
1

SimBU: Self-Similarity-Based Hybrid Binary-Unary
Computing for Nonlinear Functions

Alireza Khataei, Gaurav Singh, Kia Bazargan
Department of Electrical and Computer Engineering

University of Minnesota
Minneapolis, MN, USA

{khata014, singh431, kia}@umn.edu

Abstract—Unary computing is a relatively new method for
implementing arbitrary nonlinear functions that uses unpacked,
thermometer number encoding, enabling much lower hardware
costs. In its original form, unary computing provides no trade-
off between accuracy and hardware cost. In this work, we
propose a novel self-similarity-based method to optimize the
previous hybrid binary-unary work and provide it with the
trade-off between accuracy and hardware cost by introducing
controlled levels of approximation. Looking for self-similarity
between different parts of a function allows us to implement
a very small subset of core unique subfunctions and derive
the rest of the subfunctions from this core using simple linear
transformations. We compare our method to previous works such
as FloPoCo-LUT (lookup table), HBU (hybrid binary-unary) and
FloPoCo-PPA (piecewise polynomial approximation) on several
8–12-bit nonlinear functions including Log, Exp, Sigmoid, GELU,
Sin, and Sqr, which are frequently used in neural networks and
image processing applications. The area × delay hardware cost
of our method is on average 32%–60% better than previous
methods in both exact and approximate implementations. We
also extend our method to multivariate nonlinear functions and
show on average 78%–92% improvement over previous work.

Index Terms—hardware acceleration, approximate computing,
unary computing, stochastic computing, table-based method,
piecewise polynomial approximation, nonlinear function, activa-
tion function

I. INTRODUCTION

B INARY representations have been the dominant data en-
coding scheme in digital systems for many years. Despite

low memory requirements, performing computations in binary
is not trivial due to the positional nature of the representation,
which requires unpacking bits, performing computations such
as partial product generation in a multiplication operation,
and packing partial results through carry chain propagation
into the final output. Additionally, the binary representation is
not error-resilient, and flipping a single bit may introduce a
significant amount of error based on the position of the bit [1].

Table-based methods are mostly used to implement non-
linear functions in hardware. Although they reduce latency
compared to iterative approaches such as CORDIC [2], they
suffer from the size of lookup tables, which grow exponentially
as resolution increases. Therefore, they are usually paired with
approximate methods [3]–[9] to reduce the size of lookup
tables at the expense of accuracy. FloPoCo1 [10] is a generator

1Available at http://www.flopoco.org.

of arithmetic cores for FPGAs using a comprehensive set of
methods. It has a tool to implement arbitrary functions without
accuracy loss using pure lookup tables. Additionally, it has
another tool to approximately implement functions using a
piecewise polynomial approximation [3], in which the input
interval of a function is divided into several subintervals
addressed by the higher bits of the input, and each subfunction
is approximated by a polynomial with the Horner scheme
given a target maximum error. We refer to these two methods
as FloPoCo-LUT and FloPoCo-PPA, respectively.

Pure unary (PU) [11], [12] was introduced as a way of
implementing nonlinear functions by encoding the binary
numbers in the form of unary codes and using a network
of wires and XOR gates to perform the computations in
the unary domain. In low-resolution computations—up to 12
bits—PU outperforms the conventional binary and stochastic
computing methods [13]–[16] in terms of the area × delay
hardware cost [12]. Despite the simplicity of scaling networks,
converting data between binary and unary is costly, especially
as the resolution increases, leading to exponentially higher
hardware cost.

To reduce the hardware cost of PU, especially in non-
monotonic functions at high resolutions, hybrid binary-unary
(HBU) [17], [18] was proposed to take advantage of unary
and binary to make the method more scalable. It breaks a
function into subfunctions with limited input and output ranges
and implements them efficiently based on the PU method.
Therefore, the lower bits of the input compute the subfunctions
in unary, and the higher bits complete the computations
in binary. By limiting the input and output range of the
function, this method dramatically reduces the binary-unary
and unary-binary conversion costs, which in turn leads to lower
area × delay hardware cost compared to PU.

Our previous work, approximate hybrid binary-unary
(AHBU) [19], was recently proposed to reduce the hardware
cost of HBU by sacrificing accuracy. It manipulates the higher
bits of subfunctions and use very rudimentary self-similarity
measures to reduce hardware cost. However, AHBU focuses
on mean absolute error (MAE) as a metric for how much
approximation tolerance it should have, which is a major flaw,
because it does not consider the maximum error, which is a
critical issue in approximate computing. Nonetheless, it can
be deployed in machine learning applications where there is
relatively high tolerance for errors.

2

In this paper, which is the extended version of [20], we
propose a novel method to optimize the hardware cost of
HBU for univariate and multivariate functions using self-
similarities among subfunctions. Given a target maximum
absolute error, it makes pairwise comparisons to figure out
which subfunctions can be derived from each other through
simple bitwise transformations. For instance, if a subfunction
gi is similar to the inverse of a subfunction gj , then we can
ignore the implementation of gi in unary and use NOT gates to
derive it from gj . After finding the derivable subfunctions, our
method tries to find the minimum set of “core” subfunctions
that can derive all subfunctions. This practice replaces the
unary subfunctions with simple post-processing logic gates to
reduce the hardware cost.

For evaluation purposes, we implemented several univariate
nonlinear functions at 8-, 10-, and 12-bit resolutions using
our method and previous works including FloPoCo-LUT,
HBU, and FloPoCo-PPA. Given the approximation of the least
significant bit, our method improves the hardware cost of
FloPoCo-LUT, HBU, and FloPoCo-PPA on average by 60%,
57%, and 35%, respectively. Additionally, if no approximation
is allowed, which is a tough restriction on our proposed
algorithm, our method still outperforms FloPoCo-LUT and
HBU on average by 36% and 32%, respectively. Additionally,
we implemented several multivariate nonlinear functions at
8-bit resolution using our method and previous HBU work.
Our method improves the hardware cost of HBU on average
by 92% given the approximation of the least significant bit
and by 78% given no approximation. By implementing 10-bit
homomorphic filtering and 8-bit Robert’s cross edge detection,
we also show that our method can implement both applications
with no quality loss at lower hardware cost than previous
works.

Although our method outperforms FloPoCo-LUT and HBU
at higher resolutions, neither of these methods nor our method
area efficient at resolutions beyond 12-bit [18], [21]. In such
cases, other approximate methods might be more beneficial
in terms of hardware costs. However, they provide trade-offs
between accuracy, area, delay, and other aspects of hardware
costs. Example of such methods include stochastic computing
(SC) and bitstream processing [13]–[16], [22]–[30], piecewise
polynomial approximation (PPA) [3], bipartite table (BT) [31],
and multipartite table (MT) [32], [33] methods. For instance,
SC methods are efficient in terms of area at higher resolutions,
but they suffer from long latency and approximation errors.
In addition, PPA, BT, and MT methods might deliver higher
throughput than SC methods, but they all rely on lookup
tables to evaluate a function. Although some techniques have
been proposed in [34], [35] to compress the lookup tables in
such table-based methods, the sizes of the lookup tables can
potentially affect the area efficiency of these methods. As a
result, each of these methods has their specific applications,
and one should consider design requirements to choose the
optimum solution.

Our contributions in this work include the following meth-
ods and results:

• Our method changes the way HBU breaks up functions.
HBU breaks up functions into non-uniform input-range

subfunctions, with the sole goal of reducing hardware
cost. Our method forces an equal input range for all
subfunctions, with the hope of deriving many of them
from a core set of subfunctions. Our method uses a
number of linear transformations to check if a subfunction
can be derived from another one. This is in contrast to the
self-similarity measures in AHBU [19] that only looked
at non-transformed matches within the approximation
tolerance.

• Instead of pairwise, local comparison between subfunc-
tions as done in AHBU, our method uses a better opti-
mization method to find the best subset of subfunctions
to implement a function. For instance, using the lowest
possible approximation error for implementing f(x) =
[1 + sin(2πx)] ÷ 2, our previous AHBU work could
reduce the total number of subfunctions from 512 to 218,
whereas our new method can reduce them from 512 to
71 unique subfunctions.

• Our method provides HBU with a trade-off between
accuracy in terms of maximum error and hardware cost
in terms of area × delay.

• It outperforms the hardware cost of FloPoCo-LUT and
HBU with no approximation error.

• It outperforms the hardware cost of FloPoCo-PPA at up
to 12-bit resolutions using the same approximation error
budget.

The rest of the paper is as follows. Section II-A reviews
the basics of PU and HBU as fundamental constituents of
our method. Section II-B introduces our proposed method and
algorithm, followed by a guiding example in Section II-C. Sec-
tion III extends our proposed method to multivariate functions.
In Section IV, our method is compared to previous works on a
number of nonlinear functions. The benefits of our method are
evaluated in the implementations of homomorphic filtering and
Robert’s cross edge detection as image processing applications
in Section V. Finally, Section VI concludes the paper and
results.

II. METHODOLOGY FOR UNIVARIATE FUNCTIONS

A. Previous Unary Works

PU (pure unary) [12] is a method that implements a math
function f(x) using a network of wires and XOR gates, called
“unary core”. It converts the input binary to the unary domain
in the form of thermometer codes, called “unary” codes. For
a w-bit binary number, it uses 2w − 1 bits, in which the first
m bits are 1’s and the rest are 0’s to represent the decimal
value m out of the maximum value 2w− 1. For example, 011
in binary equals 1110000 in unary, and 100 in binary equals
1111000 in unary. After encoding, the input unary is mapped
to output unary through a unary core, which is designed based
on the output values of the function. Finally, the output unary
is converted back to binary as the final output.

Fig. 1 shows the architecture of the PU method for an
arbitrary function, described as lookup tables in binary and
unary. In unary methods, the input and output values of a
function are considered unsigned integers and then encoded to
the unary domain, although one can change the interpretation

3

of the raw input/output values to represent signed integers or
signed/unsigned fixed-point values. In this figure, the function
has a 3-bit input binary and 2-bit output binary. Therefore,
the input ranges from x = 000 to x = 111, and the output
can range from f = 000 to f = 111. To represent the
values in unary, we need to use 7 bits for the input and
3 bits for the output, since the maximum input and output
are 7 and 3 in decimal, respectively. We represent the input
unary as X = X1X2X3X4X5X6X7 and output unary as
F = F1F2F3. In order to design the unary core, we need
to explore the function’s lookup table in unary step-by-step
from X = 0000000 to X = 1111111. In this function, when
X = 0000000, the output F = 000, but when the input
X = 1000000, the output F = 100. By looking at the unary
values, we can realize that X1 triggers F1. Therefore, X1 is
connected to F1 through a wire in the unary core. Similarly,
when the input X = 1100000, the output F = 110. As a result,
X2 is a triggering point for F2, and they are connected through
a wire. In contrast, if the input is increased to X = 1110000,
the output is not changed, and it means X3 is not a triggering
point and it is not connected to any of the output pins. If the
input is increased to X = 1111000, the output F = 111, and
it means X4 is a triggering point for F3, and these two pins
must be connected through a wire (ignore the XOR gate in
Fig. 1 for now). If the input is increased to X = 1111100, the
output remains unchanged, and therefore X5 is an unconnected
pin. Thus far, the function has been monotonically increasing.
However, if the input is increased to X = 1111110, the output
decreases to F = 110. In other words, X6 has alternated the
state of F3, that has been triggered by X4. For this reason,
we need to connect X4 and X6 to F3 through an XOR
gate. The XOR gate handles the non-monotonic section of
the function. As a result, F3 = 0 when both X4 and X6 are
the same, but F3 = 1 when X4 = 1 and X6 = 0. It should
be noted that X4 = 0 and X6 = 1 cannot happen at the
same due to the unary representation which is based on a left-
flushed thermometer encoding. Finally, X7 is left unconnected,
because X7 is neither a triggering nor an alternating point, and
it does not change the state of any output pins. The following
equations shows the correspondence between the input and
output unary bits.

F1 = X1, F2 = X2, and F3 = X4 ⊕X6

The PU method is not scalable: as the width w of the
input binary number increases, encoder and decoder units
become exponentially larger, as they need to cover the
range {0, 1, · · · , 2w − 1}. The HBU (hybrid binary-unary)
method [18] addresses this issue by preserving the higher bits
of input and output in binary, hence keeping the encoding
scalable for these bits, and only converting the lower bits
of the input into unary to perform efficient computations.
The two parts are assembled into the final output encoded in
binary. More specifically, the method breaks a function f(x)
into several subfunctions gi(x). Functions gi(x) are chosen so
that they cover an output range from 0 to a number Maxi.
This range would be less than or equal to the range of the
original function f(x), which means potentially smaller unary-
to-binary encoders would be needed to convert the output




  





      







 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Hardware architecture of PU [12] for an arbitrary
function. The function’s output values for all possible input
values are shown in binary and unary.

back to binary. Each subfunction would be added to a bias
value bi to reconstruct the original function f(x). The addition
operation is performed in binary.

f(x) =

 f1(x) = b1 + g1(x) x ∈ [0, x1)
...
fn(x) = bn + gn(x) x ∈ [xn−1, xn)

As mentioned above, in contrast to f(x), a subfunction
gi(x) has a limited input and output range; therefore, it can be
efficiently implemented using the PU method [12], leading to
a more scalable method. All these subfunctions are computed
concurrently using the lower bits of the input x, but only one
of them holds the relevant result. The higher bits of the input
binary x determine which subfunction is going to be used
and multiplexes the corresponding bias from a binary lookup
table. Finally, a binary adder adds the subfunction and the bias
together to compute the final output. Fig. 2 shows the overall
architecture of HBU.



 





























  

Fig. 2: Hardware architecture of HBU [18].

B. Our Proposed Work

We first present the formal explanation of how our method
works through equations and pseudo-code in this section,

4

followed by a guiding example in Sec. II-C. Readers who
are more comfortable with visual learning might want to first
read that section and then come back to this section.

The function breaking in HBU is a complex process that
uses many parameters, including subfunctions’ slopes and out-
put ranges to break a function hierarchically. The subfunctions
might have different input ranges, leading to a set of binary-
to-unary encoders with different input/output sizes. In contrast
to HBU, we uniformly break a function f(x) into n = 2wb

subfunctions and separate their initial biases (lines 5-9 of
Algorithm 1). For a w-bit function, the input range of all the
subfunctions is wu = w − wb bits.

f(x) =

 f1(x) = b1 + g1(x) x ∈ [0, 2wu)
...
fn(x) = bn + gn(x) x ∈ [(n− 1)× 2wu , n× 2wu)

By uniformly breaking the function, only one encoder is
needed to convert the wu lower bits from binary to unary,
whereas the same does not hold in HBU. The novelty in our
method is to measure pairwise similarities between subfunc-
tions (lines 11-19 of Algorithm 1) and find the minimum set
of unique subfunctions, from which all the other subfunctions
can be derived using a set of bitwise transformations (lines
21-39 of Algorithm 1). For instance, if gi(x) is similar to the
inverse of gj(x), then we can implement gj(x) and use NOT
gates to derive gi(x) from it.

Definition: The approximation error of deriving gi(x) from
gj(x) through a transformation Ti is defined as:

Err(gi, Ti, gj) = max{|Fixed(bi + bmi + Ti{gj(x)})
−Float(bi + gi(x))|}

(1)

where Fixed(x) and Float(x) denote the fixed-point and
floating-point values of the unsigned integer x, respectively.
Ti is a bitwise transformation, that can include an inversion,
right shift, and left shift, and bmi is a constant that modifies
the vertical position of Ti{gj(x)} to reduce the approximation
error, and it can be obtained by Eq. 2

bmi = ⌊
1

2wu

∑
x

(gi(x)− Ti{gj(x)})⌉ (2)

where ⌊⌉ denotes rounding to the nearest integer. Intuitively,
bmi tries to “center” the transformed subfunction around the
center of gravity of the target subfunction to reduce the amount
of error in deriving the subfunction. This constant cannot take
any arbitrary value and is constrained by Eq. 3:

0 ≤ bi + bmi + Ti{gj(x)} < 2w (3)

Definition: Given a target maximum error TargetErr, a
subfunction gi(x) is derivable from gj(x) if Eq. 4 is satisfied.

∃Ti, Err(gi, Ti, gj) ≤ TargetErr (4)

Definition: The similarity matrix is defined as an n × n
binary matrix, in which an entry smij (i ̸= j) is 1 if and only
if gi(x) is derivable from gj(x), subject to the constraint in
Eq. 4.

SM = [smij]n×n; smij ∈ {0, 1},
smij = 1⇔ ∃Ti, Err(gi, Ti, gj) ≤ TargetErr, i ̸= j

(5)

Definition: The similarity vector is defined as a vector of
n elements, equals to the summation of SM’s rows.

SV = [svj]1×n; svj =
∑
i

smij (6)

In HBU, each subfunction gi(x) is implemented using the
PU method, and its initial bias bi is stored in a binary lookup
table. Then, a binary adder computes fi(x) = bi + gi(x). In
our method, however, a small set of unique subfunctions are
implemented, and each of the other subfunctions is derived
from a transformation of one of the unique subfunctions.
If gi(x) is derivable from gj(x), then we can conclude the
following result from Eq. 4 and Eq. 1.

∃Ti, Err(gi, Ti, gj) ≤ TargetErr

⇒(bi + gi(x)) ≃ (bi + bmi) + Ti{gj(x)}
⇒fi(x) ≃ b̂i + Ti{gj(x)}

If there are multiple transformations that can derive gi(x) from
gj(f), we choose the one that minimizes the approximation
error.

Ti = argmin
T

Err(gi, T, gj) (7)

Therefore, we can compute fi(x) ≃ b̂i+Ti{gj(x)} instead of
fi(x) = bi+gi(x). That is, we can implement fi(x) by storing
the pre-calculated bias b̂i = bi+bmi in the binary lookup table
and transforming the subfunction gj(x), implemented using
the PU method. Fig. 3 shows the architecture of our method.

As shown in Fig. 3, gi(x) is derived from gj(x) through
the transformation Ti, and our method replaces the unary core
gi(x) and its decoder with the simple transformer that might
include NOT gates and/or shifters. It also reduces the fan-out
of the input encoder. Such replacements make the hardware
architecture less expensive compared to HBU, especially in
non-monotonic functions at high resolutions.

To find the minimum set of unique subfunctions, we first
compute the similarity matrix and similarity vector, as de-
scribed in Eq. 5 and 6, respectively. The index of the maximum
element in the similarity vector (i.e., idx = argmaxi SV [i])
determines the first unique function. Then, we traverse through
the idxth column of the similarity matrix to see which
subfunctions can be derived from gidx(x). Next, we update the
similarity matrix by zeroing the idxth row and column as well
as all the rows and columns corresponding to the functions that
are derivable from gidx(x). Again, we compute the similarity
vector and find the next unique subfunction. We continue this
process until all the entries of the similarity matrix become
zero. We do understand that dynamic programming could
have been used to get a globally minimum number of unique
subfunctions, but in this version, we have limited ourselves to
this greedy approach, as it works very well in practice.

Algorithm 1 describes the procedure in more detail. To
represent the final set of unique subfunctions in this algorithm,
we define two vectors Unique and Transformer such that
if Unique[i] = j and Transformer[i] = Ti, then it means
that fi(x) is derived from fj(x) through the transformation
Ti. Vectors Sub and Bias are also defined to store each
subfunction’s output values and bias.

5

Algorithm 1: SimBU Algorithm

1 Parameters: TargetErr, w,wb, wu

2 Input: F = {f(x)|x, f(x) ∈ Z and x, f(x) ∈ [0, 2w)}
3 Outputs: Sub,Bias, Unique, Transformer

4 # Uniformly breaking the function into subfunctions
5 for i = 1 to 2wb do
6 Sub[i]← F [(i− 1)× 2wu : i× 2wu]
7 Bias[i]← min(Sub[i])
8 Sub[i]← Sub[i]−Bias[i]
9 end

10 # Making pairwise comparisons of the subfunctions
11 for i = 1 to 2wb do
12 for j = 1 to 2wb do
13 if ∃Ti, Err(Sub[i], Ti, Sub[j]) ≤ TargetErr

then
14 SM [i][j]← 1
15 else
16 SM [i][j]← 0
17 end
18 end
19 end
20 # Finding the minimum set of unique subfunctions
21 while

∑
i

∑
j SM [i][j] ! = 0 do

22 SV ←
∑

i SM [i][:]
23 idx← argmaxi SV [i]
24 for i = 1 to 2wb do
25 if i ! = idx and SM [i][idx] == 1 then
26 Unique[i]← idx
27 Ti ← argminT Err(Sub[i], T, Sub[idx])
28 Transformer[i]← Ti

29 bmi ← ⌊ 1
2wu

∑
(Sub[i]− Ti{Sub[idx]})⌉

30 Bias[i]← Bias[i] + bmi

31 SM [i][:]← 0
32 SM [:][i]← 0
33 end
34 end
35 Unique[idx]← idx
36 Transformer[idx]← None
37 SM [idx][:]← 0
38 SM [:][idx]← 0
39 end

Fig. 3: Hardware architecture of our proposed method.

C. Guiding Example

In this section, we show how our method works for an
arbitrary w-bit function f(x) = [1 + sin(2πx)] ÷ 2. We set
the parameters as follows:

• w = 8 bits
• wb = 2 bits ⇒ wu = w − wb = 6 bits
• TargetErr = 2−7

We first divide the function into 2wb = 4 subfunctions and
separate their initial biases, as shown in Fig. 4a and 4b,
respectively. The input range of all the subfunction is wu = 6
bits.

f(x) =


f1(x) = 128 + g1(x) x ∈ [0, 64)
f2(x) = 131 + g2(x) x ∈ [64, 128)
f3(x) = 0 + g3(x) x ∈ [128, 192)
f4(x) = 0 + g4(x) x ∈ [192, 256)

(8)

Fig. 4: subfunctions of the guiding example. The red subfunc-
tions are unique subfunctions that derive the others.

Next, we make pairwise comparisons to find all the sub-
functions that can be derived from each other. We can use the
term generate as the inverse of deriving a function: if gi can
be derived from gj through our linear transformations, then
we say gj generates gi. Using Eq. 4, we find out that g1(x)
can generate g3(x), g3(x) can generate g1(x), and g4(x) can
generate g2(x).

T3 = inv ⇒ Err(g3, inv, g1) = 0.0038 ≤ 2−7, bm3 = 1

T1 = inv ⇒ Err(g1, inv, g3) = 0.0058 ≤ 2−7, bm1 = −128 (9)

T2 = inv ⇒ Err(g2, inv, g4) = 0.0058 ≤ 2−7, bm2 = −3

Although g4(x) can generate g2(x) through an inverter, the
opposite is not true. Due to the constrains on bm4, as described
in Eq. 3, we cannot find a transformation T4 such that
Err(g4, T4, g2) ≤ TargetError = 2−7. For this reason,
similarity matrices are not necessarily symmetric.

After finding the derivable subfunctions, we compute the
similarity matrix SM and similarity vector SV, as shown in
Fig. 5a. The index of the maximum entry in SV determines
the first unique subfunction. In our example, the first, the third,
and the fourth entries are the same, and choosing either one
would be OK. As shown in Fig. 5b, we choose f1(x) as the
first unique subfunction. Then, by traversing through the 1st

column of SM, we can see SM [3][1] = 1. As a result:

SM [3][1] = 1⇒ Err(g3, inv, g1) = 0.0038 ≤ 2−7

⇒ (0 + g3(x)) ≃ (0 + 1) + inv{g1(x)}
⇒ f3(x) ≃ 1 + inv{g1(x)}

6

Therefore, we can implement f3(x) ≃ 1+ inv{g1(x)} instead
of f3(x) = 0 + g3(x). Next, we update SM by zeroing the
1st and the 3rd rows and columns, and then recalculate SV,
as shown in Fig. 5c. Again, Fig. 5d indicates that g4(x) is
the next unique subfunction to be implemented. Similarly, we
traverse through the 1st column and see SM [2][4] = 1. As a
result:

SM [2][4] = 1⇒ Err(g2, inv, g1) = 0.0058 ≤ 2−7

⇒ (131 + g2(x)) ≃ (131− 3) + inv{g4(x)}
⇒ f2(x) ≃ 128 + inv{g4(x)}

Therefore, f2(x) = 131 + g2(x) converts to f2(x) ≃ 128 +
inv{g4(x)}. As a reminder, the bias value 131 was the original
b2 from Eq. 8, and the value −3 was the bmi from the
transformation deriving g2(x) from g4(x) shown in Eq. 9. As
shown in Fig. 5e, zeroing the 4th and 2nd rows and columns
makes all the entries of SM get zero and ends the process.

As a result of our proposed algorithm, function f(x) con-
verts to the following function.

f(x) ≃ f̂(x) =


128 + g1(x) x ∈ [0, 64)
128 + inv{g4(x)} x ∈ [64, 128)
1 + inv{g1(x)} x ∈ [128, 192)
0 + g4(x) x ∈ [192, 256)

Therefore, the number of subfunctions (including their scaling
networks and decoders) reduces by half, and they are replaced
by simple NOT gates. Fig. 4c shows that g1(x) and f4(x) are
the unique subfunctions and g2(x) and f3(x) are derived from
them.

   









    

   









    

   









    

   









    

   









    

  

 









   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

Fig. 5: Similarity matrix (SM) and similarity vector (SV) of
the guiding example.

III. METHODOLOGY FOR MULTIVARIATE FUNCTIONS

The unary methods can be extended to multivariate func-
tions. A rudimentary idea with limited practical applications
for extending the PU method to such functions was proposed
in [11], [12]. In this paper, we only discuss 2-dimensional

functions f(x, y) for simplicity, although the approach can be
applied to higher dimensions as well.

In PU for univariate functions, as discussed in Section II-A,
an input unary value is mapped to an output unary value
through the unary core. For a univariate function, this network
consists of wires and XOR gates, as shown in Figure 1.
However, the same does not hold for multivariate functions.
In such functions, the method of [11], [12] finds a list
of triggering points that dictate when the function value
f(x, y) ∈ {0, 1, ..., 2wout − 1} changes. For a certain output
value f = α, triggering points are those (x, y) pairs at which
the function reaches or exceeds f = α, i.e., Fα is set to
1 for the first time2. For instance, f(x, y) = xy reaches
f = 4 at (x, y) ∈ {(1, 4), (2, 2), (4, 1)}. Therefore, F4 must
be triggered by:

F4 = (X1 ∧ Y4) ∨ (X2 ∧ Y2) ∨ (X4 ∧ Y1)

In case of non-monotonically increasing functions, a list of
alternating points must be detected besides triggering points.
Alternating points are those inputs that alternate an output
bit after it is triggered. Fig. 6 shows the output values of
an arbitrary function along with its triggering and alternating
points. In this function, the output reaches f = 1 for the first

   

   

   

   

   











   













   

   

   

   

Fig. 6: The output values of an arbitrary function along with its
triggering (white rings) and alternating (white circles) points.

time at (x, y) ∈ {(1, 3), (2, 2), (3, 1)}. Hence, these 3 tuples
are considered as the triggering points for F1. This output bit,
however, alternates at (x, y) ∈ {(3, 3), (4, 4)}. As a result, the
output bit F1 must be triggered and alternated by:

F1 = [(X1∧Y3)∨(X2∧Y2)∨(X3∧Y1)]⊕(X3, Y3)⊕(X4, Y4)

Our method proposed in Section II-B can be applied to
multivariate functions. Similar to univariate functions, we uni-
formly break the inputs of a multivariate function and separate
the initial biases of the resulting subfunctions, however, the
input segments in 2-D functions are square-shaped. Then, we
measure the similarities between the subfunctions and find the
minimum set of them that can reconstruct the original function
using transformations given a target maximum error.

Compared to univariate functions, our method can have a
greater impact on hardware cost reductions in multivariate
functions. This is because multivariate functions require many
AND and OR gates besides wires and XOR gates in the
method of [11], [12]. As a result, using self-similarities and
reducing the number of subfunctions can dramatically reduce
the hardware cost.

2Fα is the αth wire in bundle of 2w wires in the unary domain.

7

TABLE I: Equations of the implemented univariate nonlinear
functions.

Name Equation

Log log2(x+ 1)

Exp exp(x− 1)

Sigmoid 1 + tanh(4× (2x− 1))

GELU 0.5× (6x− 3)× (erf(6x−3√
2

) + 1) + 0.25

Sin 1 + sin(2πx)

Sqr x2

IV. IMPLEMENTATION RESULTS

A. Univariate Functions

We developed a Matlab script to run our proposed algo-
rithm and generate Verilog files. Since our method optimizes
the hardware cost given a target maximum error, we used
two different target values: 2−w−1 and 2−w. The former is
equal to the maximum error of exact implementations, and
therefore has the functions implemented with no approxima-
tion, whereas the latter is equal to the maximum error of
approximating the least significant bit. These two types of
implementations are denoted as SimBU-Exact and SimBU-
Approx, respectively.

• SimBU-Exact: ⇔ TargetError = 2−w−1

• SimBU-Approx ⇔ TargetError = 2−w

Our C++ implementation of the SimBU-Exact algorithm gen-
erally takes about a fraction of a second to 1.5 seconds on
a regular laptop computer. Given that the main run time
bottleneck is the nested loop in lines 11-19 of Algorithm
1, using multi-threading or GPU acceleration can result in
significant reduction in run time.

We evaluated our method and compared it to previous
works including FloPoCo-LUT [10], HBU [18], and FloPoCo-
PPA [3], [10]. The comparisons were made on the implemen-
tation of some functions at w = 8-, 10-, and 12-bit resolutions,
and all the designs were synthesized on Xilinx’s Kintex-7
FPGA using Vivado 2020.2 default design flow. Table I shows
the equations of the implemented functions. The functions
were evaluated on the unit interval x ∈ [0, 1), and the outputs
were scaled such that they range in the unit interval f ∈ [0, 1).
As a result, the fixed-point representations of the inputs and
outputs consist of w fractional bits with no integer parts. Fig. 7
shows the graph of the implemented functions. Note that the
decision to limit the range to [0, 1) is arbitrary. The input /
output range could be anything, as long as the data is quantized
and the minimum and maximum values are interpreted, i.e.,
mapped to 0 · · · 2w.

The FloPoCo-PPA cores were generated by the FixFunction-
ByPiecewisePoly tool in the FloPoCo framework. This tool
generates VHDL files and evaluates a given function on [0, 1)
using a piecewise polynomial approximation with the Horner
scheme.

Table II shows the hardware cost and accuracy of each
implemented function using FloPoCo-LUT, HBU, SimBU-
Exact, FloPoCo-PPA, and SimBU-Approx methods. All results
include the cost of unary encoders and decoders if the method
uses unary encoding. To make fair comparisons between dif-
ferent methods in terms of area, we forced the synthesizer not
to use any DSP and BRAM blocks, and the area was measured
as the number of LUTs. In the tables, “Area” and “Delay”
correspond to the number of LUTs and the critical path
delay in nanoseconds, and “A × D” denotes the area × delay
hardware cost. The “MaxErr” and “MSE” columns show the
maximum absolute error and mean square error compared
to double-precision floating-point implementations. The mean
square error is defined in Eq. 10

MSE =
1

2w

∑
x

(f̂(x)− f(x))2 (10)

Although our method was expected to only reduce the hard-
ware cost when implementing functions using approximation,
it turned out that it could also reduce the cost compared to
the HBU method even when not using approximations. To
do so, the TargetError parameter must be set to 2−w−1,
which is equivalent to the fixed-point quantization error. Since
no approximation—other than the fixed-point quantization—is
allowed, our proposed algorithm tries to find the same subfunc-
tions after the basic bitwise transformations. That is, the sub-
function gi is considered derivable from gj , only if there exists
a transformation Ti such that the maximum error is equal to the
minimum possible value (i.e., ∃Ti, Err(gi, Ti, gj) ≤ 2−w−1).
This is a tough restriction on our algorithm. Surprisingly,
the results in Table II show that SimBU-Exact outperforms
HBU, especially at higher resolutions. This is because there
are a large number of subfunctions at higher resolutions, and
our method can reduce the number of unique subfunctions
significantly, which compensates the added hardware resource
for implementing the transformations Ti. It can be seen from
the table that SimBU-Exact reduces the area × delay cost
of FloPoCo-LUT and HBU on average by 36% and 32%,
respectively, when averaged over 8-, 10- and 12-bit resolutions.

Table III also shows the number of subfunctions before and
after the self-similarity measures using our proposed method.
The total number of subfunctions in each function at each
resolution depends on the parameters wb and wu, which are
obtained experimentally. wb and wu are not independent, and
the equation wu = w − wb governs their relationship. Our
Matlab script generates and synthesizes the Verilog files for
different values of wb to find the best value that minimizes
the area × delay hardware cost.

Some applications—e.g., machine learning and computer
vision—can tolerate computational error to some extent, and
computations can be performed approximately. In such cases,
our method can be deployed well to implement arithmetic
hardware cores. As the results in Table II show, SimBU-
Approx improves the area × delay cost of FloPoCo-LUT,
HBU, and FloPoCo-PPA on average by 60%, 56%, and 35%,
respectively, again, when averaged over 8-, 10-, and 12-bit
resolutions. As seen in the table, our method fully utilizes the
error budget to simplify the hardware architecture and reduce

8

Fig. 7: Graphs of the implemented univariate nonlinear func-
tions.

the cost further compared to FloPoCo-PPA, which was given
the same error budget but could not fully utilize it. The gap
between our A × D and that of FloPoCo-PPA gets smaller
as the bit width increases. FloPoCo-PPA is well-known to be
good at higher resolutions, and less so on lower resolutions,
and our results show that too.

The authors in [18] show that HBU performs better than
the conventional binary, PU [12], and SC methods [13]–[16]
at 8-, 10-, and 12-bit resolutions. Therefore, we can conclude
that our method also outperforms all these previous works
at 8-, 10-, and 12-bit resolutions. It is worth noting that
piecewise polynomial approximation methods (e.g., FloPoCo-
PPA) are used to reduce the size and complexity of a function’s
lookup table by approximating the pieces of the function with
polynomials. Yet, these methods eventually need to store the
coefficients of the polynomials in lookup tables. As our results
show, SimBU-Exact can efficiently implement the functions
without accuracy loss. Therefore, one might combine a PPA
method and SimBU-Exact to implement a function at higher
resolutions more efficiently. For instance, FloPoCo-PPA can be
used to reduce the complexity of a 32-bit function’s lookup
table, and then SimBU-Exact might be used to implement the
resulting lookup tables at lower hardware cost with no further
approximation error.

B. Multivariate Functions

We evaluated our SimBU-Exact and SimBU-Approx meth-
ods and compared them to HBU [18] for multivariate functions
by implementing a number of 2-dimensional functions at
w = 8-bit resolution. All the designs were synthesized on
Xilinx’s Kintex-7 FPGA using Vivado 2020.2 default design
flow. Table IV and Fig. 8 show the equations and graphs of
the implemented multivariate nonlinear functions, respectively.
The functions were evaluated on the unit interval x ∈ [0, 1),
and the outputs were scaled such that they range in the unit
interval f ∈ [0, 1).

The idea of implementing multivariate functions using PU
was proposed in [11], [12]. However, other unary methods
can be extended to multivariate functions as well. Although the
authors in [17], [18] did not provide the results of implementa-

Fig. 8: Graphs of the implemented multivariate nonlinear
functions.

tion of any multivariate functions using HBU, we implemented
the multivariate functions shown in Table IV using both PU
and HBU methods, besides SimBU-Exact and SimBU-Approx.
Since the area × delay hardware cost of HBU was by far better
than PU, we only compared our method to HBU.

Table V shows the hardware cost and accuracy of each
implemented function using HBU, SimBU-Exact, and SimBU-
Approx methods. The table shows that SimBU-Exact improves
the area × delay hardware cost of HBU on average by 78%
with no approximations and by 92% given the approximation
of the least significant bit. The improvement of our SimBU
method over HBU for multivariate functions is greater than
univariate functions, because unary methods in multivariate
functions require many AND and OR gates besides wires and
XOR gates, and our method can reduce the number of such
gates by reducing the number of subfunctions. Table VI shows
the number of subfunctions before and after the self-similarity
measures using our proposed method.

V. APPLICATION

Nonlinear functions are frequently used in many applica-
tions such as machine learning and image processing. For
instance, Transformers [36], which are deep learning mod-
els, heavily use nonlinear functions GELU, Softmax, and
LayerNorm. Many works have been proposed to accelerate
such nonlinear operations in BERT (bidirectional encoder
representations from transformers) as a transformer [19], [37]–
[39]. In our previous work [19], we demonstrated how an
approximate HBU method can benefit nonlinear operations
in BERT. The sometimes large maximum absolute errors
introduced by that work might not be an issue in machine
learning applications that possess intrinsic error tolerance
characteristics [40]–[42]. However, maximum absolute error
can directly impact accuracy in many applications that are
more sensitive to approximations.

In this section, we evaluate our method on two different
image processing applications: homomorphic filtering and
Robert’s cross edge detection. All designs were synthesized on
Xilinx’s Kintex-7 FPGA using Vivado 2020.2 default design
flow.

A. Homomorphic Filtering

In PET or CT scans, the ability to find hot spots without
them obscuring nearby details is of vital importance. Unfortu-
nately, hot spots usually add multiplicative noise to an image,

9

TABLE II: Univariate nonlinear functions’ hardware cost and accuracy results. Note that the maximum error in the exact methods
is constant because that is the quantization error based on the bit resolution. In the approximate methods, the maximum error
is bounded by design.

Exact Methods

8-bit 10-bit 12-bit
FloPoCo-LUT [10]

Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE

Log 29 1.40 40.54 1.94E-03 1.38E-06 137 2.03 278.38 4.88E-04 8.35E-08 508 2.49 1,262.89 1.22E-04 4.89E-09

Exp 29 1.53 44.43 1.95E-03 1.23E-06 133 2.02 268.79 4.88E-04 7.95E-08 468 2.43 1,136.30 1.22E-04 4.94E-09

Sigmoid 24 1.39 33.36 1.95E-03 1.28E-06 97 2.01 194.97 4.88E-04 8.24E-08 379 2.48 939.16 1.22E-04 4.99E-09

GELU 25 1.37 34.13 1.95E-03 1.46E-06 114 1.97 224.35 4.88E-04 7.87E-08 462 2.41 1,115.27 1.22E-04 5.07E-09

Sin 29 1.40 40.51 1.95E-03 1.44E-06 126 2.02 254.27 4.88E-04 7.36E-08 533 2.47 1,318.11 1.22E-04 4.92E-09

Sqr 27 1.53 41.34 1.95E-03 1.22E-06 135 2.02 272.70 4.78E-04 7.74E-08 574 2.50 1,433.85 1.22E-04 4.94E-09

Average 39.05 248.91 1,200.93

8-bit 10-bit 12-bit
HBU [18]

Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE

Log 31 1.54 47.59 1.94E-03 1.38E-06 72 2.84 204.19 4.88E-04 8.35E-08 318 3.31 1,053.22 1.22E-04 4.89E-09

Exp 28 1.53 42.92 1.95E-03 1.23E-06 64 2.83 181.31 4.88E-04 7.95E-08 279 3.38 943.02 1.22E-04 4.94E-09

Sigmoid 24 1.39 33.36 1.95E-03 1.28E-06 96 2.01 193.06 4.88E-04 8.24E-08 268 3.30 884.94 1.22E-04 4.99E-09

GELU 27 1.30 35.18 1.95E-03 1.46E-06 83 2.75 228.58 4.88E-04 7.87E-08 267 3.35 895.52 1.22E-04 5.07E-09

Sin 31 1.65 51.27 1.95E-03 1.44E-06 92 2.86 263.12 4.88E-04 7.36E-08 544 3.77 2,051.97 1.22E-04 4.92E-09

Sqr 28 1.24 34.72 1.95E-03 1.22E-06 68 2.71 184.42 4.78E-04 7.74E-08 300 3.39 1,017.30 1.22E-04 4.94E-09

Average 40.84 209.11 1,140.99

8-bit 10-bit 12-bit
SimBU-Exact (our method)

Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE

Log 20 2.34 46.70 1.94E-03 1.38E-06 70 2.51 175.56 4.88E-04 8.35E-08 227 3.02 685.31 1.22E-04 4.89E-09

Exp 18 2.21 39.73 1.95E-03 1.23E-06 62 2.52 156.24 4.88E-04 7.95E-08 239 2.78 663.70 1.22E-04 4.94E-09

Sigmoid 26 1.39 36.24 1.95E-03 1.28E-06 74 2.52 186.70 4.88E-04 8.24E-08 242 2.95 713.66 1.22E-04 4.99E-09

GELU 25 1.37 34.13 1.95E-03 1.46E-06 70 2.55 178.22 4.88E-04 7.87E-08 242 3.03 732.29 1.22E-04 5.07E-09

Sin 21 1.38 29.00 1.95E-03 1.44E-06 75 1.82 136.50 4.88E-04 7.36E-08 291 3.13 911.12 1.22E-04 4.92E-09

Sqr 18 2.27 40.91 1.95E-03 1.22E-06 69 2.52 174.02 4.78E-04 7.74E-08 254 2.90 736.35 1.22E-04 4.91E-09

Average 37.79 167.87 740.41

Improvement Over FloPoCo-LUT 3.24% 32.56% 38.35%

Improvement Over HBU 7.48% 19.72% 35.11%

Approximate Methods

8-bit 10-bit 12-bit
FloPoCo-PPA [3], [10]

Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE

Log 48 4.67 224.06 2.90E-03 1.62E-06 67 4.27 286.02 7.95E-04 1.04E-07 108 5.39 581.69 2.05E-04 6.01E-09

Exp 48 4.51 216.48 3.27E-03 1.82E-06 62 4.29 265.67 8.81E-04 1.35E-07 97 4.91 476.46 2.00E-04 6.73E-09

Sigmoid 41 3.25 133.29 3.53E-03 1.51E-06 61 4.33 264.31 8.56E-04 9.77E-08 116 5.08 589.74 2.37E-04 6.38E-09

GELU 41 3.32 136.20 2.65E-03 1.88E-06 59 4.31 254.00 7.93E-04 1.12E-07 104 5.28 548.91 2.05E-04 7.07E-09

Sin 39 3.32 129.36 2.77E-03 1.95E-06 60 4.39 263.16 8.78E-04 1.11E-07 101 5.21 525.71 2.28E-04 7.10E-09

Sqr 26 3.53 91.70 3.65E-03 2.58E-06 48 4.11 197.47 8.68E-04 1.25E-07 63 3.94 247.91 2.39E-04 9.25E-09

Average 155.18 255.11 495.07

8-bit 10-bit 12-bit
SimBU-Approx (our method)

Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE

Log 19 1.94 36.86 3.88E-03 3.05E-06 28 2.21 61.99 9.77E-04 1.67E-07 122 3.25 396.50 2.42E-04 9.27E-09

Exp 16 2.20 35.15 3.79E-03 2.60E-06 25 2.21 55.28 9.75E-04 1.69E-07 94 3.64 341.78 2.43E-04 1.05E-08

Sigmoid 14 1.98 27.69 3.86E-03 1.78E-06 52 2.59 134.78 9.67E-04 1.26E-07 155 3.48 539.87 2.44E-04 8.15E-09

GELU 14 1.98 27.66 3.75E-03 1.89E-06 41 2.45 100.41 9.76E-04 1.25E-07 142 2.81 399.02 2.44E-04 7.87E-09

Sin 21 1.38 29.00 1.95E-03 1.44E-06 75 1.82 136.50 4.88E-04 7.36E-08 164 3.51 576.13 2.44E-04 1.10E-08

Sqr 17 2.19 37.30 3.87E-03 2.41E-06 53 2.81 149.09 9.76E-04 1.72E-07 125 3.71 464.25 2.44E-04 1.03E-08

Average 32.28 106.34 452.93

Improvement Over FloPoCo-LUT 17.34% 57.28% 62.29%

Improvement Over HBU 20.97% 49.15% 60.30%

Improvement Over FloPoCo-PPA 79.20% 58.31% 8.51%

10

TABLE III: Number of subfunctions before (Total) and after
(Unique) the proposed self-similarity measures in the univari-
ate nonlinear functions.

SimBU-Exact
8-bit 10-bit 12-bit

Total Unique Total Unique Total Unique

Log 64 5 128 35 512 39

Exp 64 5 256 5 1024 5

Sigmoid 2 2 256 16 1024 16

GELU 2 2 256 11 512 53

Sin 4 2 4 2 128 64

Sqr 64 7 256 8 1024 8

SimBU-Approx
8-bit 10-bit 12-bit

Total Unique Total Unique Total Unique

Log 32 3 64 7 128 16

Exp 64 1 64 5 256 7

Sigmoid 64 2 256 4 512 9

GELU 64 1 128 3 512 4

Sin 4 2 4 2 512 7

Sqr 64 1 128 5 256 11

TABLE IV: Equations of the implemented multivariate non-
linear functions.

Name Equation

Gaussian 1

2π
√
det Σ

exp(− 1
2
(

x
y

− µ)TΣ−1(

x
y

− µ))

SinCos 1 + sin(2πx)× cos(2πy)

Distance
√

x2 + y2

making it harder to distinguish other nearby details. Due to
it being multiplicative, applying simple linear filters on these
images would not be sufficient for removing the noise. An
example of such an image is shown in Fig. 11a, where the
full-body PET scan shows two hot spots. The primary issue
is that these hot spots dominate the dynamic range, making
other features near the brain and lung dimmer and blurrier.
Homomorphic filtering was designed to fix such issues by
filtering out the multiplicative noise while also rectifying the
dynamic range. Homomorphic filtering also has applications
in neurocomputing to decode information from the spiking
sequence of a neuron model [43], but for this work we
will explore homomorphic filtering as an image enhancement
technique.

Assuming an illumination-reflectance model [44], an image
is decomposed as a product of the illumination i(x, y) and
reflectance r(x, y).

f(x, y) = i(x, y)× r(x, y)

The illumination is the key feature that we want to preserve
(e.g., hot spots and edges of organs), while reflectance has
the high frequency multiplicative noise we want to remove.
Due to both illumination and reflectance being combined
multiplicatively, a linear filter cannot be applied directly to
f(x, y) without removing some information in illumination.

TABLE V: Multivariate nonlinear functions’ hardware cost
and accuracy results.

Exact Methods

HBU [18]
8-bit

Area Delay A × D MaxErr MSE

Gaussian 18120 7.03 127,347.36 1.95E-03 1.28E-06

SinCos 8462 7.14 60,444.07 1.95E-03 1.29E-06

Distance 5354 6.31 33,783.74 1.95E-03 1.29E-06

Average 73,858.39

SimBU-Exact (our method)
8-bit

Area Delay A × D MaxErr MSE

Gaussian 5500 5.02 27,632.00 1.95E-03 1.28E-06

SinCos 2372 4.44 10,529.31 1.95E-03 1.29E-06

Distance 2370 4.80 11,385.48 1.95E-03 1.29E-06

Average 16,515.60

Improvement Over HBU 77.64%

Approximate Method

SimBU-Approx (our method)
8-bit

Area Delay A × D MaxErr MSE

Gaussian 2123 3.86 8,190.53 3.91E-03 2.63E-06

SinCos 1996 3.74 7,471.03 3.90E-03 2.52E-06

Distance 336 4.53 1,522.08 3.91E-03 2.43E-06

Average 5,727.88

Improvement Over HBU 92.24%

TABLE VI: The number of subfunctions before (Total) and
after (Unique) the proposed self-similarity measures in the
multivariate nonlinear functions.

SimBU-Exact
8-bit

SimBU-Approx
8-bit

Total Unique Total Unique

Gaussian 4096 1393 Gaussian 4096 29

SinCos 4096 697 SinCos 4096 54

Distance 4096 130 Distance 1024 14

This can be resolved by first applying a log-transformation,
making the illumination and reflectance additive.

ln(f(x, y)) = ln(i(x, y)) + ln(r(x, y))

We can then remove noise by applying linear filters and then
taking an exponential to get our cleaned final image, as shown
in Fig. 11b. As seen in the figure, homomorphic filtering not
only controlled the dynamic range between the hotspots and
the rest of the image, but also applied noise removal to make
the features within the PET scan more legible.

Typically, the filtering is done by applying an FFT to the
log-transformed image, but for our FPGA application, we are
doing it in the spatial domain by convolving a 5 × 5 high-
pass filter kernel. This allows us to evaluate an end-to-end
homomorphic filter which works on a 5 × 5 sized window that
moves across the entire image. We deployed our method and
previous works such as FloPoCo-LUT, HBU, and FloPoCo-
PPA to replace the nonlinear functions described below to
compare the area × delay hardware cost and accuracy. A block

11

diagram of this is shown in Fig. 9. The Log and Exp layers
perform the following functions at 10-bit resolution:

• Log: ln(x+ 1)

• Exp: (1−2−10

exp(1))× exp(2x− 1)

To support FloPoCo-PPA [3], [10] and get good accuracy, the
functions and convolution output are re-scaled and shifted such
that the input and output ranges of each nonlinear function
fit the range [0, 1). Since each input and output scale is a
predetermined constant, we do not require more operations to
scale our quantized values, and these scaling constants are built
into the nonlinear functions. Since the convolution outputs a
signed fixed-point value, we add and shift the output to convert
the range to [0, 1) before passing through the Exp layer, in
which 2x−1 corrects for the range change. In the convolution,
bit lengths are automatically extended to ensure no overflow in
multiplication and accumulation. Assuming a Gaussian input,
a predetermined shift amount was calculated to do a saturate
shift on the accumulated output to bring the bit-length back
down for the Exp layer.











  





Fig. 9: Block diagram of the homomorphic filtering on a 5×5
window.



  









Fig. 10: Block diagram of the Robert’s Cross edge detection.

able VII shows the hardware cost and accuracy of the
implemented homomorphic filter. For accuracy results, we
compared our final image against the reference result where
the operations are being done in floating-point. Since the
function in the Exp layer is only applied once to the output
pixel, we implemented this layer using SimHBU-Exact for
both variants of SimHBU. As seen in the table, our SimBU-
Exact method reduces the area × delay hardware cost of
HBU by 7% with the same quality, while our SimBU-Approx
method reduces the hardware cost by 44% with a 0.3% quality
loss. Compared to FloPoCo-PPA, our SimBU-Approx method
reduces the hardware cost by 46% with higher quality. The
final image with SimBU-Approx is shown in Fig. 11c, and it
is nearly equivalent to the reference image.

(a) Input (b) Floating Point (c) Our method

Fig. 11: Test images of a PET scan in the homomorphic
filtering. Input image sourced from [44]. Part (b) shows
the homomorphic filtering applied to the input image using
floating point computations. Part (c) shows the results from
the homomorphic filtering using the SimBU-Approx method.

TABLE VII: Homomorphic filtering’s hardware cost and ac-
curacy results.

Exact Methods

Method Area Delay A × D MSE PSNR

FloPoCo-LUT [10] 4258 22.63 96,341.51 4.37E-01 51.72

HBU [18] 2738 24.03 65,796.88 4.37E-01 51.72

SimBU-Exact (our method) 2538 23.99 60,879.01 4.37E-01 51.72

Approximate Methods

Method Area Delay A × D MSE PSNR

FloPoCo-PPA [3], [10] 2430 27.83 67,629.33 4.62E-01 51.48

SimBU-Approx (our method) 1538 23.76 36,535.19 4.56E-01 51.54

B. Robert’s Cross Edge Detection

Robert’s cross [45] is a gradient-based operation performed
to detect edges in an image as follows:

G(x, y) =

√
Gx

2(x, y) +Gy
2(x, y) (11)

where Gx(x, y) and Gy(x, y) are given by:

Gx(x, y) = p(x, y)− p(x+ 1, y + 1)

Gy(x, y) = p(x+ 1, y)− p(x, y + 1)

where p(x, y) denotes an input pixel. Although this simple
operator can detect edges, it is highly sensitive to noise [45].

We deployed our method and the previous HBU work
to implement the nonlinear function of the Robert’s cross
operation described in Fig. 10. The Dist layer performs the
following function at 8-bit resolution:

• Dist:
√
x2 + y2

It is worth noting that we could perform the Robert’s cross
operation by implementing a 4-dimensional nonlinear function
or by breaking Eq. 11 and implementing three 1-dimensional
nonlinear functions, which might result in better hardware
cost. However, here we implemented it using a 2-dimensional
nonlinear function to evaluate the trade-off between accuracy
and hardware cost provided by our method for multivariate
functions in such an error-sensitive application. In general,

12

Fig. 12: Comparison of hardware cost in the implemented
nonlinear functions and applications.

TABLE VIII: Robert’s cross edge detection’s hardware cost
and accuracy results.

Exact Methods

Method Area Delay A × D MSE PSNR

HBU [18] 5416 8.30 44,947.38 6.98E-06 51.56

SimBU-Exact (our method) 2483 8.56 21,247.03 6.98E-06 51.56

Approximate Method

Method Area Delay A × D MSE PSNR

SimBU-Approx (our method) 546 6.84 3,733.00 7.53E-06 51.23

we only claim our method to be effective when dealing
with univariate functions for sure, and to a certain extent,
2-dimensional functions. Going beyond two variables might
work for certain functions, but it has the risk of exponentially
large solution space.

Table VIII shows the hardware cost and the accuracy of
the implemented Robert’s cross edge detection. We can see
that our SimBU-Exact method improves the area × delay
hardware cost of HBU by 53% with the same quality, and
our SimBU-Approx method improves that by 92% with a
0.6% quality loss. Fig. 10 shows the input and output images
generated using floating-point computations and our SimBU-
Approx method. Finally, Fig. 12 compares the area × delay
hardware cost of the implemented nonlinear functions and
applications.

VI. CONCLUSIONS

In this work, we proposed a method to implement nonlinear
functions given a target maximum absolute error. It provides

(a) Input (b) Floating Point (c) Our method

Fig. 13: Test images in the Robert’s cross edge detection. Part
(b) shows the Robert’s cross edge detection applied to the
input image using floating point computations. Part (c) shows
the results from the Robert’s cross edge detection using the
SimBU-Approx method.

a trade-off between accuracy and hardware cost by reducing
the number of subfunctions in the previous HBU (hybrid
binary-unary) method and replacing them with simple bitwise
transformers. In terms of area × delay hardware cost, our
results show that our method outperforms the FloPoCo-LUT
(lookup table) and HBU methods with no approximation error,
and by approximating the least significant bit and using the
same error budget, it outperforms the FloPoCo-PPA (piecewise
polynomial approximation) method at up to 12-bit resolutions
as well. Finally, we implemented homomorphic filtering and
Robert’s cross edge detection as image processing applications
to show the benefits of our method compared to previous
works. Without loss of quality, our method implemented both
applications at lower hardware cost than the previous exact
and approximate methods.

ACKNOWLEDGMENTS

This material is based upon work supported in part by
Cisco Systems, Inc. under grant number 1085913, and by
the National Science Foundation under grant number PFI-TT
2016390.

REFERENCES

[1] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Low-cost
sorting network circuits using unary processing,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 26, no. 8, pp. 1471–
1480, 2018.

[2] R. Andraka, “A survey of cordic algorithms for fpga based computers,”
in Proceedings of the 1998 ACM/SIGDA Sixth International Symposium
on Field Programmable Gate Arrays, ser. FPGA ’98. New York,
NY, USA: Association for Computing Machinery, 1998, p. 191–200.
[Online]. Available: https://doi.org/10.1145/275107.275139

[3] J. Detrey and F. de Dinechin, “Table-based polynomials for fast hard-
ware function evaluation,” in 2005 IEEE International Conference on
Application-Specific Systems, Architecture Processors (ASAP’05), 2005,
pp. 328–333.

[4] H. Dong, M. Wang, Y. Luo, M. Zheng, M. An, Y. Ha, and H. Pan,
“Plac: Piecewise linear approximation computation for all nonlinear
unary functions,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 28, no. 9, pp. 2014–2027, 2020.

[5] Y. Tian, T. Wang, Q. Zhang, and Q. Xu, “Approxlut: A novel approxi-
mate lookup table-based accelerator,” in 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2017, pp. 438–443.

[6] J. T. Butler, C. Frenzen, N. Macaria, and T. Sasao, “A fast
segmentation algorithm for piecewise polynomial numeric function
generators,” Journal of Computational and Applied Mathematics,
vol. 235, no. 14, pp. 4076–4082, 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S037704271100121X

13

[7] D.-U. Lee, R. C. C. Cheung, W. Luk, and J. D. Villasenor, “Hierarchical
segmentation for hardware function evaluation,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 17, no. 1, pp. 103–116,
2009.

[8] B. Adcock, S. Brugiapaglia, and C. G. Webster, “Compressed sensing
approaches for polynomial approximation of high-dimensional func-
tions,” in Compressed Sensing and Its Applications: Second Interna-
tional MATHEON Conference 2015. Springer, 2017, pp. 93–124.

[9] C. Pradhan, M. Letras, and J. Teich, “Efficient table-based function
approximation on fpgas using interval splitting and bram instantiation,”
ACM Trans. Embed. Comput. Syst., jan 2023, just Accepted. [Online].
Available: https://doi.org/10.1145/3580737

[10] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with flopoco,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, 2011.

[11] S. Mohajer, Z. Wang, and K. Bazargan, “Routing magic: Performing
computations using routing networks and voting logic on unary
encoded data,” in Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
77–86. [Online]. Available: https://doi.org/10.1145/3174243.3174267

[12] S. Mohajer, Z. Wang, K. Bazargan, and Y. Li, “Parallel unary
computing based on function derivatives,” ACM Trans. Reconfigurable
Technol. Syst., vol. 14, no. 1, oct 2020. [Online]. Available:
https://doi.org/10.1145/3418464

[13] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Transactions on Computers, vol. 60, no. 1, pp. 93–105, 2011.

[14] Z. Wang, N. Saraf, K. Bazargan, and A. Scheel, “Randomness meets
feedback: Stochastic implementation of logistic map dynamical system,”
in Proceedings of the 52nd Annual Design Automation Conference, ser.
DAC ’15. New York, NY, USA: Association for Computing Machinery,
2015. [Online]. Available: https://doi.org/10.1145/2744769.2744898

[15] S. A. Salehi, Y. Liu, M. D. Riedel, and K. K. Parhi, “Computing
polynomials with positive coefficients using stochastic logic by double-
nand expansion,” in Proceedings of the on Great Lakes Symposium on
VLSI 2017, ser. GLSVLSI ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 471–474. [Online]. Available:
https://doi.org/10.1145/3060403.3060410

[16] P. Li, D. J. Lilja, W. Qian, M. D. Riedel, and K. Bazargan, “Logical
computation on stochastic bit streams with linear finite-state machines,”
IEEE Transactions on Computers, vol. 63, no. 6, pp. 1474–1486, 2014.

[17] S. R. Faraji and K. Bazargan, “Hybrid binary-unary hardware
accelerator,” in Proceedings of the 24th Asia and South Pacific Design
Automation Conference, ser. ASPDAC ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 210–215. [Online].
Available: https://doi.org/10.1145/3287624.3287706

[18] ——, “Hybrid binary-unary hardware accelerator,” IEEE Transactions
on Computers, vol. 69, no. 9, pp. 1308–1319, 2020.

[19] A. Khataei, G. Singh, and K. Bazargan, “Approximate hybrid binary-
unary computing with applications in bert language model and image
processing,” in Proceedings of the 2023 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
165–175. [Online]. Available: https://doi.org/10.1145/3543622.3573181

[20] ——, “Optimizing hybrid binary-unary hardware accelerators using self-
similarity measures,” in 2023 IEEE 31th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM),
2023.

[21] J.-M. Muller, “Elementary functions and approximate computing,” Pro-
ceedings of the IEEE, vol. 108, no. 12, pp. 2136–2149, 2020.

[22] Y. Chen and H. Li, “Stochastic computing using amplitude and fre-
quency encoding,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 30, no. 5, pp. 656–660, 2022.

[23] M. H. Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel, “Performing
stochastic computation deterministically,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 12, pp. 2925–2938,
2019.

[24] A. Morán, L. Parrilla, M. Roca, J. Font-Rossello, E. Isern, and V. Canals,
“Digital implementation of radial basis function neural networks based
on stochastic computing,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 13, no. 1, pp. 257–269, 2023.

[25] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 37, no. 8, pp. 1515–1531, 2018.

[26] K. Chen, Y. Gao, H. Waris, W. Liu, and F. Lombardi, “Approximate
softmax functions for energy-efficient deep neural networks,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31,
no. 1, pp. 4–16, 2023.

[27] Y. Zhang, J. Qin, J. Han, and G. Xie, “Design of a stochastic computing
architecture for the phansalkar algorithm,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 32, no. 3, pp. 442–454,
2024.

[28] X. Wei and L. Xiu, “A vlsi digital circuit platform for performing
deterministic stochastic computing in the time dimension using fraction
operations on rational numbers,” IEEE Transactions on Emerging Topics
in Computing, vol. 11, no. 1, pp. 194–207, 2023.

[29] J. Wang, H. Chen, D. Wang, K. Mei, S. Zhang, and X. Fan, “A
noise-driven heterogeneous stochastic computing multiplier for heuristic
precision improvement in energy-efficient dnns,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 42,
no. 2, pp. 630–643, 2023.

[30] H. Guo, Y. Zhao, Z. Li, Y. Hao, C. Liu, X. Song, X. Li, Z. Du,
R. Zhang, Q. Guo, T. Chen, and Z. Xu, “Cambricon-u: A systolic
random increment memory architecture for unary computing,” in
Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 424–437. [Online].
Available: https://doi.org/10.1145/3613424.3614286

[31] M. Schulte and J. Stine, “Approximating elementary functions with
symmetric bipartite tables,” IEEE Transactions on Computers, vol. 48,
no. 8, pp. 842–847, 1999.

[32] F. de Dinechin and A. Tisserand, “Multipartite table methods,” IEEE
Transactions on Computers, vol. 54, no. 3, pp. 319–330, 2005.

[33] S.-F. Hsiao, C.-S. Wen, Y.-H. Chen, and K.-C. Huang, “Hierarchical
multipartite function evaluation,” IEEE Transactions on Computers,
vol. 66, no. 1, pp. 89–99, 2017.

[34] S.-F. Hsiao, P.-H. Wu, C.-S. Wen, and P. K. Meher, “Table size reduction
methods for faithfully rounded lookup-table-based multiplierless func-
tion evaluation,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 62, no. 5, pp. 466–470, 2015.

[35] M. Christ, L. Forget, and F. de Dinechin, “Lossless differential table
compression for hardware function evaluation,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 1642–1646,
2022.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[37] J. Yu, J. Park, S. Park, M. Kim, S. Lee, D. H. Lee, and J. Choi,
“Nn-lut: Neural approximation of non-linear operations for efficient
transformer inference,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, ser. DAC ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 577–582. [Online].
Available: https://doi.org/10.1145/3489517.3530505

[38] H. Khan, A. Khan, Z. Khan, L. B. Huang, K. Wang, and L. He, “Npe:
an fpga-based overlay processor for natural language processing,” arXiv
preprint arXiv:2104.06535, 2021.

[39] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer,
“I-bert: Integer-only bert quantization,” in Proceedings of the 38th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, M. Meila and T. Zhang, Eds., vol.
139. PMLR, 18–24 Jul 2021, pp. 5506–5518. [Online]. Available:
https://proceedings.mlr.press/v139/kim21d.html

[40] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of neural
networks using approximate multipliers,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 317–328,
2020.

[41] T. Na and S. Mukhopadhyay, “Speeding up convolutional neural
network training with dynamic precision scaling and flexible multiplier-
accumulator,” in Proceedings of the 2016 International Symposium on
Low Power Electronics and Design, ser. ISLPED ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 58–63. [Online].
Available: https://doi.org/10.1145/2934583.2934625

[42] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn:
Energy-efficient neuromorphic systems using approximate computing,”
in Proceedings of the 2014 International Symposium on Low Power
Electronics and Design, ser. ISLPED ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 27–32. [Online].
Available: https://doi.org/10.1145/2627369.2627613

[43] S. Orcioni, A. Paffi, F. Camera, F. Apollonio, and M. Liberti, “Automatic
decoding of input sinusoidal signal in a neuron model: High pass
homomorphic filtering,” Neurocomputing, vol. 292, pp. 165–173, 05
2018.

14

[44] R. Gonzalez and R. Woods, Digital Image Processing.
Pearson, 2018. [Online]. Available: https://books.google.com/books?
id=0F05vgAACAAJ

[45] L. S. Davis, “A survey of edge detection techniques,” Computer graphics
and image processing, vol. 4, no. 3, pp. 248–270, 1975.

Alireza Khataei received the B.Sc. degree in electri-
cal engineering from Amirkabir University of Tech-
nology (Tehran Polytechnic), Tehran, Iran, in 2021.
He is currently a Ph.D. student at the Department
of Electrical and Computer Engineering, University
of Minnesota, Minneapolis, MN, USA. He was a
nominee of the Best Paper Award at ISFPGA in
2024. His current research focuses on hardware ac-
celerator design for compute-intensive applications
using approximate computing.

Gaurav Singh received his Bachelors degree in
computer engineering from University of Minnesota,
Minneapolis, MN, USA, in 2018. He is currently
a Ph.D. candidate under Prof. Kia Bazargan at the
Department of Electrical and Computer Engineering,
University of Minnesota. His current research is
in hardware-software co-design for neural network
compression, with focus on using approximate and
unary computing hardware implementations.

Kia Bazargan received the B.Sc. degree in Com-
puter Science from Sharif University, Tehran, Iran,
and the M.S. and Ph.D. degrees in Electrical and
Computer Engineering from Northwestern Univer-
sity, Evanston, IL, USA, in 1998 and 2000, respec-
tively. He is currently the Leroy and Ruth Finger-
son Co-op Professor and the Director of the co-op
program at the College of Science and Egnineering,
and an Associate Professor with the Department of
Electrical and Computer Engineering at the Univer-
sity of Minnesota, Minneapolis, MN, USA. He was

a recipient of the U.S. National Science Foundation Career Award in 2004.
He has been on the Technical Program Committee of all four major FPGA
conferences (ISFPGA, FCCM, FPL, and FPT), as well as number of other
IEEE/ACM sponsored conferences, including ICCAD, DAC, and ICCD.

