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Abstract

A symmetry of a state |+ ) is a unitary operator of which |¢)) is an eigenvector.
When [t ) is an unknown state supplied by a black-box oracle, the state’s sym-
metries provide key physical insight into the quantum system; symmetries also
boost many crucial quantum learning techniques. In this paper, we develop a
variational hybrid quantum-—classical learning scheme to systematically probe
for symmetries of |¢) with no a priori assumptions about the state. This pro-
cedure can be used to learn various symmetries at the same time. In order
to avoid re-learning already known symmetries, we introduce an interactive
protocol with a classical deep neural net. The classical net thereby regularizes
against repetitive findings and allows our algorithm to terminate empirically
with all possible symmetries found. An iteration of the learning algorithm can
be implemented efficiently with non-local SWAP gates; we also give a less
efficient algorithm with only local operations, which may be more appropriate
for current noisy quantum devices. We simulate our algorithm on representat-
ive families of states, including cluster states and ground states of Rydberg and
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Ising Hamiltonians. We also find that the numerical query complexity scales
well for up to moderate system sizes.

Keywords: quantum machine learning, variational quantum algorithms,
interactive learning, quantum symmetries

1. Introduction

Symmetries are of ubiquitous importance across physics, relating intimately to conservation
laws and guiding the formulation of physical theories. The search for symmetries in a given
physical system is a central problem in the field, and until recently, has remained a purely ana-
lytical and model-driven task. However, developments in machine learning have now opened
the door for data-driven approaches. Classically, recent studies have used learning algorithms
to discover conserved quantities by using the system’s equation of motion [1-4] or by clus-
tering methods [5]. In the quantum setting, classical neural networks have been successfully
trained to classify states of matter [6-8], including symmetry-protected topological ones [9—
11]. Quantum algorithms binarily testing for symmetries of certain Hamiltonians and for spe-
cific quantum symmetries (such as bosonic exchange) have too been constructed [12, 13].
Knowledge of a given state’s symmetries significantly boosts the power of many fundamental
quantum learning schemes [14—16]. Along these lines, it has been shown that knowledge of
symmetries can bootstrap the quantum approximate optimization algorithm (QAOA) [17].
Symmetry-abiding neural networks can also be used as a variational ansatz for states of lattice
models [18, 19].

Beyond their intrinsic importance, quantum symmetries also encode key information about
the underlying quantum state. Specifically, when a state |¢)) is unknown, efficient extraction
of information about |¢)) from limited data is of great interest across both physics and the-
oretical computer science. Full information extraction, however, is exponentially costly with
the system size, requiring complete state tomography [20]. While novel approaches circum-
venting this issue have appeared—including basis-enhanced Born machines, classical machine
learning, and shadow tomography—comparatively little attention has been paid to the direct
and systematic learning of quantum symmetries, which also serve to characterize a state [8,
21-28]. In this article, we take a first step in that direction.

Define a quantum symmetry of |t ) to be a unitary U such that

Ulp) =ey); (1)

that is, an operator U for which |1 ) is an eigenvector. In line with experimental conditions, we
shall assume that a black-box oracle machine prepares copies of an unknown state |¢); our
goal is to efficiently express the set of symmetries of [¢/). To find the symmetries of [¢)) [29],
we propose a hybrid quantum—classical algorithm consisting of a variational quantum circuit
interacting with a classical neural network. We assume no prior information about | ), so that
our algorithm is agnostic to the input state whose symmetries it learns. Note that if |1 ) is known
then the symmetry learning problem is in a sense trivial; see appendix A. The quantum circuit
generates symmetries of |1 ) while simultaneously training the classical net to ‘remember’ the
history of symmetries already found. In turn, the classical net alerts the quantum circuit when it
parameterizes an operator close to a previously-found symmetry, allowing the quantum circuit
to redirect its search and thereby avoid repeatedly generating similar symmetries. By both
generating symmetries and keeping track of known symmetries, our algorithm continuously
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Figure 1. Schematic overview of symmetry learning scheme. A variational quantum cir-
cuit minimizes a loss function to generate symmetries, at the same time training a clas-
sical neural network to recognize the path of potential symmetry operators it searches.
The classical net then alerts the quantum circuit when it is searching for symmetries sim-
ilar to those already found, so that the quantum circuit can redirect its search accordingly.

finds new symmetries. Thus, we observe empirically that the learning procedure eventually
terminates. The overall structure of quantum—classical interaction is shown in figure 1.

1.1. Overview

Before providing a complete exposition of our contributions, we briefly discuss the main ideas
permeating our results. Since our goal is to learn symmetries U of |1 ), we require an explicit
technique to model operators U. To do so, we encode operators into a quantum circuit ansatz
C. Moreover, since we aim to iteratively learn U, the circuit must be parameterized by a col-
lection of variables € which, as they vary, also vary the operator that C represents. We can
then apply optimization techniques from classical machine learning, e.g. gradient descent and
variants, to vary @ until C closely represents U. That is, we train the variational circuit by dir-
ect application of classical optimization algorithms. Our metric of ‘closeness’ is given by a
loss function which is also used to train the circuit. An important point in this paper, however,
is that the exact choice of the loss function, or equivalently the technique we use to verify a
proposed symmetry, has subtleties. In particular, there is a tradeoff between the locality of the
loss function (i.e. the furthest distance between qubits which are required by the loss func-
tion to interact) and the efficiency for which the loss function may be evaluated. Therefore,
depending on the capabilities of the underlying quantum device, different choices may be more
appropriate.

Another key idea in this paper is motivated by the idea that finding non-trivial symmetries
necessitates finding many symmetries. As a starting example, since the identity operator is
always a symmetry, there is nothing stopping the circuit C from converging to the identity every
time. More broadly, since there are many symmetries (continuous families, in fact), it is desir-
able to repeatedly run the learning algorithm to find symmetries, while avoiding symmetries
that are similar to those that have already been found. This goal is precisely the motivation for
the introduction of a classical neural network that learns alongside the quantum circuit. Unlike
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the quantum circuit, which models an underlying unitary that receives |t} as input, the clas-
sical net receives @ as input and models a decision function that essentially outputs a single bit
b. We construct the classical net such that b serves as a flag for similarity to known symmetries,
encoded by 6. That is, when b = 1, the classical net predicts that the current symmetry search
path is similar to one already known. Hence, we may adjust the quantum learning algorithm
appropriately to avoid repetitive symmetry finding. Since the @ have a physically meaningful
notion of locality, we utilize convolutional nets in the construction of the classical net.

We remark that our algorithm bears a particular resemblance to the variational quantum
eigensolver (VQE) [30]. In the setting of VQE, one is given a Hamiltonian H and tasked
with finding its ground state energy, i.e. E, = min,) (¢ |H|¢). To do so, a VQE employs a
variational quantum circuit and trains it to map |0") to a state |¢) such that E = (¢ |H|p)
is close to E,. Measuring the energy of the output state will then estimate the ground state
energy. Learning symmetries can be seen as one way to approach the converse problem: we
are instead given a state | ) and asked to find operators U that are symmetries of |¢). They
share the trait of both being heuristic learning algorithms utilizing variational quantum circuits.
However, learning symmetries appears at face value much more difficult. Rather than finding
a minimum energy, we find operators themselves. Moreover, we search not for a single energy,
but for a large family of operators which are all symmetries of |1} ).

In section 2, we discuss the full details of the symmetry learning scheme and place it within
the context of noisy near-term quantum hardware. In section 3, we demonstrate the algorithm
on three representative families of quantum states. We also benchmark the scalability of the
algorithm and its robustness to noise. Finally, in section 4 we summarize our findings and
discuss some applications of symmetry learning.

2. Hybrid learning scheme

By analogy to an experimental setting, we assume access to copies of an unknown state |t )
and the task is to discover the set of its symmetries. Since the closeness of an operator to a
symmetry can be quantified in a manner similar to metrics of state overlap, symmetry learning
has a natural interpretation as an optimization problem, given as

S ={veu(2) : [®IVig)* =1}, )

where U(2F) is the unitary matrix Lie group of dimension 2% (note that any mention of U(2F)
in this paper can be readily replaced with SU(2L) the special unitary group, so long as the
circuit modeling it has only gates in SU(2F)). Symmetries can be filtered into a collection of
sets by fixing a universal parameterized quantum circuit (PQC) family C;, p(8) of depth D on
L qubits and parameters 6. Define Sp[|1 )] as the collection of symmetries of |1/ ) representable
by C1,p(8). By universality, every symmetry is contained in Sp(expz)[|?)] and

Sol[2] € Si )] € -+~ Soexpry [[4)] - 3)

We define the variational symmetry learning problem as the discovery and classification of
symmetries of |¢) for a fixed and constant depth D. In practice, this may neglect symmetries
that require exponentially long circuit depths to be implemented in the chosen PQC architec-
ture. A variational approach can therefore not find all symmetries in the worst case, but its
utility remains in general to find symmetries that do not require impractically large circuits
and time to learn.
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Figure 2. Depiction of the symmetry learning algorithm. The quantum net (red) involves
a variational quantum circuit Cz 4(6) on L qubits and with block-depth d measured by
a loss function L£y(0). 0 is varied until Cy 4(6) represents a symmetry. At the end
of each epoch, a classical 3-dimensional convolutional deep net (CNet; blue) learns
the loss function along the path just explored by the QNet. During future epochs, the
CNet informs the QNet as to whether it has already explored its current path, and hence
whether it needs to leave its current path to an as-yet explored region. The CNet structure
matches the parameter structure of the QNet. The first layer convolves over each set of
3 parameters per qubit, and the second layer convolves over every parameter; the result
is inputted into a 3-layer fully connected network.

We develop the symmetry learning scheme in three stages. First, we devise a method to
verify whether a given operator U is a symmetry. We then show that the verification procedure
can be upgraded into a learning procedure, by introducing a variational quantum algorithm
(VQA) built upon a PQC family C; p of depth D acting on L qubits. Finally, we boost the
learning scheme by introducing a regularization technique based on classical deep learning
that prevents the VQA from repetitively proposing similar symmetries. The full scheme is
illustrated in figure 2, which we refer to throughout this section.

2.1 Symmetry verification

To begin, suppose that we are given an operator U represented by a PQC family C; p. We
restrict ourselves only to symmetries expressible in such a decomposition, noting that a uni-
versal quantum gate family can generally express any operator up to small error. Our first step
will be to verify that U is indeed a symmetry of |1 ). Such a problem can be decided in polyno-
mial time by a method adapted from quantum fingerprinting, known as the SWAP, test [31].
The heart of the procedure is the controlled-SWAP gate, which takes |0) <> |1) unitarily if a

5
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o) = o]

Figure 3. Verification circuit V implementing a SWAP. test. The central operation is
a swap of the two L-qubit registers (bottom registers), controlled by the ancillary qubit
(top register). By running V O(1/¢?) times, we can determine the overlap | (1) |Ult)|?
up to error €. We estimate U to be a symmetry of |¢) if the overlap is at least 1 — O(e).

—| R(610) o — R(61a)

) R(620) <o — R(B24)

—|R(930) L ---~|R(9m) 4

Figure 4. Example of a universal parameterized quantum circuit on L =3 qubits. The
cross-hairs are controlled-NOT gates and the R gates are single-qubit rotations, para-
meterized by 6. There are d layers of (g) controlled-NOT gates between each pair of
qubits, sandwiched by the rotation gates.

control qubit is |1). By utilization of the circuit in figure 3, measurement of the ancillary qubit
yields |0) with probability

1 1
Pr[0] = 5+ S[(¥[Ul)I. @)

Thus the overlap | {1 |U|v))|? is a function of the bias (probability distance from 1/2) of a coin
flip, which can be determined to error € in O(1/¢?) trials [31]. Since the number of swaps
scales linearly with qubit size, the time complexity of the SWAP, test is polynomial: O(L/¢?).

Although the SWAP. is efficient, it uses long-range SWAP gates spanning O(L) qubits,
which are not practical for general near-term quantum devices. In section 2.5, we give an
alternative verification procedure free of long-range couplings at the expense of computational
efficiency.

2.2. Variational quantum generative algorithm
In the process of symmetry verification we utilized the matrix element | (1) |U|1) ) |> as a measure
of the closeness U is to a symmetry. The overlap may be interpreted as a loss metric, i.e.

Ly (U) = (1= | |[U)P)’. )

This overlap can be estimated statistically by the SWAP, test. The formulation of verifica-
tion as a loss allows for a transformation from verification—a discriminative procedure—to
proposition (search)—a generative model. Consider again a universal PQC; one such family
includes layers of (g) CNOT gates that are sandwiched in between single-qubit rotation gates,
as depicted in figure 4 for L =3 qubits. This PQC ansatz is well-established and is known to

6
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be universal as the depth reaches exponential values [32]. In place of circuit depth, we use
the block-depth d > 0, the number of layers of (g) CNOT gates. Hence, d =0 corresponds
to a single layer of rotations, d =1 gives 2 layers of rotations sandwiching 1 layer of CNOT
gates, etc. The circuit on L qubits is specified uniquely by either the circuit depth D or the
block-depth d; we shall use the latter, writing the circuit as Cy, 4 and filtering the symmetries
by block-depth as

Soll¥) € - S Sall¥)] S - Soexpry [1¥)]- (6)

Under a parameterization 6, define for convenience
Liyy (0) = Liy) (Cra(0)). 7)

Our VQA generates symmetries as follows. Initialize the PQC randomly by drawing 8 ~
Unif(0, 27 )3:(@+1) Next, run C;_ 4 on [t/ ) and compute L)y (60). The loss will likely be large,
but & may be improved by an updating algorithm of classical machine learning. Our algorithm
employs Nelder—-Mead simplex search, which optimizes 6 locally by updating the parameter
to its simplex neighbor with the minimum loss value [33]. The use of a classical updating
scheme on a PQC has been adopted to considerable success in many hybrid quantum—classical
algorithms such as variational quantum eigensolver (VQE) and QAOA. Here, 6 is iteratively
updated until £, (0) falls below an error threshold 4, at which point the symmetry is pro-
posed. See appendix C for details on our choices of hyperparameters.

Since the PQC consists of layers of parameterized gates updated by a training algorithm, it
has a natural interpretation as a quantum analog of a neural network, which we refer to as the
QNet. The QNet VQA comprises the top (red) half of figure 2.

We remark that the choice of loss function here is global and generally may suffer from
the barren plateau (BP) problem that affects VQAs nearly universally. Mitigating BPs in our
algorithm is out of the scope of this work, but we expect that based on current advances in
BP mitigation, it will be possible to mitigate BPs in our algorithm by modification of some
components (e.g. choice of loss or ansatz) without affecting the essence of the protocol [34].
Furthermore, we will show numerically in this paper that for moderate system sizes the scaling
appears to be fairly reasonable. Alternatively, it has been shown that it may be possible to avoid
BPs simply by restricting the class of searched symmetries to a sufficiently local subset [35].

2.3. Symmetries as manifolds

The VQA proposed in the previous section above successfully generates symmetries; however,
with no further assistance the PQC may propose the same symmetry repetitively. In the extreme
case, the PQC could simply choose to always output the identity matrix. The prevention of
repeat findings motivates the introduction of a regularization procedure. A naive method might
enumerate the set of symmetries found up to the kth epoch of search, 81, ..., 8y, and then adding
a regularization term to the loss function of the form

k
I -2
LED(0) = L1y (0) 2D 11000 . (8)
K'=0
Yet such regularizers are doomed to fail due to the algebraic structure of S[|¢))]. Not only are

the products of symmetries also symmetries, generating O(expk) symmetries from a given set

7



J. Phys. A: Math. Theor. 57 (2024) 315304 JZLuetal

of size O(k), but the symmetries are generally continuous families forming a Lie subgroup
Sa[|¥)] < U(2F). Consider, for example, the L-qubit GHZ state
[0%) +[1%)

A

For simplicity, consider d = 0 (factorizable) symmetries So[|GHZ, }]. Under a manifold picture
of the Lie subgroup, the factorizable symmetries can be partitioned into two submanifolds

@521}
@ ()2}

The first submanifold is composed of diagonal matrices with phases as their entries, and
includes the identity matrix. The second submanifold is composed of off-diagonal matrices
with phases as their entries, and includes the bit flip symmetry X where X is the Pauli spin
operator . Each submanifold has four degrees of freedom, forming a four-torus 7*. These
may be equivalently expressed in circuit decomposition as

M, = {@XP(O%)XP(@()}

k=1

={@wmwmw%,

k=1

|GHZ,) = )

(10)

1)

where P(y) is the phase gate

10
Pe1= (o &v)- (12

Each submanifold M; is a smoothly parameterized set of symmetries. Thus, in principle we
need only inspect a few points in the submanifold to deduce a closed-form expression for M;.

2.4. Interactive classical learning

To learn efficiently, we cannot explore the same submanifold repeatedly while other manifolds
remain unexplored. Rather, we must develop a procedure to push the PQC away from sym-
metry submanifolds already explored sufficiently. While such a task is not obvious, it is not
impossible from a measure-theoretic standpoint. That is, there will never be a case in which
|1) has two symmetry submanifolds M;, M, such that dim(M;) < dim(M,), so that M would
never be found. For as the manifolds are also groups, there exists automorphisms mapping
M to M, and vice versa, and hence the topological dimension of every symmetry subman-
ifold must be identical. Nonetheless, no pointwise regularization procedure, such as that of
equation (8), can recognize two symmetries being of the same submanifold and thereby push
the PQC away from proposing both of them.

We therefore introduce a regularization method based on classical deep learning: rather than
keeping track of specific symmetries, we train the classical net (CNet) to approximate L|,; ()

8
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by its output ﬁw,) (@). The direct statistical estimation of L,,(@) requires quantum opera-
tions and measurement handled by the QNet, so we supervise the CNet using the QNet itself.
Specifically, for every batch of loss-functional evaluations the QNet performs as it searches for
symmetries, we train the CNet in parallel using those evaluations as the supervisory dataset.
Each batch is a transcript of the path in U(2F) (henceforth abbreviated to U) walked by the
QNet that terminates at a symmetry. Ultimately, the aim of the CNet is to estimate with low
error the loss for € in a neighborhood of each 8 explored by the QNet. That is, we train the
CNet by minimizing the squared error

Ac(8) = <£|w> (0) — Lyy) (5’))2 (13)

where ﬁ‘w is the CNet estimate of the true loss.

Since the landscape of the loss function can be highly complex, we cannot hope to obtain a
good classical estimate of the loss globally with only a few local training points. Instead, we
design the CNet to estimate L, (6) locally in parameter space around points 8 explored by
the QNet with very low error, but estimate regions far from points explored by the QNet with
high error. By continuity, we can equivalently consider the local regions to be neighborhoods
around the unitary itself in U(2F). A useful intuition for the action of the CNet is to interpret the
estimation of local patches as ‘overfitting’ the CNet, purposefully, to the areas of the unitary
space that have already been explored. As the CNet trains, it will accurately predict £, () is
0 is near a parameter already explored, but will likely give a very inaccurate prediction if @ is
far from any explored parameters. Thus, by analyzing the CNet prediction accuracy on a point
0, given by Ac(0), the QNet can determine whether Cy, 4(6) resembles a symmetry previously
explored (i.e. the absolute difference of their overlaps are small). If so, the QNet can adjust
accordingly by leaving the local region of parameter space to hopefully find another region
of U that has not yet been explored. We found numerically (see appendix D) that the average
difference in A evaluated on a training point versus a random point is about two orders of
magnitude, making for easy distinction.

Classical deep neural nets are well-suited to the task because a CNet can extrapolate rel-
atively well locally. Consequently, as we will also show empirically, the CNet accomplishes
what no pointwise regularization scheme can: it regularizes against entire continuous famil-
ies of symmetries. Since we train the CNet on the entire search path, including points in U
not corresponding to symmetries, the CNet regularizes against any subsets of U that the QNet
has already explored, even if they are not symmetry submanifolds. Thus, the CNet minim-
izes the time the QNet wastes exploring parts of U already well-understood. Eventually, as
the QNet explores more and more symmetries, all of the symmetry submanifolds of fixed d
will be learned. The CNet will then find low estimation error everywhere, at which point the
learning algorithm will terminate. Thus when classical learning is added to the QNet VQA,
we find empirically that the symmetry learning process converges.

As shown in the bottom half of figure 2, we develop a CNet with two three-dimensional
convolutional layers. We design the convolutions to respect the structure of the parameteriza-
tion of the PQC. In particular, the first layer scans over each set of 3 rotation parameters per
qubit per block-depth, and the second layer scans over each individual parameter. The con-
volutional net layer is connected to a simple three-layer fully-connected neural net with leaky
rectified linear unit (ReLU) activation functions [36].

We train the CNet in path-batches; during each symmetry-learning epoch, the CNet reports
A while the QNet walks Nelder—-Mead paths in parameter space, corresponding to a path in
U. At the end of each epoch, when a symmetry is proposed, we use batch stochastic gradient

9
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descent (SGD) on the transcript of points walked in the path. Note that the CNet cannot undergo
training during an epoch of QNet symmetry search. Otherwise, the CNet will extrapolate the
local path well and mislead the QNet into thinking that it has already traversed its current path.
We elect to use SGD instead of an algorithm similar to Nelder—Mead for its superior empirical
performance (see appendix D).

At Every N steps on the QNet search path, the QNet pauses the search and queries the CNet.
If the CNet estimation error is low, then the QNet must adjust its search path accordingly. We
propose two methods by which the QNet can redirect its search. In the first, which we call the
global method, the QNet simply randomly restarts. Since the parameter dimension is

dim6 = O (Ld), (14)

the dimensionality of search space is sufficiently large for even moderate L,d that random
restarts give a substantial likelihood of landing in an as-yet traversed region of U. N is chosen
to be much smaller than the number of steps to find a symmetry, but still reasonably large
(~00), in consideration of a tradeoff between wasting too much time querying the CNet and
wasting too much time searching a familiar region.

The second method, which we call the local method, alternates between finding symmetries
(optimization) and maximizing the classical estimation error A¢ (exploration). That is, instead
of randomly jumping to a new region, we directly walk in the direction that appears most
unfamiliar. In the exploratory phase, we use finite difference gradient descent implemented by
the shift rule [37],

s)

L1y (0101 46,0102, -, 0303) — L1y (Br01 — 6,012, .., 0
9<—9—Tl< 1) (0101 102 3a3) — Ly (Bro1 102 3d3)’m)’

26

where 7 is the learning rate and ¢ is the finite difference parameter. We favor the shift rule
over Nelder—Mead because the latter fails to update 8 if all points in the neighboring simplex
have similar A¢; hence, no exploration occurs. By contrast, gradient descent will still update 6,
allowing progressive movements away from known regions. The local method is more efficient
for states that are highly symmetric (i.e. many symmetry submanifolds close to each other, for
a reasonable metric of submanifolds on U). The global regularizer has an advantage on states
with high-dimensional parameter spaces, wherein random restarts are generally faster than
explicitly carving paths to unexplored regions.

The full learning scheme is given in figure 2. As Nelder—Mead has been shown to be
average-case efficient, under the assumption that the regularizer prevents the same manifold
from being explored more than polynomially many times, our algorithm solves the symmetry
learning problem efficiently. In the absence of regularization, symmetry learning may take
superexponential time or even fail to terminate at all.

2.5. Adjustments for near-term practical implementation

Due to the limitations of near-term quantum circuits, the symmetry learning algorithm as for-
mulated above will be difficult to implement with current hardware. Specifically, both the
SWAP, test and the PQC given in figure 4 are spatially nonlocal computations—they contain
gates that span O(L) qubits. In this section, we adjust the algorithm to use only local opera-
tions, thereby becoming realizable with near-term hardware, at the cost of some efficiency and
universality.
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A SWAP operation between two L-qubit registers is implemented via L single-qubit SWAP
gates spanning O(L) qubits. While recent advancement in Rydberg atom quantum computers
have made long-range SWAPs a reality [38], in more general quantum hardware the SWAP
gate must be decomposed into controlled-NOT gates as

SWAP; = CNOT;_,;CNOT;_,,CNOT; _,;. (16)

Hence a controlled-SWAP can be carried out in O(L) Toffoli gates. However, such gates span
O(L) qubits. An alternative verification procedure to the SWAP, test is via statistical compar-
ison of the projective measurements (i.e. their distribution in a particular measurement basis)
of |¢) with that of Ult). For any fixed basis b, we may estimate the classical Kullback—
Leibler (KL) divergence KL (|¢)),U|v)) between the measurement distributions of |+ ) and
Uly) by constructing a sampling-based empirical cumulative distribution function (ECDF)
for each state in the basis expansion of b. Choosing multiple bases to capture the structure of
the phases, we define the quantum KL divergence as a sum over the KL divergence of each
projective measurement:

QKL ) (U) = > KLy (v),U[3h)). (17)

b

In practice, we find that only two bases, which need not be random, are required to capture
the contributions of the phases (see appendix B). Generally, estimation of QKL (U) requires
O(expL) evaluations of U just to sample every basis element at least once on average. However,
if only a small (polynomial) subset of the basis elements have non-negligible amplitude, the
QKL loss may be evaluated efficiently. Thus, although the exponential search is generally
unavoidable, we can first search for a polynomially sparse basis by checking the z and x bases
and choosing the sparser one. Further optimizations can be done via a method of binary search
to find a sparse basis. A second basis can then be found by rotating the sparsest basis by a
small angle (we chose 7/10). Such basis optimizations should be done before beginning the
learning algorithm, since checking a basis requires one sampling round, whereas the learning
algorithm will use hundreds of thousands or more sampling rounds, one for each step in the
search path. With preliminary basis finding, the QKL verification remains relatively efficient,
and we define the near-term loss as

near-term

Ly (0) = QKLjy) (CLa(8)). (18)

The second modification is of the PQC ansatz. The form given in figure 4 is universal, but has
(5) CNOT gates in each layer, most of which span O(L) qubits. Ideally, a hardware-efficient
circuit family has only gates spanning O(1) qubits and scales in depth at most linearly with L.
Thus, we restrict the CNOT gates to only nearest neighbors, giving a hardware efficient circuit
shown in figure 5. Although the family may no longer be universal, or at least require much
longer depths to represent a general unitary, it can still represent most symmetries of practical
interest, including any expressible in terms of local couplings.

For present applicability, we adopt both adjustments in this paper. Note that our algorithm
is agnostic to the choice of PQC family and loss function, so these hardware efficient modi-
fications can be readily removed when the appropriate experimental hardware is realized.

1
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Figure 5. Restricted quantum circuit family, of d layers, appropriate for current noisy
devices capable of local operations. Cross-hairs represent controlled-NOT gates, while
R gates are single-qubit rotations, parameterized by 6.

3. Results and discussion

We demonstrate our results on four quantum states: a Bell state, the GHZ state from
equation (9) and the planar cluster state [39], which both arise from a broader family known
as stabilizer states, and the transverse Field Ising Model (TFIM) which is known as one the
simplest quantum spin chains. Much of our focus is on the GHZ state, for due to their sens-
itivity to decoherence, they are often utilized for characterization of noisy quantum hardware
[40-42] and other quantum technologies, such as error correction, quantum metrology, and
quantum communication [43, 44]. We will first visualize some symmetries of the states. We
then benchmark the scaling of the algorithm with respect to L and d as well as its robustness
against noise. We collect data by backend classical simulation in Qiskit [45], although our
results on simulated noise indicate comparable results on quantum hardware.

3.1. Symmetries of simple circuit states

The exponential size of the matrix representation of 8 implies that there is no simple method to
visualize a general symmetry aside from its circuit decomposition; we discuss further this issue
at the end of the paper. However, for simple cases, we can explicitly examine the geometric or
analytical structure of the symmetry, which we discuss for the L-qubit GHZ state, measured
in the z basis for maximal sparseness. When d = 0, each symmetry factors as a tensor product
of 2 x 2 matrices, which belong to one of the submanifolds in equation (11). Since they are
either diagonal or off-diagonal, we use principal component analysis (PCA) in 2 dimensions
to visualize their geometric structure, illustrated in figure 6 for L =3. The diagonal and off-
diagonal symmetries form distinct clusters, which is consistent with the orthogonality of their
analytical representations.

Beyond d =0, no such tensor product decomposition exists, so the symmetries become
more difficult to visualize. (One can do so, though, by using PCA on 0 itself and then clustering
the resultant dataset.) However, for L =2, the unitary implemented by C, 4 may be explicitly
written. A key symmetry in many entangled states is the swap symmetry, which require at least
d =3 to be represented, by equation (16). We test the algorithm on a Bell basis state
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Figure 6. PCA projection of 100 symmetries of the 3-GHZ state, found by the QNet,
into 2 dimensions. The separation between them implies that the parameterizations of
the manifolds are easily distinguishable, which we know analytically to be true.

to numerically obtain the swap symmetry. On average, after ~10 trials, we find many symmet-
ries in the family

1 —C1

Q l—«
U=¢¥ , 20
-3 8 (20)

() —C

where o, 3, ¢; € C and the dots representing arbitrary numbers to make U unitary. In the limit of
¢j,a, B — 0, U reduces to the familiar SWAP operation, but the algorithm finds a more general
family that may be interpreted as a partial swap operation on each of the |01) and |10) basis
states. More generally, we find a similar family for the L-GHZ state, with a copy of the 2 x 2
submatrix at the center of equation (20) present in each two-qubit subspace. This is a general
principle of symmetry learning: one samples from a smooth symmetry submanifold, and must
take a few samples to interpret the underlying family of symmetries being represented.

3.2. Symmetries of adiabatically prepared states

In the following section, we will investigate our algorithm on further families of states. Before
doing so, we note that we have yet to use the black-box assumption (that no information is
known about the state) of the states. The motivation for black-box states is that in experiment
one may not have efficient access to the inverse circuit used to prepare the state because the
preparation may involve, for example, unitary time evolution. This is clearly different for the
GHZ family. Often states that require time evolution are both the most interesting and the
most difficult to study analytically. As such, learning their symmetries sheds insight into the
state itself and provides utility of our algorithm beyond the computational boosts discussed
in section 1. One important example of a family of states prepared with time evolution is the
Rydberg family. Specifically, consider the 1-dimensional Rydberg atom chain defined as the
ground state of the Hamiltonian

H Q t i b:(t —idi(t ~ A A
Ty) = 27’2( ) (€l¢f()|0j><1j| +e ¢/()|1j><0j|> =Y A O+ Vidiiw,  (21)
' j

J Jj<k
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where 7; = |1;)(1;], €; is the Rabi frequency for qubit j, ¢; is the laser phase, and A; is the
laser detuning frequency. Vi is the potential, which follows the van der Waals power law
Vix = Co/|r; —1;|°, where Co = 862 x 2 MHz um®. In recent years interest in Rydberg atoms
has exploded due to their potential as scalable neutral-atom quantum computers and program-
mable simulators, as well as their interesting quantum dynamics [28, 46—50]. When the para-
meters are time-independent and uniform, i.e. ©; = €; and A; = A, for all i and j, the (matter)
phase of a Rydberg atom array is determined by two parameters, A/S2 and R,/a, where a is
the lattice constant and Ry, is the blockade radius defined by Cy /RS = ). We thus label states as
|A/Q, Ry /a). Physically, the blockade radius is the minimum distance between two Rydberg
atoms for them to be simultaneously excitable, and is closely related to the NP-complete prob-
lem of Maximum Independent Set [46, 51].

For concreteness, we study the 7-qubit Rydberg chain with open boundary conditions, set-
ting ¢; = 0. Under these conditions, the Rydberg chain has two ordered phases, denoted Z,
and Zs3, which are nearly classical because they look like |Z,) = (1 — €)|1010101) + €|other)
and |Z3) = (1 —€)|1001001) + €|other). In the literature, these phases are also said to obey a
discrete permutation symmetry because the Z, phase is invariant, up to a small error, when
cyclically permuted n times [52]. Symmetry learning provides an alternative way to probe
ordered phases numerically. Although there are much easier ways to deduce this symmetry,
such as just ansatzing some possible spatial translation symmetries and checking them expli-
citly, this example provides evidence that symmetry learning can become useful to learn much
more complicated symmetries of physically interesting ground states in the future.

To simulate the Rydberg arrays, we use the technique of adiabatic evolution. Adiabatic
evolution achieves the ground state of a target Hamiltonian by starting with an easily preparable
ground state of an initial Hamiltonian, and then slowly modifying the Hamiltonian to reach
the target. In practice, the time scale of the parameter variation is ~ 3 us. This variation can
be thought of as iteratively time-evolving the state according to a smoothly parameterized
Hamiltonian, resulting in the state

(1)) = e~ T4 |y (0)). (22)

Adiabatic evolution is a key technique to Rydberg-atom quantum computing [47, 53].
We set |[¢(0)) = |0) for simplicity, though any easily preparable state works equivalently.
We prepare Rydberg states in classical simulation using Hamiltonians generated from
Blogade [54]. Having simulated experimental conditions, we proceed to examine their sym-
metries. Figure 7(a) shows the phase diagram of the 7-qubit Rydberg chain, calculated by the
entanglement entropy

S[IA/Q,Ry/a)] = =Tr[palog pa] (23)

where py is the reduced density matrix of |A/Q, R, /a) calculated by tracing over half of the
chain. The two lobes correspond to the ordered phases. From the diagram we examine three
points: |3.0,1.3) in the Z, phase, |3.5,2.5) in the Z3 phase, and |0.3,3.0) in neither (the dis-
ordered phase). Figures 7(b)—(d) respectively visualize a representative symmetry from these
phases, by plotting |Uj|? for each [55]. Similar results are found by repeatedly running the
algorithm until the CNet stops it. In (b) and (d), almost all elements look like random noise
except for a single bright point, which we zoom in on in the insets. In binary, the indices
correspond to exactly the Z, and Z; phases, since they are respectively close to |1010101)
and |1001001). As such, the corresponding matrix element in the symmetries are close to 1,
while all others are random noise far below 1. This visual is even more clear when we choose
a cutoff o and set each element |U;|* to 0 unless |U;|*> > max;; |U;|*> — o this is shown in

14
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Figure 7. Visualization of the symmetries of the 7-qubit Rydberg chain |A/Q, R, /a),
whose ground state is prepared by adiabatic evolution. (a): the phase diagram based
on the entanglement entropy S of |A /2, R, /a) with two ordered lobes, (b)—(d): matrix

visualizations \Uij|2 of a representative symmetry U € R2*? for three Rydberg ground
states. Most of the matrix elements look like random noise, but on the Z, and Z3 there
is a clear single element that is close to 1, which is zoomed in on the inset. The ‘signal’
matrix elements are more easily seen in (e)—(g), which send all elements where at least
a =0.1 smaller than the maximum element to 0.

(e)—(g) for « =0.1. On the other hand, the ‘symmetry’ for the disordered phase, which has no
special structure, resembles random noise, both in (c) and (f). This lack of structure reflects
the disordered nature of the state.

Three observations are of importance in the Rydberg example. First, although we used
adiabatic preparation which produced a much more imperfect phase diagram as compared
to exact diagonalization (which has smooth and almost entropyless ordered phase lobes), we
nonetheless managed to learn symmetries. This illustrates the robustness of our algorithm to
the more noisy and imperfect experimental settings and will be explored further in the next
section via precise noise models. Second, we deduced from figure 7 that the symmetries of
the Z, phase were matrices U of the form Ugs g5 = 1 — ags g5 (85 = 1010101 in binary) and
all other Uj; = a5, where the o’s are small. This large ‘signal’ matrix element indicates that
the state itself is nearly classical, hinting that the phase is highly ordered. The same analysis

15



J. Phys. A: Math. Theor. 57 (2024) 315304 JZLuetal

Figure 8. Graph representation of planar cluster states for L = ¢* qubits. The nodes
are qubits and the ed%es are controlled-Z gates. The cluster state is thus defined as
I1(4,b)cBdges W Zp|+)®" where C,Z, is a control-Z gate between qubits a.b and |+) =

22(0) +[1)).

follows for the Z3 phase, and the opposite for the disordered phase, which allow us to conclude
that there is no simple structure for disordered states. Thus, from symmetry learning, we have
deduced most of the salient aspects of the Rydberg phase diagram, which in turn shed light on
the physics. Symmetry learning, therefore, provides a new way to probe physics described by
Hamiltonians. Lastly, while figure 7 shows that there is no simple structure to the symmetries
of the disordered phase, little further insight can be obtained by inspecting the matrix alone.
We discuss this problem further in section 4.

As we conduct numerical scaling analyses in the next section, we continue to consider
ground states of Hamiltonians that require the black-box assumption, but turn to an Ising model
for simplicity.

3.3. Larger degrees of freedom

As shown in equation (6), more symmetries are representable by C; , with increasing d.
Inversely, the minimum d required for the learning algorithm to find symmetries is a state
complexity measure. For example, although every Sy[|+) )] is nonempty for any |t/ ) (due to the
identity matrix), the rotation symmetries among all possible single-qubit rotation operations
may be sparse and thus difficult to find. Thus, relatively few epochs will successfully find a
symmetry. For a given d, the average loss over many (say, 100) epochs on a given state meas-
ures the difficulty of learning symmetries at that block-depth. (We assume implicitly here that
trainability is not a problem, which breaks down for d larger than what we probe here, due to
the general vanishing gradient problem in machine learning.) We can examine the average loss
on various states to compare the complexity of their symmetries—that is, how large d must be
before most epochs can find symmetries. Importantly, this simple measure can be done without
knowing the actual symmetries themselves; we do not even need to look at the symmetries to
understand the relation between the loss and the block-depth.

We demonstrate the above procedure on the GHZ state, the planar cluster state, and the
ground state of the TFIM Hamiltonian. The planar cluster state is represented as a graph state
for which nodes are qubits and edges are controlled-Z gates, where Z is the Pauli o, operator.
The planar cluster states are defined only for L = ¢? qubits, and are shown in figure 8.

The TFIM Hamiltonian is given by

H=05) S—J> SIS, (24)
i i
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Figure 9. Average loss for 4-qubit GHZ, TFIM, and cluster states as a function of d. The
GHZ losses are all negligibly small and thus invisible. The transparent bar indicates one
standard deviation.

where J =1 is the interaction strength and the o; are the Pauli spin operators on the ith qubit.
While such variational methods as VQE and QAOA can be used to prepare the TFIM ground
state, we do so numerically via exact diagonalization.

Our preliminary analysis shows that the TFIM state is maximally sparse in the x basis and
cluster/GHZ states in the z basis. Finding 100 symmetries for each depth with L =4 yields
an average loss given in figure 9. As we might expect, the cluster state has the most complex
symmetries, requiring d ~ 2 to easily find symmetries with every epoch. The GHZ state is the
simplest due to its well-studied d =0 symmetries from figure 6. In practice, we can resolve
the issue of hard-to-find symmetries for small d by postselecting on epochs that do find sym-
metries, using regularization to prevent traversing known paths. However, figure 9 shows that
for relatively small d even complicated states like the cluster state permit most epochs to learn
symmetries, evidencing that our hardware-efficient PQC ansatz remains sufficiently rich to
efficiently parameterize non-trivial symmetries.

3.4. Query complexity

We benchmark the numerical scalability of the learning algorithm both with respect to d and
L, using the L-GHZ state as a concrete example. We measure scalability in terms of the search
query complexity; that is, the average number of Nelder—Mead iterations per epoch of sym-
metry learning. The advantage of query complexity is that it is agnostic to the verification
procedure, so our results hold even without the near-term related modifications. With current
devices, short-depth implementations are of the most significance. Demonstrated on the GHZ
state, figure 10 shows that the learning algorithm scales reasonably with small d. The query
complexity also scales well with respect to L on average. Such findings give numerical cre-
dence to our previous claims about the general efficiency of the learning algorithm, at least for
moderately sized systems.

3.5. Regularization performance

The heart of the CNet is a classical estimation of Ly (8). The more rapidly the local land-
scape of a symmetry submanifold can be fully learned (i.e. estimated to low error) by the
CNet, the more efficiently our scheme finds new symmetries. Measurement of classical learn-
ing efficiency manifests differently in the global and local methods. For each, we define a
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Figure 10. Average query complexity (number of search iterations to find a symmetry)
of the GHZ state as a function of state size L (left) and block-depth d (right), estimated
with 10 trials per L per d. Shading represents standard deviation.

characteristic learning time; for the global scheme,

TG = Ibiargmint>1 [M (0((,")) #M (9,("))} (25)
n=1

where 01(") is the symmetry proposed on the rth epoch of the nth fully-reset search (i.e. the

CNet is re-initialized to random weights) starting from a random 6, and M(6) is the symmetry
submanifold containing 8. For large N, 7 represents the expected number of epochs of training
from Nelder—Mead paths the CNet requires to learn a randomly chosen symmetry manifold.
For an ideal regularizer, 7 = 1; for a useless regularizer, 7 — oo.

On the other hand, for the local scheme. As the QNet alternates between optimization and
exploration with no random restarts, the key metric of its performance is thus the frequency
with which the QNet crosses to a different manifold and back. Hence the learning time may
be defined implicitly by

T

D UM(6,1) #M(8))], (26)

=1

1
T

where 6, is the symmetry on the rth optimization epoch. For large 7, 7, has the same inter-
pretation as 7¢.

Explicit measurement of the learning time requires analytical knowledge of the set of all
symmetry submanifolds. Since we have written that set for Sy[|GHZ), ], we will measure the
learning times for both methods on the 3-GHZ state. In the global scheme, over 100 runs we
found 7~ 1.2 regardless of the steps N per CNet query, in a range of N = 100 to N = 5000.
The learning time of the local method depends on the distance walked in the exploration phase,
which can be measured either by the step size in the gradient descent procedure or in the
number of iterations; we fix the latter and use the former, and plot the learning time (which
can be interpreted as a scoring function since bigger is better) in figure 11 for 7' =400, fitted
by standard methods in the dashed line to guide the eye. The shift rule also requires a finite
difference parameter #, but we found that the learning time does not depend significantly
on it. Figure 11 illustrates the intuition that, for small step sizes/time spent exploring, the
algorithm requires much more time to learn each manifold because it cannot walk sufficiently
far away from a symmetry submanifold before the exploratory phase ends. For sufficiently
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Figure 11. Local learning time 77(400) (blue dots) fitted with a trend line (red, dashed)
for ease of visualization. 77 represents the average number of points on a symmetry sub-
manifold needed to be learned before the CNet recognizes the entire submanifold—the

smaller 7 is, the more efficiently the algorithm regularizes. For larger gradient descent
step sizes, the learning time saturates.

large step size, however, (=5 for 3-GHZ), the exploration has taken the QNet sufficiently far
away from the known symmetry submanifold that more exploration is unnecessary. Although
figure 11 benchmarks a simple state, the lessons taught by the results hold more generally in
that a sufficiently large choice of step size is crucial to build an effective local regularizer.

3.6. Learning in the presence of noise

A final consideration for implementation in near-term devices is the robustness of the learn-
ing algorithm in the presence of noise. For simplicity, we consider a noise model, simulated
classically, for which each gate (both in the state preparation and C; 4) can incur a bit flip
(erroneous X error) or reset (qubit resets to |0)), each independently with probability peor. The
measurement of each qubit may also be erroneous with the same probability. The presence of
such noise may be physically interpreted as thermal fluctuations that jiggle the path traversed
by the QNet in U. Because our QNet requires many iterations to propose a symmetry—10° or
more for some systems, as shown in figure 10—we expect that such small thermal fluctuations
average out in the process, at least up to a certain threshold of pegror-

We examine the loss metric £,y (6) as a function of peror on the 3-GHZ state for d = 1 to
demonstrate this effect numerically. The black curve in figure 12 represents the true average
loss of the symmetry; that is, the QKL value between the shadows of U|GHZ;3) and |GHZ3),
where U is the symmetry proposed by the noisy PQC. Until peror ~ 1072, the loss remains
relatively low and constant. However, in practice we cannot calculate the true loss due to nois-
iness of state preparation. When |GHZ;) is itself is prepared with noise, the resultant average
QKL value is given in red. As expected, they are much higher, but the difference between the
two, plotted with standard smoothening methods in grey, also remains relatively constant until
Perror ~ 102. Thus, when the error is below a reasonably high threshold, the learning algorithm
continues to propose true symmetries, and the amount by which the loss increases due to the
noisiness of state preparation varies little. By subtracting out this constant gap, we can account
for the effect of the noise and thereby continue to learn symmetries in the presence of noise.

Above the threshold, the loss increases roughly linearly and slowly, and symmetries may still
be classified, albeit slightly noisily.
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Figure 12. Average loss over 20 symmetries proposed by a noisy circuit with respect to
a noisily prepared GHZ state (red) and a noiseless GHZ state (black), which represents
the true loss of the noisy symmetry. Error bars show log-standard deviation. The grey
line is a fitted curve of the difference in losses evaluated with respect to a noisy state
and a noiseless state.

4. Conclusion and outlook

We developed an interactive hybrid quantum—classical learning algorithm that efficiently
solves the symmetry learning problem—to discover and classify every symmetry of an
unknown state |1 ) that can be represented by a certain quantum circuit family with a fixed
block-depth d. We first showed that known symmetries could be verified efficiently via a
quantum algorithm, and then devised a method to upgrade the verification procedure into
a variational quantum learning algorithm that generated symmetries. To regularize against
repetitive propositions of similar symmetries, we introduced an interactive protocol with a
classical deep neural network that guided the variational quantum algorithm away from areas
of unitary space U(2F) explored in previous iterations of learning. Thus, for each state we
demonstrated it upon, the algorithm converged. For purposes of near-term implementation,
we showed that aspects of the algorithm difficult to implement in current hardware could be
replaced by presently realizable methods at the cost of some efficiency. We benchmarked our
algorithm in simple cases and showed that it scales well with respect to d and L. We further
showed that the learning scheme is robust against noise.

Although the parameterized quantum circuit families we discussed are universal or near-
universal, a general symmetry may require a very deep circuit in the family to be represented.
In practice, under a restriction of depth, we can detect more symmetries by choosing various
families of circuits and running the learning algorithm on each. Since some symmetries are
more easily represented by certain circuit architectures than others, such an approach maxim-
izes the number of symmetries found empirically on near-term devices.

An important next step in the utilization of our algorithm is more robust benchmarking on
various quantum hardware, such as IBM digital quantum devices or Rydberg machines. More
analysis on a broader set of states is also of interest. As for regularization, a more complex pro-
tocol may allow for even more efficiency. For example, a procedure based on the Metropolis-
Hastings algorithm, which stochastically combines the global and local approaches proposed
in this paper, is a natural next step of study. Indeed, recent work has shown that application
of similar approaches based on Markov chain Monte Carlo methods significantly improve the
efficiency of many variational quantum algorithms [56].
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Beyond experimental considerations, we consider three points of inquiry stemming from
our work. The first is physical: while we address the computational problem of symmetry learn-
ing, it remains unclear as to how the symmetries are to be physically interpreted. Historically,
searching the symmetries of a system generally begins with some intuitive interpretation from
which the equations are obtained. If, on the other hand, one has a general matrix or circuit
which is known to be a symmetry, it is unclear as to how one would extract the physics from
it. The second question is complexity-theoretic: although our work is manifestly computa-
tional, it should be possible to derive analytical complexity bounds on interactive quantum—
classical search. These bounds should be considered in the context of local symmetries, or in
other manners that do not enable barren plateaus to become an inhibitory problem. Numerous
investigations of variational search complexities have been conducted in recent years, such as
that by [57]. Lastly, perhaps the most difficult structure for the CNet to capture is the compos-
ition of unitaries. That is, if the QNet has learned U; and U,, we do not want it to learn U, U,
or U, U, since it is already clear that a composition of symmetries is a symmetry. Since the
composition of a symmetry family V' by another symmetry may not be close in any norm sense
to V. Hence, it is important that the CNet (or some other method) can regularize against com-
positions. The simulations in this paper indicated that the CNet was able to regularize well.
However, more isolated analysis of the CNet alone is necessary to understand precisely what
forms of similarity the CNet learns to regularize against.

In a broader context, symmetry learning can serve as a data-driven guide to learning about
the physical phenomena of quantum systems and their relation to symmetries. For example,
symmetry breaking is closely related to phase transitions and other emergent properties.
Symmetry learning also aligns with the goals of partial tomography in providing a character-
ization of a state without completely reconstructing it classically. While recent methods such
as shadow tomography [58] offer an efficient and convenient way to understand properties of
a state from a computational perspective, symmetry learning may be of more relevance from
a physics perspective, guiding researchers in quantum machine learning and shedding light
on the physics of complex, empirically created quantum systems such as spin liquids [59] in
addition to boosting other quantum learning algorithms that benefit from knowing symmetries.
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Appendix A. Further discussion on symmetry learning

We provide some further discussion about the definition of symmetry learning. Given a state
|1}, if it is known in full, then one may write down every symmetry of |¢)) as

ei9 U Ujon
0 uxm - uow

v=|. T . (A1)
0 UpNg =+ UpNON

where U is expressed in a basis B = {|1),v2, ..., vov } Where the vectors vy are arbitrary and the
u;; can be anything that preserves unitarity. In this sense writing down the symmetries of a state
is mathematically trivial if |+ ) is a known state. The existence of a closed-form expression of
symmetries for a known quantum state |¢) is, however, not inherently useful for two distinct
reasons that both stem from the need to understand the symmetry physically. First, a general
state prepared by quench dynamics according to a possibly time-dependent Hamiltonian in
the experimental setting is generally unknown, so using |t/ ) as a basis results in circular logic.
Therefore, using the technique above to deduce symmetries is at least as hard as a full tomo-
graphy, which is generally exponentially hard. We impose the black-box/unknown condition
for |¢) for this reason. Second, even if the state is known, it would be difficult to extract an
efficient representation of the symmetry from the complete matrix form above. A variational
technique enables the approximation of certain symmetries into an efficient representation,
which takes a step towards garnering useful information from these symmetries. Future poten-
tial upgrades that make this VQA robust against barren plateaus may also provide a further
advantage in making the entire learning protocol efficient on average.

Appendix B. QKL basis requirement

The definition of the QKL divergence requires a choice of a number of bases. For every family
of states we considered, only 2 constant bases were necessary. We show this by defining a QKL
cross validation loss and showing that for 2 constant bases, the cross validation is sufficiently
small.

The methodology is as follows. Choose 2 bases to train on. These may be chosen randomly.
However, if one knows that |1 ) has most of its amplitude concentrated in the small proportion
of the basis elements in some basis, that basis will be optimal to train on. The second basis may
be obtained by perturbing the optimal basis by a small rotation angle. We find that a rotation
about an arbitrary axis of 7/10 suffices to capture all of the phase information of the state.

To verify that 2 bases suffices, choose n random bases after training and evaluate the QKL
value over the random set. If it is under the desired error threshold, the two bases suffice. In
our case, we found that the QKL over 3 random bases was of order ~ 10~ consistently.

Appendix C. Hyperparameters

We use a error tolerance of 10~!12 for Nelder—Mead search, with a maximum allowed iterations
of 10* for L =3 qubits and up to 10° for L = 15 qubits. The prediction error threshold for the
global regularization scheme is § = 1072. The CNet uses 100 nodes per layer in the fully
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Figure 13. Top: log A¢ of CNets under each basis (0 [blue] corresponds to the z-basis).
Bottom: visualization of the shadows of the 3-GHZ state.

connected neural network component. We chose these parameters for their good numerical
results and rapid convergence in the systems studied in this paper, but different states or those
with sizes larger than the sizes considered in our study may require different choices.

Appendix D. CNet demonstration

It is instructive to examine the classical deep net independently to verify its ability to learn the
loss metric landscape. As an example, we consider the CNet on the 3-qubit GHZ state with a
block-depth of d =2. We generate a simple dataset of 3000 random parameters on two bases,
one the computational (z) basis and the other a perturbation by a rotation of 7 /10 radians about
a fixed axis. For each basis, the respective CNet learns the projected classical KL value on the
training set, then attempt to estimate it on a testing set of 500 values. The resulting learning
curve is given in figure 13.

The computational basis learns to a training error of 0.024 and incurs a cross-validation
(test) error of 1.372, while the perturbed basis has a training/validation error of 0.038/1.224.
The gap between the training and cross-validation error spans two orders of magnitude. Such
effects, already visible in this toy example, are dramatically enhanced in practice wherein the
training set is a local path rather than a random global sample, for the correlation between
points is much higher, leading to a lower training loss and a higher cross-validation error. This
is precisely the desired property of the CNet.
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