

1 **Perspective**

3 **Widespread application of apomixis in agriculture requires further study of**
4 **natural apomicts**

5 Charity Z. Goeckeritz,^{1†} Xixi Zheng,^{2†} Alex Harkess,^{1,*} and Thomas Dresselhaus^{2,*}

7 ¹HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA

8 ²Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany

10 *Correspondence: aharkess@hudsonalpha.org, thomas.dresselhaus@ur.de

11 [†]These authors contributed equally to this work

13 **Keywords:** plant reproduction, asexual seed production, synthetic apomixis, parthenogenesis,
14 convergent evolution, comparative genomics

16 **SUMMARY**

17 Apomixis, or asexual reproduction through seeds, is frequent in nature but does not exist in any
18 major crop species – yet the phenomenon has captivated researchers for decades given its
19 potential for clonal seed production and plant breeding. A discussion on whether this field will
20 benefit from the continued study of natural apomicts is warranted given the recent outstanding
21 progress in engineering apomixis. Here, we summarize what is known about its genetic control
22 and the status of applying synthetic apomixis in agriculture. We argue there is still much to be
23 learned from natural apomicts, and learning from them is necessary to improve on current
24 progress and guarantee the effective application of apomixis beyond the few genera it has
25 shown promise in so far. Specifically, we stress the value of studying the repeated evolution of
26 natural apomicts in a phylogenetic and comparative -omics context. Finally, we identify
27 outstanding questions in the field and discuss how technological advancements can be used to
28 help close these knowledge gaps. In particular, genomic resources are lacking for apomicts, and
29 this must be remedied for widespread use of apomixis in agriculture.

30

31 **INTRODUCTION**

32 Apomixis is defined as asexual reproduction through seeds and results in progenies that are
33 genetically identical to the mother plant¹. Its regular application in diverse crops would
34 revolutionize agriculture as clonal F1 hybrid seeds with fixed heterosis can be indefinitely
35 preserved and generated at low cost². It results in the immediate fixation of any desired
36 genotype, thus allowing further investment in more diverse germplasm and greatly shortening
37 breeding times³. Apomictic reproduction also has the potential to increase seed set in genotypes
38 that would otherwise be expected to be infertile (e.g., triploid and higher ploidy hybrids), as
39 evident by the main mode of reproduction of such individuals in some natural populations⁴. For
40 these reasons, there is interest in dissecting the molecular mechanisms underlying apomixis for
41 incorporation into breeding schemes. Many excellent reviews written in the last several years
42 have discussed the challenges pertaining to this goal and summarized current findings at the
43 genetic level mostly in a few apomictic model species⁵⁻⁸.

44 In contrast, the present perspective focuses on the importance of studying natural apomicts in
45 diverse flowering plants using emerging technologies. Decades of research has led to the
46 discovery of several apomixis genes in a small handful of model taxa; however, apomixis has
47 independently evolved more than one hundred times in more than half of the flowering plant
48 orders. In angiosperms, it has been documented in 34 orders, 80 families, and 326 genera⁹
49 (**Figure 1**) and is especially frequent in the Asterales, Rosales and Poales. Moving forward,
50 studying the repeated origins of apomixis across the phylogeny and within diversity collections
51 is a powerful approach to complement the discovery of novel pathways since various genes
52 have been shown to control the trait in different lineages¹⁰⁻¹². Gene discovery in non-model
53 apomictic plants using a wide phylogenetic framework doubly ensures the successful
54 application of apomixis. First, it complements synthetic approaches through discovery and
55 functional characterization of novel apomixis genes. Second, by examining apomixis in related
56 species to crops, it reduces the chances of pleiotropic effects caused by wide evolutionary
57 distances, thereby increasing the feasibility of introgressing the trait into genotypes that may
58 not be amenable to transformation.

59

60 **THE GENETIC CONTROL OF APOMIXIS**

61 The convergent nature of apomixis requires a brief review on the types and mechanisms of this

62 complex trait. Apomixis is generally divided into two major types depending on the origin of
63 the embryo: **sporophytic** and **gametophytic apomixis**. These two types of apomixis have
64 independently evolved throughout the angiosperm phylogeny, with examples of families
65 exhibiting sporophytic apomixis including Orchidaceae and Rutaceae, and examples of families
66 exhibiting gametophytic apomixis including Asteraceae, Rosaceae, and Poaceae (**Figure 1**).

67 In sporophytic apomixis (also known as adventitious embryony), unreduced embryos originate
68 directly from somatic cells of the ovule. An embryo produced by sporophytic apomixis matures
69 alongside the fertilized sexual embryo and competes for resources from the developing
70 endosperm, which presents a challenge in achieving fully penetrant clonal seeds and thus
71 diminishes its appeal in plant breeding⁸. Sporophytic apomixis is frequent in Malpighiales,
72 Sapindales and Asparagales. Gametophytic apomixis consists of several components: 1)
73 **apomeiosis**, in which an ovule cell bypasses meiosis and recombination to produce an
74 unreduced embryo sac, 2) **parthenogenesis**, or embryo development without fertilization, and
75 3) **endosperm formation**, whether that be automatically (autogamy) or triggered by
76 fertilization of the central cell (pseudogamy). Gametophytic apomixis is further broken down
77 into **apospory** and **diplospory**, depending on the origin of the unreduced embryo sac. In
78 aposporic species, the unreduced embryo sac emerges from a somatic cell of the ovule that
79 assumes megagametophyte-like properties, and may coexist with the reduced (sexual) embryo
80 sac depending on the environment and genotype; ultimately these factors seem to govern which
81 mode of reproduction prevails¹³⁻¹⁸. Diplospory is considered a deregulation of the sexual
82 process since the origin of unreduced female gametophytes is the megasporangium cell¹⁹.

83 Apomixis has a complex evolutionary pattern, which is reflected in the genetic architecture of
84 the trait. It should be stated that apomeiosis and parthenogenesis have historically been treated
85 as qualitative traits, even though research clearly indicates variation in penetrance due to
86 genetic background²⁰. Genetic mapping studies have shown different genes separately
87 controlling each of the three components, and genetic loci regulating the components of
88 apomixis have been found to be linked and more often inherited together (Poaceae^{11,21,22},
89 Hypericaceae²³), or unlinked, exhibiting a 1:1 segregation pattern in subsequent generations
90 (Asteraceae, Rosaceae^{13,23-25}). These loci may be in hemizygous regions surrounded by
91 repetitive sequences, so recombination may be suppressed (but not always - e.g., *Taraxacum*)
92 and large mapping populations may be necessary to identify them since recombination between
93 tightly-linked loci is rare^{21,24}. While these rare events have been instrumental to our current
94 understanding of the genetic architecture of apomixis, genetic mapping methods are laborious

95 and time-consuming – not to mention extraordinarily complicated for polyploids, a notable
96 characteristic of most apomicts⁹. Consequently, the master determinants for parthenogenesis, a
97 component of apomixis, have only been definitively validated in two apomictic species and
98 ‘apomeiosis’ and ‘autonomous endosperm development’ genes have yet to be discovered in
99 natural apomicts. For a more thorough discussion of candidate genetic determinants relevant to
100 apomixis, readers are encouraged to review Table 1 and references therein from Xu *et al.* 2022.
101 In the next sections, we briefly highlight what is known for the genetic control of apomixis
102 components and how these findings have been used to improve synthetic apomixis, all while
103 making the case for further study of natural apomicts.

104

105 **Apomeiosis-related genes**

106 Cloning the causal genes in apomicts has been a historically challenging endeavor due to
107 limited genomic resources, frequent occurrences of polyploidy, and low recombination between
108 genetic loci. Mainly associations have been made between loci or candidate genes and
109 apomeiosis⁸. For example, a candidate identified in *Poa pratensis*, called APOSTART_6 (a
110 total of 15 APOSTART cDNAs have been identified), co-segregates with apomixis and shows
111 specific expression in floral tissues²⁶. Similarly, a long non-coding RNA theorized to regulate
112 expression of *QUI-GON JINN*, a gene that appears to affect aposporous embryo sac formation,
113 co-segregates with apospory in *Paspalum notatum*²⁷. The *DIPLOSPOROUS* (*DIP*) locus
114 associates with unreduced female gamete formation in *Taraxacum*^{25,28} and the *LOSS OF*
115 *APOMEIOSIS* (*LOA*) locus regulates apospory in *Pilosella piloselloides* (formerly *Hieracium*
116 *praealtum*)²⁴. Strong but correlative evidence attributed certain *APOLLO* alleles with apomicts
117 in a diverse collection of *Boechera* accessions^{29,30}, and recent experiments indicated the 5' UTR
118 of the *APOLLO* apomictic allele is important for expression in reproductive tissues in
119 *Arabidopsis*³¹. Still, it remains to be seen if these regulatory features and/or the *APOLLO*
120 protein sequence are necessary and sufficient to induce apomeiosis in either *Boechera* or
121 *Arabidopsis*. Arguably the most promising evidence for candidate apomeiosis genes was
122 recently demonstrated through the characterization of *Arabidopsis TRIMETHYLGUANOSINE*
123 *SYNTHASE1* (*TGS1*). A *TGS1* homolog was first identified as a candidate for apospory in
124 apomictic *Paspalum notatum*, and the null allele of the *Arabidopsis* homolog results in the
125 emergence of an extra cell exhibiting developmental properties similar to the megasporangium
126 cell (MMC)³².

127

128 **Induction of parthenogenesis**

129 In contrast to apomeiosis, identification of genes governing the second component of
130 gametophytic apomixis - parthenogenesis - has been met with tremendous success in recent
131 years. The first breakthrough in decades emerged through investigation of the natural apomict
132 *Pennisetum squamulatum* (Poaceae), when several *BABY BOOM-LIKE (BBML)* AP2
133 transcription factors were discovered in the Apospory-Specific Genomic Region (ASGR)¹¹.
134 *PsASGR-BBML* transgenes were able to induce parthenogenesis in monocots like pearl millet¹¹,
135 rice³³, and maize³⁴, and there is also evidence to suggest conservation of *BBML* genes in
136 apospory-associated loci for other Panicoideae grasses, like *Cenchrus ciliaris* (Buffel grass)
137 and *Brachiaria humidicola* (Koronivia grass)^{35,36}. For eudicots, *PsASGR-BBML* failed to induce
138 parthenogenesis in *Arabidopsis*³⁴ but could trigger parthenogenesis in tobacco at a low
139 frequency (1-9%), depending on the egg cell-specific promoter used to drive its expression³⁷.

140 Another major step toward understanding parthenogenesis in natural apomicts was achieved
141 when a gene was identified and cloned from *Taraxacum officinale*¹⁰. *PARTHENOGENESIS*
142 (*PAR*) encodes a putative transcriptional repressor containing a K2-2 zinc finger and an EAR-
143 domain. A MITE (Miniature Inverted-repeat Transposable Element) insertion in the *ToPAR*
144 promoter is essential for its expression in the apomictic dandelion egg cell. Notably, a MITE
145 was also detected in the promoter of *PAR* genes in apomictic *Pilosella piloselloides*, suggesting
146 parallel evolution of apomixis driven by MITE insertion in Asteraceae¹⁰. Interestingly, several
147 MITE insertions in the promoter of a *RWP-RK* gene are thought to induce nucellar
148 embryogenesis (sporophytic apomixis) in *Citrus* and *Fortunella*³⁸. Taken together, the
149 identification of *PsASGR-BBML* and *ToPAR* confirms the multiple origins of (gametophytic)
150 apomixis since nature has commandeered different genes in different lineages for asexual
151 reproduction.

152

153 **Endosperm development in apomicts**

154 Endosperm is the major storage organ for nourishing the developing embryo or seedling –
155 without it, the seed will abort³⁹. Most apomictic species are pseudogamous, meaning endosperm
156 formation requires fertilization of the central cell⁴⁰, and only a few apomictic Asteraceae species
157 are known to spontaneously form endosperm (autonomous endosperm) without fertilization. In
158 the case of autonomous endosperm formation, the maternal genome is in excess relative to the

159 typical 2:1 maternal:paternal endosperm ratio required for most sexual species⁴¹. Some
160 pseudogamous apomicts are also able to tolerate deviations from this ratio⁴²⁻⁴⁵, and
161 understanding these relaxed endosperm constraints will be important for interploidy crosses
162 and for introgressing apomictic traits into crops. However, identifying genes for endosperm
163 formation have been largely unsuccessful. One study showed a negative correlation between
164 expression levels of a *FERTILIZATION INDEPENDENT ENDOSPERM (FIE)* homolog with
165 apomictic seed formation in *Malus hupehensis*⁴⁶, and a more recent one implicated an isogene
166 of *ORIGIN OF RECOGNITION COMPLEX 3 (ORC3)* in *Paspalum* apomicts in relaxing the
167 endosperm balance ratio requirement⁴⁵. A dominant genetic locus for autonomous endosperm
168 formation was mapped in *Hieracium* and *Taraxacum*, but the variable penetrance of the trait
169 indicates additional genetic factors are likely involved^{16,47}.

170

171 ADVANCES IN SYNTHETIC APOMIXIS

172 *Mitosis instead of Meiosis* combined with haploid induction methods

173 During sexual reproduction, the diploid (2n) megasporangium mother cell (MMC) undergoes meiosis
174 resulting in haploid gametes (1n) that contain reduced and recombined chromosomes (**Figure**
175 **2A**). After double fertilization, embryos will exhibit significant variation and are genetically
176 distinct from the mother plant. A major goal in plant breeding and biotechnology is to
177 circumvent meiosis to engineer synthetic apomixis. This trait became a feasible option for
178 asexual and clonal seed production after years of investigating meiotic mutants in the sexual
179 plant *Arabidopsis*⁴⁸⁻⁵². Mutations in at least three genes (e.g., *spo11-1/rec8/osdl*) define the
180 genetic background of *Mitosis instead of Meiosis (MiMe)*, which essentially phenocopies
181 apomeiosis⁴⁸. However, due to double fertilization, *MiMe* alone leads to the doubling of ploidy
182 levels in successive generations and must be coupled with either haploid induction techniques
183 or parthenogenesis for true asexual seed formation. Several haploid induction techniques have
184 been developed in combination with *MiMe* for double haploid creation and synthetic apomixis
185 (**Figure 2B**), respectively, and will be introduced in the following paragraphs.

186

187 *Mitosis instead of Meiosis* with parthenogenesis genes discovered in natural apomicts

188 The combination of parthenogenesis genes identified in natural apomicts and the *MiMe* system
189 has shown to be very successful in generating clonal seeds. Haploid induction rates depend on

190 the *BBM* homolog used, the method to create egg-cell specific expression, the species, and the
191 genotype. Ectopic expression of *BABYBOOM* homologs (*OsBBMs*) in egg cells of rice led to
192 haploid induction rates between 3% (*AtpDD45::OsBBM4*) and 29% (*AtpDD45::OsBBM1*)^{53,54}.
193 CRISPR/dCas9-mediated *ZmBBM2* egg cell specific activation led to ~2% haploid induction
194 in maize⁵⁵, and ectopic expression of *ZmBBM1* driven by the egg cell-specific promoter
195 *AtEC1.2* achieved efficiencies of up to 74%⁵⁶. ToPAR, the parthenogenesis gene isolated from
196 dandelion, has also been used to induce haploids in *Setaria italica* (foxtail millet) at a rate of
197 up to 10.2%⁵⁷.

198 Aside from *Arabidopsis*, *MiMe* has been applied to rice^{58,59} and tomato⁶⁰ with different intended
199 outcomes for each crop. In tomato, researchers used *MiMe* to create tetraploid tomatoes with
200 enhanced heterosis, demonstrating the wide applicability of synthetic apomixis outside of
201 clonal seed production⁶⁰. In rice, *MiMe* was implemented with the intention of obtaining fully
202 clonal seed – and until recently, it was met with limited success. The latest advancements
203 include a single CRISPR/Cas9 cassette containing multiple guide RNAs to create *MiMe* and
204 egg cell-specific expression of genes *OsBBM* and *ToPAR*, which has led to high rates of clonal
205 seed production in rice. *sgMiMe_pAtECS:BBM1* and *sgMiMe_pOsECS:BBM1* plants show
206 clonal seed rates up to 95%; however, these plants show a 16% reduction in fertility compared
207 to wild type³³. Conversely, *sgMiMe_pDD45:BBM4* plants have a low clonal seed production
208 rate of 1-2% but fertility is largely unaffected⁵³. Similar genetic constructs using the PAR gene
209 isolated from dandelion (*sgMiMe_pAtEC1.1:ToPAR*) resulted in the production of 40%-60%
210 clonal seeds with no significant impacts on fecundity⁶¹. These frequencies were mostly stable
211 in respective generations, but improvements are needed to combat deleterious effects on
212 fertility³³. In the future, the co-expression of different parthenogenesis-related genes may result
213 in better penetrance of clonal seed production without fertility defects.

214

215 **Other haploid induction methods combined with *MiMe***

216 Haploid induction can also occur via genome elimination of one of the parental genomes
217 (**Figure 2C**). One method includes the use of CENH3 mutants, deficient in functional
218 centromeric histone H3 protein (CENH3), which guides the assembly of kinetochores and
219 chromosome segregation⁶². CENH3 modification to induce haploids has been applied in
220 maize⁶³, wheat⁶⁴ and other crops⁶⁵. However, combining *MiMe* with CENH3 genome
221 elimination has only been achieved in *Arabidopsis*, and only 34% of the seeds were clonal after

222 the first generation and 24% in the second⁶⁶. This method also relies on the availability of
223 sexually-compatible *cenh3* mutants for crossing with genotypes intended for asexual
224 propagation, thus testing its potential for clonal seed generation is currently limited. Still, it
225 could become a viable option for engineering synthetic apomixis in the future.

226 Other possibilities for haploid induction involve specific genetic factors of the pollen parent.
227 One of the most impactful includes a phospholipase A1 called *ZmMTL/ZmPLA1/NLD*, the gene
228 underlying the quantitative trait locus (QTL), *qhir1*, in maize haploid inducer line Stock 6⁶⁷⁻⁶⁹.
229 Further study of the mutant implicated oxidative stress in a mechanism that leads to paternal
230 genome fragmentation before gamete fusion⁷⁰. These researchers also identified *ZmPOD65*,
231 which encodes a sperm-specific peroxidase that modulates haploid induction. Soon thereafter,
232 mutants of another pollen-specific phospholipase, *ZmPLD3*, were shown to triple the haploid
233 induction rate when combined with null *ZmMTL/ZmPLA1/NLD* alleles⁷¹.

234 Another strategy for haploid induction might include a membrane protein first characterized in
235 Stock 6 called *ZmDMP*⁷². Moreover, compared with the *mtl* single mutant, double mutants for
236 *mtl dmp* increase the haploid induction rates from ~1% to 7%⁷². *DMP* orthologs are also present
237 in dicots, and there are reports for loss-function *DMP*-like genes inducing haploids in
238 *Arabidopsis*⁷³, tomato⁷⁴, *Brassica napus*, and tobacco⁷⁵, meaning these genes may have broader
239 potential for plant breeding in the future. As for the mechanism, *AtDMP8* and *AtDMP9* were
240 shown to participate in the process of double fertilization. In the *dmp8 dmp9* double mutant,
241 the fusion of mutant sperm cells with egg cells is especially defective, often resulting in a single,
242 preferential fertilization event of the central cell⁷⁶. Similarly, *ECS1* and *ECS2* encode egg cell-
243 specific endopeptidases that also regulate the double fertilization process and could be used in
244 haploid induction strategies. Double mutants *ecs1 ecs2* show unsuccessful fusion of sperm cell
245 and egg nuclei after fertilization, thereby leading to maternal haploids^{77,78}. Finally, mutants of
246 another gene regulating the double fertilization process, *AtKPL*, cause maternal haploid
247 induction⁷⁹.

248 To our knowledge, only *mtl* has been used in combination with *MiMe* in a crop; unfortunately,
249 it had variable success in rice as only 9 of 145 progeny were true maternal clones and the seed-
250 setting rate was reduced to 6%⁵⁹. With more research, it is hoped that mutations in the genes
251 described above could be used in combination for high haploid induction rates and asexual seed
252 production.

253

254 **Necessity of autonomous endosperm development**

255 It is debatable whether it is necessary to engineer autonomous endosperm formation, since in
256 agricultural settings pollen availability is usually not a limiting factor for production. However,
257 this trait is attractive for plant breeding for two reasons. First, pollen exclusion in autonomous
258 apomicts guarantees that the asexually-produced egg cell will not be fertilized. Second, it
259 facilitates the adoption of pollen-sterile plants to prevent pollen transfer and undesirable
260 introgression into sexual crop fields. On this front, research in rice demonstrated *Osfie1* and
261 *Osfie2* double mutants exhibit a high frequency of asexual embryo and autonomous endosperm
262 formation⁸⁰ but embryo abnormality and lethality as well as incomplete stages of endosperm
263 development must be understood and remedied before the application of these genes in
264 synthetic apomixis.

265

266 **A CASE FOR STUDYING APOMIXIS IN ITS PHYLOGENETIC CONTEXT**

267 As outlined above, it has become clear in the past decade that haploid induction through genome
268 elimination and other methods has had limited success for usage in engineering apomixis, and
269 that the greatest gains were achieved using the synthetic *MiMe* system combined with
270 parthenogenesis genes discovered in natural apomicts. Therefore, it is in our best interest to
271 continue identifying loci governing the components of apomixis in natural apomicts to
272 complement synthetic approaches and guarantee broader use of apomixis in agriculture.

273 These observations warrant important considerations as researchers attempt *MiMe* in more
274 crops. It is largely unknown how the expansion and contraction of these gene families will
275 affect their predicted functions across lineages. Outcomes of gene duplication (e.g., through
276 whole genome duplication) include neo- and subfunctionalization⁸¹. Thus, across larger
277 evolutionary distances, it is reasonably likely that the homologs of these genes identified in
278 *Arabidopsis* confer new or only partial functions in other lineages, which may introduce
279 pleiotropic defects — including loss of fertility. Duplications also introduce the technical
280 challenge of knocking out additional homologs of *MiMe*, while the identification of genes
281 administering apomeiosis (which are known to have dominant effects) in different lineages of
282 natural apomicts offers the potential of more reliably engineering the trait with a single gene.
283 Therefore, targeted study of natural apomicts within a phylogenetic clade that includes a major
284 crop should be top priority.

285

286 **Third-generation sequencing technologies and comparative genomics for the**
287 **identification of apomictic loci**

288 Easily the largest hurdle for apomixis gene discovery is the lack of genomic resources for
289 complex, polyploid apomicts, for which no reference-quality genomes exist. However, we are
290 now well-equipped to remedy this problem with third-generation sequencing technologies and
291 comparative genomics. PacBio HiFi and Oxford Nanopore long-read sequencing regularly
292 enable the complete sequencing of large repetitive genomic regions, and the production of
293 haplotype- and subgenome-resolved genome assemblies is becoming routine, even for
294 polyploids⁸²⁻⁸⁶. Targeted efforts to create assemblies of related sexuals and apomicts followed
295 by whole genome sequence alignments should reveal regions of subgenomes or haplotypes that
296 are unique to apomicts. If the regions are hemizygous, synteny comparisons of haplotypes
297 within apomicts should provide further clues on the origin of these loci. Researchers should,
298 however, be cautious that genomic analyses are phylogenetically informed since the convergent
299 nature of apomixis presents the possibility of different causal genes in divergent species (**Figure**
300 **3**). In other words, lineage-specific information on the evolution of apomixis is needed to
301 prevent figurative and literal comparisons, for example of crabapples (exhibiting apospory) to
302 oranges (exhibiting adventitious embryony).

303 Evidence suggests apomictic reproduction is likely caused by genes with altered spatio-
304 temporal expression patterns residing in duplicated regions of genomes that share partial
305 synteny with sexual species^{10,11,22}. These observations support the theory that apomixis is a
306 deviation from sexual reproduction, and that the latter represents the ancestral state⁸⁷. Questions
307 on when apomixis emerges and for how long it persists in certain populations can be answered
308 with increasing amounts of genomic resources and molecular dating techniques. Understanding
309 the stability of apomixis in nature should better ensure its stable inheritance in crop breeding
310 programs. At a finer scale, it is also critical that we understand the dynamics of apomictic loci
311 within genomes. On several occasions, these loci have been likened to the sex-determining
312 regions (SDRs) in dioecious flowering plants, and both apomixis and dioecy exhibit convergent
313 patterns of evolution⁸⁸. SDRs are also characteristically repeat-rich, recombination-suppressed,
314 and sometimes hemizygous^{89,90}, and related species may show size, structural, and even location
315 variation for sex-linked regions as sequences are accumulated and lost⁹¹. While it remains
316 largely unknown if apomictic loci show similar genome dynamics, such active processes may
317 explain the high birth-death rate of apomixis across lineages (**Figure 1**). The study of these
318 dynamics may also help describe the variation in penetrance of apomictic traits under certain

319 environmental conditions, as the accumulation of repetitive sequence is associated with
320 transcriptional silencing⁹².

321

322 **Spatially-resolved transcriptomics to identify apomixis-related genes**

323 Advances in transcriptomics should both (i) inform the selection of candidate genes for future
324 functional validation within apomixis-associated loci and (ii) aid in our understanding of
325 incomplete penetrance under certain conditions. The first point has already successfully been
326 put into practice by examining gene expression patterns around the time parthenogenesis
327 occurred in dandelion¹⁰. While bulk RNA-sequencing has been useful to date, spatial
328 transcriptomics has the potential to revolutionize the field. For example, apomeiosis usually
329 occurs in a single cell. Observations in the cell's spatial context at several developmental time
330 points and gene expression comparisons between related sexual and apomictic individuals
331 should divulge the molecular signals necessary for apomictic events to occur and assist with
332 candidate gene selection. Similar reasoning applies to parthenogenesis and endosperm
333 formation. Presently, most unbiased spatial transcriptomic techniques suffer from a lack of
334 cellular resolution - however, even this limitation is lifting with technologies like scStereo-
335 seq^{93,94} and the recently-announced 10X Genomics' Visium HD (10X Genomics, Pleasanton).
336 However, neither the predecessor nor this new technology has been successfully applied in
337 plant tissues. Depending on the strength of the candidate genes identified and the availability
338 of equipment, other options for studying gene expression associated with the components of
339 apomixis include MERFISH⁹⁵ and combinatorial approaches incorporating single-nuclei RNA-
340 sequencing and RNA in situ hybridization. While these techniques would significantly narrow
341 down a list of candidate genes for apomictic traits, the last step prior to applying genes to crops
342 would be functional validation using targeted mutagenesis. Techniques such as CRISPR-Cas9
343 to create null alleles would enable testing of promising candidates (**Figure 3**).

344

345 **OUTSTANDING CHALLENGES FOR BROADER USE OF APOMIXIS IN**
346 **AGRICULTURE**

347 In summary, further study of natural apomicts is needed to increase the momentum pioneers in
348 this field have gained so far. Although we are beginning to see promising results in a few
349 species, widespread use of apomixis in agriculture requires that we expand the breeding toolkit
350 through the discovery of apomictic genes in multiple lineages. To this end, we have identified

351 major challenges that must be addressed (see **Box 1**). Since apomixis is a convergent
352 evolutionary trait with more potential cases waiting to be discovered, ample opportunities exist
353 for gene discovery. Flow cytometry seed screens (FCSS) have proven useful as a high-
354 throughput way to identify natural apomicts⁹⁶, and low-pass sequencing methods are the next
355 to be applied⁹⁷ to compare progeny and mother genotypes. More genomic resources are needed
356 for apomicts, and the selection of genotypes for genome assembly should be based on their
357 relatedness to agriculturally-important sexuals and phylogenetic patterns of the origin(s) of
358 apomixis in these lineages. Assembling genomes of related species representing sexual
359 reproduction and asexual reproduction, followed by comparative genomics and
360 transcriptomics, should identify genetic variation unique to asexual individuals (**Figure 3**).
361 From our perspective, directing resources toward these approaches is the most promising for
362 identification of single genes controlling components of apomixis – including apomeiosis – and
363 ensuring the expected functions of genes between apomicts and their engineered or introgressed
364 sexual relatives. In other words, it is expected these directions will result in better ease of
365 application and reduced pleiotropic effects.

366 Finally, related to its stable integration into crop breeding programs, additional research into
367 the incomplete penetrance of apomixis is sorely needed. Most apomicts reproduce through
368 facultative apomixis, where both sexual and apomictic pathways occur in the same individual.
369 On multiple occasions, researchers have shown asynchronous development and/or
370 environmental conditions associated with the dominant mode of reproduction in facultative
371 apomicts^{13–15,98,99}. This variability is a repeated feature in natural apomicts, so in order to stably
372 integrate these genes and pathways into related crop species, highly- and lowly-penetrant
373 apomictic genotypes should be prioritized for further study. One high resolution strategy would
374 be to first identify and functionally validate genes involved in apomictic production (using the
375 strategies detailed in Figure 3), then examine the transcriptional and epigenetic changes in
376 apomicts with variable penetrance in contrasting environments, especially considering factors
377 such as photoperiod and temperature.

378 The field owes its success to the immense work of several generations of scientists who
379 intensely studied and developed model systems for apomixis. By complementing this work with
380 additional study of natural apomicts across the angiosperm phylogeny and high quality genomic
381 and transcriptomic resources, we are convinced that new strategies and tools for the application
382 of synthetic apomixis in diverse crop plants will be feasible soon.

383

384 **ACKNOWLEDGEMENTS & FUNDING**

385 X.Z. was supported by a fellowship of the Alexander von Humboldt foundation. C. Z. G. is
386 supported by a National Science Foundation Postdoctoral Research Fellowship in Biology,
387 award number 2305693. A.H is supported by a National Science Foundation Plant Genome
388 Research Program CAREER (award number 2239530).

389

390 **AUTHOR CONTRIBUTIONS**

391 All authors conceived, wrote, and edited the manuscript.

392

393 **DECLARATION OF INTERESTS**

394 The authors declare no competing interests.

395

396 **FIGURE LEGENDS**

397 **Figure 1. Apomixis is a convergent trait with documented cases scattered throughout the**
398 **flowering plant phylogeny.**

399 Phylogenetic relationships of flowering plant orders according to the Angiosperm Phylogeny
400 Group classification IV are shown alongside a heat map with 5 columns. (a) Indicates the
401 number of families in the order with documented cases of apomixis, (b) indicates the number
402 of genera, followed by the number of cases of documented (c) apospory, (d) diplospory, and
403 (e) adventitious embryony. The color of each cell is proportional to the log number of counts.
404 Gray cells are instances where no known cases have been documented thus far. Data was taken
405 from the apomixis database created by Hojsgaard et al. (2014) and was recounted in September
406 2023. The Asterales, Rosales, and Poles are highlighted on the phylogeny as they contain most
407 known gametophytic apomicts. Certain clades as well as eudicots, monocots, and basal
408 angiosperms are also indicated.

409

410 **Figure 2. Overview about strategies to engineer synthetic apomixis in crops.**

411 (A) During sexual reproduction of crop plants like maize, the diploid (2n) megasporangium

412 cell (MMC) undergoes meiosis producing reduced and recombined haploid (1n) gametes. After
413 double fertilization, the resulting seeds in the next generation will exhibit variation. (B) The
414 combination of the *MiMe* triple mutant system with ectopic expression of *BBMs* or *ToPAR* in
415 the egg cell enables the generation of clonal embryos and seeds. Unreduced egg cells develop
416 into diploid clonal embryos via parthenogenesis, while the 4n central cell can be fertilized with
417 unreduced 2n or haploid 1n sperm cells (pseudogamy), respectively. (C) Alternative strategies
418 to generate clonal embryos is to combine the *MiMe* system with defective sperm cells leading
419 to uni-parental (male) genome elimination. Defective sperm cells carry either *mtl/pla/nld*, *dmp*,
420 *pod65* or *pld3* mutants (above scenario) or a CENH3-defective mutant (bottom scenario)
421 leading to male chromosome segregation defects and ultimately their elimination. The
422 chromosome composition of the endosperm is unclear (question marks).

423

424 **Figure 3. How comparative -omics and emerging technologies will accelerate the rate of**
425 **apomixis gene identification.**

426 **Step 1:** Select related sexuals (sex) and apomicts (apo) for sequencing and haplotype-resolved
427 genome assemblies. Given apomictic alleles are usually dominant, it is expected at least one
428 haplotype from each apomict will carry the locus/loci responsible for asexual reproduction
429 (pink stars).

430 **Step 2:** Assess the phylogenetic relationships of each individual haplotype and subgenome,
431 treating them as separate entities with their own evolutionary patterns. If two related apomicts
432 share the same origin of apomixis, at least one haplotype from each would form a monophyletic
433 clade – this is the outcome represented in the hypothetical phylogeny on the right. In the
434 phylogeny on the left, no haplotypes from the apomicts (colored green and blue) form a
435 monophyletic clade, suggesting independent origins of apomixis. Since different origins may
436 signify different causal genes, additional sampling of related apomicts and sexuals would be
437 required for additional -omics comparisons.

438 **Step 3:** Compare probable apomictic (based on phylogenetic patterns) and sexual haplotypes
439 to identify genetic variation unique to apomictic haplotypes with a recent common ancestor.

440 **Step 4:** Use high-resolution techniques such as scRNA-sequencing and spatial transcriptomics
441 to further assist with identifying causal genes for apomixis and to understand the molecular
442 processes changed between sexual and apomictic reproduction. ScRNA-seq may identify
443 variable cell populations in the ovule between apomicts and sexuals (white arrow); however,
444 this technique results in a loss of spatial information. Developing and testing marker genes with

445 traditional methods like RNA in-situ hybridization would be necessary to confirm cells' positions. A much more powerful method would be the implementation of spatial
446 transcriptomics for gene candidate identification. Given the limitations of each method, a
447 combinatorial approach could be taken. All transcriptomic data can be related back to the
448 genetic variation to choose promising gene candidates for future functional validation. Step 5:
449 Use targeted mutagenesis techniques such as CRISPR-Cas9 to functionally validate candidate
450 genes. In this example, a knock-out of a candidate for apospory results in the transition from
451 apomeiosis to sexual reproduction.

453

454 **Box 1. Future directions and challenges.**

455

456 **RESOURCE AVAILABILITY**

457 ***Lead contact***

458 Further information and requests should be directed to lead contact Thomas Dresselhaus
459 (thomas.dresselhaus@ur.de)

460 ***Materials availability***

461 This work did not generate new unique reagents.

462 ***Data and code availability***

463 Code and files necessary to generate Figure 1 can be found here:
464 (https://github.com/goeckeritz/Cases_for_apomixis_in_flowering_plants)

465

466 **REFERENCES**

467

- 468 1. Ozias-Akins, P., and Conner, J.A. (2020). Clonal Reproduction through Seeds in Sight
469 for Crops. *Trends Genet.* 36, 215–226.
- 470 2. Calzada, J.-P.V., Crane, C.F., and Stelly, D.M. (1996). Apomixis: the asexual revolution.
471 *Science* 274, 1322–1323.
- 472 3. Grossniklaus, U., Koltunow, A., and van Lookeren Campagne, M. (1998). A bright
473 future for apomixis. *Trends Plant Sci.* 3, 415–416.
- 474 4. Meirmans, P.G., Vlot, E.C., Den Nijs, J.C.M., and Menken, S.B.J. (2003). Spatial

475 ecological and genetic structure of a mixed population of sexual diploid and apomictic
476 triploid dandelions. *J. Evol. Biol.* 16, 343–352.

477 5. Palumbo, F., Draga, S., Vannozzi, A., Lucchin, M., and Barcaccia, G. (2022). Trends in
478 Apomixis Research: The 10 Most Cited Research Articles Published in the Pregenomic
479 and Genomic Eras. *Front. Plant Sci.* 13, 878074.

480 6. Terzaroli, N., Anderson, A.W., and Albertini, E. (2023). Apomixis: oh, what a tangled
481 web we have! *Planta* 257, 92.

482 7. Li, S.-Z., Wang, J., Jia, S.-G., Wang, K., and Li, H.-J. (2023). Synthetic apomixis: from
483 genetic basis to agricultural application. *Seed Biology* 2. 10.48130/SeedBio-2023-0010.

484 8. Xu, Y., Jia, H., Tan, C., Wu, X., Deng, X., and Xu, Q. (2022). Apomixis: genetic basis
485 and controlling genes. *Hortic Res* 9, uhac150.

486 9. Hojsgaard, D., Klatt, S., Baier, R., Carman, J.G., and Hörandl, E. (2014). Taxonomy and
487 Biogeography of Apomixis in Angiosperms and Associated Biodiversity Characteristics.
488 *CRC Crit. Rev. Plant Sci.* 33, 414–427.

489 10. Underwood, C.J., Vijverberg, K., Rigola, D., Okamoto, S., Oplaat, C., Camp, R.H.M.O.
490 den, Radoeva, T., Schauer, S.E., Fierens, J., Jansen, K., et al. (2022). A
491 PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division
492 without fertilization in lettuce. *Nat. Genet.* 54, 84–93.

493 11. Conner, J.A., Mookkan, M., Huo, H., Chae, K., and Ozias-Akins, P. (2015). A
494 parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs
495 in a sexual plant. *Proc. Natl. Acad. Sci. U. S. A.* 112, 11205–11210.

496 12. Hojsgaard, D., and Hörandl, E. (2019). The Rise of Apomixis in Natural Plant
497 Populations. *Front. Plant Sci.* 10, 358.

498 13. Liu, D.-D., Fang, M.-J., Dong, Q.-L., Hu, D.-G., Zhou, L.-J., Sha, G.-L., Jiang, Z.-W.,
499 Liu, Z., and Hao, Y.-J. (2014). Unreduced embryo sacs escape fertilization via a
500 “female-late-on-date” strategy to produce clonal seeds in apomictic crabapples. *Sci.*
501 *Hortic.* 167, 76–83.

502 14. Rebozzio, R.N., Sartor, M.E., Quarín, C.L., and Espinoza, F. (2011). Residual sexuality
503 and its seasonal variation in natural apomictic *Paspalum notatum* accessions. *Biol. Plant.*
504 55, 391–395.

505 15. Aliyu, O.M., Schranz, M.E., and Sharbel, T.F. (2010). Quantitative variation for
506 apomictic reproduction in the genus *Boechera* (Brassicaceae). *Am. J. Bot.* 97, 1719–
507 1731.

508 16. Ogawa, D., Johnson, S.D., Henderson, S.T., and Koltunow, A.M.G. (2013). Genetic
509 separation of autonomous endosperm formation (AutE) from the two other components
510 of apomixis in *Hieracium*. *Plant Reprod.* 26, 113–123.

511 17. Hojsgaard, D. (2020). Apomixis Technology: Separating the Wheat from the Chaff.
512 *Genes* 11. 10.3390/genes11040411.

513 18. Vielle, J.-P., Burson, B.L., Bashaw, E.C., and Hussey, M.A. (1995). Early fertilization
514 events in the sexual and aposporous egg apparatus of *Pennisetum ciliare* (L.) Link. *Plant*
515 *J.* 8, 309–316.

516 19. Koltunow, A.M., and Grossniklaus, U. (2003). Apomixis: a developmental perspective.
517 *Annu. Rev. Plant Biol.* 54, 547–574.

518 20. Matzk, F., Prodanovic, S., Bäumlein, H., and Schubert, I. (2005). The Inheritance of
519 apomixis in *Poa pratensis* confirms a five locus model with differences in gene
520 expressivity and penetrance. *Plant Cell* 17, 13–24.

521 21. Conner, J.A., Gunawan, G., and Ozias-Akins, P. (2013). Recombination within the
522 apospory specific genomic region leads to the uncoupling of apomixis components in
523 *Cenchrus ciliaris*. *Planta* 238, 51–63.

524 22. Galla, G., Siena, L.A., Ortiz, J.P.A., Baumlein, H., Barcaccia, G., Pessino, S.C.,
525 Bellucci, M., and Pupilli, F. (2019). A Portion of the Apomixis Locus of *Paspalum*
526 *Simplex* is Microsyntenic with an Unstable Chromosome Segment Highly Conserved
527 Among Poaceae. *Sci. Rep.* 9, 3271.

528 23. Schallau, A., Arzenton, F., Johnston, A.J., Hähnel, U., Koszegi, D., Blattner, F.R.,
529 Altschmied, L., Haberer, G., Barcaccia, G., and Bäumlein, H. (2010). Identification and
530 genetic analysis of the APOSPORY locus in *Hypericum perforatum* L. *Plant J.* 62, 773–
531 784.

532 24. Kotani, Y., Henderson, S.T., Suzuki, G., Johnson, S.D., Okada, T., Siddons, H., Mukai,
533 Y., and Koltunow, A.M.G. (2014). The LOSS OF APOMEIOSIS (LOA) locus in
534 *Hieracium praealtum* can function independently of the associated large-scale repetitive
535 chromosomal structure. *New Phytol.* 201, 973–981.

536 25. Vašut, R.J., Vijverberg, K., van Dijk, P.J., and de Jong, H. (2014). Fluorescent in situ
537 hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in
538 apomictic dandelions (*Taraxacum*) in the absence of a large hemizygous chromosomal
539 region. *Genome* 57, 609–620.

540 26. Marconi, G., Aiello, D., Kindiger, B., Storchi, L., Marrone, A., Reale, L., Terzarioli, N.,
541 and Albertini, E. (2020). The Role of APOSTART in Switching between Sexuality and
542 Apomixis in *Poa pratensis*. *Genes* 11. 10.3390/genes11080941.

543 27. Mancini, M., Permingeat, H., Colono, C., Siena, L., Pupilli, F., Azzaro, C., de Alencar
544 Dusi, D.M., de Campos Carneiro, V.T., Podio, M., Seijo, J.G., et al. (2018). The
545 MAP3K-Coding QUI-GON JINN (QGJ) Gene Is Essential to the Formation of
546 Unreduced Embryo Sacs in *Paspalum*. *Front. Plant Sci.* 9, 1547.

547 28. Vijverberg, K., Milanovic-Ivanovic, S., Bakx-Schotman, T., and van Dijk, P.J. (2010).
548 Genetic fine-mapping of DIPLOSPOROUS in *Taraxacum* (dandelion; Asteraceae)
549 indicates a duplicated DIP-gene. *BMC Plant Biol.* 10, 154.

550 29. Mau, M., Lovell, J.T., Corral, J.M., Kiefer, C., Koch, M.A., Aliyu, O.M., and Sharbel,
551 T.F. (2015). Hybrid apomicts trapped in the ecological niches of their sexual ancestors.
552 *Proc. Natl. Acad. Sci. U. S. A.* 112, E2357–E2365.

553 30. Corral, J.M., Vogel, H., Aliyu, O.M., Hensel, G., Thiel, T., Kumlehn, J., and Sharbel,
554 T.F. (2013). A conserved apomixis-specific polymorphism is correlated with exclusive
555 exonuclease expression in premeiotic ovules of apomictic *Boechera* species. *Plant*
556 *Physiol.* 163, 1660–1672.

557 31. Honari, M., Ashnest, J.R., and Sharbel, T.F. (2024). Sex- versus apomixis-specific
558 polymorphisms in the 5'UTR of APOLLO from *Boechera* shift gene expression from
559 somatic to reproductive tissues in *Arabidopsis*. *Front. Plant Sci.* 15.
560 10.3389/fpls.2024.1308059.

561 32. Siena, L.A., Michaud, C., Selles, B., Vega, J.M., Pessino, S.C., Ingouff, M., Ortiz,
562 J.P.A., and Leblanc, O. (2023). TRIMETHYLGUANOSINE SYNTHASE1 mutations
563 decanalize female germline development in *Arabidopsis*. *New Phytol.* 240, 597–612.

564 33. Vernet, A., Meynard, D., Lian, Q., Mieulet, D., Gibert, O., Bissah, M., Rivallan, R.,
565 Autran, D., Leblanc, O., Meunier, A.C., et al. (2022). High-frequency synthetic apomixis
566 in hybrid rice. *Nat. Commun.* 13, 7963.

567 34. Conner, J.A., Podio, M., and Ozias-Akins, P. (2017). Haploid embryo production in rice
568 and maize induced by PsASGR-BBML transgenes. *Plant Reprod.* 30, 41–52.

569 35. Ke, Y., Podio, M., Conner, J., and Ozias-Akins, P. (2021). Single-cell transcriptome
570 profiling of buffelgrass (*Cenchrus ciliaris*) eggs unveils apomictic parthenogenesis
571 signatures. *Sci. Rep.* 11, 9880.

572 36. Worthington, M., Ebina, M., Yamanaka, N., Heffelfinger, C., Quintero, C., Zapata, Y.P.,
573 Perez, J.G., Selvaraj, M., Ishitani, M., Duitama, J., et al. (2019). Translocation of a
574 parthenogenesis gene candidate to an alternate carrier chromosome in apomictic
575 *Brachiaria humidicola*. *BMC Genomics* 20, 41.

576 37. Zhang, Z., Conner, J., Guo, Y., and Ozias-Akins, P. (2020). Haploidy in Tobacco
577 Induced by PsASGR-BBML Transgenes via Parthenogenesis. *Genes* 11.
578 10.3390/genes11091072.

579 38. Wang, N., Song, X., Ye, J., Zhang, S., Cao, Z., Zhu, C., Hu, J., Zhou, Y., Huang, Y.,
580 Cao, S., et al. (2022). Structural variation and parallel evolution of apomixis in citrus
581 during domestication and diversification. *Natl Sci Rev* 9, nwac114.

582 39. Sabelli, P.A., and Larkins, B.A. (2009). The development of endosperm in grasses. *Plant*
583 *Physiol.* 149, 14–26.

584 40. Ozias-Akins, P., and van Dijk, P.J. (2007). Mendelian genetics of apomixis in plants.
585 *Annu. Rev. Genet.* 41, 509–537.

586 41. Köhler, C., Dziasek, K., and Del Toro-De León, G. (2021). Postzygotic reproductive
587 isolation established in the endosperm: mechanisms, drivers and relevance. *Philos.*
588 *Trans. R. Soc. Lond. B Biol. Sci.* 376, 20200118.

589 42. Hand, M.L., Vít, P., Krahulcová, A., Johnson, S.D., Oelkers, K., Siddons, H., Chrtek, J.,
590 Jr, Fehrer, J., and Koltunow, A.M.G. (2015). Evolution of apomixis loci in *Pilosella* and
591 *Hieracium* (Asteraceae) inferred from the conservation of apomixis-linked markers in

592 natural and experimental populations. *Heredity* 114, 17–26.

593 43. Šarhanová, P., Sharbel, T.F., Sochor, M., Vašut, R.J., Dancák, M., and Trávníček, B.
594 (2017). Hybridization drives evolution of apomicts in *Rubus* subgenus *Rubus*: evidence
595 from microsatellite markers. *Ann. Bot.* 120, 317–328.

596 44. Paczesniak, D., Pellino, M., Goertzen, R., Guenter, D., Jahnke, S., Fischbach, A., Lovell,
597 J.T., and Sharbel, T.F. (2022). Seed size, endosperm and germination variation in sexual
598 and apomictic *Boechera*. *Front. Plant Sci.* 13, 991531.

599 45. Bellucci, M., Caceres, M.E., Paolocci, F., Vega, J.M., Ortiz, J.P.A., Ceccarelli, M., De
600 Marchis, F., and Pupilli, F. (2023). ORIGIN OF RECOGNITION COMPLEX 3 controls
601 the development of maternal excess endosperm in the *Paspalum simplex* agamic
602 complex (Poaceae). *J. Exp. Bot.* 74, 3074–3093.

603 46. Liu, D.-D., Dong, Q.-L., Sun, C., Wang, Q.-L., You, C.-X., Yao, Y.-X., and Hao, Y.-J.
604 (2012). Functional characterization of an apple apomixis-related MhFIE gene in
605 reproduction development. *Plant Sci.* 185–186, 105–111.

606 47. Van Dijk, P.J., Op den Camp, R., and Schauer, S.E. (2020). Genetic Dissection of
607 Apomixis in Dandelions Identifies a Dominant Parthenogenesis Locus and Highlights
608 the Complexity of Autonomous Endosperm Formation. *Genes* 11.
609 10.3390/genes11090961.

610 48. d'Erfurth, I., Jolivet, S., Froger, N., Catrice, O., Novatchkova, M., and Mercier, R.
611 (2009). Turning meiosis into mitosis. *PLoS Biol.* 7, e1000124.

612 49. Grelon, M., Vezon, D., Gendrot, G., and Pelletier, G. (2001). AtSPO11-1 is necessary
613 for efficient meiotic recombination in plants. *EMBO J.* 20, 589–600.

614 50. Chelysheva, L., Diallo, S., Vezon, D., Gendrot, G., Vrielynck, N., Belcram, K., Rocques,
615 N., Márquez-Lema, A., Bhatt, A.M., Horlow, C., et al. (2005). AtREC8 and AtSCC3 are
616 essential to the monopolar orientation of the kinetochores during meiosis. *J. Cell Sci.*
617 118, 4621–4632.

618 51. Stacey, N.J., Kuromori, T., Azumi, Y., Roberts, G., Breuer, C., Wada, T., Maxwell, A.,
619 Roberts, K., and Sugimoto-Shirasu, K. (2006). *Arabidopsis* SPO11-2 functions with
620 SPO11-1 in meiotic recombination. *Plant J.* 48, 206–216.

621 52. De Muyt, A., Vezon, D., Gendrot, G., Gallois, J.-L., Stevens, R., and Grelon, M. (2007).
622 AtPRD1 is required for meiotic double strand break formation in *Arabidopsis thaliana*.
623 *EMBO J.* 26, 4126–4137.

624 53. Wei, X., Liu, C., Chen, X., Lu, H., Wang, J., Yang, S., and Wang, K. (2023). Synthetic
625 apomixis with normal hybrid rice seed production. *Mol. Plant* 16, 489–492.

626 54. Khanday, I., Skinner, D., Yang, B., Mercier, R., and Sundaresan, V. (2019). A male-
627 expressed rice embryogenic trigger redirected for asexual propagation through seeds.
628 *Nature* 565, 91–95.

629 55. Qi, X., Gao, H., Lv, R., Mao, W., Zhu, J., Liu, C., Mao, L., Li, X., and Xie, C. (2023).

630 CRISPR/dCas-mediated gene activation toolkit development and its application for
631 parthenogenesis induction in maize. *Plant Commun* 4, 100449.

632 56. Skinner, D.J., Mallari, M.D., Zafar, K., Cho, M.-J., and Sundaresan, V. (2023). Efficient
633 parthenogenesis via egg cell expression of maize BABY BOOM 1: a step toward
634 synthetic apomixis. *Plant Physiol.* 193, 2278–2281.

635 57. Huang, Y., Liang, Y., Xie, Y., Rao, Y., Xiong, J., Liu, C., Wang, C., Wang, X., Qian, Q.,
636 and Wang, K. (2024). Efficient haploid induction via egg cell expression of dandelion
637 PARTHENOGENESIS in foxtail millet (*Setaria italica*). *Plant Biotechnol. J.*
638 10.1111/pbi.14302.

639 58. Mieulet, D., Jolivet, S., Rivard, M., Cromer, L., Vernet, A., Mayonove, P., Pereira, L.,
640 Droc, G., Courtois, B., Guiderdoni, E., et al. (2016). Turning rice meiosis into mitosis.
641 *Cell Res.* 26, 1242–1254.

642 59. Wang, C., Liu, Q., Shen, Y., Hua, Y., Wang, J., Lin, J., Wu, M., Sun, T., Cheng, Z.,
643 Mercier, R., et al. (2019). Clonal seeds from hybrid rice by simultaneous genome
644 engineering of meiosis and fertilization genes. *Nat. Biotechnol.* 37, 283–286.

645 60. Wang, Y., Fuentes, R.R., van Rengs, W.M.J., Effgen, S., Zaidan, M.W.A.M., Franzen,
646 R., Susanto, T., Fernandes, J.B., Mercier, R., and Underwood, C.J. (2024). Harnessing
647 clonal gametes in hybrid crops to engineer polyploid genomes. *Nat. Genet.* 56, 1075–
648 1079.

649 61. Song, M., Wang, W., Ji, C., Li, S., Liu, W., Hu, X., Feng, A., Ruan, S., Du, S., Wang,
650 H., et al. (2024). Simultaneous production of high-frequency synthetic apomixis with
651 high fertility and improved agronomic traits in hybrid rice. *Mol. Plant* 17, 4–7.

652 62. Ravi, M., and Chan, S.W.L. (2010). Haploid plants produced by centromere-mediated
653 genome elimination. *Nature* 464, 615–618.

654 63. Wang, N., Gent, J.I., and Dawe, R.K. (2021). Haploid induction by a maize *cenh3* null
655 mutant. *Sci Adv* 7. 10.1126/sciadv.abe2299.

656 64. Lv, J., Yu, K., Wei, J., Gui, H., Liu, C., Liang, D., Wang, Y., Zhou, H., Carlin, R., Rich,
657 R., et al. (2020). Generation of paternal haploids in wheat by genome editing of the
658 centromeric histone CENH3. *Nat. Biotechnol.* 38, 1397–1401.

659 65. Kalinowska, K., Chamas, S., Unkel, K., Demidov, D., Lermontova, I., Dresselhaus, T.,
660 Kumlehn, J., Dunemann, F., and Houben, A. (2019). State-of-the-art and novel
661 developments of in vivo haploid technologies. *Theor. Appl. Genet.* 132, 593–605.

662 66. Marimuthu, M.P.A., Jolivet, S., Ravi, M., Pereira, L., Davda, 2. Jayeshkumar N.,
663 Cromer, L., Wang, L., Nogu  , F., and Chan, S.W.L. (2011). Synthetic Clonal
664 Reproduction Through Seeds. *Science* 331.

665 67. Gilles, L.M., Khaled, A., Laffaire, J.-B., Chaignon, S., Gendrot, G., Laplaige, J., Berg  s,
666 H., Beydon, G., Bayle, V., Barret, P., et al. (2017). Loss of pollen-specific phospholipase
667 NOT LIKE DAD triggers gynogenesis in maize. *EMBO J.* 36, 707–717.

668 68. Kelliher, T., Starr, D., Richbourg, L., Chintamanani, S., Delzer, B., Nuccio, M.L., Green,
669 J., Chen, Z., McCuiston, J., Wang, W., et al. (2017). MATRILINEAL, a sperm-specific
670 phospholipase, triggers maize haploid induction. *Nature* 542, 105–109.

671 69. Dong, L., Li, L., Liu, C., Liu, C., Geng, S., Li, X., Huang, C., Mao, L., Chen, S., and
672 Xie, C. (2018). Genome Editing and Double-Fluorescence Proteins Enable Robust
673 Maternal Haploid Induction and Identification in Maize. *Mol. Plant* 11, 1214–1217.

674 70. Jiang, C., Sun, J., Li, R., Yan, S., Chen, W., Guo, L., Qin, G., Wang, P., Luo, C., Huang,
675 W., et al. (2022). A reactive oxygen species burst causes haploid induction in maize.
676 *Mol. Plant* 15, 943–955.

677 71. Li, Y., Lin, Z., Yue, Y., Zhao, H., Fei, X., E, L., Liu, C., Chen, S., Lai, J., and Song, W.
678 (2021). Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. *Nat
679 Plants* 7, 1579–1588.

680 72. Zhong, Y., Liu, C., Qi, X., Jiao, Y., Wang, D., Wang, Y., Liu, Z., Chen, C., Chen, B.,
681 Tian, X., et al. (2019). Mutation of ZmDMP enhances haploid induction in maize. *Nat
682 Plants* 5, 575–580.

683 73. Zhong, Y., Chen, B., Li, M., Wang, D., Jiao, Y., Qi, X., Wang, M., Liu, Z., Chen, C.,
684 Wang, Y., et al. (2020). A DMP-triggered in vivo maternal haploid induction system in
685 the dicotyledonous *Arabidopsis*. *Nat Plants* 6, 466–472.

686 74. Zhong, Y., Chen, B., Wang, D., Zhu, X., Li, M., Zhang, J., Chen, M., Wang, M., Riksen,
687 T., Liu, J., et al. (2022). In vivo maternal haploid induction in tomato. *Plant Biotechnol.
688 J.* 20, 250–252.

689 75. Zhong, Y., Wang, Y., Chen, B., Liu, J., Wang, D., Li, M., Qi, X., Liu, C., Boutilier, K.,
690 and Chen, S. (2022). Establishment of a dmp based maternal haploid induction system
691 for polyploid *Brassica napus* and *Nicotiana tabacum*. *J. Integr. Plant Biol.* 64, 1281–
692 1294.

693 76. Cyprys, P., Lindemeier, M., and Sprunck, S. (2019). Gamete fusion is facilitated by two
694 sperm cell-expressed DUF679 membrane proteins. *Nat Plants* 5, 253–257.

695 77. Zhang, X., Shi, C., Li, S., Zhang, B., Luo, P., Peng, X., Zhao, P., Dresselhaus, T., and
696 Sun, M.-X. (2023). A female in vivo haploid-induction system via mutagenesis of egg
697 cell-specific peptidases. *Mol. Plant* 16, 471–480.

698 78. Mao, Y., Nakel, T., Erbasol Serbes, I., Joshi, S., Tekleyohans, D.G., Baum, T., and
699 Groß-Hardt, R. (2023). ECS1 and ECS2 suppress polyspermy and the formation of
700 haploid plants by promoting double fertilization. *Elife* 12. 10.7554/eLife.85832.

701 79. Jacquier, N.M.A., Calhau, A.R.M., Fierlej, Y., Martinant, J.-P., Rogowsky, P.M., Gilles,
702 L.M., and Widiez, T. (2023). In planta haploid induction by kokopelli mutants. *Plant
703 Physiol.* 193, 182–185.

704 80. Wu, X., Xie, L., Sun, X., Wang, N., Finnegan, E.J., Helliwell, C., Yao, J., Zhang, H.,
705 Wu, X., Hands, P., et al. (2023). Mutation in Polycomb repressive complex 2 gene
706 OsFIE2 promotes asexual embryo formation in rice. *Nat Plants* 9, 1848–1861.

707 81. Birchler, J.A., and Yang, H. (2022). The multiple fates of gene duplications: Deletion,
708 hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance
709 constraints, and neutral variation. *Plant Cell* 34, 2466–2474.

710 82. Mitros, T., Session, A.M., James, B.T., Wu, G.A., Belaffif, M.B., Clark, L.V., Shu, S.,
711 Dong, H., Barling, A., Holmes, J.R., et al. (2020). Genome biology of the paleotetraploid
712 perennial biomass crop *Miscanthus*. *Nat. Commun.* 11, 5442.

713 83. Edger, P.P., Poorten, T.J., VanBuren, R., Hardigan, M.A., Colle, M., McKain, M.R.,
714 Smith, R.D., Teresi, S.J., Nelson, A.D.L., Wai, C.M., et al. (2019). Origin and evolution
715 of the octoploid strawberry genome. *Nat. Genet.* 51, 541–547.

716 84. Goeckeritz, C.Z., Rhoades, K.E., Childs, K.L., Iezzoni, A.F., VanBuren, R., and
717 Hollender, C.A. (2023). Genome of tetraploid sour cherry (*Prunus cerasus* L.)
718 “Montmorency” identifies three distinct ancestral *Prunus* genomes. *Hortic Res* 10,
719 uhad097.

720 85. Yocca, A., Akinyuwa, M., Bailey, N., Cliver, B., Estes, H., Guillemette, A., Hasannin,
721 O., Hutchison, J., Jenkins, W., Kaur, I., et al. (2024). A chromosome-scale assembly for
722 ‘d’Anjou’ pear. *G3* 14. 10.1093/g3journal/jkae003.

723 86. Khan, A., Carey, S.B., Serrano, A., Zhang, H., Hargarten, H., Hale, H., Harkess, A., and
724 Honaas, L. (2022). A phased, chromosome-scale genome of “Honeycrisp” apple (*Malus*
725 *domestica*). *GigaByte* 2022, gigabyte69.

726 87. Carman, J.G. (1997). Asynchronous expression of duplicate genes in angiosperms may
727 cause apomixis, bisporic, tetrasporic, and polyembryony. *Biol. J. Linn. Soc. Lond.* 61,
728 51–94.

729 88. Carey, S.B., Aközbek, L., and Harkess, A. (2022). The contributions of Nettie Stevens to
730 the field of sex chromosome biology. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 377,
731 20210215.

732 89. Charlesworth, D., and Harkess, A. (2024). Why should we study plant sex
733 chromosomes? *Plant Cell*. 10.1093/plcell/koad278.

734 90. Albertini, E., Barcaccia, G., Carman, J.G., and Pupilli, F. (2019). Did apomixis evolve
735 from sex or was it the other way around? *J. Exp. Bot.* 70, 2951–2964.

736 91. Cauret, C.M.S., Mortimer, S.M.E., Roberti, M.C., Ashman, T.-L., and Liston, A. (2022).
737 Chromosome-scale assembly with a phased sex-determining region resolves features of
738 early Z and W chromosome differentiation in a wild octoploid strawberry. *G3* 12.
739 10.1093/g3journal/jkac139.

740 92. Gallego-Bartolomé, J. (2020). DNA methylation in plants: mechanisms and tools for
741 targeted manipulation. *New Phytol.* 227, 38–44.

742 93. Xia, K., Sun, H.-X., Li, J., Li, J., Zhao, Y., Chen, L., Qin, C., Chen, R., Chen, Z., Liu,
743 G., et al. (2022). The single-cell stereo-seq reveals region-specific cell subtypes and
744 transcriptome profiling in *Arabidopsis* leaves. *Dev. Cell* 57, 1299–1310.e4.

745 94. Yu, X., Liu, Z., and Sun, X. (2023). Single-cell and spatial multi-omics in the plant
746 sciences: Technical advances, applications, and perspectives. *Plant Commun* 4, 100508.

747 95. Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S., and Zhuang, X. (2015). RNA
748 imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. *Science*
749 348, aaa6090.

750 96. Matzk, F., Meister, A., and Schubert, I. (2000). An efficient screen for reproductive
751 pathways using mature seeds of monocots and dicots. *Plant J.* 21, 97–108.

752 97. Adhikari, L., Shrestha, S., Wu, S., Crain, J., Gao, L., Evers, B., Wilson, D., Ju, Y., Koo,
753 D.-H., Hucl, P., et al. (2022). A high-throughput skim-sequencing approach for
754 genotyping, dosage estimation and identifying translocations. *Sci. Rep.* 12, 17583.

755 98. Rodrigo, J.M., Zappacosta, D.C., Selva, J.P., Garbus, I., Albertini, E., and Echenique, V.
756 (2017). Apomixis frequency under stress conditions in weeping lovegrass (*Eragrostis*
757 *curvula*). *PLoS One* 12, e0175852.

758 99. Carman, J.G., Jamison, M., Elliott, E., Dwivedi, K.K., and Naumova, T.N. (2011).
759 Apospory appears to accelerate onset of meiosis and sexual embryo sac formation in
760 sorghum ovules. *BMC Plant Biol.* 11, 9.