Biomedical Engineering Education February 2024

Copyright 2024 Biomedical Engineering Society All Rights Reserved

Section: Pg. 235-250; Vol. 4; No. 2; ISSN: 2730-5937,2730-5945

Length: 8453 words

Byline: jaimespa@umich.edu

Body

Introduction

Biomedical engineering education (BME), like **engineering** education broadly, aims to impart key knowledge and know-how for subject matter often thought of as rigorous and quantitative. While the calculative approaches we impart to **engineers** remain key elements of our classroom learning objectives, the broader societal impacts of **engineering** reverberate across scales—from the learning community we establish, to the patients for whom we develop technologies for. Acknowledging the significance of these broader impacts, the goal of **inclusive teaching** in **biomedical engineering** is to improve classroom pedagogy by adopting approaches that acknowledge student identity (background, learning preferences, and abilities) and patient identity (gender, genetics, ethnicity) as key elements of equitable **engineering**. In so doing, **inclusive teaching** aims to establish a sense of buy-in and community (inclusion), understand students' varied backgrounds, remove potential roadblocks to success (equity), and highlight the lenses **through** which **biomedical engineering** impacts can be understood (diversity). **Inclusive teaching** can create learning environments that positively impact student learning [–]. Establishing these **inclusive** practices is critical for promoting student success both in their course learning and in their eventual practice as **engineers**.

While <u>inclusive teaching</u> practices hold the potential to improve education in <u>biomedical engineering</u>, barriers to adoption and implementation persist. While training materials, literature, and courses [] are available, many are optin, requiring faculty to electively engage. This is particularly challenging in <u>engineering</u>, where pressures on faculty time can often divert attention from learning new pedagogy toward other endeavors. This is particularly pertinent for seasoned faculty, for whom, adopting these practices would necessitate a substantive change in instructional style. Compounding these issues is the myth or perception of <u>engineering</u> as apolitical or agnostic to social issues deemphasizing <u>inclusive teaching</u> pedagogy [,]. These perceptions underscore a deeper misconception about <u>inclusive teaching</u>, highlighting the need for greater dissemination of principles and clear examples of changing practices that can serve as exemplars for instructors.

To address these challenges, in this paper, we outline the <u>Inclusive Teaching</u> in BME (<u>IT-BME</u>) <u>project</u>, started at the University of Michigan. The <u>IT-BME project</u> aims to <u>integrate inclusive teaching</u> training and practices into the BME curriculum <u>through</u> a <u>partnership</u> between <u>engineering</u> education <u>teaching</u> consultants, BME faculty, and graduate students. <u>Through IT-BME</u>, faculty, and graduate students underwent training <u>through</u> the NSF-funded <u>Inclusive</u> STEM <u>Teaching</u> massive open online course (MOOC) and collaborative learning communities.

After training, faculty and students worked in joint mentor/mentee teams to revise BME courses to address key gaps in inclusivity, equity, and diversity. These collaborative teams served to lower the energy barrier for faculty to make substantive revisions in their courses while simultaneously providing graduate students with valuable pedagogical training and mentorship. These individualized experiential learning opportunities enabled the IT-BME project to impart the concepts of inclusive teaching to the next generation of biomedical engineering educators and build examples that can serve to further engagement.

In this paper, we review the literature behind <u>inclusive teaching</u> practices in <u>engineering</u> education as well as experiential learning practices—a key element of <u>IT-BME</u> (Literature). We then outline the structure of the <u>IT-BME</u> <u>project</u>, it's implementation, and metrics used to evaluate efficacy and success (Implementation). Results from graduate student reflections are highlighted and sense of belonging surveys are compared across <u>biomedical engineering</u> curricula. Finally, we finish by discussing the key implications of the <u>project</u> and its relevance for advancing <u>engineering</u> education in <u>biomedical engineering</u> (Findings).

Literature

This literature review focuses on two bodies of literature namely <u>inclusive</u> <u>teaching</u> and experiential learning. In what follows, we define these terms and highlight how this literature informs the design of our <u>project</u>. Specifically, in this <u>project</u>, participants engaged in an experiential learning opportunity to apply <u>inclusive</u> <u>teaching</u> practices in BME courses.

Inclusive Teaching

Teaching in a manner that supports all students' ability to learn most effectively is important to the mission of higher education. When considering the best ways to *teach inclusively*, there is no one definition that describes this form of pedagogy. Hogan and Sathy [] define inclusion as "a culture in which all learners feel welcome, valued, and safe, and it requires intentional and deliberate strategies." Hockings [] describes inclusive teaching and learning as "the ways in which pedagogy, curricula, and assessment are designed and delivered to engage students in learning that is meaningful, relevant and accessible to all. It embraces a view of the individual and individual difference as the source of diversity that can enrich the lives and learning of others." The *Inclusive* STEM Teaching Project focuses on the background, experiences and responsibilities of the instructor to implement inclusive practices with their definition, which states that inclusive teaching is "an approach in which instructors reflect critically on all aspects of their courses, rethinking their curricular choices, their teaching methods, activities and assessments as well as the intersections of their own identities and those of their students. Additionally, inclusive teaching approaches can guide instructors to reflect on how power, privilege and positionality play out in different learning environments" []. Further, the Center for Research on Learning and Teaching at the University of Michigan, the oldest teaching center in the U.S., infuses an equity-lens in their definition which states that "Inclusive teaching involves deliberately cultivating a learning environment where all students are treated equitably, have equal access to learning, and feel valued and supported in their learning []. Such teaching attends to social identities and seeks to change the ways systemic inequities shape dynamics in *teaching*-learning spaces, affect individuals' experiences of those spaces, and influence course and curriculum design." In all, these definitions describe inclusive teaching not just in terms of the intentional practices that instructors must engage in to cultivate a welcoming environment (e.g., course design, assessment, & and pedagogy), but they also consider students' experiences and perspectives within that learning environment. Inclusive teaching requires a mindset shift and a commitment to lifelong learning to continually question and refine an instructor's practices.

Preparing instructors to <u>teach inclusively</u> has the potential to create a learning environment that supports students' sense of belonging and impacts their learning outcomes. In terms of classroom climate, Lovett et al. [] provide a detailed literature review describing the ways that course climate impacts students' sense of belonging and how climate is shaped by the instructor's tone and social presence. Several studies connect student's sense of social belonging with student persistence and learning [–]. For instance, Walton and Cohen's [] intervention helped African American students understand that struggle is a critical part of the learning process, rather than a sign of student deficiency that would indicate that they didn't belong in the field. Ultimately, their intervention led to an increased

grade point average relative to multiple control groups and reduced the achievement gap by half. When instructors become aware of evidence-based practices, they can more readily support all students.

Research has shown that while workshops may raise awareness, it may not necessarily lead to consistent change in practices []. For instance, as a part of an engineering orientation, student instructors examined classroom scenarios and learned about inclusive teaching practices; however, they still wanted "more time and focus dedicated to practicing their [inclusive] teaching strategies and receiving feedback" []. Learning communities are designed to empower instructors to institute best practices through reflection, peer discussion, and applications [, –]. For this project, graduate students and faculty participated in The Inclusive STEM Teaching Project, an NSF-funded initiative, which aims to advance the awareness, self-efficacy, and ability of STEM instructors to cultivate inclusive learning environments for all their students []. Grounded in educational literature, this course centers the impact of power, privilege, identity, and positionality within the STEM teaching and learning environment. The content of this online course incorporates embodied case studies and vignettes, reflection, and discussion questions around topics of equity and inclusion in a multitude of STEM learning environments. It consisted of 6-modules and participants were expected to take one module each week, over the course of 6 weeks. Participants were able to engage in synchronous learning communities to delve deeper into the module content and explore applications to their teaching context.

Experiential Learning

Experiential learning is a process of learning that occurs <u>through</u> action and has become an important component of <u>engineering</u> education [–]. It is considered to contribute to student learning in a meaningful and long-lasting way, due to the emphasis on hands-on learning [,]. Experiential learning aligns with other works that promote active learning, shifting from learning <u>through</u> traditional lecture-style mechanisms to learning by doing and engaging in thoughtful and meaningful experiences [–]. In <u>engineering</u> education, experiential learning can help students develop and enhance their problem-solving skills, gain practical experience, build relationships, and understand stakeholder needs []. In higher education, experiential learning opportunities can include engaging in community service, service-learning, research, internships, student **teaching**, and capstone **projects**.

The concept of experiential learning in higher education is often attributed to David Kolb [, , ,]. Kolb defines experiential learning as a 4-stage process. This process, known as Kolb's Experiential Learning Cycle, consists of (1) concrete experience, (2) reflective observation, (3) abstract conceptualization, and (4) active experimentation, taking place in a continuous learning loop []. In the concrete experience stage, the learner practices the application of prior knowledge by engaging in a new task, activity, or experience. This is followed by the reflective observation stage, where the learner reflects on that new task, activity, or experience by discussing and analyzing it. This stage allows learners to identify any discrepancies between their understanding of prior knowledge and the experiences themselves. The third stage of this cycle, abstract conceptualization, involves making sense of and drawing conclusions about the experience *through* reflecting on existing knowledge, ideas, and concepts, and engaging in discussions with peers. Finally, in the fourth stage, active experimentation, the learner applies their learning in new or similar settings.

In <u>biomedical</u> <u>engineering</u> education, experiential learning traditionally takes the form of research and laboratory experiments, design courses, industry-sponsored design <u>projects</u>, clinical settings, or internships to name a few [, , ,]. Although the literature focuses heavily on the benefits of experiential learning for undergraduate student learners, recent work also highlights the importance of it in graduate student training []. In this <u>project</u>, <u>IT-BME</u> participants, engaged with experiential learning <u>through</u> an internship-like opportunity in <u>inclusive teaching</u> course design. <u>Biomedical engineering</u> graduate students interested in <u>teaching</u> careers, worked collaboratively with a faculty member to modify, revise, or design elements of a BME course (e.g. syllabus, assignments, content), applying <u>inclusive teaching</u> strategies they learned in the <u>Inclusive</u> STEM <u>Teaching</u> MOOC (refer to section ""). In addition to the known benefits of experiential learning, <u>faculty-graduate</u> student collaborations have also been shown to enhance graduate student training in course design and instructional practices [], further enriching this learning experience for <u>IT-BME</u> graduate students.

Implications for Program Design

In this paper, we present the design and outcomes of this year-long <u>project</u> in which BME graduate students, alongside a faculty partner, engaged in an experiential learning experience, applying <u>inclusive teaching</u> strategies in BME courses. First, BME faculty and graduate students participated in a 6-week online course and a learning community, facilitated by <u>Engineering</u> Education <u>Teaching</u> consultants (EET) consultants, to gain foundational knowledge of <u>inclusive teaching</u>, understand how it improves <u>teaching</u> and learning outcomes, and learn different strategies for incorporating it into a course. To get hands-on experience with the application of <u>inclusive teaching</u> practices, graduate students were partnered with a faculty member. Together, each <u>faculty-graduate</u> student team identified course elements that they wanted to modify (or create new) to be more <u>inclusive</u>, and each graduate student worked on making those changes. To support the various aspects of the experiential learning process, in particular, the reflective observation and abstract conceptualization phases, graduate students had scheduled regular meetings with their faculty members (individually), and with each other (as a group) to ideate <u>inclusive teaching</u> strategies, discuss progress, challenges, and brainstorm solutions. We defined three learning objectives for this <u>IT-BME project</u> (Table).

To train faculty and graduate student instructors in best practices for *inclusive teaching* in STEM.

To engage in hands-on training that applies *inclusive teaching* best practices for BME course design.

To foster an <u>inclusive</u> learning environment in undergraduate BME courses.

Learning objectives (LO) of the <u>IT-BME project</u> with associated activities.

Relevant student learning or professional development objectives in a BME classroom, course, curriculum, or extracurricular activity

? To train faculty and graduate student instructors in best practices for *inclusive teaching* in STEM

? To engage in hands-on training that applies <u>inclusive</u> <u>teaching</u> best practices for BME course design

? To foster an <u>inclusive</u> learning environment in undergraduate BME courses

Activity/events/item associated with LO

Phase I?foundational learning (MOOC & learning community)

Phase II?experiential learning

Phase III?implementation

Implementation

Overview of the **Project**

The <u>IT-BME project</u> consisted of a team of BME graduate students (n = 5), BME faculty members (n = 7), and <u>engineering</u> education <u>teaching</u> consultants (n = 2). Graduate students were all candidates and ranged from 3rd to 5th years. Faculty members engaged in the <u>project</u> were <u>teaching</u> lecturers (with 1–3 years experience) and tenure-track faculty (assistant to full professor). Consultants involved in the <u>project</u> both held PhDs in <u>Engineering</u> or STEM education fields and work in the Center for Research on Learning and <u>Teaching</u> in <u>Engineering</u> (CRLT-Engin) and are part of the <u>Inclusive</u> STEM <u>Teaching</u> MOOC.

This year-long <u>project</u> was comprised of three major phases focused on foundational learning, experiential learning, and implementation (Fig.). In Phase I (foundational learning), the graduate students and faculty participants took part in joint training using the <u>Inclusive</u> STEM <u>Teaching</u> MOOC and an accompanied <u>inclusive</u> teaching learning community. In Phase II (experiential learning), graduate students were paired with faculty members to work on specific courses in the <u>biomedical engineering</u> curriculum. To support the pairing of <u>faculty-graduate</u> teams, at the conclusion of the learning community, faculty were asked to give a short presentation on their desired goals for the <u>project</u> and indicate the type of support they would need from graduate students. During these presentations, graduate students asked questions of the faculty members on their proposed <u>projects</u> and

were given a form to complete ranking their faculty <u>project</u> preferences. In the implementation phase (Phase III), the faculty delivered the revised/newly created materials in their <u>IT-BME</u> course. The <u>inclusive</u> <u>teaching</u> strategies were implemented across 6 <u>IT-BME</u> courses—ranging from sophomore level to graduate level.

Overview of the <u>IT-BME project</u> timeline split into three sequential phases. (Phase I) Joint training <u>through</u> the <u>Inclusive</u> STEM <u>Teaching</u> MOOC and dedicated learning community. (Phase II) Experiential learning <u>through</u> adaptation of current curriculum to <u>integrate</u> <u>inclusive</u> <u>teaching</u> practices. (Phase III) Implementation in undergraduate and graduate courses and follow-up evaluation

While Phase I and Phase II of the <u>project</u> included 7 <u>IT-BME</u> courses, in Phase III, one faculty member chose to <u>integrate</u> developed <u>inclusive teaching</u> strategies into two of their courses. Additionally, another faculty member who participated in the first two sessions did not offer their course the subsequent year. Therefore, seven courses were included in this study (refer to Table). All 7 <u>IT-BME</u> courses were for undergraduate or masters-level students. Three of the courses were Design-based, three were Lecture-based, and one was Lab-based.

Overview of the content covered in the 6-week MOOC and learning community (Phase I)

Module and learning community content
Orientation to the course content, community, and expectations
Understanding of DEI concepts and vocabulary and engaging in conversations on hesitations and concerns for promoting <i>inclusive teaching</i>
Understanding of how instructor identity, power and experience influence their approach to <u>teaching</u> and their expectations of students
Understanding how students? learning experiences can be informed by their identity and lived experiences
Incorporating diversity, equity, and inclusion in the development of STEM courses
Identifying the impact of, and the roles instructors play in creating an <i>inclusive</i> and welcome classroom climate on student learning

Phase I: Foundational Learning

Phase I of this <u>project</u> is directly related to Learning Objective 1: To train faculty and graduate student instructors in best practices for <u>inclusive teaching</u> in STEM. During this phase, graduate student and faculty participants took part in the <u>Inclusive</u> STEM <u>Teaching</u> MOOC which was complemented by an <u>inclusive teaching</u> learning community facilitated by consultants. Each learning community session was designed to complement weekly modules within the MOOC, providing an extension of what participants learned as well as opportunities for community engagement.

Table summarizes the MOOC and learning community content covered in each of the 6 weeks. Week 1 focused on orientation to course content, setting expectations for working together, and community-building activities. In Week 2 participants gained a foundational understanding of DEI concepts and vocabulary, engaged in conversations about hesitations and concerns about promoting <u>inclusive teaching</u>, and discussed tips and strategies for navigating them. In Week 3, participants engaged in a self-reflection activity and small group discussions to deepen their understanding of how instructor identity, power, and experience influence their approach to <u>teaching</u> and their expectations of students. In Week 4 participants examined student demographics, sense of belonging, and campus climate data from the University of Michigan and discussed how students' learning experiences can be informed by their identity and lived experiences. In Week 5 participants began thinking more about <u>inclusive</u> course design strategies and how to incorporate them into their specific course context. Finally, in Week 6, they examined group

work scenarios and discussed the impact of and the roles that they, as instructors, play in ensuring *inclusive* learning environments in student group work.

Phase II: Experiential Learning

Phase II of the <u>project</u> focused on our second learning objective: To engage in hands-on training that applies <u>inclusive teaching</u> best practices for BME course design. This part of the <u>project</u> is where the experiential learning took place (Fig.). In this phase, graduate students were paired with faculty mentors to work on courses the faculty would be <u>teaching</u> (<u>IT-BME</u> course). Working for 10 weeks, faculty-student teams met individually to discuss, review, and revise/create course materials and ideate plans for <u>integrating inclusive teaching</u> practices into the curriculum. Please note that due to an uneven number of graduate students (n = 5) to faculty (n = 7) ratio, two faculty did not work with graduate students in Phase II and instead received consultation support offered by the <u>Teaching</u> and Learning Center staff.

Prior to the start of this phase, consultants facilitated two additional sessions to (1) prepare graduate students for working effectively with faculty and (2) support faculty in their <u>inclusive teaching</u> goals. The first session focused on <u>teaching</u> best practices for collaborative work [–]. Consultants emphasized the importance of graduate students engaging in conversations with their faculty mentor to establish guidelines for collaboration, including discussing communication preferences, modality and cadence of meetings, and expected responsibilities of each other. This information was also shared with faculty to facilitate collaboration and mentorship.

The second additional session focused on supporting faculty in identifying <u>inclusive</u> <u>teaching</u> goals they had for <u>integrating</u> into a Fall 2022 course. Prior to the session, faculty were given a Google Slides presentation template to complete. The template asked faculty to consider the following: (1) course background and learning objectives, (2) <u>inclusive</u> <u>teaching</u> practices they would like to implement, and (3) the graduate student support they would need. During the session, faculty presented these slides to consultants and graduate students. Consultants offered feedback on the faculty's <u>inclusive</u> <u>teaching</u> goals. Graduate students were given the opportunity to ask questions of the faculty members on their proposed <u>projects</u>. Following the second session, graduate students were asked to complete a form ranking their faculty <u>project</u> preferences.

Once paired, graduate students met regularly with their faculty members to solidify ideas for the specific strategies, tools, or content the faculty members wanted to incorporate into their course as well as discuss pedagogical ideas and share experiences. Using the tools and knowledge they gained in Phase I, graduate students typically worked individually on researching, revising, or creating new materials and content. This is an example of the concrete experience stage of experiential learning. However, they would continue to meet regularly with their assigned faculty member to discuss progress, and challenges and adjust planning as needed. In addition to regular meetings with their assigned faculty member, graduate students also participated in weekly meetings. In these meetings, attended by graduate students and facilitated by a faculty member, each graduate student presented weekly updates on their respective *projects*, shared challenges and barriers they encountered, received and provided feedback, and problem-solved together. They would also discuss readings on best teaching practices and share resources with each other. Support from consultants was also available to student-faculty teams throughout the 10 weeks. Broader team check-ins were performed at the halfway and 10-week time points. During these check-ins, the whole group (faculty, graduate students, and consultants) met to provide updates on their project status (via presentation) and solicited feedback and resources to support their *project*. With faculty member support, graduate students led these presentations, allowing them to articulate their team's synthesis of *inclusive teaching* practices. Preparing for these check-in meetings (with individual faculty, graduate students, and the whole team) are all examples of the reflective observation and abstract conceptualization stages of experiential learning. To prepare for these meetings and updates, graduate students (and their assigned faculty members) had to reflect on their work, articulate what they did and why, identify barriers and challenges, and ask specific questions of their peers, faculty members, and consultants. *Through* discussing their *projects* in these various check-ins, graduate students were able to progress on their projects, eventually resulting in a final product(s) at the end of Phase II (e.g. the active experimentation stage).

Phase III: Implementation

Phase III of the *project* focused on the implementation of *inclusive teaching* strategies in *IT-BME* courses, addressing our third learning objective: To foster an *inclusive* learning environment in undergraduate BME courses. Faculty instructors used the concepts, strategies, and materials created by our teams and applied them in their *IT-BME* courses (Fig.). While graduate students were not directly involved in this phase, some did participate with their faculty mentors.

<u>Faculty</u>/<u>graduate</u> student teams incorporated a range of <u>inclusive</u> <u>teaching</u> concepts, strategies, and materials in these courses that fell under three overarching categories: "Course Element Revisions, DEI Course Content, and Improving or Incorporating Group Interactions (Table).

Overview of the courses, course type, and specific strategies incorporated in each IT-BME course

Course & course type	<u>Inclusive</u> <u>teaching</u> category	Specific concepts, strategies and materials implemented
Course 1: design	DEI course content	Included DEI case studies in the curriculum
Course 2*: lecture Improving or incorporating group interactions	Course element revisions Incorporated group-based assignments	Updated syllabus language
Course 3: lab	Improving or incorporating group interactions	Students took a leadership style assessment to improve collaborative work
Introduced group contracts for students to outline norms and expectations		
Allocated class time for dedicated group work		
Course 4: design	Improving or incorporating group interactions	Introduced group contracts for students to outline norms and expectations of each other
Course 5*: lecture	DEI course content	Incorporated content and discussions on the socio-technical implications of <u>biomedical</u>
Course 6: lecture	Course element revisions	engineering Developed lecture-specific learning objectives
Created coursework questions touching on the social impacts of engineering		
Course 7: design	DEI course content	Included DEI case studies in the curriculum
Improving or incorporating group interactions	Introduced group contracts for students to outline norms and expectations of each other	
Course 8**: lecture	DEI course content	Included DEI research vignettes
Incorporated content and discussions on the socio-technical implications of <i>biomedical</i> engineering		

Here, * indicates courses that did not have a graduate student mentee facilitate <u>inclusive</u> <u>teaching</u> development, and ** indicates courses that did not partake in Phase III

Courses that incorporated "Course Element Revisions" typically updated their syllabus language to be more learner-centered, *inclusive*, and welcoming or made modifications to assignments. For example, some faculty members added language to their syllabus about Title IX, and religious observances, and included information on the various resources available to students, including mental health and well-being, and for those with housing/food insecurity, or who are caregivers. Another faculty member shared that they created grading rubrics, that they gave students, to increase transparency on how they were being assessed []. Another faculty member included more assignments as lower-stakes assessments in their course and worked with students to develop grading criteria (e.g. how much clicker quizzes would be graded vs attendance only). Several faculty also indicated that they revised their course learning objectives [], both for the overall course and for each class session.

Courses that incorporated items related to "DEI Course Content" included DEI-focused <u>engineering</u> case studies, classroom discussions on the socio-technical implications of <u>biomedical engineering</u>, or vignettes of modern-day researchers engaging in state-of-the-art research related to course content. For example, one faculty member had their students listen to podcasts on the topic of "<u>Engineering</u> for Change and Designing for Social Justice" and assigned homework questions on the podcast. They also exposed students to some of the historical context behind policies that led to current-day health inequities and incorporated discussions that had students think about the intersections of the technical course content they were learning about and societal impact []. Instructors that included case studies in their courses worked with the Center for Socially Engaged Design, a unit in the College of <u>Engineering</u> that has a case study initiative developing original case studies for <u>engineering</u> courses highlighting the impact of <u>engineering</u> work on <u>engineers</u> and the broader society. This initiative is specific to this institution and instructors worked closely with the unit staff to <u>integrate</u> existing case studies into their courses in ways that align with the course context.

Finally, almost all the <u>IT-BME</u> courses had some collaborative elements to them and most faculty tried to <u>integrate</u> techniques related to teamwork, often focusing on creating group assignments or improving dynamics <u>through</u> team contracts or establishing working norms. In one course, to encourage students to build their networks and get to know other students in the class, the faculty member changed their first homework to a group work assignment, instead of an individual one. Other faculty members supported their students in learning about best practices when engaging in collaborative work via presentations and Canvas modules. One faculty member emphasized the importance of having their students split up the managerial work of note-keeping, editing assignments, etc. so that it did not fall on one person (typically happens to women in <u>engineering</u>). Some had students create group contracts to hold each other accountable. Many also engaged their students in creating norms and guidelines for communicating and interacting with each other in classroom discussions.

Evaluation

Learning objectives for Phase I and Phase II of this program were evaluated <u>through</u> a series of self-reflection questions asked of the graduate students. Specifically, they reflected on what they gained from this experience in relation to instructional knowledge, working with a faculty member, and the value of the MOOC and learning community. Graduate students are included in this manuscript as co-authors, writing about their experiences on this <u>project through</u> self-reflection. Learning objectives for Phase III were evaluated <u>through</u> a department-wide climate survey, disseminated to graduate and undergraduate students, specifically probing for students' sense of belonging in the department and perceptions of <u>inclusive teaching</u> practices in BME courses. Data collection for Phase III was approved by the Internal Review Board (HUM00226313).

Evaluation of Phases 1 & 2

Self-reflection is an important component of experiential learning because it allows participants to self-evaluate their knowledge, skills, and experiences on this <u>project</u> []. Following the completion of Phase I and Phase II, graduate student participants were invited by consultants (TPG & PJ) and faculty member (DN) to be included as co-authors on this manuscript by sharing their experiences on this <u>project through</u> self-reflection. Of the 5 <u>IT-BME</u> graduate student participants, four chose to be included as co-authors and agreed to respond to a set of reflection questions (developed by consultants TPG, PJ, and faculty member DN). The fifth student did not respond to our inquiry. Upon

confirmation of their interest in being included in this manuscript as co-authors, participants were asked to submit their responses via an anonymous Google Form to ensure thoughtful and honest responses. Specifically, they were asked to respond to the following questions:

How have your ideas of instruction changed by participating in <u>IT-BME</u>?

What do you feel you gained from this experience?

How valuable was working with a faculty mentor for your <u>IT-BME</u> experience?

How did the learning community (with faculty and graduate students) shape your understanding of <u>Inclusive</u> teaching?

What aspects of this experience did you find most valuable?

Do you have any suggestions for how we could make the <u>IT-BME</u> experience better for graduate students?

Their responses were synthesized and documented in the "" section of this paper.

Phase III Evaluation

A department-wide climate survey, disseminated to graduate and undergraduate students, evaluated Phase III (Learning Objective 3) of the <u>IT-BME project</u>. The survey was distributed to all students (undergraduate and graduate) via email in the last 3 weeks of the Fall 2022 semester. To assess the effect of the <u>inclusive teaching</u> strategies on <u>IT-BME</u> courses vs. non-<u>IT-BME</u> courses, we conducted a dept-wide climate assessment specifically probing for student perceptions of sense of belonging and <u>inclusive teaching</u> in their courses (see Fig. and ""). The survey collected information on three categories: (1) students' sense of belonging in the department, (2) student perceptions of <u>inclusive teaching</u> practices in BME courses, and (3) demographics (). Students were also asked to indicate whether or not they took an <u>IT-BME</u> course. To encourage responses, we offered a \$10 gift card incentive to the first 100 respondents. Upon completion of the survey, students were redirected to another form, separate from the survey responses, to enter their email information to receive the gift card.

Summary of sense of belonging survey questions (Q1 through Q16). See for more details

The sense of belonging questions were compiled from Ingram [] and Good et al. [] and adapted by Hirshfield and Khan [] (Fig.). These ten survey items asked students to rate their level of agreement with the sense of belonging statements such as "I feel comfortable asking an instructor for help if I do not understand course-related material" and "I feel excluded in my BME classes." Students were able to respond using a 6-point Likert Scale with answers: Strongly disagree, Disagree, Slightly Disagree, Slightly Agree, Agree, Strongly Agree. Students were also asked two open-ended questions to indicate what factors would make them feel as though they belong or did not belong in a classroom.

To evaluate the impact of the <u>IT-BME</u> courses, students were asked to indicate if they took one or more <u>IT-BME</u> courses in Fall 2022. If they indicated "yes", they were prompted to specify the <u>IT-BME</u> courses they took and respond to a series of statements about their perceptions of <u>inclusive teaching</u> in relation to those <u>IT-BME</u> courses. If students responded "no" to taking an <u>IT-BME</u> course, they were redirected to the same set of questions but were not asked to specify the courses they'd taken. Instead, those students were asked to respond to the statements in relation to their BME courses in general. Specifically, survey items consisted of 16 <u>inclusive teaching</u> statements focusing on students' perception of <u>teaching</u> practices such as using "activities that encourage all students to participate" and "present[ing] examples, resources, images, etc. that reflect a diverse population" []. All students were asked to rate their agreement with those statements answering, Strongly disagree (1), Disagree (2), Slightly Disagree (3), Slightly Agree (4), Agree (5), Strongly Agree (6).

Demographics

Demographic questions inquired on five main areas: (1) gender identity, (2) student status (graduate or undergraduate), (3) years in the department, (4) international student status, and (5) open-ended questions on other identities they'd like to share. For purposes of ensuring student anonymity, all questions, with the exception of student status and years in the department, were optional.

Analysis

To understand the potential impact of <u>IT-BME project</u> outcomes, sense of belonging survey results were sorted into two primary groups: students who did not participate in any <u>IT-BME</u> course during phase III (n = 93) and students who participated in one or more <u>IT-BME</u> course(s) (n = 53). This analysis excludes two <u>IT-BME</u> courses: course 6 and course 8 (see Table). Course 6 was excluded due to the fact that the course was <u>taught</u> by multiple faculty—the majority of whom did not participate in <u>IT-BME</u>. Course 8 was excluded as it did not run during phase III. Survey questions are listed in Fig., the distributed responses are reported in Fig., with the mean and standard error of Likert scale results calculated across responses from each group for each question in Fig.. Significance of the difference in responses between groups was assessed using a two sample t-test. Quantitative assessment was conducted in MATLAB.

Full distribution of student responses to the sense of belonging survey based on no participation in $\underline{IT\text{-}BME}$ courses (blue, n = 93) or participating in one or more $\underline{IT\text{-}BME}$ course(s) (maize, n = 53). Lighter shades indicate more disagreement, while darker shades indicate greater agreement. Red lines indicate the mean response in each group

Mean and (\pm) standard error of student responses to the sense of belonging survey questions (Q1 <u>through</u> Q16), based on no participation in <u>IT-BME</u> courses (blue, n = 93) or participating in one or more <u>IT-BME</u> course(s) (maize, n = 53). Questions are marked for significance (*p-value < 0.05, **p-value < 0.01, ***p-value < 0.01)

Findings

Sense of Belonging Survey Results

The sense of belonging survey was completed by 146 active students (53 <u>IT-BME</u>, 93 non <u>IT-BME</u>) at the University of Michigan, accounting for a response rate of approximately ~ 20%. Respondents predominantly identified as female (68.3%), with males (29.2%) and non-binary (2.7%) comprising a smaller portion (with 2 individuals preferring not to respond). As the survey was sent to the entire student body, responses were received from undergraduate (54.3%), masters (14.8%) and doctoral students (30.9%). Student respondents also had a range of experience at the University of Michigan, with student respondents having (0–1 years: 29.6%, 1–2 years: 19.6%, 2–3 years: 23.5%, 3–4 years: 16.7%, 4–5 years: 8%, and 5+ years: 3%).

Responses to the sense of belonging survey are summarized in Fig. , with distributions illustrating the responses in IT-BME (maize) and non IT-BME respondents (blue). Here the hue indicates the Likert response, with lighter shades indicating disagreement with the stated questions and darker shades indicating more agreement. Comparing the two groups, for all questions the IT-BME group responded more or equally positive showing a tendency for the Likert distribution to skew more positive.

Figure quantifies the mean response within each group (± the standard error). Here we can see that 8 of the 16 questions showed significant differences in the responses between groups, suggesting a meaningful, positive impact on the courses in the <u>IT-BME</u> group. Note that while many of the questions in the sense of belonging survey clearly relate to inclusivity in the classroom and material (e.g. Q14–Q16), others reflect the broad perspectives <u>through</u> which <u>inclusive teaching</u> principles can be incorporated. For example, Q1 and Q2 (p-value of 0.053 and 0.007, respectively), focusing on promoting classroom participation. While this is a goal for many instructors, within the <u>inclusive teaching</u> space, promoting participation goes beyond classroom dynamisms and uses participation as a way of building a sense of community and personal investment.

Graduate Student Reflections

Participating in this <u>IT-BME</u> experience provided <u>IT-BME</u> graduate students with a deeper understanding of <u>teaching</u> pedagogies and influenced their perception of course design and best instructional practices. Table contains direct quotes from the graduate students describing their experiences on this <u>project</u>. In their reflections, they discussed how taking the MOOC and engaging in conversations with faculty and graduate students in the learning community enhanced their understanding of course design and exposed them to specific <u>teaching</u> strategies they could apply to their <u>projects</u> and carry with them into <u>teaching</u> careers. For example, one graduate student acknowledged understanding the importance of flexibility in the classroom. Additionally, several spoke about recognizing the importance of considering the identity and background experiences of an instructor and how that influenced the design of a course. Graduate students also found it valuable to partner with faculty and get hands-on experience in co-creating <u>inclusive</u> content including assignments, assessments, classroom norms, and lecture content, and appreciated being able to reflect and ask questions, learn about their <u>teaching</u> context, and gain a new <u>teaching</u> mentor. As intended in the design of this initiative, the experiential learning process was supported by having regular progress update meetings with their faculty member, other graduate students, and consultants to discuss ideas and solicit feedback from others. Finally, some graduate students mentioned that they were able to apply what they learned in this experience to their career aspirations.

Themes that emerged from <u>IT-BME</u> graduate students reflecting on their experiences on this <u>project</u>

Theme

Learned about teaching pedagogies

- ? ?! gained a much deeper appreciation for pedagogy and all the work of preparing classroom material.?
- ? ?IT-BME expanded my view of instruction by highlighting the need for flexibility in teaching.? Recognized how instructor identities influence course design
- ? ?...my view of <u>teaching</u> was primarily based on my experience as a student, mainly what I thought worked well or wrong with the approaches different professors had. Thanks to the <u>IT-BME project</u>, I now know that as a future instructor, I can have an impact beyond the class content. I am more aware of the different identities and learning styles that are present in the classroom, and I have better tools to engage with students.? Found value in the hands-on experience of co-creating the course

? ?Working with a faculty helped transform all the ideas and knowledge from the learning community into concrete interventions. Without this part of the *project*, all the things we gained at the beginning would have stayed as ideas, but now I have some clear experience of how they can be applied, especially as a first,

Direct quotes

- ? ?The <u>inclusive teaching</u> concepts I learned <u>through</u> participating in <u>IT-BME</u> broadened the way I think of instruction as a whole.?
- ? ?Now I recognize that <u>teacher</u> and student backgrounds factor heavily into the classroom, which is why it?s important to prepare material in a variety of ways, such as written and oral.?

? ?The faculty member I worked with was open to incorporating *inclusive teaching* into several aspects of the course, including lecture content, group work norms, and final *project* assessments? they were also very collaborative, offering helpful feedback and insight into what was most needed in the course, what they thought would work well, and student responses to previous changes.?

Direct quotes

Theme

moderate intervention in a class.?

Appreciated the regular check-ins with peers, assigned faculty, and consultants

? ?The meeting with my faculty mentor and the weekly updates we gave about the changes we were working on for each class were the most valuable to me during the program. The mentor meetings furthered my understanding of course design and the many elements that can be updated with *inclusive* teaching, and the weekly larger group meetings were helpful in providing feedback from multiple perspectives. The feedback in the group meetings helped refine the changes we were working on from both faculty and student perspectives??

Applied knowledge to career aspirations

? ?I was able to gain additional teaching strategies through hearing about what other grad studentprofessor teams were doing to increase inclusivity and

get feedback and ideas on my own project.?

? ?Not only was this a vital practice for my career, but it also was a talking point during interviews. The knowledge I gained about inclusive teaching is also very helpful for my career and understanding of teaching.?

? ?My goal has always been to become a professor, but realizing that I can impact the students by making a more inclusive classroom and that this can translate into a more prepared workforce further boost my desire to follow this path. I now feel like I can contribute with knowledge and by motivating individuals with different backgrounds to become engineers and tackle society?s challenges from their different perspectives.?

Discussion

In this paper, we aimed to address the challenges associated with integrating inclusive teaching practices in biomedical engineering courses through IT-BME: a unique partnership between engineering education researchers, BME faculty, and graduate students. This collective learning, along with the experiential component of collaboratively modifying course materials, provided opportunities for both faculty and student development. In addition, this collaborative effort served as an incubator, enabling the sharing of ideas across courses at both the graduate and faculty levels. The consequences of this work can be seen in the positive responses to our sense of belonging survey, which highlights how students in courses involved in IT-BME felt a greater sense of engagement, inclusion, encouragement, and buy-in.

While the findings of this study suggest promising outcomes from the *project*, there are a few notable limitations. First, our comparison groups consisted of students (at all levels) who either participated in an *IT-BME* class or did not. This means that students in the two groups responded based on different classroom experiences. While we aimed to mitigate this by asking students more broadly about their experiences, a cleaner approach would be to profile courses prior to participation in IT-BME to illustrate the direct impact of the project (which was not possible during this *project*). Another potential confounder lies with the faculty instructors themselves. As participation in *IT*-BME was opt-in, faculty more focused on pedagogy and student experience may have elected to participate in the program, which could explain the improved results. However, this is unlikely to explain the deviations observed between groups, as approximately 30% of the faculty participating were new faculty. Further, course styles and instructor styles naturally vary. Delving into this variance in courses more in-depth would be of interest, course-

specific analyses and comparisons were not conducted to ensure anonymity of surveyed participants. Additionally, areas for improvement for each course were based on the professor's perceptions of the needs and do not necessarily reflect the needs of students in the course.

While the focus of this <u>project</u> was targeted within the Department of <u>Biomedical Engineering</u>, the framework and concept of collective education and collaborative experiential learning for graduate students and faculty to develop <u>inclusive teaching</u> content could be generalized to other <u>engineering</u> degree programs or more agnostically to STEM. Direct mentor—mentee experiential learning benefitted by having a specific course to use as a focus for development; however, many of the concepts discussed were applicable to <u>engineering</u> program-wide. Indeed, the <u>Inclusive</u> STEM <u>Teaching</u> MOOC—a primary source for training in the early phases of the <u>project</u>—speaks to concepts affecting most <u>engineering</u> programs. A key to the success of the <u>IT-BME project</u>, and likely others that may mimic this model, is investment from all participants. As <u>inclusive teaching</u> within the STEM classroom focuses on developing a sense of community, establishing this same community within <u>IT-BME</u> was critical for success. Achieving this was a collective effort, with <u>engineering</u> educators present to help facilitate and guide discussions, with faculty who prioritized establishing greater inclusion in their classrooms, and graduate students hungry to learn about pedagogy and gain experience beyond what the typical graduate student instructorship position affords. However, bringing these groups together creates a valuable ecosystem for learning, cultivating ideas, and advancing <u>engineering</u> education toward a more <u>inclusive</u> environment.

Considering the extensibility and scalability of the <u>IT-BME</u> framework raises a number of interesting considerations. Extension of this framework to other departments or BME programs would, invariably, raise new challenges and concerns reflective of the program or university environment. However, the <u>IT-BME project</u> is adaptable, providing flexibility to address key needs as identified by instructors. The scalability of this framework to involve greater graduate and faculty participation could be easily addressed assuming similar scaling in the number of <u>engineering</u> educators, enabling multiple small-to-medium groups for learning communities and discussion. Adoption of a large group model, while potentially viable, would require care. Most importantly, building an open collaborative learning community in <u>IT-BME</u> was facilitated by <u>engineering</u> educators <u>through</u> shared small group activities. However, broadening the reach of this program by in new groups, particularly across institutions with varied demographics and diversity, would provide an important opportunity for learning, dissemination, and advancement of <u>inclusive</u> <u>teaching</u> practices.

Classification

Language: ENGLISH

Publication-Type: Magazine

Journal Code: 43683

Subject: <u>BIOMEDICAL ENGINEERING</u> (93%); <u>ENGINEERING</u> (91%); BIOENGINEERING (90%); BIOMEDICINE (90%); DIVERSITY & INCLUSION (89%); GRADUATE & PROFESSIONAL SCHOOLS (89%); LEARNING THEORIES (89%); MENTORS & ROLE MODELS (89%); SOCIETY, SOCIAL ASSISTANCE & LIFESTYLE (89%); STUDENTS & STUDENT LIFE (89%); <u>TEACHING</u> & <u>TEACHERS</u> (89%); CURRICULA (79%); DISTANCE LEARNING (79%); ACCESS TO EDUCATION (78%); NEGATIVE SOCIETAL NEWS (78%); SOCIETAL ISSUES (78%); STEM EDUCATION (78%); TECHNOLOGY (78%); RACE & ETHNICITY (71%); COMPUTER BASED TRAINING (65%)

Organization: BUCKNELL UNIVERSITY (59%); UNIVERSITY OF MICHIGAN (59%); UNIVERSITY OF MINNESOTA (59%); University of Minnesota; Bucknell University

Industry: ENGINEERING (91%); BIOMEDICINE (90%); GRADUATE & PROFESSIONAL SCHOOLS (89%)

Person: Jaimes Patricia; Bottorff Elizabeth; Hopper Theo; Jilberto Javiera; King Jessica; Wall Monica; Coronel Maria; Jensen Karin; Mays Elizabeth; Morris Aaron; Weiland James; Wrobel Melissa; Nordsletten David; Pinder-Grover Tershia

Geographic: MICHIGAN, USA (90%); MINNESOTA, USA (79%)

Load-Date: July 21, 2024

End of Document