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Range and strength of mechanical interactions of
force dipoles in elastic fiber networks†

Abhinav Kumar, a David A. Quint b and Kinjal Dasbiswas *a

Mechanical forces generated by myosin II molecular motors drive diverse cellular processes, most

notably shape change, division and locomotion. These forces may be transmitted over long range

through the cytoskeletal medium – a disordered, viscoelastic network of biopolymers. The resulting cell

size scale force chains can in principle mediate mechanical interactions between distant actomyosin

units, leading to self-organized structural order in the cell cytoskeleton. Inspired by such force

transmission through elastic structures in the cytoskeleton, we consider a percolated fiber lattice

network, where fibers are represented as linear elastic elements that can both bend and stretch, and the

contractile activity of myosin motors is represented by force dipoles. Then, by using a variety of metrics,

we show how two such contractile force dipoles interact with each other through their mutual

mechanical deformations of the elastic fiber network. As a prelude to two-dipole interactions, we

quantify how forces propagate through the network from a single anisotropic force dipole by analyzing

clusters of nodes connected by highly strained bonds, as well as through the decay rate of strain energy

with distance from a force dipole. We show that predominant fiber bending screens out force

propagation, resulting in reduced and strongly network configuration-dependent dipole interactions. On

the other hand, stretching-dominated networks support longer-ranged inter-dipole interactions that

recapitulate the predictions of linear elasticity theory. By characterizing the differences between tensile

and compressive force propagation in the fiber network, we show how inter-dipole interaction depends

on the dipoles’ mutual separation and orientation. The resulting elastic interaction energy may mediate a

force between multiple distant dipoles, leading to their self-organization into ordered configurations.

This provides a potential pathway for active mechanical force-driven structural order in elastic

biopolymer networks.

1 Introduction

Mechanical forces generated in the cytoskeleton of animal cells
underlie essential functions such as cell motility,1 shape
change2,3 and cell division.4 These forces are exerted by mole-
cular motors of the myosin II family which bind to and slide
actin filaments.5 Actin filaments, together with other semi-
flexible biopolymers, constitute the cytoskeleton of the cell: a
disordered, cross-linked, viscoelastic network of fibers that
supports the generation and transmission of mechanical
forces.6 Cells use these forces to deform and sense their
mechanical micro-environment, which allows elastic substrate-
mediated mechanical communication between cells,7–9 in addition
to communication via chemical signaling. Similarly, there is

evidence that myosin II motors may sense and interact with
each other through mechanical strains that they generate in the
cytoskeletal medium, leading to self-organized, structures with
long-range (i.e., beyond molecular size scale) order in the cell
cytoskeleton.10,11

A minimal, coarse-grained model for cellular force distribu-
tion at both spatial scales, whether exerted by individual
actomyosin units in the cytoskeleton, or by whole cells adhered
to an extracellular matrix, is a contractile force dipole
embedded in an elastic medium.12,13 The spatial distribution
of the deformation generated by such a force dipole, for
example how far strain propagates from the position of the
dipole, depends on the mechanical properties of the medium.
For fibrous networks such as the extracellular matrix compris-
ing collagen or fibrin, it has been shown that the force
transmission can be longer-ranged than in a linear elastic
medium.14,15 It has been suggested that the softening of fibers
under compression through buckling, together with stiffening
under tension, can drive the enhanced range of force
transmission.16–19 How forces propagate from an active,
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contractile force dipole through a heterogeneous elastic med-
ium, and how that facilitates mechanical interaction between a
pair of distant force dipoles, are therefore significant biophy-
sical questions. This is analogous to elastic interaction of
defects that act as sources of stress in passive materials,20

and are found to play a role in the organization of other
disordered media such as granular packings.21

At time scales too short for cytoskeletal remodeling to occur,
the cytoskeleton behaves as an elastic material that can sustain
and transmit mechanical stresses.22 The disordered cytoskele-
ton can therefore be modeled as a network of elastic fibers that
resist both stretching and bending with elastic moduli, m and k,
respectively.23–25 In the limit where the fibers are significantly
shorter than the persistence length, thermal fluctuations may
be ignored and an athermal, linear elastic model for the fibers
may be used to describe the cytoskeletal network instead of the
nonlinear, entropic elastic constitutive relations of semiflexible
polymers.25 Note that the model may be easily extended to
incorporate nonlinear constitutive relations that more realisti-
cally model cytoskeletal filaments. However for small deforma-
tions that occur far from the dipole, the force-extension relation
of each fiber is likely to remain in the linear regime.

A convenient modeling strategy to generate such an elastic
network with a disordered architecture is to start from a
triangular lattice and then to remove bonds at random, with
a probability p of bonds being present, which corresponds to a
specific average coordination number, hzi = 6p.26–29 The macro-
scopic elastic properties of such a network depend on the single
fiber mechanics as well as the network geometry, particularly
the coordination number. The macroscopic response of the
network to shear is controlled by the rigidity percolation
threshold for networks with ‘‘central force’’ springs. ‘‘Central
force’’ (CF) implies equal and opposite forces on a pair of nodes
along the bond connecting them, with no transverse forces
such as from resistance to bending. This is theoretically pre-
dicted to be pTCF = 2/3, just from Maxwell’s constraint counting
argument in 2D for a triangular lattice,30 corresponding to a
coordination number of z = 4. This transition has been numeri-
cally verified to occur at pNCF E 0.66,31 below which a 2D
triangular network of central force springs loses its rigidity
and becomes completely floppy. Such a rigidity percolation
with changing coordination number is a generic phase transi-
tion in disordered elastic materials, occurring in network
glasses32 and colloidal gels,33 in addition to fiber networks.

Below the central-force isostatic limit (p o pCF), an elastic
network may be stabilized by the bending stiffness of fibers,
here represented by the energy cost of changing angles between
collinear bonds in the triangular lattice. Slender fibers would
rather bend than stretch when stressed, as a result of their
small bending to stretching stiffness ratio (k/(ml2) { 1). The
p o pCF regime allows such stretch-free deformation modes.
While not completely floppy, these soft modes are character-
ized by very low mechanical energy that scales with k. When
diluted even further, a 2D triangular lattice of fibers with finite
bending modulus (k 4 0), exhibits the rigidity percolation
transition, with shear modulus becoming G = 0 at the bending

isostatic threshold, pb E 0.44.27,28,34,35 The rigidity percolation
threshold may be further lowered by imposing additional
constraints, such as bond torsion.28

Multiple computational network mechanics studies have
used triangular lattices for understanding how network con-
nectivity and fiber mechanics interplay. Our choice of using a
lattice allows us to compare directly our results with these
previous studies, as well as being guided by the well known
rigidity percolation transitions for triangular lattices found in
previous studies.17,27–29 Lastly, there are a few examples in
cellular system where actin is organised in structures which
are anisotropic such as those found in lamellopodia and stress
fibers. For example, in the leading edge of the lamellopodia, F-
actin branching proteins give rise to a densely connected and
anisotropic actin network.36,37

When both fiber bending and stretching are taken into
account, there is an intermediate dilution regime pb o p o
pCF, where the network response to shear is dominated by fiber
bending modes, leading to a scaling of the shear modulus with
the bending stiffness, G B k.27,28,32,38 The network deforma-
tions in this regime involve bond rotations along the shearing
direction without stretching, and are therefore qualitatively
different, from the stretching-dominated, over-coordinated
(p 4 pCF) regime, where the shear modulus is much higher
and scales with the fiber stretching modulus, G B m. The
nonlinear elastic properties of under-coordinated fiber net-
works are demonstrated by their ‘‘stress–strain’’ curves, which
stiffen dramatically by orders of magnitude, as the network
transitions under shear from the bending to stretching-
dominated regime.39 Close to this transition, the bending and
stretching modes are coupled. This ‘‘bend-stretch coupled’’
regime can be wider if the ratio of bending to stretching moduli
increases.27 Realistic biopolymer networks, such as occurring
in the cytoskeleton of living cells or in purified actin gels, are
expected to have a typical coordination number in the range of
3 o z o 4 (0.5 o p o 0.67), where 3 and 4 correspond to a
branch point or fibers crossing, respectively.39,40 This puts
biopolymer networks in the under-coordinated regime but
close to criticality, and allows for strong stiffening response
to shear. A similar stiffening transition has been shown to
occur for bulk deformations.41

Bending-dominated disordered fiber networks are charac-
terized by spatially heterogeneous deformations. These depart
significantly from affine (uniform strain) behavior, and cannot
thus be captured by a continuum linear elastic model. We
explore the range of force transmission from a source force
dipole modeling the active contraction generated by myosin
motors, through a 2D disordered elastic network in various
regimes. In contrast to these recent works17,42–44 which study
force transmission from large, isotropic force distributions
(modeling cells in extracellular matrix), we focus on small,
anisotropic force dipoles that deform networks of linear elastic
fibers that linearly stretch, compress and bend. We aim to
study the consequences of fiber bending separately from fiber
buckling. Such scenarios may arise in networks with smaller
forces and thicker fibers, that make fiber buckling less likely.45
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Past works have extensively studied the macroscopic elastic
properties of such networks, including the rigidity percolation
transition,25,28,29,46 the local response of the network to force
monopoles or dipoles embedded within the network,23 and the
effect of nonlinear elasticity of individual biopolymers arising
from softening due to buckling17 and stiffening under
stretching.16,42 In this work, we aim to investigate the mechan-
ical interactions that may arise between a pair of such force
dipoles, and the role that fiber bending plays in this process. As
a prelude to this, we quantify how forces spread through the
network from one dipole. We then show how such a pair
of force dipoles may interact at long range (more than a few
dipole lengths away) through their mutual deformations of
the intervening elastic network. Such interactions leading to
the mutual attraction and alignment of force dipoles may
underlie the self-organization of initially disordered actomyo-
sin units into ordered structures such as stress fibers in the
cytoskeleton.26,47

2 Model

We model the elastic medium as a regular hexagonal lattice (of
equilateral triangles) from which bonds can be randomly
removed to model disordered fiber networks. Such a lattice
(Fig. 1(a)) represents an actin fiber network where a set of
collinear bonds is understood to represent a fiber. Each bond
between a pair of nodes can stretch or compress with respect to
its initial rest configuration (Fig. 1(b)). Fiber bending is imple-
mented through the rotation or relative change of angle
between two collinear bonds. Individual bonds in this model
do not bend or change shape. The actin network may be
deformed by myosin motor activity. Each actomyosin unit,
comprising a myosin motor aggregate and the actin filaments
it binds to, is modeled as a contractile force dipole: a pair of
equal and opposite forces applied at two nearby nodes. We
create a force dipole by applying equal and opposing forces at
two selected nodes in the network (1a inset). In depleted

Fig. 1 Elastic fiber network model and representative minimum energy configurations from simulation. (a) An example hexagonal lattice (comprising
equilateral triangles) of size 64 � 64 with bonds randomly removed according to the bond occupation probability, p = 0.8. The two nodes marked in
green are those on which a pair of equal and opposite forces, f, here along the x-axis, are applied to create a force dipole. (a: inset) Zoomed in version of
(a) with red arrows indicating the direction of the dipole forces. (b) Schematic illustrating the stretching, compression and bending of bonds that
contribute to mechanical energy in the model. Each bond, when present between neighboring nodes, is modeled as a linear (Hookean) spring with a
uniform rest length and stiffness, m. Each pair of collinear bonds is associated with an angular spring of stiffness k that penalizes deviations in angle
between the two bonds from the original value, and represents fiber bending stiffness. Buckling and other forms of elastic nonlinearity of bonds are
ignored, which is justified for small forces and stiff fibers. (c) A representative simulation result for a p = 0.8 network (shown in a) deformed by a single
dipole, with value of force, f = 0.4. The colorbar shows strain values for stretched (blue) and compressed (red) bonds. Bonds that carry a strain magnitude
above a threshold value |e0| = 0.003 are highlighted in bold. The bonds with relatively very high/low strains, usually found at the dipole, are plotted as
black dashed lines to ensure that there is appreciable color gradient visible for the remaining bonds. (d) Zoomed in view of the region around the force
dipole in the network of (c), showing bonds with strains higher than the threshold in thick red (compressed) or blue (tensile). (e) Same as (d), but for a p =
0.6 network. Fiber bending through local rotation of bonds is more pronounced, while the tension and compression of bonds is less, than in (d). (f) and (g)
Strain plots produced by two canonical pairwise dipole configurations: separated along (x-axis) and transverse to (y-axis) the dipole axis, respectively. In
the cases shown here, all bonds are present (p = 1) and strain threshold, e0 = 0.003. In this work, we show how the mechanical interaction between a pair
of force dipoles through their mutual deformations of the elastic network, varies with inter-dipole spacing (dx or dy) and configuration. The dipoles are
expected to be driven towards more favorable configurations characterized by lower elastic energy of the network.
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networks, we also make sure that bonds in the vicinity of the
force dipole are not removed, to allow efficient force transmis-
sion and to prevent large node displacements due to local
floppy modes. The nodes on which we apply forces are shown
as green circles and the direction of forces are shown by red
arrows. This application of a force dipole mimics how myosin
motors contract the actin cytoskeleton (Table 1).29,48

The network deformation is calculated by minimizing its
total mechanical energy, which includes the elastic energy
stored in the network from the stretching, compression and
bending of bonds,28 as well as the work done by the force dipole
in moving pairs of corresponding nodes towards each other:17

Et ¼ Es þ Eb þ Ed ¼ m
2

X
ijh i

rij � r0
� �

2

þ k
r0

X
jikh i

2 sin2 yjik
�
2

� �
þ
X
mnh i

F � dmn

(1)

where m and k are the stretching and bending moduli respec-
tively, rij represents the length of the bond connecting two
neighboring nodes, and r0 is its rest length, set to unity for all
bonds in our system. Fiber bending is modeled by angular
springs at every pair of collinear bonds, which are defined by
the three nodes, j, i and k, with ith node being central. For each
such pair of collinear bonds, we impose an energy cost, Eb,jik =
(2k/r0)sin

2(yjik/2) for deviations from collinearity, which is the
discretized form of the bending energy in the worm-like-chain
model for semiflexible polymers. The dipole energy is the scalar
product of force applied on and the separation vector between
the pair of nodes comprising the dipole, which need not in
general be along a bond. Here, dmn is the separation vector
connecting the mth and nth nodes that comprise one force
dipole. The force is central and always along the separation
vector dmn, though myosin motors may also act transversely to
fibers.49 In this work, unless otherwise stated, the dipole nodes
are chosen to be 4 units apart, i.e. dmn = 4r0.

Our 2D triangular network of nodes connected by bonds has
periodic boundary conditions along both x and y directions.
The lattice size used for the simulations is 64 � 64, unless
stated otherwise. Force is applied incrementally to the nodes of
the dipole. At each step of force application, we use the
conjugate gradient method to minimize the energy of the
network given in eqn (1) and find its new configuration.52

The energy tolerance to accept the new configuration as being
the energy minimum is set to 2 � 10�6. The process is repeated

up to a maximum force value and for a fixed number of force
iterations. For the results reported here, forces were applied at
increments of f0 = 0.04 to each dipole node, for a total of 10
steps. The resulting force applied is then f = 0.4. Typical
deformed network configurations obtained in our simulations
for one and two dipole cases are shown in Fig. 1(d)–(g).

For an elastic fiber, the bending modulus k ¼ p
4
Ea4 depends

on the Young’s modulus E and the fiber radius, a.45 The
stretching modulus is m = pEa2. We define a nondimensional
ratio of bending to stretching, which depends on the fiber

length: ~k ¼ k
�

ml2
� �

¼ 1

4
a2
�
l2. For an actin filament that has a

diameter of 7 nm,6 and is of length l B 10 mm (an upper bound

for cells), we estimate ~k � a=lð Þ2� 10�6. For shorter filaments with
lengths l B 1 mm or l B 100 nm, such as those found in the actin
cortex,4 this value is larger, ~k � 10�4 and ~k � 10�2, respectively.
This range of values is consistent with bending to stretching ratios
previously used for modeling actin filaments.28,50

Using the worm-like chain model for semiflexible polymers,
we estimate a thermal fluctuation induced strain of e0 = l/
(6lp).

25 For an actin filament of length l B 1 mm and known
persistence length lp B 17 mm, this strain has value of e0 B
10�2, while for l B 100 nm, e0 B 10�3. We use this as a
threshold strain to identify the range of force transmission from
the source dipole in our model fiber networks. The elastic force
corresponding to this strain is m�e0 B kl/(6lpa

2) B kBT/(6a)�(l/a),
which for lB 100 nm, a = 7 nm and kBTE 4 pN nm is the thermal
energy scale at room temperature, gives a value of the characteristic
value of forceBpN. This is comparable with the force produced by
a nonmuscle myosin motor minifilament with 10 heads, each
producing a force of pN, with a duty ratio of B10%.51 Thus, a
force of f = 0.4 applied in the simulation corresponds to B0.4 pN,
while the separation of 4 units corresponds to 4lB 400 nm, which
is indeed the typical size scale for an actomyosin contractile unit in
stress fibers of the cellular cytoskeleton.10

3 Results
3.1 Single dipoles in over-coordinated networks

We first consider the case of a single force dipole in a nearly
uniform triangular lattice of springs. To examine how the force
propagation in the network is affected by a small amount of
disorder, we dilute the network by randomly removing bonds,
while staying in the stretching-dominated regime (p Z 0.67 or
z Z 4). Since this procedure may result in many different
specific network realizations, we simulate four different net-
works at each value of p to show the fluctuation in strain and
cluster trends. In each case, we ensure that we do not have any
singly-connected nodes, to prevent dangling bonds. The effec-
tive bending stiffness is set to be very small in relation to
stretching, ~k ¼ 10�6. We show representative simulated net-
work configurations for three different bond dilution factors in
Fig. 2(a)–(c). Corresponding simulations for the uniform lattice
are shown in Fig. S1 (ESI†). Although such an ordered lattice of
springs is not a faithful representation of real fiber networks, it

Table 1 Model parameters by changing the bending-to-stretching stiff-
ness ratio, we represent three different typical actin fiber lengths.4,6 These
ranges of bending-stretching ratios have been used in previous works.28,50

The parameters listed here allow us to investigate rigid as well as floppy
networks. The dipole force is comparable to that produced by a non-
muscle myosin motor minifilament51

Parameter Symbol Simulation value Physical value

Fiber length l B1 10 mm, 1 mm, 100 nm
Bending rigidity ~k 10�6, 10�4, 10�2 17 mm kBT
Dipole force f 0.4 0.4 pN
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is important to understand and benchmark the model response
to force dipoles.

In all cases, stretched (compressed) bonds are colored in
blue (red). As seen here, a force dipole creates primarily
stretched regions along its axis, i.e., to its left and right.
Similarly, the dipole compresses the network in the transverse
direction, in this case, above and below it. Additionally,
strongly strained bonds beyond a chosen threshold are high-
lighted in bold. For the results presented here, the threshold
value is set to e0 = 0.003. This is comparable to our estimate for
strain induced in a semiflexible actin polymer by thermal
fluctuations alone. We verified that the results do not qualita-
tively change for a smaller strain threshold (Fig. S2, ESI†).

To quantify the spatial extent of force propagation in the
network from the force dipole, we analyze clusters of nodes that
are connected to strongly strained bonds. The nodes participat-
ing in such a cluster are colored blue in Fig. 2(a)–(c). A cluster is
defined to be a set of nodes, with positions ri, that share at least
one bond with magnitude of strain above a threshold value.
The cluster nodes may or may not be directly connected to the
dipole nodes, though in practice we observe that most highly
strained bonds form a single, large, connected cluster that
includes the dipole nodes. The radius of gyration for a cluster
with N nodes is defined below in the standard way,

Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ri � rcj j2
vuut (2)

where ri is the position of the ith node in the cluster, and rc ¼
1

N

PN
i¼1

ri is the center of mass of the cluster.

As we deplete the uniform lattice in Fig. 2, there is an
increase in the number of nodes participating in the tensile
cluster along the axis of the dipole that manifest as branching
‘‘force chain’’ structures. These subnetworks of highly strained
bonds are visual examples of the mechanical heterogeneity of
disordered networks. They imply that strain is concentrated in
some bonds instead of varying smoothly with distance from the
dipole. While we do not track each force chain individually as
in ref. 42 and 53, our clustering analysis gives a rough measure
of the force chain length in the form of the Rg. This increase in
cluster extent along the axis of the dipole can be attributed to
the fact that most of the stretched bonds (blue) lie to the left
and right of the force dipole (Fig. S1, ESI†). At the same time,
because some bonds are randomly removed, nodes that made
up the tensile cluster in a uniform network may not be a part of
the cluster anymore.

We notice in Fig. 2(d) and (e) that the cluster size does not
show any significant change as the network is diluted, though
there is possibly a slight increase in the average Rg. This
suggests that while there are fewer bonds near the dipole as p
decreases, there are new bonds, that previously did not parti-
cipate in the tensile cluster, that now become highly strained.
Altogether, these two effects keep the size of the cluster roughly
constant. However, the cluster shapes clearly become more
anisotropic as bonds are diluted (decreasing p).

Fig. 2 Tensile cluster around single dipole in a regular lattice and also slightly diluted, stretching-dominated networks. (a)–(c) Representative
configurations of tensile clusters at p = 1, 0.9 and 0.8 for Network 2 show that clusters elongate along the dipole or x-axis as bonds are removed. (d)
Number of nodes in the cluster (N), (e) Radius of gyration of cluster (Rg), and (f) Rg

2/N, a measure of compactness of cluster shape, all as functions of the
bond occupation probability p in the stretching dominated (p 4 pCF = 0.67) regime. While cluster size (d) and (e) is apparently insensitive to network
connectivity in the stretching dominated regime, the cluster shape becomes less circular as network connectivity is reduced. The value of shape
parameter, Rg

2/N, for a circular region is shown by a thick black line.
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To quantify the trends in cluster shape, we introduce a
parameter Rg

2/(Nr0
2) that measures the deviation of cluster

shape from a compact circle. Higher values of this parameter
correspond to more anisotropic or branched shapes. This
metric for quantifying changes in cluster shape is also insensi-
tive to variations in network heterogeneity (compare Fig. 2(e)
and (f)) so that analysis of different network realizations at the
same value of p will be straight forward.

We show in Fig. 2(f) that this shape parameter increases
with progressive bond dilution. It remains well above the
limiting value for a circular region in a 2D triangular network,ffiffiffi
3

p �
4p ¼ 0:137 (Fig. S3, ESI†), which is marked by the horizon-

tal line in Fig. 2(f).
We also show in Fig. S1 (ESI†) that cluster size increases with

dipole force. This is expected since the strain in a linear elastic
medium induced by a force dipole is proportional to the dipole
stress, and thus its force density. We also show that the cluster
becomes slightly less elongated as the force increases (Fig. S1g,
ESI†), saturating at a force of about 0.26. In all cases, we ensure
that there are no unphysical metastable states when minimiz-
ing the network energy. This is done by changing the force
value by different step sizes, which shows that all results have
the same values of final energy (see Fig. S4, ESI†).

Since the force dipoles induce anisotropic elastic deforma-
tions, we expect different spatial distributions for compressed
and stretched bonds. To characterize this difference, we now

consider compressive clusters that comprise nodes connected
to bonds with larger compressive (negative) strain, e o �e0, in
Fig. 3. For the uniform (p = 1) network shown in Fig. 3(a), the
cluster is almost circular in shape. This structure is different
from tensile clusters Fig. S1 (ESI†) which are anisotropic with
major axis aligned along the dipole direction. It is also notable
that ‘‘island’’ clusters and ring like structures are formed when
the network is depleted. These are seen for the p = 0.9 case
shown in Fig. 3(b), and become more pronounced at p = 0.8 in
Fig. 3(c). These ring like structures are a signature of compres-
sive clusters in our simulations, while the tensile clusters have
linear force chain like structures (Fig. 2). We further verify in
Fig. S5 (ESI†) that the size of a compressive cluster increases
linearly with increasing force as expected. The shape para-
meter, Rg

2/N, for the compressive cluster in a p = 1 network is
unaffected by force and remains very close to the circular value
(horizontal line), as shown in Fig. S5b (ESI†).

Similar to tensile clusters, we expect two competing effects
that affect the size of compressive clusters as we deplete the
network. First, the removal of bonds tends to decrease the
direct connection of a node with the dipole. Second, the
presence of fewer bonds leads some compressive bonds, which
had strains below �e0, to take up more load and participate in
the cluster. These two effects seem to balance and result in no
net systematic change in cluster size with small amounts of
depletion, as shown in Fig. 3(d) and (e). Lastly, we show in

Fig. 3 Compressive strain cluster around a single dipole in slightly diluted, stretching-dominated networks. (a)–(c) Clusters of nodes (green) connected
to highly compressed (strain below prescribed threshold, e0 o�0.003) in typical network configurations. (a) Cluster for p = 1 is approximately circular. (b),
(c) Clusters deviate from a compact circle to having ring like and disconnected structures upon bond dilution. (d) Number of nodes in the cluster (N)
shows no clear trend with increasing dilution of the network. (e) Radius of gyration, Rg increases slightly with increasing dilution. (f) Rg

2/N, a measure of
cluster shape, deviates from circularity as we deplete the network. However, compressive clusters are still more circular than tensile ones even when the
network is depleted (Fig. 2(f)). The thick black line shows the value for a circular cluster.
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Fig. 3(f) that depletion increases the shape anisotropy, Rg
2/N,

corresponding to the clusters becoming less circular. This
deviation from circularity is due to the voids as well as islands
forming for the compressive clusters, as seen in Fig. 3(c). We
also note that the shape parameter is appreciably lower for the
compressive clusters (Rg

2/N E 0.15 � 0.25) than for the tensile
clusters (Rg

2/N E 0.25 � 0.33) in Fig. 2. Altogether, we show
that the propagation of compressive strains from the dipole is
qualitatively different from that of tensile strains. This may
affect the way a second, test dipole interacts with the first
dipole. Since a contractile dipole lowers the network deforma-
tion when it is in a stretched region, these strain maps may
guide the favorable position of a second dipole with respect to
the first. However, our results suggest that such favorable
configurations of two dipoles may be sensitive to the specific
network.

3.2 Single dipole in under-coordinated networks

Upon further dilution of bonds, specifically for po pCF E 0.67,
the network enters an under-coordinated regime. There are
many available low-energy bending modes for such networks,
which allow nodes to move in response to the dipole forces
such that collinear bonds bend, but stretching (or compres-
sion) of bonds is minimal. In this bending-dominated regime,
at p = 0.6, we see in Fig. 4(a) that the tensile clusters are small

(N B 50 here compared with N B 200 in the stretching-
dominated regime) in all of the networks at ~k ¼ 10�6. Increas-
ing the bending stiffness relative to stretching to ~k ¼ 10�4 does
not have a pronounced effect, either on cluster size or on the
shape parameter, as seen in Fig. 4(a) and (b). These cluster
trends are easily seen in the sample network configurations
shown in Fig. 4(c) and (d). Significantly compressed (red) or
stretched (blue) bonds occur only in the immediate vicinity of
the force dipole. Some of these bonds (deep red and blue) carry
higher strain because the dipole nodes are locally over-
coordinated. Away from the dipole, the bonds are not strained
but the network shows significant bending deformations. This
is because local clusters of bonds can easily rotate to reduce
strains, especially in regions of lower local connectivity.

However, a qualitatively and quantitatively different beha-
vior is seen, when the bending to stretching stiffness ratio
increases to ~k ¼ 10�2. Fig. 4(a) and (b) show that both cluster
shape and anisotropy are significantly enhanced at this value of
~k. Compressive clusters show a similar behaviour (see Fig. S6,
ESI†). This is visually confirmed by the sample simulated
network configuration shown in Fig. 4(e), which resembles
the tensile cluster seen for a single dipole in the stretching-
dominated regime. Both tensile and compressive force chains
are clearly seen to extend from the dipole nodes. This suggests,
that due to the higher energy cost of bending, the bonds are not

Fig. 4 Strain cluster around single dipole in highly diluted, bending-dominated networks. All plots are for four network realizations, diluted below the
isostatic limit. The network deformation is dominated by low energy (floppy) modes involving bonds bending (rotating) in preference to stretching/
compressing. (a) Number of nodes (red data) and radius of gyration (blue data) in each tensile cluster show two distinct regimes: for ~k ¼ 10�6 and 10�4,

the clusters are very small compared to the high bending stiffness ~k ¼ 10�2, case. Low bending stiffness case (~k ¼ 10�6) at the bend-stretch transition
point, (p = 0.67) behaves like higher bending stiffness case. (b) Cluster shape parameter Rg

2/N also shows a gap between the higher bending stiffness,

~k ¼ 10�2, and lower bending stiffness cases. Low bending stiffness case (~k ¼ 10�6) at the bend-stretch transition point, (p = 0.67) behaves like higher

bending stiffness case. (c)–(e) Tensile clusters in the same network at different bending stiffness values, ~k ¼ 10�6; 10�4 and 10�2. The network at ~k ¼ 10�2

allows tensile/compressive strains to be transmitted farther than for networks in the pure bending regime. (f) This response is similar to the bend-stretch

coupled regime accessed by keeping ~k ¼ 10�6 and increasing p to pCF = 0.67.

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
4 

Ju
ly

 2
02

3.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 - 

M
er

ce
d 

on
 7

/2
1/

20
23

 3
:1

3:
26

 A
M

. 
View Article Online

https://doi.org/10.1039/d3sm00381g


Soft Matter This journal is © The Royal Society of Chemistry 2023

as free to rotate and relax stretching as in the lower ~k networks.
In fact, previous simulations show the existence of such a bend-
stretch coupled regime, where both bending and stretching
deformations occur in response to network shear.25 The net-
work shear modulus in this intermediate regime scales with
both k and m. These works showed that the bend-stretch
coupled regime occurs in the transition between the bending
(low p) and stretching (high p) dominated regimes, and that the
range of p-values over which this regime occurs grows wider as
the bending to stretching ratio, ~k, is increased.25 Motivated by
the prediction for the existence of the bend-stretch regime close
to the transition point, we simulate the network deformation at
p = 0.67 E pCF for the lower ~k ¼ 10�6. Indeed, we see that for
this case (Fig. 4(f)), the bend-stretch coupled behavior charac-
terized by moderately large cluster size is restored. The
measurement of cluster shape (Fig. 4(b)) also shows a quanti-
tative agreement between networks that are stiff to bend
(~k ¼ 10�2) at p = 0.6, and networks that are softer to bend
(~k ¼ 10�6) but are closer to the bending-stretching transition,
p = 0.67. Thus, the bend-stretch regime occurs either when
network connectivity approaches pCF, or when it remains in the
under-coordinated regime p o pCF but has higher bending
stiffness ~k. Our simulation results show that large compressive

and tensile force clusters emerge in the bend-stretch coupled
regime, as seen also in simulations of networks under shear
where force clusters get bigger as the transition p = pCF is
approached. These clusters restore long-range force transmis-
sion through the network, making them comparable with the
stretching-dominated cases.

3.3 Strain distribution for single dipoles

In addition to force clusters, we may quantify the range of
strain propagation in the network in terms of the rate of decay
of elastic strain energy with distance from the dipole. In order
to measure the average strain energy density at a given radial
distance from the dipole, we consider annular regions of
increasing radii ranging from R = 4–40, each of thickness
DR = 2, and centered midway between the nodes of the single
dipole, as shown in Fig. 5(a). The maximum radius of the
annular region is set by the total lattice size, which was chosen
to be L = 96 for this particular measurement, in order to allow a
wider range of distances. We then calculate the average strain
energy in all bonds in the kth ring as Ekstrain = m/2heij2i, where i,j
represent all adjacent nodes connected by bonds in the kth
ring, and eij = (rij/r0 � 1) is the corresponding bond strain. Ekstrain
is thus the mean strain energy stored in the kth annular region.

Fig. 5 Decay of strain energy in network bonds with distance from a single dipole. (a) The strain energy from stretching/compression of bonds is
calculated over annular regions of width DR = 2, shown in different colors in the undeformed, uniform network. To increase sampled distances from the
force dipole (center), we consider simulation box of increased size L = 96. (b) Mean strain energy, Ekstrain = m/2heij2i, averaged over each bond in the kth
annular region, vs. radius of the annulus, Rk, for a uniform network. Green circles are measured from simulation data, while the dot-dash line shows for
comparison, a decay rate in strain energy of r�4, predicted from linear elasticity theory. Inset: Strain energy decay with radial distance in Network 1 for
disordered network with p = 0.8. (c) For depleted networks in the stretching regime, we plot the exponents of the best fit power law for decay of strain
energy vs. distance, for all four network realizations, against the corresponding p values. The value of slopes are close to the value of �4 for uniform
networks, decreasing slightly with bond dilution. (d) Mean strain energy in each annulus vs. radius of annular region, for networks in the bending-
dominated regime (p = 0.6). There is no single power law regime in the decay of strain energy, which shows slow decay close to the dipole, and then
more rapid decay at larger distances. The strain energies are also lower in value when compared to networks in the stretching regime (see b), showing
that bending screens out strain propagation making it shorter-ranged.
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From this analysis, we find that the strain energy decays as a
r�4 power law with distance for a uniform network as seen from
Fig. 5(b). This is expected from linear elasticity theory because
the strain energy density Estrain p e2, where the continuum
strain field induced by a force dipole in an infinite, 2D elastic

medium decays with distance as e / 1

r2
. Taken together, this

predicts Estrain B r�4. See Appendix B for the continuum linear
elasticity derivation of the strain for a force dipole. We find that
on introducing small amounts of disorder (p o 1), the strain
energy decay begins to deviate from this r�4 scaling. For
example, the inset of Fig. 5(b) shows the strain energy decay
for p = 0.8 for a specific network realization (Network 1). In
general, we find that the strain energy decay remains a power
law of the form r�m, with the decay exponent m remaining
close to that of the uniform p = 1 network in stretching-
dominated regime as shown in Fig. 5(c). For stretching-
dominated networks, the rate of decay of strains increases
with increasing depletion, as seen from the power law decay
exponents in Fig. 5(c). The relatively higher localisation of
strains in the vicinity of the dipole for more depleted net-
works leads to a higher rate of decay in the strains away from
the dipole.

While the stretching-dominated networks all show power
law decays of strain with distance, bending-dominated net-
works behave qualitatively differently, as shown in Fig. 5(d) for
the four networks with p = 0.6 and ~k ¼ 10�6. In these networks,
the strain decays faster at larger distances compared to smaller
distances and there is no single power law regime. On compar-
ing with the representative strain map for this case shown in
Fig. 4(c), we suspect that this may be because while bonds very
close to the dipole can be strongly stretched or compressed, the
long-range response is dominated by bending of bonds. In this
region, the mean strain energy of the bonds decays rapidly, as
the bonds are barely stretched. The decay of elastic energy with
distance is thus very different for the bending-dominated net-
work from a continuum, linear, elastic theory prediction, due
to the non-affine nature of deformations in this regime.54,55

A similar behavior of slower decay of displacements at
short distances and faster decay at long distances is seen in
collagen gels.56

To further analyze the spatial decay of strains and to
characterize the mechanical heterogeneity of these networks,
we measure the strain distribution of tensile bonds. In Fig. 6,
the fraction of stretched bonds is plotted against the corres-
ponding value of tensile strain normalized by the threshold

Fig. 6 Strain distribution suggests bending modes decrease force transmission. Each plot shows the normalized number of tensile bonds plotted against
the corresponding bond strain (normalized by the threshold value), with colorbar indicating the mean distance of bonds in a given bin from the force
dipole. Here, ‘‘tensile bond fraction’’ denotes the fraction of stretched bonds within a strain bin normalized by the total number of stretched bonds. (a)
Strain distribution for a uniform network (all bonds present). (b) and (c) Strain histograms for Network 1 at p = 0.8 and 0.67 respectively (Network 2, 3 and
4 also show similar results). Networks with p = 1 and 0.8 are well within the stretching regime. Here the strain distributions show a continuous increase in
strain as distance from dipoles decreases. However, for p = 0.67, the number of bonds in the lowest strain bin is higher than those for p = 1 and 0.8. At the
same time, the number of highly strained bonds is smaller. This suggests that bending reduces strains in this network (Network 2, 3 and 4 also show same
result) and hints at the presence of a bend-stretch coupled regime. (d) Strain distribution for four network realizations at p = 0.6. Bonds in these networks
that are very close to the force dipole are highly strained while all other bonds have very little strain. The bonds at intermediate distances have very low
strains because bending screens the long-range transmission of strain. These bonds lie in the first bin of the histogram with minimum strain and the mean
distance of each bond in this bin is higher than 20.
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value, e/e0. The color bar indicates the distance of the corres-
ponding bonds from the center of the dipole, suggesting a
continuous variation in bond strain with distance. We expect
compressed bonds to be similarly distributed (not shown). For
networks in the stretching-dominated regime, p 4 pCF E
0.67 shown in Fig. 6(a) and (b), we expect the bond strains to
closely follow that made by an affine deformation. As we go
further in radial distance r from the center of the dipole, the
number density of available bonds at that radius increases as
n(r) B r, while linear elasticity theory predicts that the strain
decays as eBr�2 (Appendix B). Together, these predict a n(e)
Be�2 scaling of number of bonds with strain, shown as the
dashed line in the strain distributions. We see that the
stretching-dominated networks follow this affine prediction
very closely, except at very low strains (e o 10�1) corresponding
to a large number of distant bonds without significant strain,
and at high strains, corresponding to the few bonds very close
to the dipole. These account for only a few bonds per value of
strain and thus do not contribute to the continuous e�2 strain
distribution.

As we go through the stretching to bending-dominated
transition (Fig. 6(c) and (d)), the number of significantly
strained bonds decreases. In Fig. 6(c), we show the strain
distribution for Network 1 in the bend-stretch coupled regime
(p = 0.67). Here, the number of bonds with low strain (seen in
the leftmost bin of the histogram) is comparatively more than
the networks with p = 0.8 and p = 1. Other networks in this
regime have similar distribution profiles as well. For bending-
dominated networks at p = 0.6 (Fig. 6(d)) and p = 0.48 (Fig. S7,
ESI†), almost all bonds (92%) have very small strains in the
e/e0 o 10�2 bin. These represent all bonds beyond a distance of
E10 from the dipole, as seen from the color bar. We thus note a
qualitative difference in the strain distributions of the bending-
dominated networks which show an absence of intermediate
strains that are not very high or very low. This shows up as a
noticeable gap in the range of normalized strain values between
e B 10�2–10�1. We show in Fig. S8 (ESI†) that this gap in strain
values increases with increasing bond dilution.

Overall, we find that the stain energy decays as a power
law function of radial distance for the stretching-dominated
(p 4 0.67) networks, while the bending-dominated (p o 0.67)
networks do not follow a single power law. Increasing the
depletion of bonds in networks leads to an increase in rate of
decay of strain energy (Fig. 5). This is because the removal of
bonds leads to bonds near the dipoles being strained more
than in uniform networks (compare Fig. 6(a) and (b)). The
strain distribution was quite homogeneous in stretching-
dominated networks. However, we find an absence of inter-
mediate strains in bending-dominated cases. To further quan-
tify the networks’ response to applied contractile forces, and
interaction between two force dipoles, we next examine strain
clusters formed by two dipoles.

3.4 Strain clusters for two dipoles

We now consider the combined network deformations by a
pair of dipoles, which could be positioned in a variety of

configurations. This will help identify how the deformations
by one dipole affect the other, and potentially elucidate long-
range mechanical interactions between myosin motors in the
cytoskeletal network. We will consider two dipoles oriented
along the x-axis, but which could be separated along their axes
by a distance dx, or transverse to their axes, by a distance dy. A
third possibility, when the second dipole is rotated to be
perpendicular with respect to the first, is shown in Fig. S9
(ESI†). This was done to study dipoles that are not along the
principal lattice directions.

In uniform networks with two dipoles placed along the x-
axis, we find that tensile as well as compressive cluster size
generally tends to increase with separation between dipoles
(Fig. 7). At close distances, there is a large region of overlap
between the tensile strain clusters produced by both dipoles. As
the distance increases, this region of overlap decreases in size
leading to a higher net number of nodes that participate in the
two-dipole cluster. There is also a secondary effect that changes
the number of nodes in the tensile cluster with separation. At
small dx, the combination of two dipoles causes more bonds
along the vertical direction to also become highly tensile. As dx
increases, this effect decreases, and the cluster becomes more
localized along the x-axis. The decrease in tensile bonds on the
vertical axis and increase in tensile bonds between the two
dipoles as dx increases, compete to decrease and increase the
cluster size, respectively. It is this competition that presumably
leads to a decrease of N when the separation changes from dx =
12 to dx = 16 in tensile clusters seen in Fig. 7(e). At the farthest
distance we sample, the size of the cluster is larger than twice
the size of a tensile cluster formed by a single force dipole
(Fig. S1, ESI†).

In the compressive case, the two dipoles form a unified
single cluster at small separation (Fig. 7(b)). However, as
distance increases, the two clusters become disconnected
(Fig. 8(b)). This disconnect, whose onset is marked by a dip
in the cluster size at dx = 16 in Fig. 7(f) is followed by creation of
two clusters that are independent of each other. The total
number of nodes that make up these two clusters is approxi-
mately equal to twice the size of a compressive cluster formed
by a single dipole. Due to this, N reaches a maximum and does
not change in value at dx = 20 and 24. This suggests that there is
no significant interaction between the two dipoles at this
distance. Combined with the size increase in tensile clusters,
this shows that the two force dipoles interact through tensile
bonds at large distances and compressed bonds do not play
a role.

3.5 Two dipole cluster interactions

We now aim to quantify how the presence of a second dipole
modifies the tensile and compressive force clusters created by
the first dipole. To do so, we consider simulations performed
for three cases: dipole 1 (left) alone, diple 2 (right) alone,
and both dipoles 1 and 2 present (Fig. 8). We focus on how
the presence of the dipole 2 on the right modifies the
cluster around dipole 1 on the left. Equivalently, we could have
considered the effect of dipole 1 on the cluster around dipole 2,
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but in general this could be different because of the difference
in local network structure around the dipoles in the bond-
diluted cases. However, since we present these results for
slightly diluted (p 4 0.8) networks, these fluctuations are
expected to be small. This expectation is supported by our
observation of similar trends in four different specific realiza-
tions of the diluted networks. The fluctuations are expected to
grow for bending-dominated networks, which we do not con-
sider in the current analysis, because the cluster of strained
bonds is very small in these cases (Fig. 4).

In Fig. 8, nodes are colored differently depending on
whether they belong to the cluster arising in a single dipole
or a two-dipole simulation. For concreteness, let us define C12

as the set of nodes in the tensile cluster when both dipoles 1
and 2 are present, while C1 and C2 are clusters when only dipole
1 or only dipole 2 is present, respectively. The blue nodes
shown in (Fig. 8(a)) are common to the cluster formed by dipole
1 or dipole 2 alone, as well as to the cluster formed by the
combined effect of both dipoles 1 and 2: (C1,C2) - C12. The
black nodes belong to the combined cluster of both dipoles
(C12), but are not present in single dipole clusters induced by
dipole 1 or dipole 2: C12 � (C1,C2). So the black nodes show
that cluster size increases due to interaction between the two
dipoles. Their number is a measure of the extent of positive

interaction or reinforcement between the two dipoles. Magenta
nodes belong to the cluster induced by dipole 1, but are not
present in the combined cluster of the two dipoles: C1 � C12.
Therefore, the number of magenta nodes is a measure of the
negative interaction or shielding effect of dipole 2 (right) on the
cluster of dipole 1 (left).

Tensile clusters induced by two dipoles separated by dx = 8
(Fig. 8(a)) show positive reinforcement in cluster size due to the
presence of the right dipole (more black nodes than magenta).
However, compressive clusters made by the two dipoles at the
same separation show almost no positive reinforcement
(Fig. 8(b)). Instead, the magenta nodes are more abundant
than the black nodes. Thus, the right dipole seems to shield
nodes that would have been a part of the compressive cluster of
the left dipole. To quantify the interaction, we calculate the
difference in the number of nodes that belong to the single
cluster of the two-dipole system and the number of nodes that
occur in the cluster of dipole 1 alone or dipole 2 alone: DN =
n(C12) � n(C1,C2). This quantity, normalized by the corres-
ponding number of nodes in a single dipole cluster, is a
measure of the positive or negative interaction between two
dipoles. Tensile clusters show positive interference (DN 4 0)
for all separations along the x-axis (Fig. 8(c)). However, DN for
compressive clusters shows both positive and negative

Fig. 7 Tensile and compressive cluster analysis for two dipoles in a uniform network. (a) Tensile clusters formed by two dipoles with separation dx = 8. (b)
Compressive clusters formed by two dipoles with separation dx = 8. (c) Tensile clusters formed by two dipoles with separation dx = 24. Tensile clusters
formed by two force dipoles are connected at all distances we can sample in our simulation box. (d) Compressive clusters formed by dipoles with
separation dx = 24. When there is a small separation between the force dipoles, the compressive clusters form one large cluster, but separate on
increasing distance between dipoles. (e) The size of the tensile cluster increases with increasing separation between the two dipoles. However, there is a
small dip in the number of nodes as the separation increases from 12 to 16. As separation increases, more nodes that lie between the dipoles become
available for cluster formation. At the same time, the extent of the cluster along the y-axis decreases since there is less overlap between the tensile
regions formed by the two dipoles. (f) The size of compressive clusters increases with increasing separation between the two dipoles. But, when the
separation between dipoles is 16 and larger, the clusters are disconnected. This leads to a dip in cluster size at dx = 16, after which at larger distances, the
cluster size does not change as a function of separation.
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interference depending on separation distance (Fig. 8(d)). At a
separation of dx = 16 along the x-axis, the dipoles make two
separate compressive clusters (Fig. 8(b)), instead of a single
large cluster formed when they are closer such as at dx = 8. The
shielding of the dipole 2 (right) on the cluster formed by the
dipole 1 (left) is clearly seen as the magenta nodes in Fig. 8(b).
This shielding effect is maximum when dx = 16 as shown by the
minimum in DN/N1 in Fig. 8(d) and decreases as the two
dipoles move further apart. Interaction between dipole strain
clusters in slightly depleted networks that are in stretching
regime (p = 0.8) show similar trends in DN as uniform networks
(Fig. 8(e) and (f)).

We also similarly quantify the effect of dipole 2 (on the top)
on the cluster formed by dipole 1 (on the bottom), when the two
dipoles are separated along y-axis (Fig. 9). Tensile clusters show
positive interference for short distances, corresponding to
positive DN, for dy = 6, 10 (Fig. 9(e)). However, at dy 4 14, the
two dipoles form two separate tensile clusters instead of a

combined cluster, and the DN vanishes. This is different from
the case of separation of the two dipoles along their axis, where
the tensile clusters remain connected, even at large distances of
separation, and DN is substantial (Fig. 8(a), (c) and (e)). Our
finding that tensile clusters remain connected when the dipoles
are separated along their axes up to dx = 24 (six times dipole size
in our model), but lose connection at shorter distances when
separated orthogonal to their axes, is comparable to past
simulation studies modeling cells in fibrous matrix.18,57 These
showed that a pair of cells interact through fiber chains along
their long axis up to a distance of 6–10 cell diameters.

As opposed to compressive clusters formed by dipoles
separated along x-axis (Fig. 8(d)), DN for compressive clusters
when the dipoles are separated along y-axis shows only positive
interference (Fig. 9(f)). DN for slightly diluted networks shows a
behavior similar to that found in uniform networks (Fig. 9(e)).
However, DN for compressive clusters in diluted networks
for dipoles separated along y-axis shows negative interference

Fig. 8 Cluster interaction analysis for two dipoles separated along x-axis in stretching-dominated networks. (a) Tensile cluster at dipole separation dx =
16. Nodes that are part of the cluster formed by both dipoles but were not a part of the cluster made when only a single dipole was present are colored in
black. Nodes that are not a part of the two dipole cluster but were a part of the cluster formed by dipole 1 (left) alone are colored in magenta. These black
and magenta colored nodes show how the cluster formed by the left dipole is influenced by the presence of the right dipole. The blue nodes occur in
both the cluster formed by two dipoles and in one of the two single-dipole clusters. The presence of the right dipole 2 increases the extent of the tensile
cluster of left dipole to its left along the x-axis. (b) Compressive cluster formed by two dipoles at a separation of dx = 16. The magenta nodes around
dipole 1 on the left, show that the presence of dipole 2 on the right, reduces the cluster formed by dipole 1 – suggesting an antagonistic effect that
‘‘shields’’ some nodes from the presence of dipole 1. (c)–(f) Quantification of the effect of one dipole on the strain cluster of the other, DN, as a function of
separation between two dipoles. Here, DN = N12 � (N1,N2) where N12 is the number of nodes in the two-dipole cluster, while N1,2 are number of nodes
in the cluster when only dipole 1 or dipole 2 is present. (c) In a uniform network (p = 1), as the dipole separation increases, new nodes between the dipoles
are available to form a combined tensile cluster, while there is a decrease in the combined stretching of the two dipoles, resulting in non-monotonic
behavior. (d) DN for compressive clusters as a function of distance in a uniform network. A single shared cluster exists between the dipoles at dx = 8 and
12, while at dx Z 16, the cluster separates into two different clusters. The shielding shown in (b) leads to a reduced two-dipole cluster when compared to
isolated single dipole clusters. (e) DN for tensile clusters as a function of distance in a disordered network in the stretching regime (p = 0.8). In some
networks, the cluster size made by two dipoles can be much larger than the sum of individual clusters of each dipole, indicating network-specific effects
upon bond dilution. (f) DN for compressive clusters as a function of distance in disordered networks in the stretching regime (p = 0.8) shows a similar
behavior seen for compressive clusters in a uniform network in (d), with the dip corresponding to cluster separation.
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(Fig. 9(h)), which was not seen in the case for uniform net-
works. Moreover, compressive clusters show positive reinforce-
ment when dipoles are separated along the y-axis (Fig. 9(c), (d),
(f) and (h)) while clusters formed by dipoles separated along
x-axis showed a more pronounced shielding effect (Fig. 8(b), (d)
and (f)).

3.6 Two dipole interaction energy

In analogy with electric charge or defects in an elastic medium,
the interaction energy for a given configuration of two force
dipoles is the extra elastic energy of the medium when both
dipoles are present, in comparison to when only one of them is
present. We calculate this interaction energy as,

Eint(0,d) = E12(0,d) � E1(0) � E2(d) (3)

where E12 is the total elastic energy of the network with both
dipoles at a prescribed separation d. E1(0) and E2(d) represent
the total elastic energy of the network when dipole 1 alone is
present at the origin, and when dipole 2 alone is present at a
position d, respectively. Since we consider a triangular lattice
with periodic boundary conditions, the system is translationally

invariant. Thus, the choice of the origin of coordinates is
unimportant, and only the relative separation of the two
dipoles matters. A negative (positive) value of Eint indicates a
favorable (unfavorable) interaction between the two dipoles.

In Fig. 10(a) and (b), we placed two contractile dipoles along
the x-axis in a uniform network, and varied their relative
separation: first, along the x-axis and then, along the y-axis.
We find that when the dipoles are separated along the x-axis,
the interaction is favourable with negative interaction energy
values. The interaction energy also weakens as the separation
between the dipoles increases, and is expected to tend to zero
for infinite dipole separation. The negative interaction energy
occurs as a result of the second contractile dipole being placed
in the region of the network that is stretched by the first dipole
(Fig. 2(a)). The elastic energy of some of the stretched bonds is
therefore lowered in the region of the second dipole. We have
seen before (Fig. 7) that tensile clusters mediate much of the
interaction between two dipoles at large distances in a uniform
network. However, at small distances, both tensile as well as
compressed bonds mediate the interaction. When we separate
the dipoles along the y-axis, the interaction is not favorable and

Fig. 9 Cluster interaction analysis for two dipoles separated along y-axis in stretching-dominated networks. (a) When the dipoles are separated by 6
rows on the y-axis, the two dipoles make one connected large tensile cluster. The black nodes show that this cluster has many nodes that were not a part
of the tensile cluster formed by the individual dipoles, thereby indicating a reinforcing interaction between two dipoles. (b) The two dipoles have a single
connected cluster even when y separation increases to 14 rows. For larger distances, the cluster divides into two disconnected clusters. (c) Two dipoles
when separated by 14 rows form one large cluster. (d) At a separation of 22 rows, the two dipoles still form one connected cluster. However, the region of
overlap is small. Beyond this distance, the two dipoles form two separated clusters. (e)–(h) Measure of cluster interaction vs. separation distance between
two dipoles: DN = N12 � (N1,N2) where N12 is the cluster size when two dipoles are present and N1,2 are cluster sizes when only one of either of the
dipoles is present. (e) For tensile clusters in uniform network, DN decreases with increasing separation. This is because tensile regions are found primarily
to the left and right of the dipoles and the region of overlap of tensile cluster decreases with increasing y distance between the two dipoles. After the
cluster separates into two clusters for dy Z 18, DN does not show much variation. (f) For compressive clusters in uniform network, DN shows a non-
monotonic behavior. As the separation increases, new nodes between the two dipoles become available for the cluster. However, there is also a decrease
in combined compression of the two dipoles which leads to this non-monotonic behavior. (g) and (h) Tensile and compressive clusters for two dipoles
separated along y-axis in disordered networks in stretching regime show similar trends as seen in the corresponding plots of a uniform network (e) and (f).
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the interaction energies are positive – indicating a repulsive
force between the dipoles. In these networks, compressive
clusters mediate much of the interaction between the two
dipoles even at large distances, while tensile clusters are clearly
separated for cases of dipoles at large distances (Fig. 9(b) and
(c)). Of note, the decay of the interaction energy for dipoles
separated along their axis follows the d�2 behavior predicted by
continuum elasticity theory, whereas dipoles placed transverse

to their axis lack such a regular trend. This behavior of
interaction energy is not dependent on the direction of the
dipole forces being along a lattice symmetry direction, and is
also seen for dipoles aligned along the y-axis (not a lattice
symmetry direction) as confirmed in Fig. S10 (ESI†).

To obtain a local measure of interaction between the
dipoles, we also calculate the difference in spacing of the nodes
of the first dipole caused by the second dipole (Fig. 10). The

Fig. 10 Interaction between a pair of dipoles in a regular (p = 1) lattice. The interaction energy (a) and (b) is the extra elastic energy of deformation in the
fiber network when both dipoles are present in comparison to when only one of them is present. This is a global measure of interaction between two
dipoles. This interaction is negative when the two dipoles are separated along the x-axis (a). This indicates an attractive force between these dipoles. The
inset shows the fit of a power law which is close to the relation |Eint| B d�2, expected for interaction between dipoles in 2D from linear elasticity theory.
(b) The interaction energy between dipoles when separated along the y-axis is positive, indicating a repulsive interaction between them. (c) A schematic
diagram that shows a local measure of interaction between the two dipoles, corresponding to how much a dipole node displaces in the presence of the
other dipole. (d) and (e) The measured values of local dipole interaction for separation along x-axis and y-axis respectively. As expected, when an extra
dipole is placed to the right of the first dipole, in a region with predominantly extensile bonds, Dd1 is positive. The opposite is true when the extra dipole is
placed above the first dipole, along the y-axis, where the first dipole produces a region of predominantly compressed bonds. In both cases, the strength
of the interaction decreases with increasing distance.

Fig. 11 Interaction energies in depleted networks in stretching regime. (a) The interaction energies for dipoles separated along the y axis suggests a
repulsive force between the two dipoles which gets weaker as the separation increases. (b) The interaction energy between two dipoles separated along
x axis suggests an attractive force between the dipoles which decreases as the separation increases.
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second dipole, when placed in a stretched region (to the right of
the first dipole), shows that this value is positive and decreases
as the separation between the two dipoles increases. The
behavior is opposite when we place the second dipole on the
y-axis in the compressed region above the first dipole. We also
calculate the interaction energy in slightly-depleted networks
that lie in the stretching-dominated regime (Fig. 11). These
show a trend similar to that seen in uniform networks in
Fig. 10. In the bending-dominated regime, the fluctuations in
interaction energy are too strong to show any systematic trends.
We thus show, that unless strongly depleted, pairwise dipole
interactions exhibit regular trends with mutual orientation and
separation, which predicts favorable alignment of force dipoles
along their axis.

4 Discussion

Elastic fiber networks are ubiquitous in synthetic and biologi-
cal materials. Biopolymer networks such as actin in the cellular
cytoskeleton or collagen and fibrin in the extracellular matrix of
tissue are subject to mechanical stresses – both external load-
ing and internal forces actively generated by molecular motors.
In response to such forces, these fibrous materials exhibit
unique, non-linear mechanical properties that are crucial to
their biological function and competing demands – such as the
ability to remodel as well as to preserve integrity.58 Even if
lacking the full molecular complexity and structural hierarchy
of biomaterials, elastic fiber network models such as the one
considered here, capture essential aspects of their mechanical
properties, such as an abrupt stiffening transition under
shear39 and long-range force transmission.17,18,59 In the present
work, we not only addressed how strain propagates through
such a model elastic network from a force dipole representing,
for example, molecular motor activity, but also investigated
how two such dipoles may interact through the strains that they
generate.

In the first part of this work, we explored the range and
heterogeneity of force transmission in the elastic network, from
a single local force dipole. We deployed several metrics to
quantify the spatial extent of force transmission: the size
(number of nodes, radius of gyration) and shape of connected
clusters of stretched and compressed bonds (Fig. 2–4), the
decay of strain energy with distance from the dipole (Fig. 5),
and the distribution of strains in different bonds (Fig. 6). We
showed how these metrics depend on two key elastic network
parameters: the bond dilution probability and the dimension-
less bending-to-stretching stiffness ratio. Prior works have
shown how the macroscopic response of such bond-diluted
elastic networks to external shear depends on these
parameters.28 In particular, under-coordinated networks (p o
pCF) with ~k � 1 show a bending-dominated response charac-
terized by floppy modes consisting of easily rotating bond
clusters. In this work, we examine how the force clusters
around single dipoles are modified under bond dilution. The
resulting heterogeneity of force transmission becomes visually

apparent in the tensile/compressive clusters for diluted net-
works in Fig. 2 and 3. As bonds are removed, strains propagate
through increasingly branched and isolated paths in the net-
work. The distribution of bond strains in Fig. 6(d), for a p = 0.6
network, is strongly influenced by heterogeneity: highly
strained bonds are present in the immediate vicinity of the
dipole, while all other bonds are essentially relaxed. This large
variability in bond tension is also reflected in the different
realizations of the networks. While each of the four networks
we simulated resulted in a different tensile/compressive cluster
around a dipole (Fig. 2 and 3), they show similar trends, at least
for stretching-dominated networks. p 4 pCF. This difference in
the strain of an individual bond between different network
realizations is too strong in bending-dominated networks to see
such consistent trends.

While buckling under compression is a generic feature of
slender fibers, we here primarily considered fiber bending in
response to transverse forces. For experimental networks, this
may correspond to having smaller dipole forces or thicker,
laterally cross-linked bundles of fibers. In networks with fiber
buckling, bonds transverse to the dipole axis will be under
compression leading to buckling and softening, such that the
tensile force is focused along longer, force chains. The asym-
metry of fibers under tension and compression due to buckling
also results in different force distributions behaving as effec-
tively contractile at larger scales.17 We show that bending alone
gives the opposite trend, and decreases the range of force
transmission. When floppy bending modes are available, most
fibers will respond to dipole force by bending through bond
rotations instead of bond stretching. This screening of bond
strains by bending results in an anomalous shortening of the
range of force transmission in the network, as shown by the
decay of elastic energy with distance from the dipole in Fig. 5.
While over-coordinated networks result in clear power law
decays of elastic strains with distance, as predicted for affine
deformations, the strain decay in bending-dominated networks
did not follow any clear power law. Overall, this suggests that
bending and buckling have opposite effects on the range of
force transmission. How these opposite trends compete in
networks that allow easy bending is an interesting question
for future study. The model may be easily extended to include
such effects. For illustration, we consider in Fig. S11 (ESI†) the
effect of fiber buckling modeled as a two-fold reduced stiffness
under compression relative to tension. This captures the well-
known ‘‘rope’’-like behavior of biopolymers, that are easy to
compress but stiffer to stretch.25 We find that, consistent with
previous works,17,42 fiber buckling results in longer range
propagation of tensile forces. Since bonds transverse to the
direction of ‘‘pulling’’ by the dipole buckle and compress more,
the longitudinal bonds are stretched more. Since this effect of
fiber buckling is well-studied in the literature, we focused in
this work on the effect of fiber bending on force transmission.

While previous works have explored mechanical interactions
between two isotropic force distributions representing cells in
an extracellular matrix,42 this is the first exploration of analo-
gous effects for a pair of anisotropic force dipoles representing
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the contractility of myosin motors in the actin cytoskeleton, or
at a different scale, between two polarized cells in a fibrous
extracellular medium. Recent evidence from cell biology sug-
gests that such long-range mechanical interactions between
myosin motors may drive them into spatial registry across
stress fibers.10,60 In general, mechanical interactions through
an elastic medium may direct the self-organization of the cell
and tissue into ordered, functional structures such as regis-
tered fibrils in muscle tissue61 or multicellular networks of
endothelial cells.62

Many cell culture experiments that demonstrate mechanical
interactions between cells are carried out on linear elastic
hydrogel substrates.13 However, natural biomaterials in the
extracellular matrix or cytoskeleton typically occur as fiber
networks that are strongly nonlinear in their mechanical
response.15 Such disordered networks transmit forces hetero-
geneously at the scale of individual fibers that cannot be
captured by continuum elastic models. These mechanical
forces may direct the distribution of motors and crosslinkers
in the cytoskeleton which can bind preferentially to stretched
actin filaments due to molecular catch bond effects.63 This can
also influence how two cells change shape in response to
each other.

There are several biologically relevant mechanical features
of fibrous networks that we have not included for the sake of
building a simple and general model that provides physical
insight. These include the asymmetry between compression
and stretching of biopolymers, the enhanced range of force
transmission due to fiber buckling, anisotropy due to force-
induced fiber realignment, and other possible nonlinear elastic
properties of individual fibers. Over long time scales the
cytoskeletal network also undergoes significant remodeling
and can exhibit fluid flow64 – such viscoelastic, plastic and
poroelastic effects are also not considered in the present study
We expect viscous effects to dissipate the stress stored in the
network. This will result in a loss of the elastic interaction
between dipoles, a main effect predicted by this work. As such,
our work should be seen in the context of elastic networks,
whether biological or synthetic, that enables propagation of
stresses.

Here, we quantified the elastic interactions that may arise
between two distant force dipoles embedded in a fiber network
using different metrics. We showed that they differently affect
the sizes and shapes of each other’s strain clusters, which can
be considered to be their ‘‘regions of influence’’, depending on
their relative position and orientation. Clusters comprising
stretched or compressed bonds also showed qualitative differ-
ences. Specifically, when separated along their principal axis,
one dipole reinforced stretching due to the other, but reduced
the overall compression. The elastic interaction energy between
two dipoles followed trends predicted by linear elasticity theory,
for a uniform lattice (Fig. 10). In particular, the two dipoles
resulted in an energetically favorable (‘‘attractive’’) configu-
ration when separated along their principal axes, but resulted
in an unfavorable (‘‘repulsive’’) configuration when separated
in the transverse direction. These trends were preserved in

networks where a small amount of disorder was introduced
(p 4 pCF). Both these results for elastic interaction energy and
reinforced tensile bonds in two-dipole systems suggest that
mechanical interactions between similarly oriented actomyosin
units may lead to their lining up to form a stress fiber. Recent
experiments do show that stress fibers are built up from the
initially disordered cytoskeleton through contractile myosin
motor activity.47

However for diluted networks (p r 0.6), it was not possible
to obtain such general trends in pairwise dipole interactions.
The elastic deformation energy in such bending-dominated
networks is very sensitive to the local network structure around
the dipole, and differs strongly from one network configuration
to another. Such strong strain and elastic energy fluctuations
lead to the loss of any trends on the average. This may suggest
that once locally dense, over-coordinated (corresponding to
greater bond probability) or strongly bundled regions (corres-
ponding to greater bending stiffness) arise in a cytoskeletal
network, such as through cross-linking by actin binding pro-
teins, mechanical interactions may drive the actomyosin units
towards alignment into ordered structures. Such locally denser
or ‘‘patchy’’ fiber network configurations have been recently
shown to modify the rigidity percolation threshold.65 Corre-
lated fiber patches are likely to confer additional stability to
diluted networks leading to longer-range force transmission.
Moreover, biopolymer networks like the cytoskeleton are often
prestressed, such as due to the presence of myosin motors.
Motors pull out floppy modes and can make the network
rigid,29 even if it is under-coordinated (po pCF). Such networks
may therefore be in the stretching-dominated regime and allow
long-range force transmission leading to dipole–dipole
mechanical interactions. In conclusion, our work shows that
elastic interactions can arise between distant force dipole in
disordered, fibrous media, and that their strength and range
can be enhanced by suppressing fiber bending.
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Appendices
Appendix A: fiber network model energy and forces

We calculate for the whole network, stretching, bending and
dipole energies, given in eqn (1). The network configuration at
mechanical equilibrium is obtained numerically by minimizing
the total energy.

The stretching energy is given by a pairwise sum over nodes,

Es ¼
m
2

X
hiji

rij � r0
� �2

; (A1)

where i and j represent adjacent nodes that are connected by a
bond of rest length, r0 (set everywhere to 1 in our simulations).
rij is the actual bond length after force dipoles have been
applied in the networks,
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Fiber bending is represented by the relative change in angle
between two collinear bonds. These bonds connected three
nodes denoted by j, i and k, with ith node being central. The
total bending energy is given by the sum over all such node
triplets wherever connected by bonds,

Eb ¼ k
2r0

X
jikh i

2 sin2 yjik
�
2

� �
; (A2)

with bond angle given by

sin yjik ¼
rij � rik
�� ��
rij
�� �� rikj j

(A3)

Here rij and rik are the separation vectors connecting nodes i to
j, and nodes i to k, respectively.

The dipole energy is the scalar product of force applied to
and distance between nodes of the dipole.

Ed ¼
X
hmni

F � dmn (A4)

Here dmn is the distance between mth and nth nodes that
belong to the force dipole, not necessarily adjacent. Force is
always along the separation vector between dipole nodes m and
n. The total energy Et is the sum of stretching, bending and
dipole energies given above.

The stretching force on the ith node due to the ij bond
spring is given by the derivative of the stretching energy with
respect to node position, and results in a central force,

F
hiji
s;i ¼ �m rij � r0

� �rij
rij

(A5)

The force due to collinear ji and ik bonds bending on the
central ith node (in 2D) is given by the derivative of the relevant
bending energy term in eqn (A2) with respect to displacement
in the position of the ith node.

F
hjiki
b;i ¼ 2k

r0

sin yjik
cos yjik

@ sin yjik
@ri

; (A6)

where the gradient of the sine of the bending angle can be
evaluated from eqn (A3) as,

@ sin yjik
@ri

¼ sgn ẑ � rij � rik
� �� � ẑ� rjk

rij
�� �� rikj j

� sin yjik
r̂ij

rij

� sin yjik
r̂ik

rik
(A7)

where sgn(x) =x/|x| represents the sign of the argument. The
forces on the side nodes, j and k, due to the bending of this
angular spring at the central ith node, are similarly
evaluated, as

F
hjiki
b;j ¼ 2k

r0
tan yjik

@ sin yjik
@rj

� �
;

F
hjiki
b;k ¼ 2k

r0
tan yjik

@ sin yjik
@rk

� �
:

(A8)

Thus, every angular spring applies forces at three nodes. The
total bending force at the ith node will then involve sets of three
connected, (collinear bonds passing through i, given all

relevant bonds are present). This calculated force is used to
displace each node in the numeric conjugate gradient proce-
dure to find the local energy minimum configuration.

Appendix B: continuum elastic response to force dipole in 2D

The uniform network, with all bonds present, undergoes affine
deformations in response to imposed shear forces. This
response is similar to that of a continuum elastic medium in
2D whose shear and bulk moduli are related to the stretching
stiffness of each individual bond, m. We give here the expected
deformations of an isotropic and homogeneous linear elastic
medium in response to a single force dipole. The stretching-
dominated, affine, network behavior is expected to be closely
approximated by this continuum model.

The displacement at a point x caused by a force acting at
another point (chosen, without loss of generality, to be the
origin) in a direction j on the surface of an infinite linear and
isotropic elastic medium in 2D is given by the appropriate
Green’s function,45

uiðxÞ ¼ GikðxÞFk

¼ 1þ n
4pY

ðn � 3Þdik log
jxj
a

� �
þ ð1þ nÞxixkjxj2

� �
Fk; (B1)

where ui(x) is the displacement in the ith direction of the
medium at point x caused by the jth component of the force
F at the origin, and the relevant elastic constants are the 2D
stretching modulus Y and Poisson’s ratio, n, of the elastic
medium.

If instead of a point force, there is a pair of equal and
opposite forces that are separated by a small distance (corres-
ponding to the contractile actomyosin force dipole denoted by
P) the displacement is related to the derivative of the expression
in the right hand side of eqn (B1) with respect to a spatial
coordinate. The resulting, relative deformation of the elastic
medium is given by the strain, which is a derivative of the
displacement ui(x) in eqn (B1), uij(x) = PjkqjqkGik, where usual
Einstein summation convention is implied.

For a dipole aligned along the x-direction, only the Pxx
component is present. The decay of strain with distance due
to a dipole can be easily seen as power counting. For an
isotropic distribution of dipoles, the deformation depends on
Gii B Y�1 log(|x|/a). The direction-averaged trace of the strain
goes as,

uii � @kk
2Gjj �

P

Y

1

r2
(B2)

and the corresponding elastic deformation energy density, e B
Yuii

2 B P2Y�1r�4. This explains the observed trend in the decay
of the direction-averaged strain energy as a function of distance
observed in Fig. 6.

The interaction energy between two dipoles considered in
Fig. 10 can be similarly derived within the framework of
elasticity theory. It is the work done by a dipole, Pa in deforming
the substrate in the presence of the strain created by a second
dipole Pb, and is given by,66

Wab = Pbij@j@lG
ab
ik (rab)P

a
kl, (B3)
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where rab = rb � ra is the separation vector connecting the
centers of dipoles a and b. Since interaction energy depends on
the strain created by one dipole, it also decays as r�2, like seen
in Fig. 10(a).
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