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ABSTRACT
Lookup tables are widely used in hardware to store arrays of con-
stant values. For instance, complex mathematical functions in hard-
ware are typically implemented through table-based methods such
as plain tabulation, piecewise linear approximation, and bipartite
or multipartite table methods, which primarily rely on lookup ta-
bles to evaluate the functions. Storing extensive tables of constant
values, however, can lead to excessive hardware costs in resource-
constrained edge devices such as FPGAs. In this paper, we propose
a method, called CompressedLUT, as a lossless compression scheme
to compress arrays of arbitrary data, implemented as lookup tables.
Our method exploits decomposition, self-similarities, higher-bit
compression, and multilevel compression techniques to maximize
table size savings with no accuracy loss. CompressedLUT uses addi-
tion and arithmetic right shift beside several small lookup tables to
retrieve original data during the decoding phase. Using such cost-
effective elements helps our method use low area and deliver high
throughput. For evaluation purposes, we compressed a number of
different lookup tables, either obtained by direct tabulation of 12-bit
elementary functions or generated by other table-based methods
for approximating functions at higher resolutions, such as multi-
partite table method at 24-bit, piecewise polynomial approximation
method at 36-bit, and hls4ml library at 18-bit resolutions. We im-
plemented the compressed tables on FPGAs using HLS to show
the efficiency of our method in terms of hardware costs compared
to previous works. Our method demonstrated 60% table size com-
pression and achieved 2.33 times higher throughput per slice than
conventional implementations on average. In comparison, previous
TwoTable and LDTC works compressed the lookup tables on aver-
age by 33% and 37%, which resulted in 1.63 and 1.29 times higher
throughput than the conventional implementations, respectively.
CompressedLUT is available as an open source tool.

CCS CONCEPTS
•Hardware→Hardware accelerators;High-level and register-
transfer level synthesis.
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1 INTRODUCTION
Lookup tables are widely used in both hardware and software sys-
tems to store blocks of read-only, predefined data. Such tables are
used in programmable gate arrays (FPGAs), graphics processing
units (GPUs), and digital signal processors (DSPs). Compressing
lookup tables can potentially reduce their implementation costs in
terms of memory resource utilization, throughput, power consump-
tion, etc. This issue has been of considerable interest as an active
research area [2, 9, 10, 12, 19].

While lookup tables can hold any arbitrary data, the primary
emphasis in this paper revolves around their applications in func-
tion evaluation. Using lookup tables for function evaluation is an
efficient method due to its simplicity of implementation, low com-
putational latency, and high throughput, especially for evaluating
compound complex functions, such as 1/[1 + 𝑒𝑥𝑝 (−𝑥)], which can
be evaluated by a table of precomputed values in hardware instead
of performing costly intermediate operations step-by-step.

At low resolutions, lookup tables can be directly used for imple-
menting a function by tabulating the values of all possible inputs.
Given a function at the input resolution 𝑤𝑖𝑛 and output resolu-
tion 𝑤𝑜𝑢𝑡 , the size of the corresponding lookup table would be
𝑤𝑜𝑢𝑡 × 2𝑤𝑖𝑛 bits, which grows exponentially as𝑤𝑖𝑛 increases. For
this reason, this approach is usually used for evaluating a function
at up to 12-bit resolutions [16].

At higher resolutions, however, simple tabulation of a function
is not feasible due to the massive sizes of resulting tables. In such
cases, approximate methods are applied, which sacrifice accuracy
for hardware cost savings. Examples of such methods include bipar-
tite table (BT) [18], multipartite table (MT) [4, 11], and piecewise
polynomial approximation (PPA) [5] methods. BT and MT decom-
pose the table of a function into smaller tables, called the table
of initial values (TIV) and table of offsets (TO), which result in
the reduction of hardware costs. PPA methods, however, break a
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function into sub-functions and approximate them with polyno-
mials whose coefficients are stored in smaller tables. Although all
of these methods can simplify the implementation of a function at
the expense of accuracy, they still rely on lookup tables to store
essential values such as TIV, TO, or tables of coefficients. Lookup
tables are also used in other state-of-the-art methods, libraries, and
architectures for high-resolution function evaluation. For instance,
hls4ml [6, 8] is a Python package for machine learning interface
on FPGAs, and it uses lookup tables to perform nonlinear parts
of activation functions in neural networks. Additionally, many
floating-point operations require lookup tables as parts of their
architectures [1, 15, 17].

As a result, lookup tables are used either directly for function
evaluation or as parts of other table-based methods. In either case,
table compression methods can be used to shrink such tables to
reduce their implementation hardware costs.

In this paper, we propose CompressedLUT as a method for loss-
less compression of lookup tables, which uses the idea of decompo-
sition [2, 12], self-similarities [13, 14], multilevel compression, and
higher-bit compression to maximize table size savings. Compress-
edLUT is available as an open source tool1.

To evaluate our method, we compressed and implemented sev-
eral lookup tables on FPGAs using HLS to show the efficiency of
CompressedLUT against the PlainTable (conventional plain table)
approach and previous compression methods, including TwoTable
(two-table decomposition) [12] and LDTC (lossless differential ta-
ble compression) [2]. Some of the lookup tables were obtained
by directly tabulating the values of 12-bit elementary functions,
and some others were the lookup tables used by other table-based
methods and libraries for approximating functions at higher resolu-
tions, such as the MT method at 24-bit, PPA method at 36-bit, and
hls4ml library at 18-bit resolutions. Our CompressedLUT achieved
a compression ratio of 60%, while TwoTable and LDTC achieved
compression ratios of 33% and 37% on average, respectively. In
terms of throughput per slice hardware cost, our method resulted
in 2.33 times higher throughput than PlainTable, while TwoTable
and LDTC resulted in 1.63 and 1.29 times higher throughput than
PlainTable on average, respectively.

The rest of the paper is as follows. Section 2 discusses the details
of each technique used for compression. In Section 3, the imple-
mentation results are presented and discussed. Finally, the paper is
concluded in Section 4.

2 METHODOLOGY
We describe our compression methodology by first presenting the
idea of breaking a table into two smaller tables (Sec. 2.1), similar
to what TwoTable [12] and LDTC [2] use. Then we use the idea of
finding self-similarities in the smaller table (Sec. 2.2), extending the
idea in [14].

The above methods would be suitable for tables that store func-
tions that are smooth and have small local variations. However, for
tables that store values with higher dynamic range and large local
variations (such as the ones used in many function approximation
methods), we present two other techniques detailed in sections 2.3

1CompressedLUT is available at https://github.com/kiabuzz/CompressedLUT
(DOI: 10.5281/zenodo.10431619).
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Figure 1: Decomposition of T into Tbias and Tst.

and 2.4. The overall architecture of our method is discussed in
Sec. 2.5.

2.1 Lookup Table Decomposition
Similar to TwoTable [12] and LDTC [2], we decompose a table 𝑇
into two new tables𝑇𝑏𝑖𝑎𝑠 and𝑇𝑠𝑡 . Fig 1 shows the decomposition of
𝑇 into 𝑇𝑏𝑖𝑎𝑠 and 𝑇𝑠𝑡 . Assuming 𝑇 has 2𝑤𝑖𝑛 elements of𝑤𝑜𝑢𝑡 bits, it
is split into 𝑛 = 2𝑤𝑖𝑛−𝑤𝑠 sub-tables, where 0 < 𝑤𝑠 < 𝑤𝑖𝑛 . Next, the
minimum value of each sub-table is stored as an element in 𝑇𝑏𝑖𝑎𝑠 .
Additionally, the minimum value of each sub-table is subtracted
from all the values in the corresponding sub-table and the resulting
values are stored in 𝑇𝑠𝑡 .

As seen, 𝑇𝑏𝑖𝑎𝑠 has 2𝑤𝑖𝑛−𝑤𝑠 elements of𝑤𝑏𝑖𝑎𝑠 bits, where𝑤𝑏𝑖𝑎𝑠

is usually the same as𝑤𝑜𝑢𝑡 . Whereas 𝑇𝑠𝑡 has 2𝑤𝑖𝑛 elements of𝑤𝑠𝑡

bits, where 𝑤𝑠𝑡 is less than 𝑤𝑜𝑢𝑡 . This is because 𝑇𝑠𝑡 holds local
variations which usually require a smaller bit width. In summary,
the table 𝑇𝑏𝑖𝑎𝑠 has the same output bit width as the original table
𝑇 , but it has fewer elements. In contrast, the table 𝑇𝑠𝑡 has the same
number of elements as the original table 𝑇 , but it has less output
bit width. The tables have the following number of bits.

𝑆𝑖𝑧𝑒 (𝑇 ) = 2𝑤𝑖𝑛 ×𝑤𝑜𝑢𝑡

𝑆𝑖𝑧𝑒 (𝑇𝑏𝑖𝑎𝑠 ) = 2𝑤𝑖𝑛−𝑤𝑠 ×𝑤𝑏𝑖𝑎𝑠

𝑆𝑖𝑧𝑒 (𝑇𝑠𝑡 ) = 2𝑤𝑖𝑛 ×𝑤𝑠𝑡

The final size ratio obtained by table decomposition is as follows.

𝑆𝑖𝑧𝑒𝑅𝑎𝑡𝑖𝑜 = [𝑆𝑖𝑧𝑒 (𝑇𝑏𝑖𝑎𝑠 ) + 𝑆𝑖𝑧𝑒 (𝑇𝑠𝑡 )]/𝑆𝑖𝑧𝑒 (𝑇 )
= [2𝑤𝑖𝑛−𝑤𝑠 ×𝑤𝑏𝑖𝑎𝑠 + 2𝑤𝑖𝑛 ×𝑤𝑠𝑡 ]/(2𝑤𝑖𝑛 ×𝑤𝑜𝑢𝑡 )
= 2−𝑤𝑠 +𝑤𝑠𝑡 /𝑤𝑜𝑢𝑡

As seen, the final size ratio after decomposition depends on two
terms: 2−𝑤𝑠 and 𝑤𝑠𝑡/𝑤𝑜𝑢𝑡 . The parameter 𝑤𝑠 can be set to any
value between 0 and 𝑤𝑖𝑛 . Increasing 𝑤𝑠 decreases the first term
2−𝑤𝑠 , yet it increases the second term 𝑤𝑠𝑡 /𝑤𝑜𝑢𝑡 . This is because
increasing𝑤𝑠 results in sub-tables withmore elements, whichmight
have larger local variations, that require greater bit width𝑤𝑠𝑡 .

After decomposition, the original table 𝑇 is replaced by 𝑇𝑏𝑖𝑎𝑠
and 𝑇𝑠𝑡 . The input address of 𝑇𝑠𝑡 is the same as the input address
of 𝑇 , but the input address of 𝑇𝑏𝑖𝑎𝑠 is fed by the (𝑤𝑖𝑛 −𝑤𝑠 ) higher
bits of the input address of 𝑇 . Finally, an adder is used to retrieve
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Figure 2: Retrieving T through Tbias and Tst.

the values of the original table𝑇 by adding the output values of𝑇𝑠𝑡
and 𝑇𝑏𝑖𝑎𝑠 , as seen in Fig 2.

2.2 Self-Similarities in Lookup Tables
Using the core idea of what the authors of [14] call the “SimBU”
method, we can compress the table of 𝑇𝑠𝑡 further. SimBU was pro-
posed in the context of “unary” methods to reduce the complexity
of HBU [7]. However, the self-similarity algorithm proposed by this
method can be deployed as a lossless compression approach in the
context of binary lookup tables.

As discussed in Section 2.1, 𝑇𝑠𝑡 holds the values of 𝑛 sub-tables
𝑆𝑇𝑖 , where 𝑖 ∈ {1, 2, · · · , 𝑛}. However, the values of many of these
sub-tables are similar. Similar sub-tables refer to the sub-tables
whose values are either identical or can get identical through the
arithmetic right shift operation.

Fig 3a shows an example of 𝑇𝑠𝑡 which contains 32 sub-tables of
4 elements. Therefore, 𝑇𝑠𝑡 has 128 elements in total. The values of
four sub-tables 𝑆𝑇1, 𝑆𝑇14, 𝑆𝑇24, and 𝑆𝑇32 are shown separately in
Fig. 3b. As seen, if the values of 𝑆𝑇14 are shifted to the right by 1
bit, we can obtain 𝑆𝑇1. Additionally, if the values of 𝑆𝑇14 are shifted
to the right by 2 or 3 bits, we can obtain 𝑆𝑇24 or 𝑆𝑇32, respectively.
In other words, we can say that 𝑆𝑇14 can generate 𝑆𝑇1, 𝑆𝑇24, and
𝑆𝑇32 using the right shift operation. As a result, instead of storing 4
different sub-tables, we can store only 𝑆𝑇14 as a unique sub-table,
through which we can retrieve the other ones.

In the example of Fig. 3b, in addition to 𝑆𝑇14, 𝑆𝑇1 can also generate
𝑆𝑇24 and 𝑆𝑇32, but this time by getting shifted to the right by 1 and
2 bits, respectively. Furthermore, 𝑆𝑇24 can generate 𝑆𝑇32 by getting
shifted to the right by 1 bit. However, among these 4 sub-functions,
considering 𝑆𝑇14 as the unique sub-function is the best choice since
it can generate 3 other sub-functions. Therefore, the final goal of
this phase is to find the minimum set of unique sub-tables in 𝑇𝑠𝑡
that can generate the rest.

Using the self-similarity matrix used in SimBU [14], similarities
among all sub-tables in𝑇𝑠𝑡 are identified. As discussed in Section 2.1,
𝑇𝑠𝑡 consists of 𝑛 = 2𝑤𝑖𝑛−𝑤𝑠 sub-tables, and each sub-table consists
of 2𝑤𝑠 elements. To measure similarities, an 𝑛 × 𝑛 Boolean matrix
is needed, which is called a similarity matrix. Each entry of this
matrix specifies whether the two sub-tables are similar or not. That
is, an entry 𝑠𝑖 𝑗 is 1 if the sub-table 𝑆𝑇𝑖 can generate 𝑆𝑇𝑗 . Obviously,
this matrix is not symmetric since if 𝑆𝑇𝑖 can generate 𝑆𝑇𝑗 through
right shifting, the opposite is not necessarily true. The following is
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Figure 3: Examples of self-similarities in sub-tables.

the definition of the similarity matrix.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 =


𝑠𝑚1,1 𝑠𝑚1,2 · · · 𝑠𝑚1,𝑛
𝑠𝑚2,1 𝑠𝑚2,2 · · · 𝑠𝑚2,𝑛

.

.

.
.
.
.

. . .
.
.
.

𝑠𝑚𝑛,1 𝑠𝑚𝑛,2 · · · 𝑠𝑚𝑛,𝑛

𝑛×𝑛
𝑠𝑚𝑖,𝑗 = 1⇔ ∃𝑡 ∈ N : ∀𝑚 ∈ N(𝑚 < 2𝑤𝑠 ), 𝑟𝑠ℎ𝑡 {𝑆𝑇𝑖 [𝑚] } = 𝑆𝑇𝑗 [𝑚]

(1)

where 𝑟𝑠ℎ𝑡 denotes an arithmetic right shift by 𝑡 bits.
After identifying similar sub-tables, the unique set of them should

be determined that can generate the other sub-tables to retrieve
the original 𝑇𝑠𝑡 . Unique sub-tables are named 𝑈𝑆𝑇 , and they are
all stored in a new single table, called 𝑇𝑢𝑠𝑡 . Furthermore, two new
tables of 𝑛 elements, called 𝑇𝑖𝑑𝑥 and 𝑇𝑟𝑠ℎ , are needed to retrieve
the original table 𝑇𝑠𝑡 through 𝑇𝑢𝑠𝑡 . The value of the 𝑖th element in
𝑇𝑖𝑑𝑥 shows the index of the unique sub-function that can generate
𝑆𝑇𝑖 , and the value of the 𝑖th element in 𝑇𝑟𝑠ℎ shows the number of
right bit shifts that are needed to be performed on the values of
the corresponding unique sub-table to retrieve 𝑆𝑇𝑖 . For instance,
if 𝑇𝑖𝑑𝑥 [5] = 3 and 𝑇𝑟𝑠ℎ [5] = 2, we can conclude that 𝑆𝑇5 can be
retrieved by𝑈𝑆𝑇3 after right shifting the values of 𝑈𝑆𝑇3 by 2 bits.

To find unique sub-tables, a vector must be obtained based on
the similarity matrix. This vector is called a similarity vector, and
the 𝑗th entry in it specifies how many sub-tables can be generated
using the 𝑗th sub-table. The vector can be created by adding the
values in each column in the similarity matrix as follows.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑒𝑐𝑡𝑜𝑟 = [𝑠𝑣1, 𝑠𝑣2, · · · , 𝑠𝑣𝑛]

𝑠𝑣 𝑗 =
∑︁
𝑖

𝑠𝑚𝑖 𝑗
(2)

The index of the element in the similarity vector with the maxi-
mum value determines the first unique sub-table. In other words, if
𝑠𝑣𝑖 is the element with the maximum value, 𝑆𝑇𝑖 will be considered
as the first unique sub-table𝑈𝑆𝑇1, and its values are stored in 𝑇𝑢𝑠𝑡 .
We also need to traverse through the 𝑖th column of the similarity
matrix to see which sub-tables can be generated through 𝑆𝑇𝑖 . If
𝑆𝑇𝑖 can generate 𝑆𝑇𝑗 through right shifting by 𝑡 bits, then the 𝑗th
element of 𝑇𝑖𝑑𝑥 and 𝑇𝑟𝑠ℎ must be set to 1 and 𝑡 , respectively. After
finding the first unique sub-table, we need to update the similarity
matrix and similarity vector. Therefore, the 𝑖th row and column
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of the similarity matrix must be set to 0. Additionally, if 𝑆𝑇𝑖 can
generate 𝑆𝑇𝑗 , the 𝑗 th row and column of the similarity matrix must
be set to 0 as well. The elements of the similarity vector need to be
recalculated based on the updated similarity matrix.

The process above needs to be repeated again and again until
all the entries of the similarity matrix are 0’s. In each iteration, it
identifies a new unique sub-table. In the end, if the process takes 𝑘
iterations to finish, we will end up with 𝑘 unique sub-tables 𝑈𝑆𝑇𝑖 ,
where 𝑖 ∈ {1, 2, · · · , 𝑘} and 𝑘 ≤ 𝑛. These unique sub-tables are all
stored in 𝑇𝑢𝑠𝑡 .

As a result, 𝑇𝑠𝑡 is replaced by 𝑇𝑢𝑠𝑡 , 𝑇𝑖𝑑𝑥 , and 𝑇𝑟𝑠ℎ . In contrast to
𝑇𝑠𝑡 , which contains 𝑛 sub-tables, 𝑇𝑢𝑠𝑡 contains 𝑘 unique sub-tables,
where 𝑘 is often by far less than 𝑛. It means that many sub-tables
can be generated using a few unique sub-tables. Therefore, we can
achieve significant table size reductions. However, when calculating
the overall memory space reduction, the size of 𝑇𝑖𝑑𝑥 and 𝑇𝑟𝑠ℎ must
be taken into account. In summary, the size of each table and the
size ratio are as follows.

𝑆𝑖𝑧𝑒 (𝑇𝑠𝑡 ) = 𝑛 × 2𝑤𝑠 ×𝑤𝑠𝑡

𝑆𝑖𝑧𝑒 (𝑇𝑢𝑠𝑡 ) = 𝑘 × 2𝑤𝑠 ×𝑤𝑠𝑡

𝑆𝑖𝑧𝑒 (𝑇𝑖𝑑𝑥 ) = 𝑛 ×𝑤𝑖𝑑𝑥

𝑆𝑖𝑧𝑒 (𝑇𝑟𝑠ℎ) = 𝑛 ×𝑤𝑟𝑠ℎ

𝑆𝑖𝑧𝑒𝑅𝑎𝑡𝑖𝑜𝑛 = [𝑆𝑖𝑧𝑒 (𝑇𝑢𝑠𝑡 ) + 𝑆𝑖𝑧𝑒 (𝑇𝑖𝑑𝑥 ) + 𝑆𝑖𝑧𝑒 (𝑇𝑟𝑠ℎ)]/𝑆𝑖𝑧𝑒 (𝑇𝑠𝑡 )
= [𝑤𝑖𝑑𝑥 +𝑤𝑟𝑠ℎ]/(2𝑤𝑠 ×𝑤𝑠𝑡 ) + 𝑘/𝑛

where 𝑤𝑖𝑑𝑥 and 𝑤𝑟𝑠ℎ are the bit width of the values in 𝑇𝑖𝑑𝑥 and
𝑇𝑟𝑠ℎ , respectively. In our method, however, we force 𝑤𝑟𝑠ℎ to be
2, which means that during the self-similarity search process, we
limit the value of 𝑡 in Eq. 1 to the range of [0,3]. The value of
𝑤𝑖𝑑𝑥 depends on the number of unique sub-tables and is equal to
𝑓 𝑙𝑜𝑜𝑟 (𝑙𝑜𝑔2(𝑘 − 1)) + 1.

2.3 Higher-Bit Compression
Using decomposition and self-similarities can potentially reduce a
table’s size, especially if the values of a table change continuously.
That is, these two compression techniques can be more efficient if
there are small differences between consecutive values in a table.
On the other hand, there are two issues in the compression of tables
with more discrete values that show large differences between
consecutive elements.

The first issue is the increase of𝑤𝑠𝑡 in 𝑇𝑠𝑡 after decomposition
(Section 2.1), which negatively impacts the final table size savings.
This is because there are larger differences between consecutive
values in 𝑇 , and therefore the local variations are higher. As a
result, the values in 𝑇𝑠𝑡 , which stores the local variations, require
a longer bit width 𝑤𝑠𝑡 . The second issue is with self-similarities
(Section 2.2). Since the values of sub-tables are larger, it is likely
harder to find similarities among them. Therefore, the number of
unique sub-tables increases, which in turn results in lower table
size savings.

As a solution to mitigate these issues, we can split the values
of 𝑇 into higher and lower bits before performing decomposition
and self-similarity measures. The values of 𝑇 are divided into 𝑤𝑙

lower bits and 𝑤𝑜𝑢𝑡 −𝑤𝑙 higher bits, which can be stored in two
separate tables 𝑇𝑙𝑏 and 𝑇ℎ𝑏 , respectively. The table 𝑇𝑙𝑏 undergoes

no compression, but 𝑇ℎ𝑏 is compressed by using decomposition
(Section 2.1) and self-similarities (Section 2.2).

The intuition behind this practice is to reduce the distances
between consecutive values of 𝑇 by considering higher bits. If we
plot both 𝑇 and 𝑇ℎ𝑏 , the overall shapes of the plots will be similar,
however, the slopes of sub-regions in the plot of𝑇ℎ𝑏 would be more
gentle. Therefore, local variations become lower, which potentially
results in more table size savings after using decomposition and
self-similarity techniques.

2.4 Multilevel Compression
Using the three techniques discussed in Sections 2.1, 2.2, and 2.3, a
table 𝑇 can be significantly compressed and replaced by 𝑇𝑙𝑏 , 𝑇𝑢𝑠𝑡 ,
𝑇𝑖𝑑𝑥 , 𝑇𝑟𝑠ℎ , and 𝑇𝑏𝑖𝑎𝑠 . Among these tables, 𝑇𝑏𝑖𝑎𝑠 can be compressed
further by performing all three techniques on it. As a result, 𝑇𝑏𝑖𝑎𝑠
itself is replaced by another set of 𝑇𝑙𝑏 , 𝑇𝑢𝑠𝑡 , 𝑇𝑖𝑑𝑥 , 𝑇𝑟𝑠ℎ , and 𝑇𝑏𝑖𝑎𝑠 .
This can potentially achieve further table size savings in total.

It is worth noting that if we plot the values of 𝑇 and 𝑇𝑏𝑖𝑎𝑠 , they
will have a similar shape. This is because 𝑇𝑏𝑖𝑎𝑠 is the same as 𝑇
sampled by a factor of 2𝑤𝑖𝑛−𝑤𝑠 . Although 𝑇𝑏𝑖𝑎𝑠 has a coarser gran-
ularity than 𝑇 , this issue can be resolved by splitting the values of
𝑇𝑏𝑖𝑎𝑠 into higher and lower bits, as discussed in Section 2.3.

Using the idea of multilevel compression often results in more
table size savings. However, it might increase hardware costs due
to the nested decoders needed to retrieve values.

2.5 Overall Architecture
Algorithm 1 describes the compression techniques used by our
CompressedLUT method. This algorithm takes a table 𝑇 and two
parameters𝑤𝑠 and𝑤𝑙 as inputs, and it returns five tables 𝑇𝑙𝑏 , 𝑇𝑢𝑠𝑡 ,
𝑇𝑏𝑖𝑎𝑠 , 𝑇𝑖𝑑𝑥 , and 𝑇𝑟𝑠ℎ as outputs. For multilevel compression, the
algorithm must be run again multiple times, given 𝑇𝑏𝑖𝑎𝑠 as input.
Fig. 4 shows the overall architecture of our method.

The parameters𝑤𝑠 and𝑤𝑙 should be determined for each specific
input table𝑇 . In our method, we run the algorithm for different val-
ues of the parameters and evaluate them based on the total sizes of
all generated tables. Although the runtime of this procedure highly
depends on the initial size of a lookup table, our CompressedLUT
tool takes around 1.38 seconds on a regular computer to compress
a lookup table of 4096 values at 12-bit resolution.

3 IMPLEMENTATION RESULTS
In this section, we evaluate the efficiency of CompressedLUT by
implementing a number of tables of different sizes and comparing
our method with the previous TwoTable [12] and LDTC [2] works.
Fig. 5 show the graphs of implemented lookup tables.

In section 3.1, we present and discuss the results of implement-
ing tables, which are used directly for function evaluation at low
resolutions. In Section 3.2, however, we present and discuss the
results of implementing tables, which are used by other methods
for approximate function evaluation at higher resolutions. In Sec-
tion 3.3, we finally discuss the potential applications of our method
to general compression applications, such as audio and image data
compression.
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Figure 4: Overall architecture of our CompressedLUT method. In the case of multilevel compression, the same architecture is
embedded in Tbias.
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Figure 5: Plots of the implemented lookup tables. X-axes represent the input address of the tables, and Y-axes represent the
corresponding output values. Note the different scales on the x-axis of different plots.

3.1 Low-Resolution Function Evaluation
As discussed earlier, a low-resolution function at up to 12-bit can
be evaluated directly by lookup tables containing the values of the
function for all possible input values [2].

Such tables can be compressed using our lossless compression
method, which can reduce hardware costs with no accuracy loss.
To show the efficiency of our method for low-resolution function
evaluation, we targeted a number of nonlinear functions at 12-bit
resolution, each of which had a table of 12 × 212 = 49152 bits. The
minimum value of each table is subtracted from all the values in that
table, which could potentially remove excessive output bits such as
sign bits in some cases. The first row in Fig. 5 shows the plots of
implemented tables for low-resolution function evaluation.We used
our CompressedLUT method as well as previous TwoTable [12]
and LDTC [2] works to compress the tables as much as possible. As
in [12], we used total bit count as a metric to guide the selection of

decomposition parameters in each method. Finally, we synthesized
and implemented the compressed tables and their decoders on
AMD’s Kintex-7 FPGAs using Vitis HLS 2023.1.

We obtained hardware utilization and timing reports after place
and route. Average latency and throughput were measured after
cosimulation. Each table in HLS was implemented as a single-port
ROM (ROM_1P) using distributed RAM (LUTRAM) resources in-
stead of block RAM (BRAM) resources, as using BRAMs cannot
show the efficiency of the compression methods due to the discrete
sizes of BRAMs [2]. Therefore, we can consider the number of uti-
lized slices as a metric for area measurements since the designs do
not use other hardware resources such as BRAMs and DSP blocks.
However, we use throughput per slice (TPS) as a metric to com-
pare different methods in terms of hardware cost. The latency of
our method is usually 2 clock cycles, whereas the latency of the
PlainTable, TwoTable, and LDTC methods is 1. Nonetheless, all
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Algorithm 1: CompressedLUT
1 Input: 𝑇,𝑤𝑙 ,𝑤𝑠

2 Outputs: 𝑇𝑙𝑏 ,𝑇𝑢𝑠𝑡 ,𝑇𝑏𝑖𝑎𝑠 ,𝑇𝑖𝑑𝑥 ,𝑇𝑟𝑠ℎ
3 𝑇𝑙𝑏 [:] ← 𝑏𝑖𝑡𝑎𝑛𝑑 (𝑇 [:], 2𝑤𝑙𝑏 − 1)
4 𝑇ℎ𝑏 [:] ← 𝑟𝑠ℎ(𝑇 [:],𝑤𝑙𝑏 )
5 𝑤𝑖𝑛 ← 𝑏𝑖𝑡𝑤𝑖𝑑𝑡ℎ(𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 ) − 1)
6 𝑤𝑜𝑢𝑡 ← 𝑏𝑖𝑡𝑤𝑖𝑑𝑡ℎ(𝑚𝑎𝑥 (𝑇 ))
7 𝑛 ← 2𝑤𝑖𝑛−𝑤𝑠

8 # Compression of 𝑇ℎ𝑏 Using Decomposition

9 for 𝑖 = 1 to 𝑛 do
10 𝑆𝑇 [:] ← 𝑇ℎ𝑏 [(𝑖 − 1) × 2𝑤𝑠 + 1 : 𝑖 × 2𝑤𝑠 ]
11 𝑇𝑠𝑡 [(𝑖 − 1) × 2𝑤𝑠 + 1 : 𝑖 × 2𝑤𝑠 ] ← 𝑆𝑇 [:] −𝑚𝑖𝑛(𝑆𝑇 [:])
12 𝑇𝑏𝑖𝑎𝑠 [𝑖] ←𝑚𝑖𝑛(𝑆𝑇 [:])
13 end

14 # Compression of 𝑇𝑠𝑡 Using Self-Similarities

15 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 [:] [:] ← 𝑧𝑒𝑟𝑜𝑠 (𝑛, 𝑛)
16 𝑅𝑖𝑔ℎ𝑆ℎ𝑖 𝑓 𝑡𝑀𝑎𝑡𝑟𝑖𝑥 [:] [:] ← 𝑧𝑒𝑟𝑜𝑠 (𝑛, 𝑛)
17 for 𝑖 = 1 to 𝑛 do
18 𝑆𝑇𝑖 ← 𝑇𝑠𝑡 [(𝑖 − 1) × 2𝑤𝑠 + 1 : 𝑖 × 2𝑤𝑠 ]
19 for 𝑗 = 1 to 𝑛 do
20 𝑆𝑇𝑗 ← 𝑇𝑠𝑡 [( 𝑗 − 1) × 2𝑤𝑠 + 1 : 𝑗 × 2𝑤𝑠 ]
21 for 𝑡 = 0 to 3 do
22 if 𝑟𝑠ℎ(𝑆𝑇𝑖 [:], 𝑡) == 𝑆𝑇𝑗 [:] then
23 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 [𝑖] [ 𝑗] ← 1
24 𝑅𝑖𝑔ℎ𝑆ℎ𝑖 𝑓 𝑡𝑀𝑎𝑡𝑟𝑖𝑥 [𝑖] [ 𝑗] ← 𝑡

25 𝑏𝑟𝑒𝑎𝑘

26 end
27 end
28 end
29 end
30 𝑘 ← 0
31 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑒𝑐𝑡𝑜𝑟 [:] ← 𝑧𝑒𝑟𝑜𝑠 (1, 𝑛)
32 while 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 [:] [:] ! = 𝑧𝑒𝑟𝑜𝑠 (𝑛, 𝑛) do
33 𝑘 ← 𝑘 + 1 # increment the number of unique sub-tables
34 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑒𝑐𝑡𝑜𝑟 [:] ← ∑

𝑖 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 [𝑖] [:]
35 𝑖𝑑𝑥 ← argmax𝑖 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑒𝑐𝑡𝑜𝑟 [𝑖]
36 𝑈𝑆𝑇 [:] ← 𝑇𝑠𝑡 [(𝑖𝑑𝑥 − 1) × 2𝑤𝑠 + 1 : 𝑖𝑑𝑥 × 2𝑤𝑠 ]
37 𝑇𝑢𝑠𝑡 [(𝑘 − 1) × 2𝑤𝑠 + 1 : 𝑘 × 2𝑤𝑠 ] ← 𝑈𝑆𝑇 [:]
38 𝑇𝑖𝑑𝑥 [𝑖𝑑𝑥] ← 𝑘

39 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 [𝑖𝑑𝑥] [𝑖𝑑𝑥] ← 0
40 # reference similar sub-tables to the 𝑘th unique sub-table
41 for 𝑖 = 1 to 𝑛 do
42 if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 [𝑖] [𝑖𝑑𝑥] == 1 then
43 𝑇𝑖𝑑𝑥 [𝑖] ← 𝑘

44 𝑇𝑟𝑠ℎ ← 𝑅𝑖𝑔ℎ𝑆ℎ𝑖 𝑓 𝑡𝑀𝑎𝑡𝑟𝑖𝑥 [𝑖] [𝑖𝑑𝑥]
45 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 [𝑖] [:] ← 𝑧𝑒𝑟𝑜𝑠 (1, 𝑛)
46 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 [:] [𝑖] ← 𝑧𝑒𝑟𝑜𝑠 (𝑛, 1)
47 end
48 end
49 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 [𝑖𝑑𝑥] [:] ← 𝑧𝑒𝑟𝑜𝑠 (1, 𝑛)
50 end
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Figure 6: Average of the results of implementing lookup
tables used directly for low-resolution function evaluation.

the designs were pipelined with an initial interval (II) of 1 clock
cycle, which means that all the designs would accept a new input
value every clock cycle. To make comparisons fair, we set the min-
imum latency of all the methods to 2 clock cycles. As expected,
this constraint improved the average TPS values in the PlainTable,
TwoTable, and LDTC methods due to reductions in critical path
delay, which resulted in an increase in throughput.

Table 1 shows the results of implementing the lookup tables
using different methods. Table 2 and Fig. 6 also show the average of
the results for each method. PlainTable is referred to as a method
using simple plain tables with no compression. “Initial Size" and
“Final Size" show the total bit count before and after compression,
respectively. “Delay" shows the achieved clock period in nanosec-
onds (ns), and “TPS" shows throughput per slice in mega operations
per second per slice (Mops/slice).

As seen, our method can compress the tables on average by
80%, whereas the TwoTable and LDTC methods compress them on
average by 48% and 51%, respectively. In terms of the TPS hardware
cost, our method is 4.03 times better than the PlainTable method,
whereas the TwoTable and LDTC methods are 2.50 and 1.88 times
better than the PlainTable method, respectively.

3.2 High-Resolution Function Evaluation
Unlike low-resolution functions, it is not practical to fully tabulate
the values of a function beyond 12-bit due to the exponentially
growing size of the resulting tables. In such cases, approximate
methods, such as BT, MT, and PPA can be applied to reduce overall
table size at the expense of accuracy. As discussed earlier, these
approximate methods still rely on lookup tables to store essential
values to perform computations. For instance, BT and MT methods
rely on TIV and TO tables. In addition, PPA methods store the
coefficients of polynomials in lookup tables.

Our CompressedLUT method can be plugged into such table-
based methods to compress their tables, which reduces hardware
costs with no additional approximation error. However, compress-
ing such tables is not as easy as compressing the tables of low-
resolution functions, discussed in Section 3.1. This is because the
lookup tables used in table-based methods usually do not show
smooth local variations compared to the tables of low-resolution
functions. For instance, the TIV table of a function, implemented by
an MT method, contains uniformly sampled values of the function.
Therefore, the difference between every two consecutive values in
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Table 1: Results of implementing lookup tables used directly for low-resolution function evaluation on FPGA using HLS. The
costs of decoders are included, and all the designs are pipelined with II = 1.

Specifications Compression Hardware Costs
Function Initial Size (bit) Method Final Size (bit) Ratio Slice LUT FF Delay (ns) TPS (Mops/slice) Ratio

Plain Table 49152 1.00 180 605 70 3.453 1.61 1.00
TwoTable [12] 22528 0.46 65 238 43 3.588 4.29 2.67
LDTC [2] 21504 0.44 90 322 41 3.42 3.25 2.02

Sin 49152

CompressedLUT 8764 0.18 53 165 82 2.808 6.72 4.18
Plain Table 49152 1.00 158 543 51 3.197 1.98 1.00

TwoTable [12] 22528 0.46 50 182 43 3.067 6.52 3.29
LDTC [2] 22016 0.45 65 223 42 3.841 4.01 2.02

Sq 49152

CompressedLUT 9472 0.19 48 148 68 2.667 7.81 3.95
Plain Table 49152 1.00 132 462 53 3.67 2.06 1.00

TwoTable [12] 38400 0.78 98 350 48 4.002 2.55 1.24
LDTC [2] 33792 0.69 149 493 39 4.158 1.61 0.78

Sqrt 49152

CompressedLUT 13696 0.28 59 208 60 3.278 5.17 2.50
Plain Table 49152 1.00 177 638 73 4.221 1.34 1.00

TwoTable [12] 26624 0.54 68 237 44 3.661 4.02 3.00
LDTC [2] 25600 0.52 87 312 42 3.767 3.05 2.28

Exp 49152

CompressedLUT 11392 0.23 61 203 75 2.846 5.76 4.30
Plain Table 49152 1.00 163 605 70 3.283 1.87 1.00

TwoTable [12] 18432 0.38 66 230 42 3.493 4.34 2.32
LDTC [2] 18432 0.38 66 220 42 3.528 4.29 2.30

Log 49152

CompressedLUT 5924 0.12 40 124 74 2.573 9.72 5.20

Table 2: Average of the results of implementing lookup tables
used directly for low-resolution function evaluation.

Method Final Size Ratio TPS Ratio

PlainTable 1.00 1.00
TwoTable [12] 0.52 2.50
LDTC [2] 0.49 1.88

CompressedLUT 0.20 4.03

the TIV table is likely larger than that of two consecutive values
in the plain table of the function. Nonetheless, our method can
achieve significant savings in table size due to breaking output
values into higher bits and lower bits as well as using a multilevel
compression technique. To show the effectiveness of our method
for high-resolution function evaluation, we implemented the tables
used by the following methods and libraries.

(1) hls4ml is a Python package for machine learning interface
on FPGAs using HLS. It uses lookup tables to implement
the nonlinear parts of activation functions in neural net-
works. For linear parts, however, it might use compactors
and constant-coefficient multipliers. By default, the lookup
tables have 1024 elements of fixed point values with 10 frac-
tional bits and 8 signed integer bits (ap_fixed<18, 8>). How-
ever, the integer parts of the values hardly exceed 2 bits in

most cases. We implemented a number of activation func-
tions using hls4ml [6, 8] at 18-bit resolution, including tanh,
sigmoid, softplus, softsign, ELU (exponential linear unit),
SELU (scaled exponential linear unit). Next, we compressed
and implemented the lookup tables used by the architecture
of each activation function.

(2) FloPoCo [3] is an arithmetic core generator for FPGAs. It
includes several tools for approximating arbitrary functions.
It has a tool, called FixFunctionByMultipartiteTable for func-
tion evaluation using an MT method [4]. In this paper, this
tool is referred to as FloPoCo-MT (multipartite table method).
We generated the arithmetic core for 𝑠𝑖𝑛( 𝜋4 𝑥) at 24-bit res-
olution using FloPoCo-MT. Next, we compressed and im-
plemented the TIV (table of initial values) used by the MT
method in the generated core.

(3) FloPoCo [3] has another tool, called FixFunctionByPiecewise-
Poly, for function evaluation using a PPA method [5] based
on the Horner scheme. In this paper, this tool is referred
to as FloPoCo-PPA (piecewise polynomial approximation
method). We generated the arithmetic core for 𝑠𝑖𝑛( 𝜋4 𝑥) at
36-bit resolution using FloPoCo-PPA with quadratic polyno-
mials (𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0). Next, we separately compressed and
implemented the tables of coefficients, referred to as A0, A1,
and A2.

The minimum value of each table was subtracted from all the values
in that table to potentially remove excessive output bits. The second
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Table 3: Results of implementing lookup tables used by other table-based methods for high-resolution function evaluation on
FPGA using HLS. The costs of decoders are included, and all the designs are pipelined with II = 1.

Specifications Compression Hardware Costs
Architecture Table Initial Size (bit) Method Final Size (bit) Ratio Slice LUT FF Delay (ns) TPS (Mops/slice) Ratio

Plain Table 11264 1.00 45 143 34 2.98 7.46 1.00
TwoTable [12] 7552 0.67 30 108 41 2.62 12.72 1.71
LDTC [2] 7168 0.64 31 112 37 2.86 11.28 1.51

Tanh 11264

CompressedLUT 4976 0.44 30 97 54 2.15 15.53 2.08
Plain Table 10240 1.00 33 103 33 2.30 13.18 1.00

TwoTable [12] 6400 0.63 25 88 38 2.59 15.46 1.17
LDTC [2] 6144 0.60 25 94 35 2.48 16.15 1.23

Sogmoid 10240

CompressedLUT 3984 0.39 28 81 51 2.02 17.65 1.34
Plain Table 13312 1.00 38 133 36 2.19 12.02 1.00

TwoTable [12] 8832 0.66 33 113 46 3.02 10.03 0.84
LDTC [2] 8320 0.63 35 116 42 2.70 10.59 0.88

Softplus 13312

CompressedLUT 5664 0.43 39 124 70 2.32 11.08 0.92
Plain Table 11264 1.00 46 157 34 2.92 7.45 1.00

TwoTable [12] 8576 0.76 32 116 42 2.78 11.23 1.51
LDTC [2] 7808 0.69 59 182 36 3.54 4.79 0.64

Softsign 11264

CompressedLUT 4636 0.41 33 101 68 2.37 12.78 1.71
Plain Table 11264 1.00 30 98 34 2.16 15.46 1.00

TwoTable [12] 7808 0.69 28 94 41 2.65 13.46 0.87
LDTC [2] 6912 0.61 28 92 36 2.59 13.78 0.89

ELU 11264

CompressedLUT 4232 0.38 28 84 50 2.42 14.75 0.95
Plain Table 11264 1.00 32 113 34 2.53 12.36 1.00

TwoTable [12] 8576 0.76 29 97 42 2.87 12.00 0.97
LDTC [2] 7936 0.70 30 105 37 2.94 11.33 0.92

hls4ml [6, 8]
(18-bit)

SELU 11264

CompressedLUT 5008 0.44 27 87 55 2.03 18.26 1.48
Plain Table 114688 1.00 470 1672 150 4.00 0.53 1.00

TwoTable [12] 89088 0.78 326 1192 145 4.06 0.76 1.42
LDTC [2] 83456 0.73 465 1580 150 4.87 0.44 0.83

FloPoCo-MT [3, 4]
(24-bit)

TIV of Sin 114688

CompressedLUT 64724 0.56 345 1136 176 3.60 0.80 1.51
Plain Table 40960 1.00 191 692 89 3.57 1.47 1.00

TwoTable [12] 37120 0.91 191 668 116 3.70 1.42 0.97
LDTC [2] 34944 0.85 180 642 87 3.22 1.73 1.18

A0 of Sin 40960

CompressedLUT 32184 0.79 172 545 107 3.08 1.89 1.29
Plain Table 27648 1.00 132 458 62 3.72 2.03 1.00

TwoTable [12] 24256 0.88 125 434 80 3.73 2.15 1.06
LDTC [2] 22528 0.81 115 418 64 3.28 2.65 1.30

A1 of Sin 27648

CompressedLUT 19704 0.71 97 349 92 2.67 3.86 1.90
Plain Table 16384 1.00 69 242 45 2.83 5.12 1.00

TwoTable [12] 11264 0.69 44 148 54 2.96 7.69 1.50
LDTC [2] 10496 0.64 87 265 48 3.70 3.11 0.61

FloPoCo-PPA [3, 5]
(36-bit)

A2 of Sin 16384

CompressedLUT 8120 0.50 43 145 57 2.82 8.25 1.61

and the third rows in Fig. 5 show the plots of implemented tables
used by the aforementioned methods for high-resolution function
evaluation. Compressionwasmade by our CompreesedLUTmethod
as well as previous TwoTable [12] and LDTC [2] methods. We
used the total bit count as the metric to guide the selection of
decomposition parameters in each method. All the designs were
synthesized and implemented on AMD’s Kintex-7 FPGAs using
Vitis HLS 2023.1. All the considerations for developing HLS designs
and obtaining results are the same as those in Section 3.1.

Table 3 shows the implementation results using different meth-
ods. Additionally, Table 4 and Fig. 7 show the average results for
each method. As seen, our CompressedLUT can compress the tables
on average by 50%, which results in 1.48 times better TPS than the
PlainTable method. In comparison, TwoTable and LDTC compress
the tables on average by 26% and 31%, respectively. In terms of TPS,
TwoTable is 1.20 times better than PlainTable, but LDTC has the
same TPS as PlainTable.
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Table 4: Average of the results of implementing lookup ta-
bles used by other table-based methods for high-resolution
function evaluation.

Method Final Size Ratio TPS Ratio

PlainTable 1.00 1.00
TwoTable [12] 0.74 1.20
LDTC [2] 0.69 1.00

CompressedLUT 0.50 1.48
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Figure 7: Average of the results of implementing lookup
tables used by other table-based methods for high-resolution
function evaluation.

3.3 Beyond Function Evaluation
As observed, CompressedLUT can significantly compress lookup
tables used for function evaluation. However, our method is not
limited to math functions and can be used as a general lossless
compression scheme to store data either on-chip or off-chip using
less memory resources. The benefit of our method is that while it
compresses data, it does not require complex and costly decoders
to decompress data in hardware. In other words, original data can
be recovered using hardware-efficient decoders, that can be easily
pipelined to maximize throughput.

Moreover, our method can be extended to multidimensional
lookup tables. For instance, a two-dimensional (2D) table can be
compressed by decomposing it into smaller 2D sub-tables and find-
ing unique sets of them that can recover the original table through
simple transformations. Multilevel compression and higher-bit com-
pression techniques can be applied as well. Therefore, some sort
of data, such as image data, might be more effectively compressed
using CompressedLUT for multidimensional lookup tables. We are
planning to address these problems in our future work.

4 CONCLUSIONS
In this paper, CompressedLUT was proposed as a lossless lookup
table compression method, which uses multilevel compression, de-
composition, self-similarities, and other techniques to compress
arbitrary arrays of data, implemented as lookup tables. We showed
the effectiveness of our method by implementing a number of
lookup tables, which were either used directly for direct 12-bit
function evaluation or used by other approximate methods and li-
braries for function evaluation at higher resolutions, such as the MT

(multipartite table) method at 24-bit, PPA (piecewise polynomial
approximation) method at 36-bit, and hls4ml activation functions
at 18-bit resolutions. Our method compressed the lookup tables on
average by 60%, while previous TwoTable and LDTC compressed
them on average by 33% and 37%, respectively. In terms of through-
put per slice hardware cost, our method was on average 2.33 times
better than conventional implementations, while TwoTable and
LDTC were 1.63 and 1.29 times better than the conventional im-
plementations. Although this paper focused on the compression
of lookup tables used for function evaluation, our method can be
applied to any array of data.
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