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On the Budgeted Hausdorff Distance Problem

Sariel Har-Peled∗ Benjamin Raichel†

Abstract

Given a set P of n points in the plane, and a parame-
ter k, we present an algorithm, whose running time is
O
(
n3/2
√
k log3/2 n + kn log2 n

)
, with high probability,

that computes a subset Q? ⊆ P of k points, that min-
imizes the Hausdorff distance between the convex-hulls
of Q? and P . This is the first subquadratic algorithm
for this problem if k is small.

1 Introduction

Given a set of points P in Rd, a natural goal is to find
a small subset of it that represents the point set well.
This problem has attracted a lot of interest over the
last two decades, and this subset of P is usually re-
ferred to as a coreset [3 , 2 ]. An alternative approxima-
tion is provided by the largest enclosed ellipsoid inside
C(P ) (here C(P ) denotes the convex-hull of P ) or the
smallest area bounding box of P (not necessarily axis-
aligned). This provides a constant approximation to the
projection width of P in any direction v – that is, the
projection of P into the line spanned by v is contained
in the projection of the ellipsoid after appropriate con-
stant scaling. One can show that in two dimensions,
there is a subset Q ⊆ P (i.e., a coreset) of size O(1/

√
ε)

such that the projection width of P and Q is the same
up to scaling by 1+ε. See Agarwal et al. [3 , 2 ] for more
details.

The concept of a coreset is attractive as it provides
a notion of approximating that adapts to the shape of
the point set. However, an older and arguably simpler
approach is to require that C(Q) approximates C(P )
within a certain absolute error threshold. A natural
such measure is the Hausdorff distance between sets
X,Y ⊆ R2, which is

dH(X,Y ) = max
(
d(X → Y ), d(Y → X)

)
, (1)
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where
d(X → Y ) = max

x∈X
min
y∈Y
‖xy‖.

In our specific case, the two sets are C(P ) and C(Q),
and let DH(Q,P ) = dH

(
C(Q), C(P )

)
. The natural ques-

tions are

(I) MinCardin : Compute the smallest subset Q ⊆ P ,
such that DH(Q,P ) ≤ τ , where τ is a prespecified
error threshold. Formally, let

F≤τ =
{
Q ⊆ P

∣∣ DH(Q,P ) ≤ τ
}
,

and let k? = k?(P, τ) = minQ∈F≤τ |Q| denote the
minimum cardinality of such a set Q.

(II) MinDist : Compute the subset Q ⊆ P of size k, such
that DH(Q,P ) is minimized, where k is a prespec-
ified subset size threshold. Let τ? = τ?(P, k) =
minQ⊆P :|Q|=k DH(Q,P ) denote the optimal radius.

The two problems are “dual” to each other – solve one,
and you get a way to solve the other in polynomial time
via a search on the values of the other parameter. In
particular, solving both problems directly (in two di-
mensions) can be done via dynamic programming, but
even getting a subcubic running time is not immediate
in this case. Indeed, the problem seems to have a sur-
prisingly subtle and intricate structure that make this
problem more challenging than it seems at first.

Klimenko and Raichel [7 ] provided an O(n2.53) time
algorithm for MinCardin . Very recently, Agarwal and
Har-Peled [1 ] provided a near-linear time algorithm for
MinCardin that runs in near linear time if k? = k?(P, τ)
is small. Specifically, the running time of this algorithm
is O(k?n log n).

The purpose of this work is to come up with a sub-
quadratic algorithm for the “dual” problem MinDist . An
algorithm with running time O(n2 log n) follows readily
by computing all possible critical values, and performing
a binary search over these values, using the procedure
of [1 ] as a black box. The only subquadratic algorithm
known previously was for the special case when P is in
convex position, for which [7 ] gave an algorithm whose
running time is O(n log3 n) with high probability.

Our main result is an algorithm that, given P and k as
input, solves MinDist in O

(
n3/2
√
k log3/2 n+ kn log2 n

)

time, with high probability, see Theorem 7  for details.
We believe the algorithm itself is technically interest-
ing – it uses random sampling to reduce the range of
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interest into an interval containing O(
√
n) critical val-

ues. It then use the decision procedure of [1 ] as a way
to compute the critical values in this interval, by “peel-
ing” them one by one in decreasing order. Using random
sampling for parametric search is an old idea, see [6 ] and
references there.

2 Preliminaries

Given a point set X in R2, let C(X) denote its con-
vex hull . For two compact sets X,Y ⊂ R2, let
d(X,Y ) = minx∈X,y∈Y ‖xy‖ denote their distance. For
a single point x let d(x, Y ) = d({x}, Y ).

Consider two finite point sets Q ⊆ P ⊂ R2, and ob-
serve that

DH(Q,P ) = dH
(
C(Q), C(P )

)
= max

p∈P
d
(
p, C(Q)

)
,

see Eq. (1) . The first equality above is by definition,
and the second is since Q ⊆ P and so we have that
C(Q) ⊆ C(P ), and moreover the furthest point in C(P )
from C(Q) is always a point in P .

In this paper we consider the following two related
problems, where for simplicity, we assume that P is in
general position.

Problem 1 (MinCardin) Given a set P ⊂ R2 of n
points, and a value τ > 0, find the smallest cardinal-
ity subset Q ⊆ P such that DH(Q,P ) ≤ τ .

Problem 2 (MinDist) Given a set P ⊂ R2 of n points,
and an integer k, find the subset Q ⊆ P that minimizes
DH(Q,P ) subject to the constraint that |Q| ≤ k.

For either problem let Q? denote an optimal solu-
tion. For MinCardin let k? = k?(P, τ) = |Q?|, and for
MinDist let τ? = τ?(P, k) = DH(Q?, P ). The algorithms
discussed in this paper will output the set Q?, though
when it eases the exposition, we occasionally refer to k?

as the solution to MinCardin and τ? as the solution to
MinDist .

Theorem 3 ([1 ]) Given as an input a point set P and
parameters k and τ , let k? = k?(P, τ). There is a pro-
cedure decider(P, τ, k), that in O(nk log n) time, either
returns that “k? > k”, or alternatively returns a set
Q? ⊆ P , such that |Q?| = k? ≤ k, and DH(Q?, P ) ≤ τ .

The above theorem readily implies that the problem
MinCardin can be solved in O(nk? log n) time.

Given an input of size n, an algorithm runs in O(f(n))
time with high probability , if for any chosen constant
c > 0, there is a constant αc such that the running time
exceeds αcf(n) with probability < 1/nc.

3 Algorithm

3.1 The canonical set

Given an instance P, k of MinDist , let Q? denote an
optimal solution. Recall that

τ? = DH(Q?, P ) = max
p∈P

d(p, C(Q?)).

Assume that τ? > 0, which can easily be determined by
checking if |V(C(P ))| > k, where V(C(P )) denotes the
set of vertices of C(P ). Let

p = arg max
p′∈P

d(p′, C(Q?)),

and let q be its projection onto C(Q?), i.e. τ? = ‖pq‖.
Observe that q either lies on a vertex of C(Q?) or in
the interior of a bounding edge. Since Q? ⊆ P , we can
conclude that τ? is either (i) the distance between two
points in P , or (ii) the distance from a point in P to
the line passing through two other points from P . Note
that, in case (ii), q must be the orthogonal projection of
p on to the line ` supporting the edge, and that p must
be the furthest point from ` out of the points that lie
in one of its two defining halfplanes. In particular, for
an ordered pair a, b ∈ P define `a,b as the line through
a and b, directed from a to b, and let Pa,b be the subset
of P lying in the halfspace bounded by and to the left
of `a,b. We thus define the following two sets.

V =
{
‖xy‖

∣∣ x, y ∈ P
}

and

L =
{

max
p∈Pa,b

d(p, `a,b)
∣∣ a, b ∈ P

}
. (2)

The set Ξ = V ∪ L is the canonical set of distance
values (i.e., the set of all critical values). By the above
discussion, we have τ? ∈ Ξ.

Observe that V and L (and hence Ξ) have quadratic
size. Thus we will not explicitly compute these sets. In-
stead we will search over V using the following “median”
selection procedure.

Theorem 4 ([4 ]) Given a set P ⊂ R2 of n points, and
an integer k > 0, with high probability, in O(n4/3) time,
one can compute the value of rank k in V.

For values in L, the algorithm samples values and
searches over them, using a procedure loosely inspired
by [6 ]. For that we have the following standard lemma,
whose proof we include for completeness.

Lemma 5 ([5 ]) Let P ⊂ R2 be a set of n points. Then
in O(n log n) time one can build a data structure such
that for any query vector −→u , in O(log n) time, it returns
the point of P extremal in the direction −→u , i.e. the point
maximizing the dot product with −→u . Let extremal(−→u )
denote this query procedure.

170



CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Proof. Let V(C(P )) = {q1, . . . , qk} be labelled in clock-
wise order. Let U(qi) be the set of unit vectors −→u such
that when we translate P so that qi lies at the origin,
then −→u lies in the exterior angle between the normals
of qi−1qi and qiqi+1. Observe that extremal(−→u ) = qi
precisely when u ∈ U(qi). Moreover, the U(qi) define
a partition of the set of all unit vectors into k sets.
Thus if we maintain these intervals in an array, sorted
in clockwise order, then in O(log k) = O(log n) time
we can binary search to find which interval −→u falls in.
It takes O(n log n) time to compute C(P ) and thus the
data structure. �

In the next section, given a directed line `, we use the
above lemma to make extremal queries for the normal of
` lying in its left defining halfplane. This lets us evaluate
extreme points for lines supporting edges of the current
hull, as well as allows us to sample values from L, for
which we have the following.

Corollary 6 Given a set P ⊂ R2 of n points, af-
ter O(n log n) preprocessing time, one can return, in
O(log n) time, a value sampled uniformly at random
from L.

Proof. Sample uniformly at random a pair of points
from P , and then use Lemma 5 for the normal to the
line passing through this pair of points. �

3.2 The algorithm in stages

The input is a set P of n points, and a parameter k.
The task at hand is to compute the minimum distance
τ?, such that there is a subset Q ⊆ P of size k, such
that DH(Q,P ) ≤ τ?.

Searching and testing for the optimal value. The al-
gorithm maintains an interval (r,R), such that the fol-
lowing invariants are maintained:

(I) k?(P, r) > k,

(II) k?(P,R) ≤ k, and

(III) τ?(P, k) ∈ (r,R).

(The first two conditions are actually implied by the
last condition, though for clarity we list all three.) In
the following, let δ > 0 denote an infinitesimal1  . Given
a value τ ∈ (r,R), one can decide if τ = τ?(P, k), by
running decider(P, τ, k) and decider(P, τ − δ, k), see
Theorem 3 . If decider(P, τ−δ, k) returns that k?(P, τ−
δ) > k and k?(P, τ) = k then clearly τ is the desired
optimal value. In this case, the algorithm returns this
value and stops.

1The algorithm can be described without using infinitesimals,
but this is somewhat cleaner.

Updating the current interval. After testing if τ =
τ?(P, k) for a value τ ∈ (r,R) as described above, if
τ 6= τ?(P, k) then the algorithm can update the cur-
rent interval. Indeed, if decider(P, τ, k) returns that
k?(P, τ) > k, then the algorithm sets the current inter-
val to (τ,R). Otherwise, decider(P, τ − δ, k) returned
that k?(P, τ − δ) ≤ k and so the algorithm sets the
current interval to (r, τ).

Stage I: Handling pairwise distances. The algorithm
sets the initial interval to (0,∞). (Recall as discussed
above that we can assume τ? > 0.) The algorithm then
binary searches over all pairwise distance from V =

(
P
2

)

by using the distance selection procedure of Theorem 4 ,
in the process repeatedly updating the current interval
as described above. If τ? ∈ V, then the algorithm will
terminate when the search considers this value. Oth-
erwise, this search reduces the current interval to two
consecutive pairwise distances from V, r < R, such that
τ? ∈ (r,R) and the current interval (r,R) contains no
pairwise distance of P in its interior.

Stage II: Sampling edge-vertex distances. The algo-
rithm samples a set Π of O(n3/2 log n) values from L,
see Eq. (2) , using Corollary 6 . Let U be the subset of
values of Π that lie inside the current interval. The algo-
rithm binary searches over U , repeatedly updating the
current interval as described above (by doing median se-
lection so that U ’s cardinality halves at each iteration).
If τ? ∈ U then the algorithm will terminate when the
search considers this value. Otherwise, the search fur-
ther reduces to the interval to I ′ = (r′, R′). (Which as
discussed below, with high probability, contains O(

√
n)

values from L.)

Stage III: Peeling the critical edge-vertex distances.
The algorithm now continues the search on the interval
I ′ = (r′, R′) and critical values in it, I ′ ∩Ξ = I ′ ∩L. In
particular, the solution computed by decider(P,R′, k)
is a set Q ⊆ P of size ≤ k such that DH(Q,P ) ≤ R′.
For every edge on the boundary of C(Q) the algorithm
now computes the point from P furthest away from the
line supporting the edge (among the points in the half-
plane not containing C(Q)), using extremal queries from
Lemma 5 . Let α be the largest such computed value
over all the edges, and observe that α = DH(Q,P ).2  

If α < R′, then α ≥ τ?(P, k). The algorithm tests if
α = τ?(P, k), and if so it terminates. Otherwise, it must
be that the optimal value lies in the interval (r′, α). As
α ∈ (r′, R′) and α ∈ L, our new interval (r′, α) has at

2DH(Q,P ) must be realized at a value from L as Stage I elim-
inated V values, and thus it sufficed to consider furthest distances
to the lines supporting edges rather than the edges themselves,
since at the maximum such value they must align.
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least one less value from L. The algorithm now contin-
ues to the next iteration of Stage III.

The case when α = R′ (i.e., the higher end of the ac-
tive interval) is somewhat more subtle. The algorithm
calls decider(P, k, α − δ) to compute a set Q′ that re-
alizes k?(P, α− δ), where δ is an infinitesimal. Observe
that k?(P, α − δ) ≤ k, as otherwise α = R′ was the de-
sired optimal value. Let β = DH(Q′, P ), which can be
computed in a similar fashion using Q′ as α was com-
puted using Q. The algorithm tests if β = τ?(P, k),
and if so it terminates. Otherwise, by the same reason-
ing used above for α, we can conclude our new interval
(r′, β) has at least one fewer value from L, and thus the
algorithm continues to the next iteration of Stage III on
the interval (r′, β).

3.3 Analysis

Correctness. The correctness of the algorithm is fairly
immediate given the discussion above. Namely, the al-
gorithm maintains an interval (r,R) with the invariant
that τ?(P, k) ∈ (r,R) (where initially this interval is
(0,∞)). In each step of each stage a value τ ∈ (r,R)
that is either from V (in Stage I) or from L (in Stages
II and III) is determined. For this value τ we then up-
date the current interval as described above. Namely,
we query decider(P, τ, k) and decider(P, τ − δ, k). If
these calls return that k?(P, τ) ≤ k and k?(P, τ−δ) > k
then τ = τ?(P, k) and the algorithm terminates. Oth-
erwise, if k?(P, τ) > k the algorithm proceeds on (τ,R),
and if k?(P, τ − δ) ≤ k then it proceeds on (r, τ). In
either case the interval contains at least one fewer value
from Ξ, and thus eventually the algorithm must termi-
nate with the value τ?(P, k).

Running time analysis. In Stage I the algorithm per-
forms a binary search over V =

(
P
2

)
. This is done using

the distance selection procedure of Theorem 4 , which
with high probability takes O(n4/3) time to determine
each next query value. Each query is answered using
the O(nk log n) time decider(P, ·, k) from Theorem 3 .
Thus in total Stage I takes O

(
(n4/3 + nk log n) log n

)

time with high probability. Here, by the union bound,
a polynomial number of high probability events (i.e.
the events that each call to selection occurs in O(n4/3)
time), all occur simultaneously with high probability.

In Stage II the algorithm samples O(n3/2 log n) val-
ues from L using the O(log n) time sampling pro-
cedure of Corollary 6 . Next, the algorithm binary
searches over these values (this time directly), again
using decider(P, ·, k). Thus in total Stage II takes
O(n3/2 log2 n+ nk log2 n) time.

Stage III begins with some interval (r′, R′). Let
X = |L ∩ (r′, R′)|. In each iteration of Stage III, for
some subset Q ⊆ P of size at most k, the algorithm com-
putes α = DH(Q,P ). This is done using at most k calls

to the O(log n) query time Lemma 5 . (This same step
is potentially done a second time for β = DH(Q′, P )).
Each iteration of Stage III also performs a constant
number of calls to decider(P, ·, k), thus is total one
iteration takes O(k log n+nk log n) = O(nk log n) time.
As argued above each iteration of Stage III reduces the
number of values from L in the active interval by at
least 1, and thus runs for at most X iterations. Thus
the total time of Stage III is O(Xnk log n).

Observe that since Stage II sampled a set Π of
O(n3/2 log n) values from the O(n2) sized set L, the in-
terval between any two consecutive values of Π with
high probability has O(

√
n) values from L. As the in-

terval I ′ = (r′, R′) returned by Stage II is such an inter-
val, with high probability X = O(

√
n). As the running

time of Stage II dominates the running time of Stage
I (with high probability), we thus have that with high
probability the total time of all stages is

O(n3/2 log2 n+ (log n+X)nk log n)

= O(n3/2 log2 n+ n3/2k log n+ nk log2 n)

= O(n3/2(k + log n) log n).

Slightly improving the running time. Observe that
if the algorithm samples O(nt log n) values in stage II,
then with high probability the last two stages take

O

(
nt log2 n+

(
n2

nt
+ log n

)
kn log n

)

time. Solving for t, we have

nt log2 n = (n2/t)k log n =⇒ t2 = nk/ log n.

Thus, setting t =
√
nk/ log n, and including the running

time of stage I, we get the improved high probability
running time bound

O

(
n4/3 log n+ nt log2 n+

(
n2

nt
+ log n

)
kn log n

)

= O
(
n3/2
√
k log3/2 n+ kn log2 n

)
.

In summary, we get the following result.

Theorem 7 Given an instance of MinDist , consisting
of a set P ⊂ R2 of n points and an integer k, the above
algorithm computes a set Q? ⊆ P , of size k, that realizes
the minimum Hausdorff distance between the convex-
hulls of P and Q? among all such subsets – that is,
τ?(P, k) = DH(P,Q?). The running time of the algo-

rithm is O
(
n3/2
√
k log3/2 n+ kn log2 n

)
with high prob-

ability.

We remark that under the reasonable assumption
that k = O(n/ log n) the running time can be stated

more simply as O(n3/2
√
k log3/2 n).
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4 Conclusions

The most interesting open problem left by our work is
whether one can get a near-linear running time if k is
small. Even beating O(n4/3) seems challenging. On the
other hand, if one is willing to use 2k points then a
near linear running time is achievable [7 ]. However, us-
ing less than 2k points without increasing the Hausdorff
distance in near linear time seems challenging.
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