t.)

Check for
Updates

NetBlocks: Staging Layouts for High-Performance Custom
Host Network Stacks

AJAY BRAHMAKSHATRIYA, Massachusetts Institute of Technology, USA
CHRIS RINARD, Massachusetts Institute of Technology, USA

MANYA GHOBADI, Massachusetts Institute of Technology, USA
SAMAN AMARASINGHE, Massachusetts Institute of Technology, USA

Modern network applications and environments, ranging from data centers and IoT devices to AR/VR headsets
and underwater robotics, present diverse requirements that cannot be satisfied by the all-or-nothing approach
of TCP and UDP protocols. Network researchers and engineers need to create highly tailored protocols
targeting individual problem domains. Existing library-based approaches either fall short on the flexibility in
features or offer them at a significant performance overhead. To address this challenge, we present NetBlocks,
a domain-specific language, and compiler for designing ad-hoc protocols and generating their highly optimized
host network stack implementations. NetBlocks DSL input allows users to configure protocols by selecting and
customizing features. Unlike other DSL compilers, NetBlocks also allows network researchers to extend the
system and add more features easily without any prior compiler knowledge. Our design and implementation
employ a high-performance Aspect-Oriented Programming framework written with the staging framework
BuildIt. We also introduce a novel Layout Customization Layer that allows "staging packet layouts" alongside
the implementation, which is critical for getting the best performance out of the protocol when possible,
while allowing the practitioners to maintain compatibility with existing protocol layers where needed. Our
evaluations on three applications ranging across deployments in data centers and underwater acoustic
networks demonstrate a trade-off between performance (both latency and throughput) and selected features
allowing the user to only pay-for-what-they-use.

CCS Concepts: + Networks — Network protocols; « Software and its engineering — Source code
generation.

Additional Key Words and Phrases: compilers, network-protocols, layouts

ACM Reference Format:

Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe. 2024. NetBlocks: Staging
Layouts for High-Performance Custom Host Network Stacks. Proc. ACM Program. Lang. 8, PLDI, Article 166
(June 2024), 25 pages. https://doi.org/10.1145/3656396

1 INTRODUCTION

Since the inception of the World Wide Web, 95% of the network traffic is composed of TCP and
UDP packets [39, 45]. These two protocols were developed for the global internet where they had
to route packets across multiple independent networks, account for packet drops and corruptions,
and deal with out-of-order arrival. These protocols’ design and implementation have been heavily
hand-optimized with many specialized libraries and algorithmic extensions. However, recent times
have seen a massive paradigm shift that has forced network researchers to rethink protocol design.

Authors’ addresses: Ajay Brahmakshatriya, Massachusetts Institute of Technology, USA, ajaybr@mit.edu; Chris Rinard,
Massachusetts Institute of Technology, USA, crinard@mit.edu; Manya Ghobadi, Massachusetts Institute of Technology,
USA, ghobadi@mit.edu; Saman Amarasinghe, Massachusetts Institute of Technology, USA, saman@csail.mit.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART166
https://doi.org/10.1145/3656396

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

166:2 Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe

Network applications have permeated new domains like (i) IoT that are constrained by extremely
low-power, (ii) underwater robotics that are constrained by extremely low bandwidth [25, 37] (iii)
isolated dedicated networks for Machine Learning training where the overall performance also
depends on the best utilization of the network bandwidth, and (iv) AR/VR applications that are
driven by extremely tight latency guarantees.

These new domains and their environments offer vastly different network properties and con-
straints that cannot be met by legacy TCP and UDP protocols. For example, an underwater sensor
network of robots communicating through acoustic signals with very limited bandwidth cannot
afford the 42-byte overhead of IP/UDP network headers. At the same time, these applications
don’t require all features from the protocols like reliability, in-order delivery, check-summing, and
congestion control, but only a subset depending on the application and physical network properties.
Recent years have also seen massive innovations in network hardware, which offer microsecond
scale latency and 100s of Gigabits of throughput. Naturally, the bottlenecks are shifting from the
hardware limitations to the network protocol design and implementation [9]. The end-to-end
latency depends not only on the number of bits transmitted but also on the number of cycles spent
in host-side processing in implementing the protocol logic on the hosts and other network devices.

The logical solution is to create and deploy custom ad-hoc protocols tailored to the needs of both
the applications and the environment. Unlike the all-or-nothing approach of TCP and UDP when
it comes to features available, network application developers should be able to pick and choose
features and their customization to get the best network performance while meeting the critical
requirements of the applications. An example of such a custom protocol is Google’s QUIC [34],
which combines basic reliability on top of UDP with Transport Layer Security (TLS) to suit web
applications. However, writing and optimizing custom protocol implementations is daunting, which
has hindered the widespread deployment of such ad-hoc protocols. Even for the example of QUIC,
the protocol implementation and maintenance require effort from hundreds of developers at Google.
Furthermore, changes in deployment scenarios also require continuous development effort. For
example, a custom protocol used in a network with 16 nodes, uses 4 bits to identify source and
destination hosts. However, when this deployment is scaled to a network with 32 nodes, 5 bits
would be required to represent the hosts which would completely require rearranging the headers
to optimally pack the bytes while meeting the alignment and size requirements of the other fields.

This paper demonstrates that the need for ever-changing custom protocols can be met by using
compilers to generate highly specialized and optimized protocol implementations. We present
NetBlocks, which is a network DSL (domain-specific language) that allows Protocol Feature Selection
and Configuration through a high-level specification while enabling Performance Optimized Protocol
Execution through low-level C code generation. Most importantly, NetBlocks is built on top of
the C++ staging framework BuildIt, allowing developers to easily Implement and Extend Protocol
Features without any knowledge of compilers, unlike other DSLs. NetBlocks also extends the BuildIt
framework by adding a novel layer for Precise Customization of Data Layout that allows optimizing
the headers to support the selected features.

NetBlocks enables the custom-generated protocols to run on legacy switches and routers by
allowing backward compatibility at the granularity of layers by restricting customization to specific
fields and features. This allows for keeping parts of the layout and the implementation strictly
compatible when needed and customized and optimized when possible. NetBlocks also reuses the
same code generation machinery to create custom WireShark [15] plugins to dissect the ad-hoc
protocol packets, improving debuggability and further boosting developer productivity.

This paper makes the following contributions:

e We introduce NetBlocks, a DSL for generating high-performance custom network stacks.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks 166:3

e We show how to use Buildlt [5] framework’s staging abilities to support the aspect-oriented
programming pattern with high performance.

e We extend BuildIt to add a fine-grained, programmable data layout customization layer to
allow "staging layouts" alongside code.

e We show that Netblocks can generate extremely high-performance host network stacks
compatible with best-in-class performance but for custom protocols.

Section 2 walks through two examples to motivate the need for custom protocols. Section 3
discusses extending staging from code to layouts with our novel Layout Customization Layer and a
high-performance Aspect-Oriented design using BuildIt. Section 4 demonstrates the application of
these techniques to our network DSL NetBlocks. Section 5 demonstrates the performance trade-off
offered by such a customizable network DSL.

2 MOTIVATING EXAMPLES

In this Section, we present two scenarios that motivate the need for custom-tailored protocols and
the performance trade-offs they offer. We compare important metrics such as latency and network
header overhead for the custom protocols vs. the common TCP/UDP protocols and motivate the
need for a network DSL compiler.

2.1 Video Conferencing Application

The past decade has seen a sharp rise in video conferencing applications and products due to a
shift to remote and hybrid work environments. Video and audio conferencing experience depends
heavily on the latency of the communication since even a small delay can cause a lag in the voice
or the video. The application and the stack they use must be heavily optimized to minimize latency.

At the same time, these applications also have unique characteristics that legacy UDP/TCP
protocols are not designed to handle. Firstly, video conferencing does not care about reliability and
can tolerate a few packets being dropped. It can also tolerate a few bits in the packet payload being
corrupted since these corruptions might lead to only minor distortions in the audio/video. Since
the network exchange happens at a fixed rate, the application may not even care about congestion
control. These requirements might convince the developer to lean towards a protocol like UDP
which is very lightweight. However, video conferencing applications rely critically on some notion
of in-order delivery. If some packets arrive out of order, it could lead to voice and video getting
completely jumbled. The UDP protocol unfortunately has no notion of in-order delivery or even a
connection. Even if the developer decides to use TCP, the notion of in-order delivery in TCP often
holds packets back till they arrive in order further compromising latency.

Consequently, the developers must implement a custom in-order delivery mechanism on top of
UDP which increases implementation complexity. Furthermore, if we peer at the problem carefully,
we realize that even though this application is tolerant to corruption in the payload, it might not
be tolerant to corruption of certain control headers in the exchange. To keep the overhead of
computing and verifying the checksums, the developer would have to specify only a certain part
of the headers and payload to be checksummed. Handling this manually at the application layer
would further increase developer effort and implementation complexity.

The key requirement here is that the developer should be able to quickly experiment with
different features and their performance to decide what fits their specific application needs. This is
where our compiler NetBlocks steps in. Figure 2 shows three different protocol inputs to NetBlocks
that progressively remove features from a complete TCP-like implementation. Protocol 1 has full
reliability and in-order delivery and is almost overkill for the job. Protocol 2 disables reliability,
uses a simpler version of inorder delivery, and restricts the checksumming only to the network

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

166:4 Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe

1 . . . 1 // a) Schedule for checksumming the whole packet,
Proto 1 —— 2 // enable reliable and inorder delivery
0.9 | Proto 2 —— 1 3 inorder_module.configInorder (HOLD_AND_DELIVER);
0.8 - Proto3 —— 1 4 reliable_module.configReliable(ENABLE);
07 1] 5 checksum_module.configChecksum(FULL_PACKET);

w 06 7] 6 // b) Schedule for checksumming just the header
80.5 r] 7 // disable reliability and drop out of order packets
04 1 8 inorder_module.configInorder (DROP_OUT_OF_ORDER);

03 4 9 reliable_module.configReliable(DISABLE);
02+ 4 10 checksum_module.configChecksum(HEADER_ONLY) ;
01 F 4 11 // c) Schedule for disabling checksumming, reliability
0 n L L L 12 // and in order delivery
2 25 3 35 4 4.5 5 13 inorder_module.configInorder (NO_INORDER);

-
=

reliable_module.configReliable(DISABLE);

Round-Trip Latency (us;
P ¥ (us) checksum_module. configChecksum(NO_CHECKSUM) ;

-
@

Fig. 1. Round trip latency for the three protocols ~ Fig. 2. NetBlocks DSL input for the three protocols

described in Figure 2 for 256 byte packets. with reduced reliability and checksumming
! inorl‘der_module.configlnor(.ier(NO_INORDER); 1 identifier_module.setHostIdentifierRange(
2 reliable_module.configReliable(DISABLE); 2 I
3 routing_module.configRouting(DISABLE); 3 ia.za.az.ala.aa.L ’ h;a.aa.a@a.aza;.saa. %
| B ’ .set| t H
4 identifier_module.setAppIdRange(@, 1); SIS, S O R0,)5

4 checksum_module.configChecksum(DISABLE);

(@) (b)
Fig. 3. NetBlocks DSL input to progressively shrink the number of bits used in the headers. a) removes the
unnecessary and redundant fields from UDP + IP + Ethernet and b) Shrinks the ranges on the fields to use
fewer bits. Figure 4 shows the packet layout for these protocols.

headers. Protocol 3 removes all notions of reliability, inorder delivery, or checksumming. Figure 1
shows the round-trip latency when these protocols are deployed. We can see that the Protocol 2
which is almost as performant as the bare-bones Protocol 3, has about 25% median lower latency
than Protocol 1 which adds unnecessary features. With a carefully selected protocol, the developer
only pays for what they need in terms of performance.

2.2 Underwater Robotics Sensing

As another motivating example, we look at a remote-sensing robot deployed underwater that
gathers and sends sensor data to the base station. The key constraint of this environment is that the
communication is done through audio waves traveling through water, unlike typical EM waves in
the air. This unique environment characteristic means that the robot and the base station operate
at very low bandwidth, typically tens to hundreds of bits per second. The network stack needs to
minimize the number of bits transferred in every way possible not only to save network bandwidth
but also to minimize the device’s power utilization.

For an application where the robot gathers and sends sensor data, the payload size is typically as
small as 16 bits. As the actual payload size is reduced, the overhead from packet headers starts to
dominate. Even the simplest UDP protocol running on top of IP running on top of an Ethernet-like
protocol requires a 42-byte header with many useless or redundant fields. Figure 4 a) shows the
headers for the three protocols (Ethernet, IP, and UDP) stacked on top of each other. The fields
in red correspond to bits that have no utility in this scenario. The fields in orange like length and
checksum are redundant since multiple layers implement them. This is an example of overheads
due to the independent development of protocol layers. A simple customization could strip these
fields from the headers. Figure 4 b) shows such a minified protocol that requires only 16 bytes.

We can compress this further. In this header, 6 bytes are used to identify the source and destination
MAC addresses of the robots. However, if our deployment has only 16 robots, 4 bits would be
enough to identify all the hosts. Similarly, if there is a cap on the size of the payload, the number of
bits for the size can also be shrunk, giving us a protocol shown in Figure 4 c) that only uses 2 bytes
for the headers. Figure 3 shows the NetBlocks inputs to generate the two minified protocols.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks 166:5

bits0 8 |16 |24 o 8 |16 24
0| Destination MAC Address Length] Checksum
32 | Destination MAC Address
64 Source MAC Address [
96 Ether Type Source MAC Address
o[Version] 1HL [TOS Total Length Payload
32! Identification Flags| Fragment Offset
64| Time to Live | Protocol Header Checksum b) Stripped useless and redundant fields
96 Source IP Address
128 Destination IP Address
of Source Port [Destination Port lo |8 16 24
32 Length Checksum [DST] SRC| Length Payload
0 Payload
a) Default Ether +IP + UDP + Payload ©) Shrunk and optimized fields

Fig. 4. a) Default Ethernet + IP + UDP headers with 50 bytes b) Protocol with useless and redundant fields
stripped down c) Custom protocol with fields shrunk to fit the required deployment. 2 bytes of payload

Suppose our deployment changes and our fleet has 32 robots instead of 16. Consequently, the
headers and protocols need to be adjusted to use 5 bits instead of 4. These could also be bumped
to 8 bits instead of 5 for alignment reasons. Without a framework like NetBlocks, the developer
would have to change these protocols with every new deployment manually.

2.3 Why a DSL Compiler for Customizing High-Performance Host Network Stacks?

The two motivating examples have shown that modern applications require custom host network
stacks to meet their tight latency and bandwidth requirements. However, the design and develop-
ment of these custom protocols remain challenging. The most straightforward approach to this
problem is creating a modular and configurable network library that allows the user to compose
different features. This approach uses the classic Aspect-Oriented Programming pattern that allows
locally defined logic to control the global behavior of the whole application. However, such an
approach suffers from several overheads when implemented in C or C++ without language-level
source rewriting support. Firstly, since the configuration parameters like required features and
ranges of values of individual fields are available as runtime values, these options need to be
checked on the performance critical path. These checks and extra logic based on the parameters
(like computing the bit-masks and shifts) add significant overhead for latency-critical applications.
Similarly, features implemented as modules need to communicate data between each other and need
queues and buffers to maintain modularity. These queues add a significant amount of performance
overhead, and as a result, existing libraries like PicoTCP [19] and ulP [14] provide modularity and
configurability only at the granularity of entire protocol layers as opposed to individual features.

A DSL compiler solves both these problems by generating code tailored for the configured
options, eliminating expensive operations that can be done statically instead of at runtime. Further-
more, modules can be broken down into fine-grained features combined during code generation,
eliminating the need for queues and expensive modular dispatching. However, conventional DSL
compilers has a major drawback — they are not extensible. Network domain experts not only
require creating custom protocols to combine features but also need to implement new features
and algorithms. With a traditional DSL compiler, a network researcher would have to add a new
compiler pass to implement a new feature or a variation of an existing feature like congestion
control instead of writing the logic for the feature in a library.

Finally, a network DSL has a unique requirement uncommon for other domains - specializing
packet layouts. Packet layout significantly changes with different features enabled/configured
differently. The DSL would have to generate specialized code to pack and unpack binary data from
packets that the modules can access. Doing this efficiently and in a configurable way requires

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

166:6 Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe

1 dyn<int> power(dyn<int> base, static<int> exp) { 1 int power_15 (int arg@) {
2 dyn<int> res = 1, x = base; 2 int var@ = argo;
3 while (exp > 0) { 3 int varl = 1;
4 if (exp % 2 == 1) 4 int var2 = varo;
5 res = res * x; 5 wvarl = varl * var2;
6 X = X * X; 6 var2 = var2 * var2;
7 exp = exp / 2; 7 varl = varl * var2;
8 } 8 var2 = var2 * var2;
9 return res; 9 varl = varl * var2;
10 3} 10 var2 = var2 * var2;
11 ... 11 return varl * var2;
12 context.extract_function(power, "power_15", 15); 12 }
Fig. 5. Power function written in Buildlt Fig. 6. Code generated for the Figure 5, exp = 15

carefully generating bit-masks and shift operations without having to rewrite a lot of implementa-
tion for a configuration change. We refer to this problem as staging data layouts. In summary, our
network DSL compiler has the following capabilities:

e Rapid Protocol Feature Selection and Configuration for easily exploring protocol varia-
tions.

e Performance Optimized Protocol Execution via efficient C code generation.

¢ Extending and Adding Protocol Features without the knowledge of compiler internals.

e Precise Control of Data Layout to exactly match a protocol packet layout when compati-
bility is needed and optimize the layout when possible.

Furthermore, the DSL compiler should also be able to maintain backward compatibility with
specific protocol layers like Ethernet and IP to allow the use of existing legacy hardware.

We build our network DSL compiler NetBlocks on top of the Buildlt [5, 6] multi-stage program-
ming framework that allows us to generate efficient code while just writing library-like imple-
mentations automatically. Section 3 explains how we apply Buildlt’s staging to aspect-oriented
programming and introduce a novel layout customization layer for staging data layouts with code.

3 NETBLOCKS COMPILER FRAMEWORK

In this Section, we explain our compiler implementation on top of the BuildIt framework [5, 6] that
meets all the four requirements we set out for NetBlocks in Section 2. We start by explaining the
BuildIt framework and its staging abilities. We then explain the design and implementation of our
novel Layout Customization Layer and finally explain our implementation of a high-performance
Aspect-Oriented Programming framework.

3.1 The BuildIlt Staging Framework

Buildlt is a type-based multi-stage programming library in C++. This choice of language is suitable
for the NetBlocks domain since most network code is written in low-level imperative languages
with pointers and explicit memory management. Buildlt introduces two type templates - static<T>
and dyn<T> which respectively are used to declare variables for the first and the second stages.
BuildIt completely evaluates all operations on static<T> in the first stage allowing specialization
of the code generated with dyn<T>.

Figure 5 shows a simple power function implemented with repeated squaring specialized for a
specific value of an exponent, 15, and the code it generates. The code in Figure 6 is faster due to it
lacking any branches or loops. BuildIt’s explicit code generation ability without writing a parser or
a manual code generator is an instrumental tool in making compiler implementation accessible to
network experts allowing them to Extend and Add Protocol Features just like they would for a
library. At the same time, the specialization in BuildIt provides the much-needed Performance
Optimized Protocol Execution.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks 166:7

3.2 Layout Customization Layer Language Definition

This section describes the Layout Customization Layer, one of the key contributions of this paper
and the language that the module developers can use to define and optimize layouts, for exercising
Precise Control on Data Layouts.

The Layout Customization Layer offers a flexible and easy-to-use for controlling layouts, em-
bedded in C++, allowing a seamless interface with the rest of the system unlike alternatives like
ProtoBuf which require generating or writing a separate DSL input. The API uses string values
to identify and control fields in the layout allowing a lot of dynamism to the developer. However
since the language uses Buildlt to stage the code, the string values and the look-up of fields and
their properties is evaluated in the first stage generating precise and optimized code to be executed
in the generated network stack.

Before describing the language API, we will describe the overall workflow for defining and
optimizing a layout and using it to generate efficient code. We use the term Layout to refer to a
specific collection of fields with fixed sizes, ordering, and alignment and describes how the data
would be laid out in a buffer and can be used to generate code to read or write the fields. A Layout
is similar to defining a struct in C or C++ code with the added benefit that the fields and their
properties can be programmatically controlled in the compiler while still generating very efficient
code. A specific Layout is held in an object of type dynamic_layout. Following are the steps to
define and customize a layout.

o The developer starts by declaring an object of type dynamic_layout. The object starts as
empty and the fields can be added along with their properties identified by a string name.

e To allow for modularity, the developer allows different modules to add the fields based on
their configuration parameters.

o After all fields have been added, the developer finalizes the layout by choosing an optimization
strategy. At this point, the order, sizes, and exact offset of each field have been decided.

e Finally during the actual protocol implementation, the modules can use this object to access
the fields, again identifying them by the string names. At this point, the modules will also
supply a dyn<T> buffer to enforce the layout on.

In the final step, the compiler generates specific C code to read or write the field based on the
information stored inside the dynamic_layout object eliminating the overhead for looking up the
fields based on the string names. This elimination is guaranteed to happen in the compiler since
BuildIt’s staging is precisely controlled with declared types instead of relying on opportunistic
optimizations in a compiler.

Table 1 shows the two main types, the dynamic_layout and the dynamic_member which describe
an entire Layout and a single field inside the Layout respectively. The table also shows all the
member functions that the modules can call with their parameters. The type dynamic_member is
an abstract type and needs to be specialized to describe different types of fields. We also show two
such specializations namely the generic_int_member<T> which can be used to define integer-like
fields of different widths and byte buffers respectively in Table 2.

The dynamic_layout type provides the add_member function which accepts a new member to
be registered with the layout as well as a group ID to add it to. Each group can be optimized with a
different policy allowing manual control over a set of fields when required. This feature is used
in NetBlocks to maintain compatibility with existing protocols like Ethernet when running the
generated protocol on legacy hardware like switches while optimizing the rest of the headers. The
second key function is the apply_policy function that accepts a set of groups and optimizes them
together. Groups that do not have any policies applied retain the order in which they are inserted.
As mentioned above, finalize_layout computes the offsets and sizes of each field based on the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

166:8 Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe

size and alignment returned by each field. Finally, the operator[] is used to query a field from
the layout for generating code. Since this API uses strings to identify fields, the function performs
basic type-checking if the field has been inserted. However, this check is performed in the first
stage and does not add any overhead to the generated code.

The dynamic_member abstract type provides three key virtual functions - get_addr, get_integer
and set_integer that accept the buffer to apply the layout to and access the values. Notice that
these functions use BuildIt’s dyn<T> types for arguments and return types thus inling the logic into
the generated stack. However, the virtual functions and computation of the bitmasks and offsets
are performed in the first stage providing true zero-cost abstractions.

The generic_int_member is the most commonly used type for fields in NetBlocks since most
fields like length, host identifiers, application identifiers, checksums can be viewed as integers. This
type is templated on integer types like short, int, long for the logical size of the field. However,
the precise number of bits required is determined by the specified range of values using the
set_range function. This type also provides implementations for the three key accessor functions
using BuildIt’s dyn<T> types. The implementation is discussed in the next section. The other
commonly used specialization for the dynamic_member is the byte_array_member type, which is
used to represent long sequences of bytes, ideal for fields like payload. This type only provides the
get_addr() accessor and a first-stage check ensures that the integer accessors are not called.

3.2.1 Optimizing Layouts. Once all the fields have been inserted, the developer can ask the Layout
Customization Layer to rearrange the fields to minimize the amount of bits required while satisfying
the alignment requirements of every field. Currently, the framework only supports optimizing the
number of bits (OptimizeWidth policy), but similar optimizations can be implemented to optimize
other metrics like the number of bitshifts or bitmask operations. Our implementation uses a brute-
force approach to figure out the optimal packing order. We further improve the algorithm by
reducing the permutations by identifying fields with the same size alignment and sizes. For typical
network stacks, this is a common occurrence for fields like source and destination IP addresses and
ports. For all our explored protocols, the algorithm terminates in less than a second. Even though
this brute force search is exponential, it runs inside the first stage and does not hamper the runtime.
However, currently, there are two main limitations to our algorithm. Firstly, since optimization
policies are applied on sets of groups, two groups cannot be co-optimized i.e. their fields cannot
be interleaved if they are under different policies. For example, a group optimized for minimizing
bit shifts and bit masking cannot have smaller fields from other groups packed into the padding.
However, this can be addressed by manually changing the alignment of such fields to be byte-
aligned and then optimizing all groups for size. Secondly, since the optimization algorithm uses a
brute-force approach, the compile time can blow up for a very large number of fields. This can be
addressed by grouping fields and optimizing separately, or by manually ordering some fields.

3.2.2 Nested Layouts, Unions and Optional Fields. The Layout Customization Layer allows generat-
ing code for complex nested layouts by specializing dynamic_member to hold other dynamic_layout
objects. This allows accessing members inside members all optimized with different policies. Just
like the scalar members, the exact offset of each field is computed at compile time avoiding any
runtime overheads. Unions can be supported in the same way, where multiple dynamic_members
can be mapped at the same position. Finally, our language also supports optional fields using
BuildIt’s dyn<T> types. For optional fields, the accessor can branch on arbitrary dynamic values to
compute the size of the field and BuildIt will defer the branches to the generated code with the
most optimized code on both sides of the branches. Variants can be realized by combining dynamic
branches and Unions. Section 3.3 discusses the implementation of these specializations.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks 166:9

Table 1. Two core types of the Layout Customization Layer Language and their member functions.

[Type Name [Function Name [Description [
dynamic_layout | Constructor Creates a new instance of a Layout.
void add_member(std::string name, Inserts a new field described by the dynamic_member in
dynamic_member*, int group) the specified group.
void apply_policy(set<int> groups, Policy p) Apply an optimization policy to a set of fields together.
void finalize_layout(void) Finalize and compute offsets and sizes for each field.
void print_layout(std::ostream) Pretty print a layout with all fields, their sizes and offsets
dynamic_memberx operator[] (std::string name) | Retrieve a member using the name for access.
dynamic_member | Constructor Abstract type, constructor is defined private.
Destructor Virtual to enable dynamic inheritance
dyn<charx*> get_addr(dyn<charx> buffer) Return the address of this field given the base pointer
dyn<long> get_integer(dyn<charx> buffer) Read the field as an integer given a base pointer
void set_integer(dyn<char*> buffer, dyn<long> | Write the field as an integer given a based pointer of a
value) buffer and a value

Table 2. Two specializations of the dynamic_member type. The byte_array_member type does not support
accessing the fields as integers and does not override the functions.

[Type Name [Function Name [Description [
generic_int_member<T> generic_int_member(int flags) aligned flag can be used to enforce alignment
void set_range(T min, T max) Accept a custom range of values for the field and
shrink the number of bits required based on it.
dyn<char*> get_addr(dyn<charx> buf) Override for the virtual function
dyn<long> get_integer(dyn<charx> buf) Override for the virtual function
set_integer(dyn<charx> b, dyn<long> v) Override for the virtual function
byte_array_member<n> byte_array_member () Arrays are always aligned
dyn<char=*> get_addr(dyn<charx> buffer) Override for the virtual function

3.3 Layout Customization Layer Implementation

In this Section, we explain the implementation of our novel Layout Customization Layer and how it
extends BuildIt’s staging capabilities to layouts. Our implementation allows the creation of network
headers that are as small as 2 bytes. The main design goal behind the Layout Customization Layer
is to allow modules to control various aspects of the fields including ranges, sizes, and alignment
independently without having to change the implementation based on configuration in other
modules while generating the most efficient code. We call this problem staging layouts.

Most network libraries solve the problem of defining the packet layout by declaring a C struct
that has all the fields corresponding to the headers and reading and writing to them by casting
the packet buffer to the struct type. However, such an approach offers little to no flexibility and
is not programmable. Another approach to solving this problem is to use a specialized DSL like
Protobuf [47] that allows users to define a layout in a separate configuration file and generate code
for serializing to and reading data back from the layout. Since Protobuf is an entire DSL with its own
syntax, modules would have to generate the DSL input collaboratively during the configuration
phase. Not only is this approach cumbersome and requires module writers to learn a new language,
but the options for configurability in protobuf are limited and do not offer fine-grained control
over the fields as we provide.

To understand our implementation with the layout customization layer in NetBlocks, consider a
simple example of a binary layout for inode metadata in a toy filesystem where we want to store
metadata for files containing permission bits, size of the file, and the offset into the block where it is
stored. Let us look at a code example of how the example would be written with NetBlocks’s Layout
Specialization Layer. Figure 7 shows the initial definition of file_metadata Layout in the first
stage. The type dynamic_layout simply holds a map from the names of the fields (std: : string)
to the type struct dynamic_member=*. To generate code, each field needs to know two properties -
the size of the field and the offset of the field in the layout. The size of the field is defined nominally
by the type of the field. For example, since the is_writable is a boolean, the size of the field would

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

166:10 Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe

1 nb::dynamic_layout file_metadata; 1 template <typename T>

2 auto is_readable = new generic_int_member<bool>(aligned); 2 struct generic_int_member: public dynamic_member {
3 file_metadata.add_member("is_readable", is_readable); 3 size_t get_size() override {

4 auto is_writable = new generic_int_member<bool>(aligned); 4 return sizeof(T) * byte_size;

5 file_metadata.add_member("is_writable", is_writable); 5 3}

6 auto is_executable = new generic_int_member<bool>(aligned); 6 size_t get_offset() override {

7 file_metadata.add_member("is_executable", is_executable); 7 size_t off = prev->get_offset() + prev->get_size();
8 auto size = new generic_int_member<unsigned>(aligned); 8 return align_to(off, alignof(T) * byte_size);
9 file_metadata.add_member("size", size); 9 3}

10 auto offset = new generic_int_member<unsigned>(aligned); 10 dyn<long> get_value(dyn<bytes> base) {

11 file_metadata.add_member("offset", offset); 11 dyn<T*> addr = base + get_offset();

12 return addr[0];

Fig. 7. Definition of the file_metadata layout in the 13 3
14 void set_value(dyn<bytes> base, dyn<long> val) {

layout specialization layer. The various fields are cre- |5 ™ oo o o et O
ated and inserted. 16 addr[e] = val;
17
1 bool* var@ = base + 2; // is_executable's offset is 2 18 };}
2 vare[e] = true; 19 ..
3 uint32_t* varl = base + 8; // offset's offset is 8 20 file_metadatal["is_executable"]->set_value(base, true);
4 var1[0] = file_offset(); 21 file_metadatal["offset"]->set_value(base, file_offset());

Fig. 8. Generated code when the fields in Fig. 9. Definition of the get_offset and get_size func-

file_metadata are accessed. tions in the generic_int_member<T> type.

1 struct generic_int_member: public dynamic_member { 1 nb::dynamic_layout file_metadata;

2 size_t align = alignof(T) * byte_size; 2 auto is_readable = new generic_int_member<bool>();
3 size_t get_offset() { 3 is_readable->set_range(@, 1);

4 if (flags & aligned) return align_to(off, align); 4 file_metadata.add_member("is_readable", is_readable);
5 else return off; 5 auto size = new generic_int_member<unsigned>();

6 3 6 size->set_range(@, 4096);

7% 7 file_metadata.add_member("size", size);
8 auto size = new generic_int_member<unsigned>(aligned); 8 auto offset = new generic_int_member<unsigned>();
9 size->align = byte_size; 9 offset->set_range(100, 600);

10 file_metadata.add_member("size", size); 10 file_metadata.add_member("offset", offset);

Fig. 10. Definition of the get_value and set_value Fig. 11. Definition of the fields in file_metadata
functions in the generic_int_member<T> type. with specified ranges to reduce the number of bits.

be 1 byte. The offset of each field can be computed by taking the offset of the previous field adding
the previous field’s size and aligning it to the alignment of the current field. To facilitate this, the
type dynamic_member declares two internal virtual functions size_t get_size(); and size_t
get_offset();. These functions return values in bits rather than bytes for more fine-grained
control. Each field also has a pointer to the previous field initialized by the finalize_layout
function. The implementation of generic_int_member<T> is shown in Figure 9.

Figure 8 shows part of the generated code when the fields are written to. As we can see, the gen-
erated code contains the simplest implementation with no virtual calls from the dynamic_layout
or the set_value, or get_offset functions. This is because these are executed in the first stage.

In our example, the size field has an alignment of 4 bytes. While alignment is important for
faster accesses on CPUs, it wastes bytes in binary protocols. We will start by allowing fields to have
custom alignment instead of alignment tied to the type. Figure 10 shows the new parameter align
in the generic_int_member<T> type initialized to the alignment of the type but can be set by the
caller. The get_offset function now uses this and also checks the aligned flag. For this example,
we can now set the alignment for the integers to be just byte-aligned. With this change, the layout
is better packed and has no padding.

However, there are still more inefficiencies in our layout. The permission fields are all booleans
but require a byte to store. These can easily be compressed into individual bits. Furthermore, if
we know that the size of a file will never be larger than 4096 bytes, the size can be packed into 12
bits. The set_range() function computes the maximum required bits for representing the range.
Furthermore, the get_value and set_value functions offset the values based on the range and
use bit masking and shifts to store just the required bits. This way the calling code stays exactly
the same and reads and writes the same values. The generated code takes care of mapping the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks 166:11

struct my_optional_field: public generic_int_member<int> {
size_t get_size() override {
if (packet_has_field)
return generic_int_member<int>::get_size();

struct nested_member: public dynamic_field { ;
3
4
5 return 0;
6
7
8

1
2 dynamic_layout* nested_layout;

3 nested_member (dynamic_layout* d): nested_layout(d) {}
4 size_t get_size() override {

5 assert(nested_layout->is_finalized);

6 return nested_layout->get_total_size();

7
8

}
3

size_t get_offset() override {
9 return prev->get_offset() + prev->get_size();

};
9 layout.add_member("optional”, new my_optional_field());
10 layout.add_member("next_member", new other_field());
11 layout.finalize_layout();

11 dyn<charx> get_addr(dyn<bytes> base) override { 2
1

12 return base + get_offset();

13 } 13 packet_has_field = true;

14} 14 x = layout["next_member"]->get_integer(p);
15 dynamic_layout child, parent; 15 (/ Generated L“‘j*f

16 child.add_member("mem1", new byte_array_member<16>()); 16 if (packet_has_field)

17 x = x(intx)(p + 4);
18 else
19 x = *(int*)(p);

17 child.finalize_layout();
18 parent.add_member("mem_nested", new nested_member(&child));

20 child["mem"]->get_addr(parent["mem_nested"1->get_addr(p));
Fig. 13. Implementation of an optional field with a

Fig. 12. Implementation of the nested_member dynamic branch in the get_size() function along
type for enclosing layouts inside other layouts. with the generated code.
bits to a value in the range. Figure 11 shows the creation of the fields with the updated ranges.
Notice, we also remove the aligned flag from the constructor to pack the fields at the bit level. This
optimization is why the sizes and offsets are at the granularity of bits to allow for better packing.

With this optimization, the entire layout can now be stored in a total of 24 bits as opposed to
the initial 96 bits. NetBlocks uses these optimizations to shrink the number of bits required to
represent IP addresses, port numbers, and sizes of packets among others to tailor the protocol for
a deployment and application. While this layout specialization layer is developed for NetBlocks,
the implementation is generic enough that it can be used for other applications as shown in the
example above. These techniques have applications in file systems, databases, and compression.

Nested, Unions and Optional Fields. Figure 12 shows the implementation of nested_member
which specializes dynamic_member to allow nesting of other layouts as members. The constructor
for this type accepts a pointer to the nested dynamic_layout and uses the nested layout to compute
the size of the field by overriding the get_size() function. Calls to the operator[] from both the
layouts can be chained as shown to access the fields inside the child layout. For type checking, we
assert in the first stage that the inner layout has been finalized before the outer layout. Figure 12
also shows how the nested layout is created and accessed. Figure 13 shows the implementation of an
optional field. The optional integer field is exactly like the generic_int_member<int> it inherits
from, except it has a branch of a dynamic value in the get_size() function. As a result, when any
other field after this field is accessed, a branch appears in the generated code. This mechanism
can be used to implement optional "Options" fields in the IP protocol headers. Variants can be
implemented by combining these two techniques. Thus the Layout Customization Layer is flexible
and extensible enough to support a variety of different layouts.

3.4 High-Performance Aspect-Oriented Programming

Aspect-oriented programming is a powerful programming pattern for creating modular and config-
urable abstractions. However, simple but modular implementation of aspect-oriented programming
in C++ for fine-grained features has a lot of performance overheads. In this Section, we explain our
implementation of an aspect-oriented programming framework on top of BuildIt to allow efficient
code generation while being modular and configurable.

Aspect-oriented programming allows breaking down the logic into so-called distinct concerns.
These concerns are allowed to augment the behavior of existing code without modifying the code
itself. The simplest and most modular way of implementing aspect-oriented programming in a
language like C++ is done through the use of virtual hooks that can be inserted into various paths.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

166:12 Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe

// Abstract class for all concerns
class Concern {

virtual void hook_message (dyn<std::string> request);
78 3

1 // Abstract class for all concerns

2

3

4

5 // Implementation of the logger concern // Implementation of the logger concern
6

7

8

class Concern {
virtual void hook_message (std::string request);

class LoggerConcern: public Concern { class !_oggerConcern: public Concern‘{ -
void hook_message (std::string request) override { void hook_message (dyn<std::string> request) override {

log_stream << "Request_=_" << request << std::endl; dyn_log_stream << "Request.=." << request << "\n";
9 3} }
10 3}; D8
11 // Implementation of the validation concern // Implementation of the validation concern
12 class ValidateConcern: public Concern { class ValidateConcern: public Concern {
13 void hook_message (std::string request) override { void hook_message (dyn<std::string> request) override {
14 if (!parse_request(request)) { if (!dyn_parse_request(request)) {
15 std::err << "Invalid_request" << std::endl; std::dyn_err << "Invalid_request\n";
16 abort(); dyn_abort();
17) 3
18 } ¥
19 }; 3
20 // Register concerns // Register concerns
21 std::vector<Concernx> registered_concerns; std: :vector<Concernx> registered_concerns;
22 registered_concerns.push_back(new LoggerConcern()); registered_concerns.push_back(new LoggerConcern());
23 registered_concerns.push_back(new ValidateConcern()); registered_concerns.push_back(new ValidateConcern());
24 // Implement code path // Implement code path
25 void process_message(std: :string message) { void process_message(dyn<std::string> message) {
26 for (auto c: registered_concerns) for (auto c: registered_concerns)
27 c->hook_message(message) ; c->hook_message (message) ;
28} }

(a) Apect-Oriented Programming in C++ for message (b) Example in Figure 14a implemented with BuildIt
processing system using virtual dispatches dyn<T> types to generate efficient code.

Fig. 14. Two ways to implement Aspect-Oriented Programming - one that uses a library approach and virtual
dispatches, another that uses Buildlt’s staging for code-generation

Figure 14a shows a simple implementation of a message processing system with Logger and
Validate concerns. An abstract class Concern is shown that declares a virtual method hook_message.
The two concerns, LoggerConcern and the ValidateConcern that inherit from this class implement
the hook functions to implement their logic. Concerns are registered based on the configuration.
For instance, the LoggerConcern would be registered only if logging is enabled. Finally, in the
actual code path for processing the messages, the hooks for the registered concerns are invoked.
This pattern allows us to isolate all logic related to logging from validation while also conditionally
enabling concerns without having to change the core implementation.
We observe that such a pattern maps very well to the

modular network stack. All the features in NetBlocks 1 void process_message(std::string message) {
. o . . . 2 log_stream << "Request_=_" << message << "\n";
like reliability, in-order delivery, and check-summing can 3 if (!parse_request(message)) {

. . 4 std::err << "Invalid_request\n";
be implemented as concerns that implement hooks. The s abort();
implementation of the network stack also has several 7, ?

code paths like the logic to be run when a new flow is
established or the logic to be executed when a packet is Fig. 15. Code generated from the implemen-
to be sent. The features implemented as concerns can tation shown in Figure 14b without any vir-
define hooks for different paths to alter the behavior of tual dispatches or conditions.
these paths. Features can then be registered based on what features are required. However, such
an implementation using virtual dispatches in C++ has huge overheads. The virtual dispatches
often compile to indirect function calls that are harder for the hardware to execute speculatively
and affect latency. Furthermore, configurations within features are implemented as conditions that
are expensive to evaluate especially when run on performance-critical paths that run in tight loops.
The common approach to mitigate this overhead using C++ templates greatly hampers the
usability and productivity of network domain experts. We alleviate both issues by using BuildIt’s
multi-stage execution.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks 166:13

With BuildIt, we evaluate the virtual dispatches in the first stage to generate simplified overhead-
free code for the second stage. Figure 14b shows the same example above with the messages turned
into dyn<T> variables (changes highlighted in red). When this code is executed, we generate an
implementation for process_message shown in Figure 15. The generated code does not have any
virtual dispatches or even function calls but the logic for the hooks from the registered concerns
is inlined in the generated code. In the same way, conditions based on first-stage configuration
options can also be completely evaluated before generating optimized code.

4 NETBLOCKS IMPLEMENTATION

In Section 3, we explained the two key compiler contributions of the paper - a high-performance
aspect-oriented programming pattern in C++ and a novel Layout Customization layer. In this
Section, we explain the application of these techniques to a modular and extensible network DSL -
NetBlocks. We will also discuss the programming API of the generated NetBlocks stack.

4.1 NetBlocks Architecture

NetBlocks takes a compiler approach to implement a high-performance network stack. Figure 18
shows the overall architecture of the system. The compiler which is built on top of BuildIt is
divided into two major components - the Framework and the Modules which together apply the
aspect-oriented programming pattern to generate code. The user-specified NetBlocks DSL input or
schedule is fed into the compiler which configures different modules including picking required
features and their variations and constraints of deployment like number of hosts, maximum payload
length, among others. The compiler then generates low-level C customized to the DSL input. This
generated code implements both the logic of all the selected features and the specialized packet
layout required by the features. The generated code is compiled and linked with the network
application along with a NetBlocks runtime library that provides some common utility functions
that do not depend on the specialization. The runtime library also implements a POSIX compatibility
layer that allows unmodified network applications written targeting the POSIX API to be linked
against NetBlocks generated code. Finally, we describe the implementation of a WireShark plugin
generator in the compiler for improved debuggability and boosting developer productivity.

4.1.1 Framework. The main component of the NetBlocks DSL compiler is the Framework. The
Framework implements the logic to register, and invoke modules that implement individual fea-
tures. The Framework also implements the network packet customization logic using the Layout
Customization Layer and calls Buildlt for code generation. In the following, we describe the primary
functions of the Framework.

Registering and Scheduling Modules: The Framework acts as a baseboard where all the modules
are plugged in. The Framework allows modules to be registered by calling the register_module
function. This function also accepts the dependencies for each module and schedules their execution.
For example, the Inorder Module that implements various flavors of inorder delivery can register
itself to depend on the Identifier Module. The Identifier Module identifies which connection a
particular packet belongs to and this information is required by the Inorder Module to compare the
sequence numbers. Modules specify different dependencies for each control path. The Framework
performs a topological sort on the modules on each path to ensure all dependencies are satisfied
before a module is invoked.

Implementing Control Paths: The Framework implements logical paths that correspond to the
various control flow paths executed in the generated code at runtime. The registered modules
can then insert their hooks into these paths to augment their behavior in accordance with the
aspect-oriented programming pattern. The NetBlocks Framework implements the following paths.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

166:14 Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe

=D

| Establish Path
\
\
| Destablish Path
\
\
Send Path

Ingress Path

Fig. 16 The Framework with different paths and Fig. 17 Screenshot of WireShark dissecting packets from
registered Modules in the NetBlocks compiler. 2 custom generated NetBlocks protocol. Bit fields are
Modules can invoke other paths if required. expanded to full values.

Fig. 18 The overall architecture of the NetBlocks DSL
compiler with compilation phase where the NetBlocks
DSL input is used to generate a specialized stack that
is linked with the application in the execution phase.

o Init Path: This path implements the one-time initialization logic for the whole generated
stack. This allocates global data structures owned by the modules like the timer heap, or the
table to hold active connections.

e Establish Path: This path implements the steps involved in creating a new connection when
the application calls nb_establish. This includes allocating and initializing data structures
and sending signaling packets to inform the remote host if the feature is enabled.

e Destablish Path: This path does the opposite of the Establish Path and implements logic to
tear down a connection and free up resources when the application calls nb_destablish.

e Send Path: The Send Path is one of the key paths that includes logic to send a packet to
the remote host. This includes allocating the packet, setting the headers, filling the payload,
and handing over the packet to the NIC. This is invoked when the application calls nb_send.
The Send Path can also be invoked by the modules from other paths for example to send
acknowledgements when a packet is received on the Ingress Path.

e Ingress Path: The Ingress Path implements all the logic to process an incoming packet.
Unlike other paths that are invoked by the application, this path is invoked by the NIC when
it receives a new packet.

The Framework generates code for each path

--------------- (mt=====---------~ by ijterating through all the hooks on that path

Protocol
Config
(DSL Input)

|
v ﬁﬂl |-*M—Z| |-*M—3| #> nbstacke | | et and invoking them. The hooks return a status

NetBlocks DSL
Compiler

|
|
| |

| R }3 m application | | code HOOK_CONTINUE to continue the execution

Buidit], [T , or HOOK_DROP to drop the packet and terminate
i) NetBlocks Compilation Stage ii) NetBlocks Execution Stage the execution of the path. Iterating through
and invoking the hooks and checking the sta-
tus code is done in the first stage with BuildIt’s
static<T> types while the actual logic to pro-
cess the packets is implemented using BuildIt’s
dyn<T> type. This results in generating simpli-

fied code that doesn’t have the control overhead. Figure 16 shows a block diagram of the Framework
with the modules inserting hooks into the various paths.

Creating Packet Layout: The Framework also performs the critical function of creating and
maintaining the packet layout. We discussed in Section 3 how the Layout Customization Layer
allows creating and configuring binary fields. The Framework maintains a single net_packet
object where the fields are inserted by the modules. The Framework allows inserting fields in
different groups for independent scheduling. For each group, the user either specifies a manual
layout or asks the Framework to pick the best packing ordering based on the size and alignment
specified for the field by the modules. This idea of different policies for different groups allows for

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks 166:15

maintaining compatibility with existing protocols. For example, if the generated code is running
on a network that has legacy switches that understand only the Ethernet protocol, the user can
choose to manually fix the layout for the Ethernet group and let the framework optimize the rest.
As explained in Section 3, besides conditionally inserting fields, the modules can also fine-tune
the exact ranges of the values for each field allowing the framework to shrink the number of bits
required to store the header.

Debugging and Generating WireShark Plugins: Debugging NetBlocks generated protocols
and packets can be tricky since NetBlocks uses a minimal number of bits to pack the headers
which might change positions even with a slight change in the DSL input. To facilitate debugging,
NetBlocks automatically generates a WireShark [15] protocol dissector plugin that displays all
packets with their headers values shown in a readable form. The framework simply iterates through
all the headers added in the net_packet and calls the get_integer () function. The value returned
is converted to a string and passed to the WireShark plugin API functions to be displayed as a field.
This requires no extra effort from the user or the module developer. Figure 17 shows the screenshot
of WireShark with the NetBlocks generated packets and their fields. Notice that even though the
fields are shrunk to a few bits, the complete value is displayed by the plugin. Since NetBlocks
modules are built on top of the BuildIt framework, it automatically benefits from the accompanying
D2X [7] debugger. D2X allows attaching a standard debugger like gdb to the generated code and
viewing the first stage code and state which in our case is the implementation of the module. This
completely alleviates the need to look at the generated code and further streamlines debugging.

4.1.2 Modules. The Modules are the part of the NetBlocks compiler that implements the actual
features. The modules are designed in a way that each module implements a different feature that
can be composed with other modules like - reliability, checksumming, and in-order delivery among
others. Besides generating implementation for the logic, modules also create and manage headers
that are required to implement the feature. For example, the checksumming module controls the
checksum field, while the in-order delivery module controls the sequence number field. Each
module also has a series of configuration parameters that allow the protocol designer to choose
different flavors of the feature in the NetBlocks DSL input. For example, for checksumming the
developer can choose whether they want to checksum the entire packet or just the headers. For
In-order delivery, the developer can choose whether the out-of-order packets should be simply
dropped or held in a reorder buffer. We describe the implemented modules below.

Modules are similar in use to compiler passes in a traditional compiler like LLVM with the key
difference that instead of containing logic to analyze, transform, and generate code, the modules are
simply written as a library for the feature they implement allowing NetBlocks to be incredibly easy
to extend for network developers. The implementation of the modules uses classic C++ abstraction
techniques like inheritance and virtual dispatch. All the modules derive from an abstract class called
Module. The Module class declares virtual methods for the hooks on each of the above-described
paths which the modules can choose to override. Figure 19 shows the definition of the Module class
and all the hooks. Notice that the hooks accept arguments of type dyn<T> since these values like
the buffer and the length of the packet will only be known at runtime. The modules are the primary
means of extensibility in the NetBlocks compiler. Networks researchers and developers can easily
implement new features like compression, and encryption by adding a new module which as we
have explained looks exactly like a library.

We now describe each of the modules currently in NetBlocks, the feature they implement, and
the configuration options they have -

Payload Module: The payload module is the simplest module in NetBlocks that copies the payload
in and out of the packet and sets the length field. This module does not offer any configuration

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

166:16 Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe

1 struct Module {

2 virtual void hook_init(void) {return HOOK_CONTINUE;}

3 virtual void hook_establish(dyn<conn_t*> c, dyn<host_t> dst, dyn<app_t> dst_app, dyn<app_t> src_app) {return HOOK_CONTINUE;}
4 virtual void hook_destablish(dyn<conn_tx> c) {return HOOK_CONTINUE;}

5 virtual void hook_send(dyn<conn_t*> c, dyn<charx> buff, dyn<size_t> len, dyn<size_t*> ret_len) {return HOOK_CONTINUE;}

6 virtual void hook_ingress(dyn<packet_t>) {return HOOK_CONTINUE;}
73}

Fig. 19 Definition of the Module abstract class and the default definitions of all hook functions

options besides controlling the range of the length field. If the user specifies a fixed-sized packet,
the length field is dropped.

Network Module: The network module is the other basic module in NetBlocks that does not
implement any feature but performs the job of interfacing with the NIC. It is scheduled at the end
of the send path and the beginning of the ingress path. It calls functions from the runtime library
to enqueue outgoing packets into the NIC and pick up received packets. This module does not offer
any configuration parameters.

Identifier Module: The identifier module is one of the key modules in NetBlocks and implements
identifying which connection a particular packet belongs to. It manages fields like source and
destination host and application identifiers and sets these fields on outgoing packets. These roughly
correspond to the IP addresses and port numbers in standard UDP and TCP. The Identifier Module
also maintains a table of all active connections and their identifiers. This module runs at the
beginning of the receive path so the connection is identified before other modules like in-order and
reliability can use this information. This module allows configuring whether a 2-tuple or a 4-tuple
should be used to identify a connection. 2-tuples are useful when the hosts run a single application
and all packets should go to the same application. This module also allows setting the ranges of the
host identifiers and the app identifiers to shrink the number of bits required.

Checksumming Module: The checksumming module computes and checks the checksum of all
packets sent on the network. This module inserts logic in the send path to stamp a checksum and
checks it in the ingress path. This module is scheduled pretty early on the ingress path to drop
packets where the checksum doesn’t match. This module offers a configuration option to specify
whether the whole packet should be checksummed or just specific header fields. Currently, this
module implements a basic checksumming algorithm similar to the one in IP but more algorithms
can be easily added just like a library. Checksumming can also be completely disabled if not required.

Inorder Module: The inorder module ensures that incoming packets arrive in the same order
they were sent. This module inserts and manages the sequence number field which is set and
incremented on each packet sent. On receiving a packet, the sequence number is compared against
the last received sequence number. This module offers a configuration option to decide whether to
drop the out-of-order packets or hold them indefinitely in a reorder buffer to be delivered later.
In-order delivery can also be completely disabled if not required.

Reliable Module: The reliable module ensures that each packet that is sent is received by the
remote host. This module shares the sequence number field with the in-order module but also adds
the acknowledgment sequence number field. The reliable module hooks the ingress path and sends
an acknowledgment for each packet received. It also hooks the send path to keep unacknowledged
packets in a redelivery buffer. This module inserts a timer with a configurable timeout to resend a
packet in case an acknowledgment is not received in time. Currently, our implementation doesn’t
support features like dup-ack but can be easily added by a network developer. This module supports
a configuration option to piggy-back acknowledgments on outgoing packets. Reliability can also
be completely disabled if required.

Signalling Module: The signaling module performs the job of informing the remote host when
a connection is established. This module invokes the send path with an empty packet in its

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks 166:17

implementation of hook_establish and fires the ESTABLISHED callback only when a packet is
received from the other side. This ensures that both sides are aware of the connection before any
real data is exchanged. We have described how this module combined with other modules realizes
the three-way handshake commonly seen in TCP in the supplementary material. Signaling can be
disabled if not required.

Routing Module: This routing module implements routing of packets over multiple hops based
on global identifiers. This performs functions similar to the IP protocol. Routing can be configured
to be enabled or disabled.

Compatibility Module: The compatibility module simply inserts and sets fields required for
compatibility with existing protocols like the EtherType field in the ethernet protocol or the set of
flags and identification fields in IP. This module can be configured to be compatible with existing
protocols like ethernet, IP, or UDP or no compatibility. Full byte-level TCP compatibility is currently
not supported but most essential features from TCP are implemented.

4.1.3 Runtime. The NetBlocks DSL compiler also ships with a runtime library that is linked against
the application. This hand-written runtime library implements utility functions called by the
generated code like a timer heap, a data queue to hold data delivered to the application, and some
routing table functionality among others. The runtime library also provides support for interfacing
with the Network Interface Cards (NIC) which we call the Transport Runtime. This code is fixed
and does not change with the generated code. We have implemented 4 different transport runtimes
- i) an IPC transport for testing applications running on the same host as different processes and
communicating via IPC channels ii) a Linux transport runtime that uses POSIX raw sockets to
send and receive packets over the NIC (works with any NIC that is supported by Linux) iii) A
low-latency kernel bypass MLX5 transport that works with Mellanox ConnectX-5 NICs providing
single digit latency iv) A NS3+DESERT transport runtime to interface NetBlocks generated code
with the DESERT [37] underwater robotics simulator.

Table 5 shows the lines of code required to implement the components of the NetBlocks DSL
compiler. We see that each of the modules implementing a separate feature is only a few hundred
lines of code. This is because even though NetBlocks is a compiler, the modules need to implement
just the core logic of the feature and not write compiler transformations, analyses, or code generation.
This also shows that the amount of effort required to extend NetBlocks to add more features is
very low making NetBlocks accessible to non-compiler experts. The lines of code for the Runtime
include all 4 transport runtimes and contain logic to interface with the NIC.

4.2 Network API

In this Section, we briefly explain the programming APIs of the generated network DSL code that
the applications can use. The most critical part of the design is that this API is the same for all
the generated stacks. This means the application developers can quickly swap out the stacks with
different features without having to rewrite or modify the applications.

NetBlocks stack basic API: The NetBlocks generated code implements an API that is different
from the standard POSIX APL Instead of sockets with blocking operations and select/poll/epoll,
we implement a callback-based API where the application can register a callback function when
creating a connection. This callback is invoked when any event occurs on the connection like when
new data is ready to be read. Such an inverted control flow allows the network stack to better
schedule the operations and is more suitable for a low-latency interrupt-free environment. Table 3
shows the API functions that the application can call and their descriptions.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

166:18 Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe

Table 3 API functions implemented by the NetBlocks generated code to be called by the application.

[Function Name [Description [
void nb_net_init(void) Initialize the NetBlocks generated stack
nb_connection_t* nb_establish(unsigned Establish a new connection with the specified 4-pair. The dst_host and the
long dst_host, unsigned int dst_app, dst_app can be specified as wildcards to accept connections. The registered
unsigned int src_app, callback_t c) callback function is registered with the newly created connection object
void nb_destablish(nb_connection_tx c) Destablish a connection and free the resources associated with the object.
int nb_send(nb_connection_t* conn, charx Send the buffer of the length len on the specified connection and return the
buffer, int len) number of bytes sent. -1 returned on failure
int nb_read(nb_connection_t* conn, charx Read upto len amount of data in the buffer from the specified connection and
buffer, int len) return the actual amount of bytes read. This call is non-blocking and returns 0 if

no data is available to be read. Returns -1 on error

void nb_main_loop_step(void) Drive the protocol implementation main loop and process packets

NetBlocks POSIX compatibility layer The NetBlocks runtime library also implements a POSIX
compatibility layer for running the NetBlocks generated code with existing applications that use
the POSIX API The POSIX compatibility layer wraps around the above NetBlocks API by creating
virtual file descriptors and implementing the functions - socket, connect, accept, bind, listen,
recv, send, setsockopt, ioctl, close, select, write, read, writev. The functions that block
internally call nb_main_loop_step till the required event is met. Thanks to the POSIX compatibility
layer, we are able to run applications like NGINX that were originally written for TCP and run
with lightweight protocols like UDP without a single line of code modification.

5 EVALUATIONS

In this Section, we evaluate the performance of the various protocols generated and demonstrate
the tradeoff the NetBlocks compiler offers in terms of performance and features. We evaluate the
latency of communication for a simple Echo application and a real-world unmodified NGINX web
server. We also demonstrate the performance tradeoff when the network protocol is deployed
underwater. Finally, we compare the packet header overheads for the various protocols and the
lines of code they generate to get a sense of the resources they require at deployment.

5.1 Evaluation Methodology

Testbed. For latency-critical applications typically found inside data centers, we run our experi-
ments on two servers with 4-core Intel Xeon Gold 5122 CPUs running at 3.6 GHz with 64 GB of
main memory and 16.5MB L3 cache. Both servers are running Ubuntu 22.04. Each node is equipped
and connected to each other with a 100 Gbps Mellanox MT27800 family ConnectX-5 NIC that offers
microsecond round trip times.

For the underwater robotics evaluation, we run our generated protocols with the DESERT [37]
underwater simulator that is built on top of the NS2 network simulator [21]. DESERT simulates the
low-bandwidth, high-latency, and other network conditions in the underwater acoustic medium.
We used a 4800-bit/second channel, along with the default MAC protocol to prevent collisions.

Comparison Configurations The primary aim of our evaluation is to demonstrate the feature-vs-
performance tradeoff offered by the NetBlocks generated code. We compare the performance of
various protocols generated with NetBlocks with increasing degrees of features. We list the set of
protocol configurations below -

o UDP-like: Closely resembles the UDP protocol running on top of IP+Ethernet and does not
have any features like reliability, in-order delivery, or signaling.

e UDP-over-Ethernet: Has the same features as UDP-like, but removes the IP layer and thus
does not support routing. Routing is not needed for many deployments like in an all-to-all
topology or a deployment like underwater robots.

o Inorder: Builds on top of UDP-over-ethernet and adds a basic inorder delivery.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks 166:19

Table 4 Header sizes in bytes and the code size in ~ Table 5 Implementation complexity of different com-
lines of C code. All generated protocols are linked ~ ponents of NetBlocks. Each module is only a few

against a runtime library of 493 LoC C code. hundred lines of C code.
Protocol Configuration ‘ Header ‘ Generated [NetBlocks Component | Lines of Code |
size code size Identifier Module 343

UDP-Like 42 252 Inorder Module 177
UDP-over-Ethernet 20 241 Reliable Module 164
Inorder 24 296 Routing Module 124
Reliable 28 364 Signalling Module 131
Signalling 26 331 Checksumming Module 123
FullChecksumming 28 358 Payload Module 85
ShrunkFields 4 253 Network Module 61
Linux (UDP) 42 - [Framework [1,113
Linux (TCP) > 56 - [Runtime [1,826]

o Reliable: Builds on top of Inorder and adds reliable packet delivery with acks.

e Signalling: Builds on top of Inorder and adds signaling packets at connection establishment.

e FullChecksumming: Builds on top of Inorder and adds full packet checksumming.

e ShrunkFields: Similar to UDP-over-Ethernet but uses restricted fields.

e Linux (UDP/TCP): We also compare our implementations against the default Linux imple-

mentation to show that our implementation is competitive with existing implementations.
We use UDP for the echo application and TCP for the NGINX application.

5.2 Protocol Header and Code Size Overhead

Before we evaluate the performance of protocols, we first present the header sizes for the imple-
mentations and the size of the generated code. Minimizing protocol header sizes is critical for
bandwidth-constrained applications while reducing code size and memory footprint is important
for memory-constrained deployments like IoT. Table 4 shows all the configurations and the header
sizes along with their generated code size. We notice that the UDP-over-Ethernet protocol elimi-
nates redundant headers and reduces the header size by over 50%. Other protocols that build over
UDP-over-Ethernet, add small overhead for the specific feature-related fields they add. For example,
Inorder delivery adds a 32-bit field to store the sequence numbers, while Reliable delivery requires
another 32-bit field for storing the acknowledgment sequence numbers. ShrunkFields shows the
smallest header possible with 4 bits each for source and destination host identifiers (MAC addresses)
4 bits for source and destination app identifiers (port numbers) and 16 bits for the length field. For
each of the configurations, similar to the header size, the lines of code required to implement are
marginally more than the base case. The lines of code shown here are just the generated lines of C
code and do not include the linked runtime library.

5.3 Applications

In this Section, we compare the latency of the protocol configurations for a simple Echo application,
an NGINX web server [12], and an underwater robotics simulation.

Echo Application We implement a simple echo application that ping-pongs messages back and
forth between server and client and measures round-trip latency for each message. Since the server
and the client do not perform work other than networking, this application allows us to isolate
the overheads of each feature. To test the effects of the features like signaling, each message is
sent over a newly established connection. The performance of protocols that don’t use signaling is
unaffected other than the small local setup cost since they don’t send any messages. We evaluate
this application on two hosts connected with a 100Gbps connection. We link NetBlocks generated
code against a kernel bypass runtime to avoid syscall overheads. The default Linux (UDP) protocol is
evaluated using the kernel implementation and suffers from the syscall overhead. For this evaluation,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

166:20 Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe

5

°
®

— UDP-Like
UDP-OE

— Inorder

— Reliable

—— signalling
Checksumming

—— shrunk

— Linux (uop)

°
ES

CDF over 10,000 requests
°
S

°

25 3.0 35 4.0 45 5.0 55 6.0 65 7.0 20 30 40 50
Round-trip latency in s

Fig. 20 CDF of the round-trip latency over 10,000 messages for the Echo application with the 8 protocol
configurations. The message size used for the ping-pong messages is 256 bytes.

we send messages of 256 bytes back and forth to thoroughly test the overhead from the schemes
that involve checksumming.

Figure 20 shows the Cumulative Distribution Function (CDF) plot of the latency over 10,000
packets. We notice that the minimum latency is obtained with the UDP-over-Ethernet protocol
configuration with a median latency of 3.25ps since it does not have any features like routing,
checksumming, signaling, in order or reliable delivery. This is close to the single-digit microsecond
latency possible with RDMA for packets of this size [27]. As we enable these features the latency
increases with signaling having the highest median latency of 6.0us. This latency is almost twice
the latency because for every connection signaling packets have to be exchanged before the actual
messages are sent. For the protocol that implements reliability, an acknowledgment needs to be
sent for every packet, but the sender doesn’t have to wait for the acknowledgment before sending
the next message and hence this scheme increases the latency slightly. Finally, we see despite
having the smallest header size, the ShrunkFields configuration has more latency overheads than
the UDP-over-ethernet protocol. Despite having the same features, this configuration needs to
generate bit-packing code with masks and shifts adding latency in the host processing. With this
observation, we conclude that the different schemes provide a real tradeoff in different metrics. The
Linux configuration is an order of magnitude slower than our slowest scheme because it doesn’t
use a kernel bypass stack and suffers from overheads of syscalls and interrupts. .

This evaluation demonstrates that, unlike the all-or-nothing approach of UDP and TCP, our
approach of generating protocols with select features provides a spectrum of performance. This
allows the users to have a pay-for-what-you-use policy when it comes to features. The DSL inputs
for each of these protocols are less than 50 lines of C++ code, allowing the user to switch between
vastly different protocols with minimal effort.

NGINX For the next evaluation we use a real-world web server NGINX [12] to demonstrate that
NetBlocks generated protocols are all supported by applications written for the POSIX API. We run
an unmodified NGINX web server written with TCP sockets with the 7 protocol configurations
generated from NetBlocks. We send GET requests that download static files off the server. The files
are stored in an in-memory file system to avoid variance from disk reads. The NGINX web-server
runs on top of the NetBlocks POSIX compatibility layer explained in Section 4. We measure the
round-trip latency over 10,000 GET requests downloading a file of 850 bytes. The total payload also
includes the HTTP response headers along with the file.

Figure 21 shows the CDF plot for the 10,000 requests. We observe a similar trend as the Echo
application, even though the absolute latency numbers are higher. This is due to the fact that the
server has to perform system calls to read the files. However, we demonstrate that the benefits of
specializing the protocol are translated to real-world applications. In this evaluation, the overhead
of Checksumming is significantly higher than the Echo Application because the payload size is
much larger. Similarly, the overhead of Reliability is higher since the NGINX server sends the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks 166:21

r 10,000 requests

COF ove

170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 30 40 s0 60
Round-trip latency in s

Fig. 21 CDF of the round-trip latency over 10,000 requests for the Nginx application with the 7 configurations.

response over multiple messages each requiring its own acknowledgment. Thanks to NetBlocks’s
design of exposing the same API to the application regardless of the generated protocol, we are also
able to run NGINX with a state-less UDP-like protocol without any source modifications despite
being originally written for TCP. To our knowledge, this is the first time NGINX has been run with
a header as small as 4 bytes. For the comparison Linux implementation, we use TCP because the
two protocols are not compatible in Linux.

Underwater Robotics For the next evaluation, we run our generated stacks with the DESERT [37]
underwater simulator to evaluate the effect of feature selection on throughput in a low-bandwidth
environment.
Since the latency of the communication is bottlenecked
by the acoustic medium, the host side overhead is neg-
ligible and our techniques don’t affect latency. However,
being able to compactly pack the headers helps us better
utilize the low-bandwidth channel. For our evaluation,
we set up a simulation between two hosts where one host
repeatedly sends a 16-byte payload to the other host over
Whlie Ghecimming g UDROE DefnitUpe Sk a 4800 bps channel. The 16-byte payload mimics sensor
measurement readings on the robot. Figure 22 shows the
Fig. 22 Goodput measurement for the un- measured Goodput [33] for our custom protocols and the
derwater robotics sensor simulations with default UDP implementation in DESERT. The goodput
DESERT. The payload size is 16 bytes. (i.e., the number of useful application bytes transmitted
per second without considering retransmissions) for the Shrunk scheme is the highest. By min-
imizing the header sizes, we better utilize the channel for the actual payload. The default UDP
implementation in DESERT has been optimized for the underwater scenario and is the second best.
As we add more features, the goodput gradually decreases and is extremely low when reliability is
enabled. This is because, with reliability, the receiving host also has to send packets for the acknowl-
edgments which adds contention to the channel and the underlying MAC protocol cannot utilize
the channel optimally. This further elaborates the point that we need custom protocol generators
like NetBlocks. With just TCP and UDP, if the system requires inorder delivery, the operator is
forced to use TCP and sacrifice the performance with the acknowledgments and handshakes.

Goodput by Protocol for 16-byte Application Data

0.61

Reliable

Discussion These three applications and scenarios show that when minimizing latency or maxi-
mizing throughput is of concern, creating a custom protocol with NetBlocks can have a real impact.
It shows that each network feature comes with a price, and creating a custom protocol with only
the salient features your application needs is much better than the two-sizes-fits-all approach with
TCP and UDP. We also demonstrate that NetBlocks compiler generates highly optimized kernel
by-pass code; thus, the latency results are much better than the hand-tuned Linux implementations.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

166:22 Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe

6 RELATED WORKS

Optimizing networks stack to obtain the best out of the hardware has a long history of research both
in implementing high-performance hand-tuned libraries for TCP/IP/UP [1, 14, 19, 20, 26, 27, 38, 43]
and manually creating custom protocols to better fit the applications and environment [24, 34,
36, 42, 43]. Researchers have proposed algorithms for improving existing features like congestion
control [2, 13, 18, 31, 40]. However, the handwritten implementations that add or improve a few
features are not able to keep up with the rapidly changing end-to-end application needs that require
custom tweaking of the full protocol.

DSLs provide a succinct input representation to the end-user while generating low-level high-
performance code with optimizations and features tailored for the domain [10, 11, 22, 29, 41, 48, 50].

DSL compiler techniques have also been applied within the broader network domain for creating
custom protocols [3, 4, 16, 23, 30, 35, 49] as well as for optimizing network applications [17]. While
these network DSLs allow customizing some features or layers of the protocol, they are not able to
perform whole stack optimization. In particular, P4 [4], the most popular application of compiler
techniques to the networking domain, only focuses on packet forwarding and stateless packet
processing for programmable switches, while NetBlocks is able to customize features like reliability
on the host network stack. Consequently, NetBlocks hosts maintain complex network states
including re-delivery buffers and timers. Similarly, Rubik [35] proposes a DSL for programming
network stacks for middleboxes. However, Rubik only focuses on optimizing bi-directional traffic
flows in middleboxes while also requiring intricate knowledge of compilers. In contrast, NetBlocks
customizes the host network stack. ClickNF [16] extends the ideas in Click [30] to host network
stacks. Similar to Rubik, ClickNF takes a traditional compiler approach. Consequently, making
adoption of new features and libraries challenging, unlike NetBlocks where new C/C++ libraries
can simply be ported as new modules by non-compiler experts.

Multi-stage programming is a promising approach to minimizing the complexity of the compiler
implementation and reusing the optimizations written as a library [6, 44, 46]. BuildIt [5] is a multi-
stage programming framework that is suitable for the network domain because it is written as
a library in C++ and generates high-performance C or C++ code. Since a lot of existing network
libraries and application-specific implementation is already written in C++, the effort required
to move to a compiler is minimal. The Buildlt framework also has an accompanying multi-stage
debugger called D2X [7] that makes debugging the generated code and by extension the DSL easier.
BuildIt’s staging capabilities applied to aspect-oriented programming pattern helps create low-cost
modular abstractions. Aspect-oriented programming and its application have been studied a lot in
the past [32]. DSL approaches have also been used to solve this problem [28, 47] but they often
require writing the layout specification in a separate language than the network specification.
NetBlocks combines both problems into a single DSL input that is easy to customize and extend.
To our knowledge, NetBlocks is the first compiler for the network domain that can be extended by
network experts like a library.

7 CONCLUSION

We present NetBlocks, a modular and extensible network DSL compiler for generating custom
protocols using Buildlt. To customize binary layouts in packets, we introduce the idea of staging
layouts alongside code. NetBlocks paves the way for design and deployment of newer generation
ad-hoc protocols that better suit the needs of the applications and environment. Our techniques also
open up the conversation for applying staging and related compiler techniques to other systems
domains in a way that i) it is accessible to practitioners who have no compilers knowledge and ii)
it can reuse the existing knowledge and code base for writing high-performance DSL compilers.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks 166:23

ACKNOWLEDGMENTS

We would like to thank Dhruv Saraff, Imperial College London for his contribution to the Layout
Optimization Implementation. This work was supported by the ACE Center for Evolvable Comput-
ing Research Center, a JUMP 2.0 Center Center co-sponsored by SRC, DARPA and other companies;
Intel and NSF PPoSS Grant CCF-2217064; DARPA PROWESS Award HR0011-23-C-0101; NSF SHF
Grant CCF-2107244.

ARTIFACTS AVAILABILITY STATEMENT

NetBlocks and all its components are available open-source [8] under the MIT License. All the source
code for NetBlocks can be found under the net-blocks directory. The README in the repository
contains instructions to build all dependencies and applications and evaluate their performance.
The README also has instructions on adding a new toy module to extend the system.

REFERENCES

[1] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford, David Walker, and David Wentzlaff.
2020. Enabling Programmable Transport Protocols in High-Speed NICs. In 17th USENILX Symposium on Networked
Systems Design and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 93-109. https://www.usenix.
org/conference/nsdi20/presentation/arashloo

[2] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire, and Dejan Kosti¢. 2019. RSS++: Load and State-Aware Receive
Side Scaling. In Proc. CONEXT. https://doi.org/10.1145/3359989.3365412

[3] Saleem Bhatti, Edwin Brady, Kevin Hammond, and James McKinna. 2009. Domain Specific Languages (DSLs) for
Network Protocols (Position Paper). In 2009 29th IEEE International Conference on Distributed Computing Systems
Workshops. 208-213. https://doi.org/10.1109/ICDCSW.2009.64

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco,
Amin Vahdat, George Varghese, and David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
Proc. SIGCOMM (2014). https://doi.org/10.1145/2656877.2656890

[5] Ajay Brahmakshatriya and Saman Amarasinghe. 2021. BuildIt: A type based multistage programming framework for
code generation in C++. In Proc. CGO. https://doi.org/10.1109/CG051591.2021.9370333

[6] Ajay Brahmakshatriya and Saman Amarasinghe. 2022. Graphlt to CUDA Compiler in 2021 LOC: A Case for High-
Performance DSL Implementation via Staging with BuilDSL. In Proc. CGO. https://doi.org/10.1109/CG053902.2022.
9741280

[7] Ajay Brahmakshatriya and Saman Amarasinghe. 2023. D2X: An eXtensible conteXtual Debugger for Modern DSLs. In
Proc. CGO. https://doi.org/10.1145/3579990.3580014

[8] Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe. 2024. Artifacts for the PLDI 2024 paper:
NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks. https://github.com/BuildIt-lang/net-
blocks-pldi24-artifacts and https://zenodo.org/records/11099781.

[9] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jachyun Hwang, and Rachit Agarwal. 2021. Understanding
Host Network Stack Overheads. In Proc. SSGCOMM. https://doi.org/10.1145/3452296.3472888

[10] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan Wang,
Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In Proc. OSDI. https://doi.org/10.5555/3291168.3291211

[11] Charisee Chiw, Gordon Kindlmann, John Reppy, Lamont Samuels, and Nick Seltzer. 2012. Diderot: A Parallel DSL for
Image Analysis and Visualization. In Proc. PLDI. https://doi.org/10.1145/2345156.2254079

[12] Nginx community. [n.d.]. Nginx - a high-performance HTTP server. https://www.nginx.com/

[13] Nandita Dukkipati, Matt Mathis, Yuchung Cheng, and Monia Ghobadi. 2011. Proportional Rate Reduction for TCP. In
Proc. SIGCOMM. https://doi.org/10.1145/2068816.2068832

[14] Adam Dunkels. 2023. uIP. https://github.com/adamdunkels/uip

[15] The Wireshark Foundation. 2023. WireShark. https://www.wireshark.org/

[16] Massimo Gallo and Rafael Laufer. 2018. ClickNF: a Modular Stack for Custom Network Functions. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 745-757. https://www.usenix.org/
conference/atc18/presentation/gallo

[17] Jiagi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming Zhang,
and Minlan Yu. 2020. Lyra: A Cross-Platform Language and Compiler for Data Plane Programming on Heterogeneous
ASICs. In Proc. SSIGCOMM. https://doi.org/10.1145/3387514.3405879

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

166:24 Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman Amarasinghe

[18] Monia Ghobadi, Soheil Hassas Yeganeh, and Yashar Ganjali. 2012. Rethinking End-to-End Congestion Control in

Software-Defined Networks. In Proc. HotNets. https://doi.org/10.1145/2390231.2390242

Altran Group. 2012. picoTCP. http://picotcp.altran.be/

FreeRTOS Group. 2023. FreeRTOS-Plus-TCP. https://github.com/FreeRTOS/FreeRTOS-Plus-TCP

NS2 Group. 2023. NS2: The Network Simulator. https://www.isi.edu/nsnam/ns/

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand. 2019. Taichi: A Language for

High-Performance Computation on Spatially Sparse Data Structures. ACM Trans. Graph. (2019). https://doi.org/10.

1145/3355089.3356506

[23] Hermann Hini, Ralph Johnson, and Robert Engel. 1995. A Framework for Network Protocol Software. SIGPLAN Not.
(1995). https://doi.org/10.1145/217839.217875

[24] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. 2020. TCP = RDMA: CPU-efficient Remote Storage Access
with i10. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20). USENIX Association,
Santa Clara, CA, 127-140. https://www.usenix.org/conference/nsdi20/presentation/hwang

[25] Junsu Jang and Fadel Adib. 2019. Underwater Backscatter Networking. In Proc. SSGCOMM. https://doi.org/10.1145/
3341302.3342091

[26] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo
Park. 2014. mTCP: a Highly Scalable User-level TCP Stack for Multicore Systems. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14). USENIX Association, Seattle, WA, 489-502. https:
//www.usenix.org/conference/nsdil4/technical-sessions/presentation/jeong

[27] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs can be General and Fast. In 16th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 1-16.

https://www.usenix.org/conference/nsdil9/presentation/kalia

Katai-IO. 2022. Katai Struct Compiler. https://github.com/kaitai-io/kaitai_struct_compiler/

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The Tensor Algebra

Compiler (Proc. OOPSLA). https://doi.org/10.1145/3133901

[30] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. 2000. The Click Modular Router.
ACM Trans. Comput. Syst. (2000). https://doi.org/10.1145/354871.354874

[31] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong Wang,
Kevin Springborn, Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay is Simple
and Effective for Congestion Control in the Datacenter (SSIGCOMM °20). Association for Computing Machinery, New
York, NY, USA, 514-528. https://doi.org/10.1145/3387514.3406591

[32] Mohit kumar, Akashdeep sharma, and Sushil Garg. 2009. A study of aspect oriented testing techniques. In 2009 IEEE
Symposium on Industrial Electronics & Applications, Vol. 2. 996-1001. https://doi.org/10.1109/ISIEA.2009.5356308

[33] James F. Kurose and Keith W. Ross. 2009. Computer Networking: A Top-Down Approach (5th ed.). Addison-Wesley
Publishing Company, USA. https://doi.org/10.5555/2584507

[34] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov,
Ian Swett, Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti,
Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. 2017. The QUIC Transport Protocol:
Design and Internet-Scale Deployment. In Proc. SSGCOMM (SIGCOMM ’17). https://doi.org/10.1145/3098822.3098842

[35] Hao Li, Changhao Wu, Guangda Sun, Peng Zhang, Danfeng Shan, Tian Pan, and Chengchen Hu. 2021. Program-
ming Network Stack for Middleboxes with Rubik. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21). USENIX Association, 551-570. https://www.usenix.org/conference/nsdi21/presentation/li

[36] Ilias Marinos, Robert N. M. Watson, and Mark Handley. 2013. Network Stack Specialization for Performance. In
Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks (College Park, Maryland) (HotNets-XII). Association
for Computing Machinery, New York, NY, USA, Article 9, 7 pages. https://doi.org/10.1145/2535771.2535779

[37] Riccardo Masiero, Saiful Azad, Federico Favaro, Matteo Petrani, Giovanni Toso, Federico Guerra, Paolo Casari, and
Michele Zorzi. 2012. DESERT Underwater: An NS-Miracle-based framework to design, simulate, emulate and realize
test-beds for underwater network protocols. In 2012 Oceans - Yeosu. 1-10. https://doi.org/10.1109/OCEANS-Yeosu.
2012.6263524

[38] Aravind Menon and Willy Zwaenepoel. 2008. Optimizing TCP Receive Performance. In USENIX 2008 Annual Technical
Conference (Boston, Massachusetts) (ATC’08). USENIX Association, USA, 85-98. https://www.usenix.org/conference/
2008-usenix-annual-technical-conference/optimizing-tcp-receive-performance

[39] Greg Miller and Kevin Thompson. 1998. the nature of the beast : recent traffic measurements from an Internet backbone.
https://api.semanticscholar.org/CorpusID:262494192

[40] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vahdat, Yaogong
Wang, David Wetherall, and David Zats. 2015. TIMELY: RTT-Based Congestion Control for the Datacenter. In Proc.
SIGCOMM. https://doi.org/10.1145/2785956.2787510

[19
[20
[21
[22

[G e e

[28
[29

—_

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

NetBlocks: Staging Layouts for High-Performance Custom Host Network Stacks 166:25

[41] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
2013. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines (Proc. PLDI). https://doi.org/10.1145/2491956.2462176

[42] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon Kim, Arvind Krishnamurthy,
Masoud Moshref, Dan Ports, and Peter Richtarik. 2021. Scaling Distributed Machine Learning with In-Network Aggre-
gation. In 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21). USENIX Association.
https://www.usenix.org/conference/nsdi21/presentation/sapio

[43] Dmytro Syzov, Dmitry Kachan, Kirill Karpov, Nikolai Mareev, and Eduard Siemens. 2019. Custom UDP-Based
Transport Protocol Implementation over DPDK. Proceedings of the International Conference on Applied Innovations in
IT 7. https://doi.org/10.25673/13476

[44] Walid Taha and Tim Sheard. 1997. Multi-Stage Programming with Explicit Annotations. In Proc. PEPM. https:
//doi.org/10.1145/258993.259019

[45] K. Thompson, G.J. Miller, and R. Wilder. 1997. Wide-area Internet traffic patterns and characteristics. IEEE Network 11,
6(1997), 10-23. https://doi.org/10.1109/65.642356

[46] Vlad Ureche, Tiark Rompf, Arvind Sujeeth, Hassan Chafi, and Martin Odersky. 2012. StagedSAC: A Case Study in
Performance-Oriented DSL Development. In Proc. PEPM. https://doi.org/10.1145/2103746.2103762

[47] Kenton Varda. 2008. Protocol Buffers: Google’s Data Interchange Format. Technical Report. Google. http://google-
opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html

[48] Eelco Visser. 2008. WebDSL: A Case Study in Domain-Specific Language Engineering. https://doi.org/10.1007/978-3-
540-88643-3_7

[49] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate Foster, and Hakim Weatherspoon. 2017.
P4FPGA: A Rapid Prototyping Framework for P4. In Proc. SOSR. https://doi.org/10.1145/3050220.3050234

[50] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman Amarasinghe. 2018. Graphlt:
A High-Performance Graph DSL (Proc. OOPSLA). https://doi.org/10.1145/3276491

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 166. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Video Conferencing Application
	2.2 Underwater Robotics Sensing
	2.3 Why a DSL Compiler for Customizing High-Performance Host Network Stacks?

	3 NetBlocks Compiler Framework
	3.1 The BuildIt Staging Framework
	3.2 Layout Customization Layer Language Definition
	3.3 Layout Customization Layer Implementation
	3.4 High-Performance Aspect-Oriented Programming

	4 NetBlocks Implementation
	4.1 NetBlocks Architecture
	4.2 Network API

	5 Evaluations
	5.1 Evaluation Methodology
	5.2 Protocol Header and Code Size Overhead
	5.3 Applications

	6 Related Works
	7 Conclusion
	References

