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SUMMARY

Apomixis, or asexual reproduction through seeds, is frequent in nature but does not exist in any
major crop species — yet the phenomenon has captivated researchers for decades given its
potential for clonal seed production and plant breeding. A discussion on whether this field will
benefit from the continued study of natural apomicts is warranted given the recent outstanding
progress in engineering apomixis. Here, we summarize what is known about its genetic control
and the status of applying synthetic apomixis in agriculture. We argue there is still much to be
learned from natural apomicts, and learning from them is necessary to improve on current
progress and guarantee the effective application of apomixis beyond the few genera it has
shown promise in so far. Specifically, we stress the value of studying the repeated evolution of
natural apomicts in a phylogenetic and comparative -omics context. Finally, we identify
outstanding questions in the field and discuss how technological advancements can be used to
help close these knowledge gaps. In particular, genomic resources are lacking for apomicts, and

this must be remedied for widespread use of apomixis in agriculture.
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INTRODUCTION

Apomixis is defined as asexual reproduction through seeds and results in progenies that are
genetically identical to the mother plant'. Its regular application in diverse crops would
revolutionize agriculture as clonal F1 hybrid seeds with fixed heterosis can be indefinitely
preserved and generated at low cost®. It results in the immediate fixation of any desired
genotype, thus allowing further investment in more diverse germplasm and greatly shortening
breeding times*. Apomictic reproduction also has the potential to increase seed set in genotypes
that would otherwise be expected to be infertile (e.g., triploid and higher ploidy hybrids), as
evident by the main mode of reproduction of such individuals in some natural populations*. For
these reasons, there is interest in dissecting the molecular mechanisms underlying apomixis for
incorporation into breeding schemes. Many excellent reviews written in the last several years
have discussed the challenges pertaining to this goal and summarized current findings at the

genetic level mostly in a few apomictic model species>.

In contrast, the present perspective focuses on the importance of studying natural apomicts in
diverse flowering plants using emerging technologies. Decades of research has led to the
discovery of several apomixis genes in a small handful of model taxa; however, apomixis has
independently evolved more than one hundred times in more than half of the flowering plant
orders. In angiosperms, it has been documented in 34 orders, 80 families, and 326 genera’
(Figure 1) and is especially frequent in the Asterales, Rosales and Poales. Moving forward,
studying the repeated origins of apomixis across the phylogeny and within diversity collections
is a powerful approach to complement the discovery of novel pathways since various genes
have been shown to control the trait in different lineages!®'2. Gene discovery in non-model
apomictic plants using a wide phylogenetic framework doubly ensures the successful
application of apomixis. First, it complements synthetic approaches through discovery and
functional characterization of novel apomixis genes. Second, by examining apomixis in related
species to crops, it reduces the chances of pleiotropic effects caused by wide evolutionary
distances, thereby increasing the feasibility of introgressing the trait into genotypes that may

not be amenable to transformation.

THE GENETIC CONTROL OF APOMIXIS

The convergent nature of apomixis requires a brief review on the types and mechanisms of this
2
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complex trait. Apomixis is generally divided into two major types depending on the origin of
the embryo: sporophytic and gametophytic apomixis. These two types of apomixis have
independently evolved throughout the angiosperm phylogeny, with examples of families
exhibiting sporophytic apomixis including Orchidaceae and Rutaceae, and examples of families

exhibiting gametophytic apomixis including Asteraceae, Rosaceae, and Poaceae (Figure 1).

In sporophytic apomixis (also known as adventitious embryony), unreduced embryos originate
directly from somatic cells of the ovule. An embryo produced by sporophytic apomixis matures
alongside the fertilized sexual embryo and competes for resources from the developing
endosperm, which presents a challenge in achieving fully penetrant clonal seeds and thus
diminishes its appeal in plant breeding®. Sporophytic apomixis is frequent in Malpighiales,
Sapindales and Asparagales. Gametophytic apomixis consists of several components: 1)
apomeiosis, in which an ovule cell bypasses meiosis and recombination to produce an
unreduced embryo sac, 2) parthenogenesis, or embryo development without fertilization, and
3) endosperm formation, whether that be automatically (autogamy) or triggered by
fertilization of the central cell (pseudogamy). Gametophytic apomixis is further broken down
into apospory and diplospory, depending on the origin of the unreduced embryo sac. In
aposporic species, the unreduced embryo sac emerges from a somatic cell of the ovule that
assumes megagametophyte-like properties, and may coexist with the reduced (sexual) embryo
sac depending on the environment and genotype; ultimately these factors seem to govern which
mode of reproduction prevails'*'®. Diplospory is considered a deregulation of the sexual

process since the origin of unreduced female gametophytes is the megaspore mother cell’.

Apomixis has a complex evolutionary pattern, which is reflected in the genetic architecture of
the trait. It should be stated that apomeiosis and parthenogenesis have historically been treated
as qualitative traits, even though research clearly indicates variation in penetrance due to
genetic background®”. Genetic mapping studies have shown different genes separately
controlling each of the three components, and genetic loci regulating the components of
apomixis have been found to be linked and more often inherited together (Poaceae!!!%2,
Hypericaceae?), or unlinked, exhibiting a 1:1 segregation pattern in subsequent generations
(Asteraceae, Rosaceae'’*-2%). These loci may be in hemizygous regions surrounded by
repetitive sequences, so recombination may be suppressed (but not always - e.g., Taraxacum)
and large mapping populations may be necessary to identify them since recombination between
tightly-linked loci is rare?'?*. While these rare events have been instrumental to our current

understanding of the genetic architecture of apomixis, genetic mapping methods are laborious
3
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and time-consuming — not to mention extraordinarily complicated for polyploids, a notable
characteristic of most apomicts’. Consequently, the master determinants for parthenogenesis, a
component of apomixis, have only been definitively validated in two apomictic species and
‘apomeiosis’ and ‘autonomous endosperm development’ genes have yet to be discovered in
natural apomicts. For a more thorough discussion of candidate genetic determinants relevant to
apomixis, readers are encouraged to review Table 1 and references therein from Xu ez al. 2022.
In the next sections, we briefly highlight what is known for the genetic control of apomixis
components and how these findings have been used to improve synthetic apomixis, all while

making the case for further study of natural apomicts.

Apomeiosis-related genes

Cloning the causal genes in apomicts has been a historically challenging endeavor due to
limited genomic resources, frequent occurrences of polyploidy, and low recombination between
genetic loci. Mainly associations have been made between loci or candidate genes and
apomeiosis®. For example, a candidate identified in Poa pratensis, called APOSTART_6 (a
total of 15 APOSTART cDNAs have been identified), co-segregates with apomixis and shows
specific expression in floral tissues?. Similarly, a long non-coding RNA theorized to regulate
expression of QUI-GON JINN, a gene that appears to affect aposporous embryo sac formation,
co-segregates with apospory in Paspalum notatum?. The DIPLOSPOROUS (DIP) locus
associates with unreduced female gamete formation in Taraxacum®2¢ and the LOSS OF
APOMEIOSIS (LOA) locus regulates apospory in Pilosella piloselloides (formerly Hieracium
praealtum)*. Strong but correlative evidence attributed certain APOLLO alleles with apomicts
in a diverse collection of Boechera accessions?’*°, and recent experiments indicated the 5° UTR
of the APOLLO apomictic allele is important for expression in reproductive tissues in
Arabidopsis®!. Still, it remains to be seen if these regulatory features and/or the APOLLO
protein sequence are necessary and sufficient to induce apomeiosis in either Boechera or
Arabidopsis. Arguably the most promising evidence for candidate apomeiosis genes was
recently demonstrated through the characterization of Arabidopsis TRIMETHYLGUANOSINE
SYNTHASEI (TGS1). A TGSI homolog was first identified as a candidate for apospory in
apomictic Pasplaum notatum, and the null allele of the Arabidopsis homolog results in the
emergence of an extra cell exhibiting developmental properties similar to the megaspore mother

cell MMC)*,
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Induction of parthenogenesis

In contrast to apomeiosis, identification of genes governing the second component of
gametophytic apomixis - parthenogenesis - has been met with tremendous success in recent
years. The first breakthrough in decades emerged through investigation of the natural apomict
Pennisetum squamulatum (Poaceae), when several BABY BOOM-LIKE (BBML) AP2
transcription factors were discovered in the Apospory-Specific Genomic Region (ASGR)''.
PsASGR-BBML transgenes were able to induce parthenogenesis in monocots like pearl millet'!,
rice’, and maize*, and there is also evidence to suggest conservation of BBML genes in
apospory-associated loci for other Panicoideae grasses, like Cenchrus ciliaris (Buffel grass)
and Brachiaria humidicola (Koronivia grass)*>2°. For eudicots, PSASGR-BBML failed to induce
parthenogenesis in Arabidopsis** but could trigger parthenogenesis in tobacco at a low

frequency (1-9%), depending on the egg cell-specific promoter used to drive its expression?’.

Another major step toward understanding parthenogenesis in natural apomicts was achieved
when a gene was identified and cloned from Taraxacum officinale’>. PARTHENOGENESIS
(PAR) encodes a putative transcriptional repressor containing a K2-2 zinc finger and an EAR-
domain. A MITE (Miniature Inverted-repeat Transposable Element) insertion in the ToPAR
promoter is essential for its expression in the apomictic dandelion egg cell. Notably, a MITE
was also detected in the promoter of PAR genes in apomictic Pilosella piloselloides, suggesting
parallel evolution of apomixis driven by MITE insertion in Asteraceae'. Interestingly, several
MITE insertions in the promoter of a RWP-RK gene are thought to induce nucellar
embryogenesis (sporophytic apomixis) in Citrus and Fortunella®. Taken together, the
identification of PSASGR-BBML and ToPAR confirms the multiple origins of (gametophytic)
apomixis since nature has commandeered different genes in different lineages for asexual

reproduction.

Endosperm development in apomicts

Endosperm is the major storage organ for nourishing the developing embryo or seedling —
without it, the seed will abort*. Most apomictic species are pseudogamous, meaning endosperm
formation requires fertilization of the central cell*’, and only a few apomictic Asteraceae species
are known to spontaneously form endosperm (autonomous endosperm) without fertilization. In

the case of autonomous endosperm formation, the maternal genome is in excess relative to the
5
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typical 2:1 maternal:paternal endosperm ratio required for most sexual species*'. Some
pseudogamous apomicts are also able to tolerate deviations from this ratio***, and
understanding these relaxed endosperm constraints will be important for interploidy crosses
and for introgressing apomictic traits into crops. However, identifying genes for endosperm
formation have been largely unsuccessful. One study showed a negative correlation between
expression levels of a FERTILIZATION INDEPENDENT ENDOSPERM (FIE) homolog with
apomictic seed formation in Malus hupehensis*, and a more recent one implicated an isogene
of ORIGIN OF RECOGNITION COMPLEX 3 (ORC3) in Paspalum apomicts in relaxing the
endosperm balance ratio requirement*. A dominant genetic locus for autonomous endosperm
formation was mapped in Hieracium and Taraxacum, but the variable penetrance of the trait

indicates additional genetic factors are likely involved!o4”.

ADVANCES IN SYNTHETIC APOMIXIS
Mitosis instead of Meiosis combined with haploid induction methods

During sexual reproduction, the diploid (2n) megaspore mother cell (MMC) undergoes meiosis
resulting in haploid gametes (1n) that contain reduced and recombined chromosomes (Figure
2A). After double fertilization, embryos will exhibit significant variation and are genetically
distinct from the mother plant. A major goal in plant breeding and biotechnology is to
circumvent meiosis to engineer synthetic apomixis. This trait became a feasible option for
asexual and clonal seed production after years of investigating meiotic mutants in the sexual
plant Arabidopsis*-2. Mutations in at least three genes (e.g., spoll-1/rec8/osdl) define the
genetic background of Mitosis instead of Meiosis (MiMe), which essentially phenocopies
apomeiosis*®. However, due to double fertilization, MiMe alone leads to the doubling of ploidy
levels in successive generations and must be coupled with either haploid induction techniques
or parthenogenesis for true asexual seed formation. Several haploid induction techniques have
been developed in combination with MiMe for double haploid creation and synthetic apomixis

(Figure 2B), respectively, and will be introduced in the following paragraphs.

Mitosis instead of Meiosis with parthenogenesis genes discovered in natural apomicts

The combination of parthenogenesis genes identified in natural apomicts and the MiMe system

has shown to be very successful in generating clonal seeds. Haploid induction rates depend on

6
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the BBM homolog used, the method to create egg-cell specific expression, the species, and the
genotype. Ectopic expression of BABYBOOM homologs (OsBBMs) in egg cells of rice led to
haploid induction rates between 3% (AtpDD45::0sBBM4) and 29% (AtpDD45::0OsBBM )34,
CRISPR/dCas9-mediated ZmBBM?2 egg cell specific activation led to ~2% haploid induction
in maize®, and ectopic expression of ZmBBMI driven by the egg cell-specific promoter
AtEC1 .2 achieved efficiencies of up to 74%3¢. ToPAR, the parthenogenesis gene isolated from
dandelion, has also been used to induce haploids in Setaria italica (foxtail millet) at a rate of

up to 10.2%°".

Aside from Arabidopsis, MiMe has been applied to rice’®*° and tomato “with different intended
outcomes for each crop. In tomato, researchers used MiMe to create tetraploid tomatoes with
enhanced heterosis, demonstrating the wide applicability of synthetic apomixis outside of
clonal seed production®. In rice, MiMe was implemented with the intention of obtaining fully
clonal seed — and until recently, it was met with limited success. The latest advancements
include a single CRISPR/Cas9 cassette containing multiple guide RNAs to create MiMe and
egg cell-specific expression of genes OsBBM and ToPAR, which has led to high rates of clonal
seed production in rice. sgMiMe_pAtECS:BBM1 and sgMiMe_pOsECS:BBM1 plants show
clonal seed rates up to 95%; however, these plants show a 16% reduction in fertility compared
to wild type®. Conversely, sgMiMe_pDD45:BBM4 plants have a low clonal seed production
rate of 1-2% but fertility is largely unaffected>®. Similar genetic constructs using the PAR gene
isolated from dandelion (sgMiMe_pAtEC1.1:ToPAR) resulted in the production of 40%-60%
clonal seeds with no significant impacts on fecundity®!. These frequencies were mostly stable
in respective generations, but improvements are needed to combat deleterious effects on
fertility. In the future, the co-expression of different parthenogenesis-related genes may result

in better penetrance of clonal seed production without fertility defects.

Other haploid induction methods combined with MiMe

Haploid induction can also occur via genome elimination of one of the parental genomes
(Figure 2C). One method includes the use of CENH3 mutants, deficient in functional
centromeric histone H3 protein (CENH3), which guides the assembly of kinetochores and
chromosome segregation®. CENH3 modification to induce haploids has been applied in
maize®, wheat® and other crops®. However, combining MiMe with CENH3 genome

elimination has only been achieved in Arabidopsis, and only 34% of the seeds were clonal after

7
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the first generation and 24% in the second®. This method also relies on the availability of
sexually-compatible cenh3 mutants for crossing with genotypes intended for asexual
propagation, thus testing its potential for clonal seed generation is currently limited. Still, it

could become a viable option for engineering synthetic apomixis in the future.

Other possibilities for haploid induction involve specific genetic factors of the pollen parent.
One of the most impactful includes a phospholipase A1l called ZmMTL/ZmPLAI/NLD, the gene
underlying the quantitative trait locus (QTL), ghirl, in maize haploid inducer line Stock 657-%.
Further study of the mutant implicated oxidative stress in a mechanism that leads to paternal
genome fragmentation before gamete fusion”. These researchers also identified ZmPODG635,
which encodes a sperm-specific peroxidase that modulates haploid induction. Soon thereafter,
mutants of another pollen-specific phospholipase, ZmPLD3, were shown to triple the haploid
induction rate when combined with null ZmMTL/ZmPLAI/NLD alleles’.

Another strategy for haploid induction might include a membrane protein first characterized in
Stock 6 called ZmDMP7?. Moreover, compared with the mtl single mutant, double mutants for
mtl dmp increase the haploid induction rates from ~1% to 7%">. DMP orthologs are also present
in dicots, and there are reports for loss-function DMP-like genes inducing haploids in
Arabidopsis”, tomato’™, Brassica napus, and tobacco’®, meaning these genes may have broader
potential for plant breeding in the future. As for the mechanism, AtDMPS8 and AtDMP9 were
shown to participate in the process of double fertilization. In the dmp8 dmp9 double mutant,
the fusion of mutant sperm cells with egg cells is especially defective, often resulting in a single,
preferential fertilization event of the central cell”. Similarly, ECSI and ECS2 encode egg cell-
specific endopeptidases that also regulate the double fertilization process and could be used in
haploid induction strategies. Double mutants ecs/ ecs2 show unsuccessful fusion of sperm cell
and egg nuclei after fertilization, thereby leading to maternal haploids’’8. Finally, mutants of
another gene regulating the double fertilization process, AtKPL, cause maternal haploid

induction”.

To our knowledge, only mtl has been used in combination with MiMe in a crop; unfortunately,
it had variable success in rice as only 9 of 145 progeny were true maternal clones and the seed-
setting rate was reduced to 6%*°. With more research, it is hoped that mutations in the genes
described above could be used in combination for high haploid induction rates and asexual seed

production.
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Necessity of autonomous endosperm development

It is debatable whether it is necessary to engineer autonomous endosperm formation, since in
agricultural settings pollen availability is usually not a limiting factor for production. However,
this trait is attractive for plant breeding for two reasons. First, pollen exclusion in autonomous
apomicts guarantees that the asexually-produced egg cell will not be fertilized. Second, it
facilitates the adoption of pollen-sterile plants to prevent pollen transfer and undesirable
introgression into sexual crop fields. On this front, research in rice demonstrated Osfiel and
Osfie2 double mutants exhibit a high frequency of asexual embryo and autonomous endosperm
formation® but embryo abnormality and lethality as well as incomplete stages of endosperm
development must be understood and remedied before the application of these genes in

synthetic apomixis.

A CASE FOR STUDYING APOMIXIS IN ITS PHYLOGENETIC CONTEXT

As outlined above, it has become clear in the past decade that haploid induction through genome
elimination and other methods has had limited success for usage in engineering apomixis, and
that the greatest gains were achieved using the synthetic MiMe system combined with
parthenogenesis genes discovered in natural apomicts. Therefore, it is in our best interest to
continue identifying loci governing the components of apomixis in natural apomicts to

complement synthetic approaches and guarantee broader use of apomixis in agriculture.

These observations warrant important considerations as researchers attempt MiMe in more
crops. It is largely unknown how the expansion and contraction of these gene families will
affect their predicted functions across lineages. Outcomes of gene duplication (e.g., through
whole genome duplication) include neo- and subfunctionalization®'. Thus, across larger
evolutionary distances, it is reasonably likely that the homologs of these genes identified in
Arabidopsis confer new or only partial functions in other lineages, which may introduce
pleiotropic defects — including loss of fertility. Duplications also introduce the technical
challenge of knocking out additional homologs of MiMe, while the identification of genes
administering apomeiosis (which are known to have dominant effects) in different lineages of
natural apomicts offers the potential of more reliably engineering the trait with a single gene.
Therefore, targeted study of natural apomicts within a phylogenetic clade that includes a major

crop should be top priority.
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Third-generation sequencing technologies and comparative genomics for the

identification of apomictic loci

Easily the largest hurdle for apomixis gene discovery is the lack of genomic resources for
complex, polyploid apomicts, for which no reference-quality genomes exist. However, we are
now well-equipped to remedy this problem with third-generation sequencing technologies and
comparative genomics. PacBio HiFi and Oxford Nanopore long-read sequencing regularly
enable the complete sequencing of large repetitive genomic regions, and the production of
haplotype- and subgenome-resolved genome assemblies is becoming routine, even for
polyploids®*#¢. Targeted efforts to create assemblies of related sexuals and apomicts followed
by whole genome sequence alignments should reveal regions of subgenomes or haplotypes that
are unique to apomicts. If the regions are hemizygous, synteny comparisons of haplotypes
within apomicts should provide further clues on the origin of these loci. Researchers should,
however, be cautious that genomic analyses are phylogenetically informed since the convergent
nature of apomixis presents the possibility of different causal genes in divergent species (Figure
3). In other words, lineage-specific information on the evolution of apomixis is needed to
prevent figurative and literal comparisons, for example of crabapples (exhibiting apospory) to

oranges (exhibiting adventitious embryony).

Evidence suggests apomictic reproduction is likely caused by genes with altered spatio-
temporal expression patterns residing in duplicated regions of genomes that share partial
synteny with sexual species!®!!22. These observations support the theory that apomixis is a
deviation from sexual reproduction, and that the latter represents the ancestral state®’. Questions
on when apomixis emerges and for how long it persists in certain populations can be answered
with increasing amounts of genomic resources and molecular dating techniques. Understanding
the stability of apomixis in nature should better ensure its stable inheritance in crop breeding
programs. At a finer scale, it is also critical that we understand the dynamics of apomictic loci
within genomes. On several occasions, these loci have been likened to the sex-determining
regions (SDRs) in dioecious flowering plants, and both apomixis and dioecy exhibit convergent
patterns of evolution®. SDRs are also characteristically repeat-rich, recombination-suppressed,
and sometimes hemizygous®*®°, and related species may show size, structural, and even location
variation for sex-linked regions as sequences are accumulated and lost”'. While it remains
largely unknown if apomictic loci show similar genome dynamics, such active processes may
explain the high birth-death rate of apomixis across lineages (Figure 1). The study of these

dynamics may also help describe the variation in penetrance of apomictic traits under certain
10
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environmental conditions, as the accumulation of repetitive sequence is associated with

transcriptional silencing®?.

Spatially-resolved transcriptomics to identify apomixis-related genes

Advances in transcriptomics should both (i) inform the selection of candidate genes for future
functional validation within apomixis-associated loci and (ii) aid in our understanding of
incomplete penetrance under certain conditions. The first point has already successfully been
put into practice by examining gene expression patterns around the time parthenogenesis
occurred in dandelion'®. While bulk RNA-sequencing has been useful to date, spatial
transcriptomics has the potential to revolutionize the field. For example, apomeiosis usually
occurs in a single cell. Observations in the cell’s spatial context at several developmental time
points and gene expression comparisons between related sexual and apomictic individuals
should divulge the molecular signals necessary for apomictic events to occur and assist with
candidate gene selection. Similar reasoning applies to parthenogenesis and endosperm
formation. Presently, most unbiased spatial transcriptomic techniques suffer from a lack of
cellular resolution - however, even this limitation is lifting with technologies like scStereo-
seq”** and the recently-announced 10X Genomics’ Visium HD (10X Genomics, Pleasanton).
However, neither the predecessor nor this new technology has been successfully applied in
plant tissues. Depending on the strength of the candidate genes identified and the availability
of equipment, other options for studying gene expression associated with the components of
apomixis include MERFISH?® and combinatorial approaches incorporating single-nuclei RNA-
sequencing and RNA in situ hybridization. While these techniques would significantly narrow
down a list of candidate genes for apomictic traits, the last step prior to applying genes to crops
would be functional validation using targeted mutagenesis. Techniques such as CRISPR-Cas9

to create null alleles would enable testing of promising candidates (Figure 3).

OUTSTANDING CHALLENGES FOR BROADER USE OF APOMIXIS IN
AGRICULTURE

In summary, further study of natural apomicts is needed to increase the momentum pioneers in
this field have gained so far. Although we are beginning to see promising results in a few
species, widespread use of apomixis in agriculture requires that we expand the breeding toolkit

through the discovery of apomictic genes in multiple lineages. To this end, we have identified
11
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major challenges that must be addressed (see Box 1). Since apomixis is a convergent
evolutionary trait with more potential cases waiting to be discovered, ample opportunities exist
for gene discovery. Flow cytometry seed screens (FCSS) have proven useful as a high-
throughput way to identify natural apomicts®, and low-pass sequencing methods are the next
to be applied °’ to compare progeny and mother genotypes. More genomic resources are needed
for apomicts, and the selection of genotypes for genome assembly should be based on their
relatedness to agriculturally-important sexuals and phylogenetic patterns of the origin(s) of
apomixis in these lineages. Assembling genomes of related species representing sexual
reproduction and asexual reproduction, followed by comparative genomics and
transcriptomics, should identify genetic variation unique to asexual individuals (Figure 3).
From our perspective, directing resources toward these approaches is the most promising for
identification of single genes controlling components of apomixis — including apomeiosis — and
ensuring the expected functions of genes between apomicts and their engineered or introgressed
sexual relatives. In other words, it is expected these directions will result in better ease of

application and reduced pleiotropic effects.

Finally, related to its stable integration into crop breeding programs, additional research into
the incomplete penetrance of apomixis is sorely needed. Most apomicts reproduce through
facultative apomixis, where both sexual and apomictic pathways occur in the same individual.
On multiple occasions, researchers have shown asynchronous development and/or
environmental conditions associated with the dominant mode of reproduction in facultative
apomicts'*1398% This variability is a repeated feature in natural apomicts, so in order to stably
integrate these genes and pathways into related crop species, highly- and lowly-penetrant
apomictic genotypes should be prioritized for further study. One high resolution strategy would
be to first identify and functionally validate genes involved in apomictic production (using the
strategies detailed in Figure 3), then examine the transcriptional and epigenetic changes in
apomicts with variable penetrance in contrasting environments, especially considering factors

such as photoperiod and temperature.

The field owes its success to the immense work of several generations of scientists who
intensely studied and developed model systems for apomixis. By complementing this work with
additional study of natural apomicts across the angiosperm phylogeny and high quality genomic
and transcriptomic resources, we are convinced that new strategies and tools for the application

of synthetic apomixis in diverse crop plants will be feasible soon.

12
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FIGURE LEGENDS

Figure 1. Apomixis is a convergent trait with documented cases scattered throughout the

flowering plant phylogeny.

Phylogenetic relationships of flowering plant orders according to the Angiosperm Phylogeny
Group classification IV are shown alongside a heat map with 5 columns. (a) Indicates the
number of families in the order with documented cases of apomixis, (b) indicates the number
of genera, followed by the number of cases of documented (c) apospory, (d) diplospory, and
(e) adventitious embryony. The color of each cell is proportional to the log number of counts.
Gray cells are instances where no known cases have been documented thus far. Data was taken
from the apomixis database created by Hojsgaard et al. (2014) and was recounted in September
2023. The Asterales, Rosales, and Poles are highlighted on the phylogeny as they contain most
known gametophytic apomicts. Certain clades as well as eudicots, monocots, and basal

angiosperms are also indicated.

Figure 2. Overview about strategies to engineer synthetic apomixis in crops.

(A) During sexual reproduction of crop plants like maize, the diploid (2n) megaspore mother

13



412
413
414
415
416
417
418
419
420
421
422

423

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

cell (MMC) undergoes meiosis producing reduced and recombined haploid (1n) gametes. After
double fertilization, the resulting seeds in the next generation will exhibit variation. (B) The
combination of the MiMe triple mutant system with ectopic expression of BBMs or ToPAR in
the egg cell enables the generation of clonal embryos and seeds. Unreduced egg cells develop
into diploid clonal embryos via parthenogenesis, while the 4n central cell can be fertilized with
unreduced 2n or haploid 1n sperm cells (pseudogamy), respectively. (C) Alternative strategies
to generate clonal embryos is to combine the MiMe system with defective sperm cells leading
to uni-parental (male) genome elimination. Defective sperm cells carry either mtl/pla/nld, dmp,
pod65 or pld3 mutants (above scenario) or a CENH3-defective mutant (bottom scenario)
leading to male chromosome segregation defects and ultimately their elimination. The

chromosome composition of the endosperm is unclear (question marks).

Figure 3. How comparative —omics and emerging technologies will accelerate the rate of
apomixis gene identification.

Step 1: Select related sexuals (sex) and apomicts (apo) for sequencing and haplotype-resolved
genome assemblies. Given apomictic alleles are usually dominant, it is expected at least one
haplotype from each apomict will carry the locus/loci responsible for asexual reproduction
(pink stars).

Step 2: Assess the phylogenetic relationships of each individual haplotype and subgenome,
treating them as separate entities with their own evolutionary patterns. If two related apomicts
share the same origin of apomixis, at least one haplotype from each would form a monophyletic
clade — this is the outcome represented in the hypothetical phylogeny on the right. In the
phylogeny on the left, no haplotypes from the apomicts (colored green and blue) form a
monophyletic clade, suggesting independent origins of apomixis. Since different origins may
signify different causal genes, additional sampling of related apomicts and sexuals would be
required for additional -omics comparisons.

Step 3: Compare probable apomictic (based on phylogenetic patterns) and sexual haplotypes
to identify genetic variation unique to apomictic haplotypes with a recent common ancestor.
Step 4: Use high-resolution techniques such as scRNA-sequencing and spatial transcriptomics
to further assist with identifying causal genes for apomixis and to understand the molecular
processes changed between sexual and apomictic reproduction. SCRNA-seq may identify
variable cell populations in the ovule between apomicts and sexuals (white arrow); however,

this technique results in a loss of spatial information. Developing and testing marker genes with
14
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traditional methods like RNA in-situ hybridization would be necessary to confirm cells’
positions. A much more powerful method would be the implementation of spatial
transcriptomics for gene candidate identification. Given the limitations of each method, a
combinatorial approach could be taken. All transcriptomic data can be related back to the
genetic variation to choose promising gene candidates for future functional validation. Step 5:
Use targeted mutagenesis techniques such as CRISPR-Cas9 to functionally validate candidate
genes. In this example, a knock-out of a candidate for apospory results in the transition from

apomeiosis to sexual reproduction.

Box 1. Future directions and challenges.
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