 1.3 0.67 ± 0.02

GLEAM 9.47 ± 1.93 0.77 ± 0.02

GLDAS 9.60 ± 0.04 0.77 ± 0.01

ERA5 11.12 ± 0.04 0.90 ± 0.01

Note. Precipitation comes from TRMM.
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(ET

P
)

err

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ETerr

ET

2

+ Perr

P

2

√
(8)

where ETerr is the error in the ET products as described above. We use this to additionally calculate the error in

ET/P on quadrant scales.

Our analysis reveals a large contribution (67%–90%) of ET toward P, consistent with previous studies (e.g., Sorí

et al., 2022, S. Worden et al., 2021; Risi et al., 2013). This suggests that the contribution of atmospheric moisture

flux convergence (MFC) to P (MFC
P
), should range between 10% and 33%. While no MFC observations exist over

the Congo Basin, ERA5 reanalysis estimates suggest that MFC contributes about 18% contribution of MFC to P

on a basin‐scale. MODIS ET best closes this moisture flux budget (83% contribution of ET to P), but our

calculated ET estimates, GLEAM, and GLDAS also perform well in closing this budget.

3.3. Estimating ET − P in Four Quadrants

We next calculate quadrant‐scale ET − P using quadrant‐averaged dd04 measurements in the basin‐scale linear

regression equation (Equation 5). Because we do not have river discharge at these scales, we estimate the accuracy

in ET − P by applying the RMSEs shown in the iCAM model (Section 2.3) for our ET − P multi‐year record,

seasonality, and IAVs (Figures 7–9).

Seasonally, ET − P is greater than zero in January and February in the northern hemisphere, consistent with low P

(less than 5 cm/month, Figure 1b). However, P is only slightly greater during December when the seasonal ET− P

is less than zero, indicating an increase in ET during January and February as the Congo transitions to its spring

rainy season. In the southern hemisphere, seasonal P drops to near‐zero during JJA (Figure 1b); seasonal ET − P

also near or above zero (Figures 8c and 8d) indicates that ET decreases significantly during the JJA dry season as

well. This is consistent with observed decreases in solar‐induced fluorescence (SIF), a proxy for photosynthesis

and hence ET (Frankenberg et al., 2011), over the Southern Congo during this period (Jiang et al., 2023).

3.4. Estimating ET, ET/P, and Q/A in Each Quadrant

We next calculate quadrant‐scale ET, ET/P, and Q/A using the deuterium‐based ET − P estimates. We compare

our estimates to other ET products. Such estimates are useful for examining quadrant‐scale variabilities in the

Figure 7. ET − P multi‐year record for each quadrant calculated using the basin‐scale linear relationship.
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Congo Basin moisture fluxes that could indicate different moisture regimes, and hence different responses to

climatic changes such as the observed decline in April‐June rainfall (Nicholson et al., 2022). We calculate ET by

adding P to ET − P for each quadrant. Similarly, we calculate net river discharge (Q/A) by adding GRACE dS/dt

estimates to ET − P for each quadrant. All calculations are averaged over both space and time.

We calculate the error in Q/A by:

Figure 8. ET − P seasonal cycle for each quadrant calculated using the basin‐scale linear relationship.

Figure 9. ET − P IAV's for each quadrant calculated using the basin‐scale linear relationship.
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̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ET2

err + P2
err +

dS

dt err

2
√

(9)

For the Q/A calculated using the remotely sensed and reanalysis ET products, and the error in Q/

A using the regression‐based ET − P products as:

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(RMSEET−P̅̅̅

n
√ )2 + dS

dt

2

err

√√√√ (10)

We first compare our time and space‐averaged ET estimates to ET from MODIS, GLEAM,

ERA5, PT‐JPL from Fisher et al. (2008), and GLDAS. Unlike the basin scale ET estimates which

show agreement across data sets, substantial disparity among the ET estimates exists between

quadrants. We show that ET in QuadNW ranges from 9.00 to 12.14 cm/month, ET in QuadNE

ranges from 9.13 to 12.05 cm/month, ET inQuadSW ranges from 7.90 to 10.63 cm/month, and ET

in QuadSE ranges from 7.44 to 10.41 cm/month. Our regression‐based ET estimates compare

best with GLEAM and GLDAS ET estimates for all four quarters. These three ET estimates show

higher ET in QuadNW and QuadNE, and lower ET in QuadSW and QuadSE. These variations

generally correspond to biomass variability between the northern and southern hemisphere. For

example, the fraction of biomass with values >100 mgC/ha (high biomass overlaps with tropical

rainforest parts of the basin, e.g., Verhegghen et al., 2012) are 0.36, 0.24, 0.10, and 0.08 in

QuadNW, QuadNE, QuadSW, and QuadSE, respectively. Lowest ET corresponds with the lowest

fraction of high‐biomass vegetation in QuadSE. However, while QuadNW contains the most high‐

biomass vegetation, including a large wetland and peatland complex (Alsdorf et al., 2016; Dargie

et al., 2017), QuadNE has the highest ET except for MODIS ET. It is possible that higher ET in

QuadNE could be due to ET transported from other parts of the basin via low‐level winds under

850 hPa (S. Worden et al., 2021).

We additionally calculate ET/P and MFC/P for all four quadrants to understand variations in

moisture contributions to P in each quadrant. We show that ET/P in QuadNW ranges from 0.67 to

0.90, ET/P in QuadNE ranges from 0.66 to 0.87, ET/P in QuadSW ranges from 0.64 to 0.86, and

ET/P in QuadSE ranges from 0.68 to 0.95. Our calculated ET/P estimates most closely match ET/

P estimates using GLEAM and GLDAS. These three data sets all show a similar contribution of

ET to P over all four quadrants, with ET contributing slightly less to P in QuadSW and QuadSE.

Meanwhile, mean MFC/P is 0.12 in QuadNW, 0.18 in QuadNE, 0.18 in QuadSW, and 0.23 in

QuadSE. This suggests that despite different P and vegetation regimes between the northern and

southern quadrants, ET still significantly contributes to P everywhere within the Congo Basin.

We next calculate quadrant‐scale, mean net river discharge estimates by adding quadrant‐scale dS
dt

estimates to our quadrant‐scale ET − P estimates. The spatial limitations in GRACE gravity

measurements provide additional motivation to limit our calculations to a quadrant‐scale (e.g.,

Shi et al., 2022). The average of our quadrant‐scale net river discharge estimates calculated from

our regression‐based ET − P is equal to the basin‐scale mean net river discharge, adding con-

fidence to our results. Similar to basin‐scale river discharge estimates, mean net river discharge

in all four quadrants is lower than mean ET. Additionally, it has a larger range of magnitude

between products than our estimates of ET as they highly depend on the ET and P estimates

(from TRMM), the two largest‐magnitude moisture fluxes in the Congo Basin (Burnett

et al., 2020). ET estimates closer to the magnitude of P estimates result in lower mean Q/A, such

as Q/A estimated from ERA5 or MODIS ET (Table 2). The Q/A estimates that come from our

regression‐based ET − P, indicate that the western parts of the basin ha the highest mean river

discharge. Higher net river discharge in the western part of the basin could be due to the higher

number of rivers in that area and higher estimated daily flow (Alsdorf et al., 2016; Munzimi

et al., 2019). For example, out of the 60 identified rivers from Alsdorf et al. (2016), 21 rivers lie

within QuadNW, 13 within QuadNE, 11 within QuadSW, 13 within QuadSE, and 2 rivers are sharedT
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between the different quadrants. Furthermore, the part of the Congo River in QuadSW that outlets to the Atlantic

Ocean has the highest modeled daily flow rate (Munzimi et al., 2019).

4. Discussion and Conclusions

A range of factors, including climate change, land use and land cover change, and more, affect the atmospheric

water balance, ET − P. These changes can directly impact ET and/or P, or affect river discharge and terrestrial

water storage (e.g., Suryatmojo et al., 2013). We confirm that mean ET is the second highest moisture flux across

the basin compared to P (the highest moisture flux), river discharge, and moisture flux convergence. This in-

dicates that a significant portion of the moisture that enters the basin undergoes high recycling (Risi et al., 2013;

Sorí et al., 2017, 2022; S. Worden et al., 2021). Changes in ET from climate or anthropogenic activities could

therefore substantively alter the Congo water balance. For example, increased land cover and land use changes to

accommodate increasing logging demands, clearing for subsistence agriculture, and a rising need for natural

resources due to population growth (Bele et al., 2015; Fuller et al., 2019; Kleinschroth et al., 2019; Tyukavina

et al., 2018) can significantly alter forest composition. Frequent and large‐scale fires in Africa (e.g., Andela & van

der Werf, 2014; Andela et al., 2019), including the Congo Basin, also change forest composition via processes

such as directly removing carbon (e.g., Jiang et al., 2023), altering nutrient availability (Bauters et al., 2018,

2021), inducing soil degradation (Juárez‐Orozco et al., 2017), and creating edge effects that change local energy,

water, and carbon fluxes (Zhao et al., 2021). The anthropogenic fingerprint on the Congo Basin can therefore

significantly affect ET in the Congo Basin and hence the future of its water cycle.

We anticipate that the Congo Basin water cycle response to climate change and land cover and land use

changes may differ from that of the Amazon, where the contribution of ET to P is lower, (ET/P ∼ 40%–50%;

Baker et al., 2021; Swann & Koven, 2017; Xu et al., 2019) and anthropogenic activities differ in their extent

(e.g., N'kaya et al., 2022). Furthermore, a lack of observationally‐based data prevents us from understanding

spatial heterogeneities in this response. This represents a key gap in our understanding of water and carbon

cycle changes in the Congo Basin especially considering high spatial differences in its water cycles and

vegetation (e.g., Burnett et al., 2020; Nicholson, 2022; N'kaya et al., 2022; Verhegghen et al., 2012), as well as

human disturbance (e.g., Adams & Garcia‐Carreras, 2023; Jiang et al., 2023). Our study provides new infor-

mation on quadrant‐scale water flux heterogeneity; however, further research is necessary to develop new,

observationally‐based water flux data sets that allow us to investigate water and carbon cycle heterogeneity on

smaller spatial scales.

Data Availability Statement

GLEAM v3.6b ET estimates can be downloaded via the GLEAM website: https://www.gleam.eu/.

GLDAS L4 2.1 ET estimates, TRMM 3b43 P estimates, can downloaded using NASA GES DISC: https://disc.

gsfc.nasa.gov. Fisher et al. (2008) PT‐JPL ET estimates can be found at: http://josh.yosh.org/. MODIS

MOD16A3GF_006_ET_500m ET products can be found at: https://lpdaac.usgs.gov/products/mod16a3gfv006/.

ERA5 surface latent heat flux can be found at: https://cds.climate.copernicus.eu/cdsapp#!/home. CHIRPS P data

can be found at: https://www.chc.ucsb.edu/data/chirps. PERSIANN‐CDR P data can be found at: https://www.

ncei.noaa.gov/products/climate‐data‐records/precipitation‐persiann. Basin‐scale changes in terrestrial water‐

storage estimates and river discharge estimates taken from Burnett et al. (2020) can be found at: https://osf.io/

jpvmb/. JPL GRACE Mascon products can be found at: https://podaac.jpl.nasa.gov/grace‐fo. GFZ GRACE

Mascon products can be found at: https://isdc.gfz‐potsdam.de/grace‐isdc/. CSR GRACEMascon products can be

found at: https://www2.csr.utexas.edu/grace/RL06_mascons.html. AIRS dd04 measurements can be found at:

https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/TES/.AIRs/. iCAM model estimates, ET − P estimates, and

other data produced by this paper can be made available upon request to the lead author, Sarah Worden (sar-

ahrw27@g.ucla.edu).
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