

MICRO ’23, October 28śNovember 01, 2023, Toronto, ON, Canada Nayak et al.

with irregular (often low) data reuse, myriad compression formats,

additional meta-computation (e.g., intersection), and more. For ex-

ample, the OuterSPACE accelerator [34] splits sparse-sparse matrix

multiply (SpMSpM) into several phases that respectively produce,

sort, and consume an array of linked lists representing partial prod-

ucts. Gamma [55] executes the same kernel with two stages that are

connected with a high-radix hardware merger to process the data

efficiently. SIGMA [38] uses yet a third strategy (irregularly filling

a PE array with only non-zero data). And so on. All of the above

stems from irregular sparsity, which obviously does not manifest

when data is dense.

Likewise, existing tools for modeling sparse tensor algebra ac-

celerators do not fully overcome challenges arising from irregular

sparsity. For example, STONNE [30, 31] supports only the SpM-

SpM kernel, and even then, only six pre-selected mappings for that

kernel. Sparseloop [52] can model an accelerator describable in a

single deep loop nest. As we will show, this is insufficient to ex-

press SIGMA, OuterSPACE, and Gamma. Additionally, Sparseloop

uses abstract distribution functions to model sparsity, rather than

precisely modeling the behavior of actual input sets. While better

than using just shape-based information (like dense modeling), we

show how this approach still results in degraded modeling accuracy

(Section 7).

Our contribution.We provide a basis for specifying sparse tensor

algebra accelerators by showing how recent designs can be ex-

pressed as cascades (directed acyclic graphs or DAGs) of mapped Ein-

sums and content-preserving transformations on the constituent ten-

sors in those Einsums. For example, both OuterSPACE and Gamma

can be described by rewriting the Einsum for matrix multiply into

several, dependent Einsums. In this abstraction, the sort/merge op-

erations in those designs are described as reordering the dimensions

of an intermediate tensor to improve locality, while the differences

between the two operations are captured in how each Einsum is

mapped. We show how the design choices of other accelerators

can likewise be described in terms of a small set of categories of

operations, e.g., splitting/combining dimensions of a tensor while

preserving its contents.

Based on the above abstraction, we propose TeAAL (for Tensor

Algebra Accelerator Language), a novel declarative language, simu-

lator generator, and performance model that enables precise design

specification and modeling of sparse tensor algebra accelerators.

The TeAAL simulator generator takes accelerators described as

mapped Einsum cascades and produces an imperative-style inter-

mediate representation (IR) that describes tensor transformations

as primitive operations on tensors represented as fibertrees [45]. It

then uses implementation-level specifications (e.g., describing the

tensor formats) to augment the IR to produce an accurate, validated

performance model that processes real tensors.

Although attributes such as language expressivity and concise-

ness are difficult to quantify, as part of a study to validate TeAAL’s

fidelity, we write the TeAAL Einsum and mapping specifications of

four recent (and disparate) sparse tensor algebra accelerator propos-

als (OuterSPACE [34], ExTensor [16], Gamma [55], and SIGMA [38])

in less than a page (see Figures 3 and 8), with each specification tak-

ing ∼ 30 lines. We verify that the models generated for each of these

accelerators reproduce the designs’ original published performance

results (given the same input data sets) with high accuracy.

We view our primary contribution to be the accurate specifica-

tion and modeling of sparse tensor algebra accelerators. That said,

we also show how TeAAL can be applied in adjacent domains and be

used to explore optimization opportunities for accelerators in those

domains. Specifically, we use TeAAL to describe Graphicianado [14]

and GraphDynS [53], which accelerate vertex-centric programming

(a popular paradigm for graph algorithms), and demonstrate how

to improve these designs by making point changes to their TeAAL

specifications.

Taken as a whole, we feel TeAAL constitutes a significant ad-

vance over state-of-the-art practices in modeling and evaluating

sparse tensor accelerators. Using TeAAL, one is able to describe

a design using a precise, unified set of abstractions, supporting

qualitative and quantitative comparison to other designs and en-

abling the exploration of the impact of a series of design changes.

By contrast, standard practice today is to rely on English descrip-

tions/figures and bespoke simulators, which suffer along all of these

dimensions. Although prior works exist for exploring the space of

sparse accelerator designs (e.g., Sparseloop [52]), they have more

limited expressivity. For example, Sparseloop is only able to repre-

sent one of the six accelerators that we show results for.

To summarize, we make the following contributions:

• We show how modern sparse tensor algebra accelerator fea-

tures can be represented using cascades of mapped Einsums

and content-preserving transformations on those Einsums’

constituent tensors. Based on this abstraction, we propose

the TeAAL specification language for concisely and accu-

rately specifying the design of sparse tensor algebra acceler-

ators.

• We propose and design a simulator generator that trans-

forms TeAAL specifications into an imperative-style IR that

performs operations on fibertrees and lowers that IR to an

accurate performance model of the specified design that

processes real sparse tensor inputs.

• We validate TeAAL’s accuracy in terms of modeling memory

traffic, performance, and energy with respect to the reported

results of four state-of-the-art accelerators.

• We demonstrate the potential of TeAAL as a tool for ac-

celerator design by using it to speed up accelerators for

vertex-centric programmingÐby 1.9× on BFS and 1.2× on

SSSP over GraphDynS [53].

Beyond the artifact (Appendix A), we have made the source

code for TeAAL available at https://github.com/FPSG-UIUC/teaal-

compiler.

2 BACKGROUND AND MOTIVATION

We review key attributes of sparse tensor algebra and outline the

design decisions typically made by sparse tensor accelerators. We

highlight the difficulties with informal comparisons between accel-

erators and motivate the need for a precise, formal specification.

2.1 Tensors and Fibertrees

In this paper, an 𝑁 -tensor is a multidimensional array with 𝑁 di-

mensions. For example, a 0-tensor is a scalar, a 1-tensor is a vector,

1256

TeAAL: A Declarative Framework for Modeling Sparse Tensor Accelerators MICRO ’23, October 28śNovember 01, 2023, Toronto, ON, Canada

1

2 3 4

0 1 2

0

1

2

M

K

39

A

B

Z

5 6

0 2
0 1 22

1 2 3 4
Matrix A

M

K

FibersR

1 2
5 6

Vector B

K

R
6

Figure 1: Sparse matrix-vector multiplication and corresponding

fibertree representations.

R

2 3 41

(0, 2) (2, 0) (2, 1) (2, 2)
MK0 2

2

1

M

K

R

2 3 4

0 1 2

MK1

MK0

R

21

(0, 2) (2, 0)

3 4

(2, 1) (2, 2)

(0, 2) (2, 1)

Matrix A Matrix A Flattened Matrix A Partitioned

Figure 2: Flattening then partitioning ranks𝑀 , 𝐾 of tensor𝐴 (Fig. 1).

and a 2-tensor is a matrix. Figure 1 shows a 2-tensor, 𝐴, with di-

mensions𝑀 and 𝐾 . Using the terminology from Sze et al. [45], we

describe a tensor’s attributes:

• A rank refers to an axis/dimension in the tensor. A matrix

has two ranks, often described as rows and columns.

• A point is a logical location within a tensor that contains a

scalar value. A point is identified by an𝑁 -tuple of coordinates

with one coordinate for each rank in the tensor. We denote

the tensor 𝐴’s element at point (𝑚,𝑘) as 𝐴𝑚,𝑘 .

Mathematically, tensors have no notion of sparsity or compres-

sion format (e.g., CSR). To avoid getting bogged down in the nu-

merous details of various formats, we leverage the following ab-

stractions proposed in Sze et al. [45]:

• A fibertree represents a tensor as a tree, with each level

corresponding to a labeled rank in the tensor. Tensor 𝐴 in

Figure 1 has ranks𝑀 and 𝐾 .

• The order of levels in a fibertree reflects its rank order, de-

noted [𝑀,𝐾] in our example. The rank order list read left-to-

write corresponds to the fibertree’s ranks read top-to-bottom

in the tree.

• Every level contains one or more fibers. A fiber is the set

of elements sharing all coordinates in all higher levels of

the tree. Fibers are more precise than łrowsž or łcolumns,ž

because they naturally extend to 𝑁 -tensors.

• Each element in the fiber is a coordinate/payload pair, where

the payload is a scalar value when it is at a leaf or a reference

to a fiber when it is an intermediate node.

• The shape of a fiber is the the set of legal values the coor-

dinates in that fiber can take on, where an integer shape

means the open interval from zero to that integer. The shape

of a rank is the union of the shapes of all fibers in that rank.

The shape of a tensor is the list of shapes of each of the ranks

in rank order.

One advantage of fibertrees is that they naturally handle both

dense and sparse tensors (i.e., tensors where a number of points are

zero). A dense tensor’s fibertree has every coordinate present in

the entire shape (i.e., a complete tree). On the other hand, a sparse

tensor’s fibertree can omit all elements with empty payloads (either

zero values or empty fibers). The semantics of operations on fibers

and fibertrees remain the same in both cases. Note that fibertrees

are just an abstraction we use to describe operations on tensors.

To model a specific design, all fibertrees are lowered to concrete

representations, like CSR or COO (see Section 4.1.1). In this work,

we use fibertrees both to categorize the space of design choices

(Section 3) and as an IR during performance modeling (Section 4).

The fibertree abstraction also supports a number of transforma-

tions that change the fibertree corresponding to a tensor:

• A rank flattening, demonstrated in the first transformation in

Figure 2, combines two ranks together into a single rank. Af-

ter flattening, the coordinates are tuples of the coordinates in

the original fibers that reference a payload from the original

lower rank.

• A rank partitioning, demonstrated in the second transfor-

mation in Figure 2, separates a rank into two ranks. The

coordinates of the new upper rank denote the first legal

coordinate in the fiber below.

• A rank swizzle changes the fibertree’s rank order (i.e., re-

orders the levels of the fibertree).

An important insight in our work is that many sparse accelerator

behaviors can be viewed as one or more of these transformations

(Section 3).

2.2 Tensor Algebra with Extended Einsums

TeAAL expresses the individual computations performed by an

accelerator using equations written in an extended Einstein summa-

tion notation [13, 16, 45]. For simplicity, we call equations written

in this form Einsums. Einsums are general enough to describe all

tensor algebra kernels and have been used as the tensor algorithm

specification in prior work for tensor algebra compilation [23, 50]

and accelerator modeling [35, 45, 52].

We now present an operational definition of the Einsums used by

TeAAL. An Einsum specifies three things: (1) the input and output

tensors involved and their ranks, (2) an iteration space containing

a point for each computation to be performed, and (3) the specific

computation to be performed at each point in the iteration space.

For example, the Einsum for matrix-vector multiply is:

𝑍𝑚 = 𝐴𝑚,𝑘 × 𝐵𝑘 . (1)

Here, the equation defines the input tensors (𝐴, 𝐵), the output

tensor (𝑍), and the iteration spaceÐthe Cartesian product of all

legal coordinates in the expressionÐ(𝑀 × 𝐾). An implementation

of this Einsum must traverse each point in this space. For each

point, it computes the operation (×) on the right-hand-side using

the specified points in the input operands (𝐴, 𝐵). It then takes the

result and populates the location specified in the left-hand-side (𝑍).

Since the 𝐾 rank does not appear in the output tensor, the Einsum

will attempt to repeatedly populate the same point (𝑍𝑚). Einsum

semantics resolve this by sequentially reducing the multiple values

(using, in this case, addition) into a single value for that point. Note

that the Einsum does not specify iteration order; this is left to the

mapping (Section 2.3).

1257

MICRO ’23, October 28śNovember 01, 2023, Toronto, ON, Canada Nayak et al.

Table 1: Comparison of selected sparse tensor accelerator hardware proposals. TeAAL specifications increase both the precision and formalism

of such comparisons, and enable automatic generation of performance/energy models.

Accelerator Year Mapping Approach Architectural Focus

OuterSPACE [34] 2018 Outer Product parallelized across rows of𝐴 Sparse matrix multiply with serial multiply/add phases, custom merge unit
ExTensor [16] 2019 Inner Product tiled across all dimensions for locality Arbitrary Einsums and TACO formats [9], skip-ahead intersection unit

MatRaptor [42] 2020 Row-wise Product with parallel summation Sparse matrix multiply with co-design of micro-architecture and C2SR format
SIGMA [38] 2020 Inner Product parallelized across multiple dimensions Sparse matrix multiply with custom bitmap format, flexible hardware topology
SpArch [56] 2020 Outer Product with parallel merge Sparse matrix multiply with optimized RAM interface in sum phase

Tensaurus [43] 2020 Inner Product with extended scalar-fiber product followed

by fiber-fiber product (𝑆𝐹 3)

𝑆𝐹 3 demonstrated applicability to multiple Einsums beyond matrix-matrix multiply

Gamma [55] 2021 Row-wise Product, adoption of Gustavson’s alg. Sparse matrix multiply with custom FiberCache, transposed merge-and-sum

By adding a new rank 𝑁 to 𝐵, we can extend the above Einsum

to matrix multiplication:

𝑍𝑚,𝑛 = 𝐴𝑚,𝑘 × 𝐵𝑘,𝑛 . (2)

This expands the iteration space to𝑀 × 𝐾 × 𝑁 .

As another example, our operational definition of an Einsum

allows us to represent kernels beyond standard tensor algebra. For

example, we can write 1D direct convolution with the Einsum:

𝑂𝑞 = 𝐼𝑞+𝑠 × 𝐹𝑠 (3)

Just like the other examples, this equation defines the input tensors

(𝐼 , 𝐹), output tensors (𝑂), the iteration space (𝑄 × 𝑆), and the com-

putation to occur at each point in the space. A reduction occurs

across points in the iteration space with the same 𝑞 and different 𝑠

coordinates, as one would expect from 1D convolution.

2.3 Mapping Hardware Accelerators

Mapping [8] is the task of scheduling the computation of an Einsum

onto limited hardware resources to jointly optimize for the desired

combination of throughput, latency (execution time), power, etc.

We summarize the mapping attributes used for hardware modeling

and design in prior work [7, 17, 19, 25, 29, 35, 54] that we use

throughout.

1) Loop order. The Einsum’s large iteration space must be seri-

alized through finite datapath resources in some order. Two choices

for Equation 1 are: (1) [𝑀,𝐾] or (2) [𝐾,𝑀]. Loop order is read

left-to-right, corresponding to the topmost-to-bottommost loop

in a loop nest. For example, (1) above reads łfor each value of𝑚,

iterate through all values of 𝑘 .ž This choice affects data locality and,

in turn, memory access costs. Depending on on-chip buffer sizes,

loop order (1) for matrix-vector multiply keeps an element of 𝑍

stationary [8] in on-chip memory while 𝐵 is streamed in multiple

times. Meanwhile, loop order (2) keeps 𝐵 stationary but repeatedly

streams 𝑍 .

2) Splitting. To further improve data locality across all tensors,

many algorithms employ splitting (or strip mining, blocking, etc.)

to divide the iteration space into subspaces that refer to a small

enough subset of each of the tensors that they fit fully in on-chip

buffers. Fibertrees model these subsets by partitioning their fibers

according to the split iteration space. How a fiber is partitioned

is a function of the coordinates in the fiber. For example, suppose

matrix𝐴 has a rank-order of [𝑀,𝐾]. Splitting𝐾 by shape𝐾0 results

in a new 𝐴 tensor with rank-order [𝑀,𝐾1, 𝐾0], where 𝐾 is split

into 𝐾1 partitions with 𝐾0 coordinates each.1

1In other words, each tile stores coordinates in the coordinate range [𝑖∗𝐾0, (𝑖+1)∗𝐾0)
for some 𝑖 .

3) Work scheduling. Finally, the mapping specifies how the

iteration space is traversed, by placing each point at a specific

location in both time and space. Mapping a computation at differ-

ent locations in time implies that the computation is serial (i.e.,

computations happen one after another on the same component),

while mapping at different locations in space implies parallelism

(i.e., computation happens at the same time on different processing

elements (PEs)).

2.4 Accelerating Sparse Tensor Algebra

Sparse tensor algebra introduces new opportunities and challenges

to the mapping problem. Sparse tensors are typically compressed

to remove the zero elements, resulting in fibertrees with missing

coordinate-payload pairs. Compression can yield significant sav-

ings in storage and data transfers and avoid ineffectual computeÐ

operations that have no impact on the result and can be safely

skipped, e.g., multiplication or addition with zero [16].

However, realizing these benefits requires accelerators to łspar-

sifyž the iteration space, or remove the ineffectual compute, increas-

ing design complexity, sensitivity to memory latency/bandwidth,

and load imbalance. For example, the [𝑀,𝐾] loop order for Equa-

tion 1 may skip, for example, from (𝑚 = 0, 𝑘 = 2) to (𝑚 = 2, 𝑘 = 0)

in one step [52]. Such skipping can remove ineffectual compute but

may require co-iteration of the operands and additional operations

(e.g., intersection for fibers multiplied together). Without careful

engineering, this can lead to inefficiencies that do not occur when

tensors are dense [33]. For example, the same-shape tiles produced

by the scheme described in Section 2.3 may have different memory

footprints, leading to data transfer and compute load imbalance

when tiles are distributed to workers.

To deal with these challenges, sparse tensor accelerators have

proposed a wide variety of custom hardware solutions, summarized

in Table 1. We note that the complexity of this topic makes such a

table an imprecise and ultimately unsatisfying comparison. Addi-

tionally, all of these works used custom hand-written simulators

run on actual data sets to ensure all complexities are captured. In

the remainder of this paper we present a formalism to resolve this

imprecision and enable concise apples-to-apples comparison.

3 OVERVIEW AND INSIGHTS

We now propose TeAAL: a language and simulator generator that

1) enables the concise specification of a sparse tensor algebra ac-

celerator and 2) generates efficiency statistics for that accelerator

computing on actual sparse tensors.

Our key conceptual contribution, which guides the design of

TeAAL, is to show that recent sparse tensor algebra accelerators can

1258

TeAAL: A Declarative Framework for Modeling Sparse Tensor Accelerators MICRO ’23, October 28śNovember 01, 2023, Toronto, ON, Canada

be expressed as cascades (directed, acyclic graphs; DAGs) of mapped

Einsums (Sections 2.2, 2.3) and content-preserving transformations

on their tensors. This can be elaborated as two novel insights:

Insight 1: Einsum cascades can represent multi-phase ac-

celerator designs (Section 3.1). A variety of accelerators and

algorithms targeting seemingly monolithic kernels are more ac-

curately and succinctly described as a sequence of distinct, inter-

connected phases. We show that cascades of Einsums are suffi-

ciently expressive to represent these multi-phase computations

(e.g., Toeplitz-based convolution, OuterSPACE’s multiply-merge,

SIGMA’s pre-filtering, Graphicionado’s process and apply).

Insight 2: Content-preserving transformations on tensors,

representable as core operations on fibertrees, capture idioms

for sparse tensor data orchestration (Section 3.2). A variety

of sparse accelerator behaviors (e.g., work scheduling, splitting,

sorting/merging) can be represented as content-preserving trans-

formations on specific tensors in the Einsum cascade. We show

how these transformations can be represented as a small set of

core operations performed on fibertrees (Section 2.1). In specific,

we use fibertree rank partitioning/flattening as a general pattern

for representing both sparse tensor splitting and work scheduling

strategies. Additionally, we use fibertree rank swizzling as a general

pattern for sorting and merging, which is often used to improve

tensor traversal efficiency.

This section describes the above insights in more detail and

how they enable the design of the TeAAL specification language.

Section 4 describes how the TeAAL simulator generator converts

TeAAL specifications into an imperative-style IR describing opera-

tions on fibertrees and how this IR (augmentedwith some additional

information, e.g., describing the architecture and concrete formats)

is subsequently converted into an accurate performance model.

TeAAL specifications. The TeAAL specification language is a

declarative, domain-specific language (DSL) that defines the com-

putation as a cascade of Einsums (expressions), attributes on each

tensor (declaration, rank-order, partitioning), and a dataflow that

describes when and where those tensors’ data is moved (loop-order,

spacetime). We refer to the tensor declarations and Einsums as the

einsum specification and the tensor and dataflow attributes as the

mapping specification. Rank swizzling is not expressed explicitly,

but is inferred from other mapping attributes, such as the rank-order

and loop-order.

OuterSPACE running example. Throughout this section and

Section 4, we use the example TeAAL specification in Figure 3,

which describes the OuterSPACE accelerator [34]. At a high level,

OuterSPACE accelerates SpMSpM using the multiply-merge algo-

rithm. It first performs all multiplications between input tensors

𝐴 and 𝐵 in an outer-product fashion, writes the resulting partial

products to an array-of-linked-lists data structure, sorts the linked

lists to facilitate reduction, and finally performs reductions over the

now-sorted lists to derive final results. Throughout the rest of the

section, we will discuss how TeAAL both implicitly and explicitly

captures these behaviors.

1 einsum:

2 declaration: # Ranks are listed alphabetically in this section

3 A: [K, M] # Rank order is specified below in rank−order

4 B: [K, N]

5 T: [K, M, N]

6 Z: [M, N]

7 expressions:

8 − T[k, m, n] = A[k, m] ∗ B[k, n] #𝑇𝑘,𝑚,𝑛 = 𝐴𝑘,𝑚 × 𝐵𝑘,𝑛

9 − Z[m, n] = T[k, m, n] # 𝑍𝑚,𝑛 = 𝑇𝑘,𝑚,𝑛

10 mapping:

11 rank−order:

12 A: [K, M]

13 B: [K, N]

14 T: [M, K, N]

15 Z: [M, N]

16 partitioning:

17 T:

18 (K, M): [flatten()]

19 KM: [uniform_occupancy(A.256), uniform_occupancy(A.16)]

20 Z:

21 M: [uniform_occupancy(T.128), uniform_occupancy(T.8)]

22 loop−order:

23 T: [KM2, KM1, KM0, N]

24 Z: [M2, M1, M0, N, K]

25 spacetime:

26 T:

27 space: [KM1, KM0]

28 time: [KM2, N]

29 Z:

30 space: [M1, M0]

31 time: [M2, N, K]

Figure 3: TeAAL specification for the Einsums and mappings of

OuterSPACE [34], described in detail in Section 3.

Table 2: Cascades of Einsums for various accelerators and algo-

rithms. Also see Figure 12 for the Einsum cascades describing Graphi-

cionado [14] and GraphDynS [53].

Accelerators / Algorithms Cascade

ExTensor [16]’s SpMSpM 𝑍𝑚,𝑛 = 𝐴𝑘,𝑚 × 𝐵𝑘,𝑛
Gamma [55]’s SpMSpM 𝑇𝑘,𝑚,𝑛 = 𝑡𝑎𝑘𝑒 (𝐴𝑘,𝑚, 𝐵𝑘,𝑛, 1)

𝑍𝑚,𝑛 = 𝐴𝑘,𝑚 × 𝑇𝑘,𝑚,𝑛

OuterSPACE [34]’s SpMSpM 𝑇𝑘,𝑚,𝑛 = 𝐴𝑘,𝑚 × 𝐵𝑘,𝑛
𝑍𝑚,𝑛 = 𝑇𝑘,𝑚,𝑛

SIGMA [38]’s SpMSpM 𝑆𝑘,𝑚 = 𝑡𝑎𝑘𝑒 (𝐴𝑘,𝑚, 𝐵𝑘,𝑛, 0)
𝑇𝑘,𝑚 = 𝑡𝑎𝑘𝑒 (𝐴𝑘,𝑚, 𝑆𝑘,𝑚, 0)
𝑍𝑚,𝑛 = 𝑇𝑘,𝑚 × 𝐵𝑘,𝑛

Eyeriss [8]’s CONV 𝑂𝑏,𝑚,𝑝,𝑞 = 𝐼𝑏,𝑐,𝑝+𝑟,𝑞+𝑠 × 𝐹𝑐,𝑚,𝑟,𝑠

Toeplitz expansion/im2col + CONV [45] 𝑇𝑏,𝑐,𝑝,𝑞,𝑟 ,𝑠 = 𝐼𝑏,𝑐,𝑝+𝑟,𝑞+𝑠
𝑂𝑏,𝑚,𝑝,𝑞 = 𝑇𝑏,𝑐,𝑝,𝑞,𝑟 ,𝑠 × 𝐹𝑐,𝑚,𝑟,𝑠

Tensaurus [43]’s MTTKRP 𝐶𝑖,𝑟 = 𝑇𝑖,𝑗,𝑘 × 𝐵 𝑗,𝑟 × 𝐴𝑘,𝑟

Factorized MTTRKP [48] 𝑆𝑖,𝑗,𝑟 = 𝑇𝑖,𝑗,𝑘 × 𝐴𝑘,𝑟

𝐶𝑖,𝑟 = 𝑆𝑖,𝑗,𝑟 × 𝐵 𝑗,𝑟

Cooley-Tukey FFT Step [10] 𝐸0,𝑘0 = 𝑃0,𝑘0,𝑛1,0 × 𝑋𝑛1,0

𝑂0,𝑘0 = 𝑃0,𝑘0,𝑛1,0 × 𝑋𝑛1,1

𝑇𝑘0 = 𝑃0,𝑘0,0,1 ×𝑂0,𝑘0

𝑌0,𝑘0 = 𝐸0,𝑘0 +𝑇𝑘0
𝑌1,𝑘0 = 𝐸0,𝑘0 − 𝑇𝑘0

1259

MICRO ’23, October 28śNovember 01, 2023, Toronto, ON, Canada Nayak et al.

3.1 Insight 1: Einsum cascades capture
multi-phase accelerators

Our first insight is that seemingly monolithic tensor algebra kernels

(e.g., matrixmultiply) are often implemented as a DAGof operations,

and that each of these operations can be expressed as an Einsum

that produces and consumes intermediate tensors. We call this DAG

a cascade. For example, consider a 1D convolution between input

𝐼 and filter 𝐹 . Convolution is performed using two predominant

implementation styles. The first style is direct convolution, which is

often employed by accelerators. As an Einsum, direct convolution

is written as

𝑂𝑞 = 𝐼𝑞+𝑠 × 𝐹𝑠 (4)

An alternative style is the Toeplitz expansion [45], which converts

the convolution into a matrix-vector or matrix-matrix multiply

and is common on systolic arrays and data-parallel processors like

GPUs. First, the input is refactored into a matrix to enable, in this

case, matrix-vector multiplication between the input (now stored

in𝑇) and the filter 𝐹 in the second stage. An important observation

is that this can be written as the following sequence of dependent

Einsums:

𝑇𝑞,𝑠 = 𝐼𝑞+𝑠 ; 𝑂𝑞 = 𝑇𝑞,𝑠 × 𝐹𝑠 (5)

Importantly, the RHS of the Einsum used to generate 𝑇 mirrors

how 𝐼 is indexed in the Einsum for direct convolution. The Toeplitz

expansion simply relaxes the requirement that the access into 𝐼 and

the corresponding access into 𝐹 happen at the same time. Decom-

posing an Einsum into a cascade enables each resulting Einsum to

be mapped independently, exposing new degrees of freedom for

building and using intermediate tensors. Note that this sequence of

Einsums says nothing about how (if at all) the two stages are over-

lapped. They can happen entirely sequentially, or the accelerator

can implement pipeline parallelism. For example, the𝑄 rank can be

partitioned (Section 3.2.1) and once a partition of 𝑇 is produced, it

can be consumed by the multiply stage. Section 4.3 describes how

TeAAL determines this parallelism.

Beyond convolution, cascades of Einsums can be used to repre-

sent other common implementation styles in sparse tensor algebra

accelerators. For example, they capture the multiply-merge algo-

rithm in the OuterSPACE example (Figure 3). During the multiply

phase (Line 8), columns of the 𝐴 matrix are multiplied with rows

of the 𝐵 matrix to form partial products, which we call 𝑇 . Then,

during the merge phase, specified by the second Einsum (Line 9),𝑇

is reduced along the 𝐾 rank, yielding the final result 𝑍 .

Sparsity also motivates new operations on tensors, and our Ein-

sum notation can be extended to include them if needed. We cur-

rently support oneÐthe take(.) operatorÐwhich decouples inter-

section from computation with the following semantics: if at least

one of the inputs is zero at a point, the output is zero, otherwise,

copy one of the inputs into the output. Take the example:

𝑇𝑘,𝑚,𝑛 = 𝑡𝑎𝑘𝑒 (𝐴𝑘,𝑚, 𝐵𝑘,𝑛, 1) (6)

The final parameter denotes which input is copied into the output.

This example copies 𝐵 into 𝑇 , but if the last parameter were 0, 𝐴

would be copied.

Beyond the above examples, Table 2 shows a variety of accelera-

tors and algorithms represented as cascades of Einsums.

3.2 Insight 2: Content-preserving
transformations on fibertrees capture
accelerator data-orchestration strategies

Our second insight is that a variety of accelerator behaviors (e.g.,

work scheduling) are describable as what we call content-preserving

transformations applied to specific tensors in the Einsum cascade.

We say a tensor transformation is content-preserving if it does

not change the content of the tensor, i.e., the set of values at the

leaves of the fibertree, but does change the coordinate system used

to access each value. Such transformations may also impact the

tensor’s data layout when lowered to a concrete representation.

We make an important observation that the core operations

performed on fibertrees (Section 2.1) represent a set of content-

preserving transformations that are useful for describing a variety

of prevalent sparse data orchestration strategies. Specifically, fib-

ertree rank partitioning (and its inverse: flattening) can be used as

a single abstraction for specifying both sparse tensor splitting and

work scheduling strategies. Similarly, fibertree rank swizzling can

be used as a single abstraction for specifying transposing data in

memory, sorting, and merging.

3.2.1 Sparse Tensor Splitting and Work Scheduling. Recall from

Section 2.3 that splitting for dense problems is shape-based. This can

be expressed by partitioning a fibertree rank at coordinate-based

boundaries given by the tile dimension. Unfortunately, when data

is sparse, this strategy can lead to low reuse and under-utilization

of tiles (and therefore buffers) [33], i.e., if different partitions have

different occupancies.

We make an important observation that partitioning naturally

generalizes to other types of splitting that can adapt to irregular

sparsity, simply by changing the partitioning criteria, i.e., where the

partition boundaries occur. From studying existing accelerators, we

define a simple sparsity-aware strategy we call uniform occupancy-

based partitioning. In this scheme, each fiber at a level in the fibertree

is split so that each new fiber has an equal number of elements

(modulo remainders). Importantly, each fiber’s coordinate range

after an occupancy-based partitioning is irregular. Thus, to ensure

that partitions of multiple tensors have matching coordinate ranges

for co-iteration (Section 2.4), occupancy-based partitioning uses

a leader-follower paradigm: the partitions’ coordinate ranges are

chosen so that the leader tensor’s partitions are equal occupancy

and all follower tensors adopt those ranges [52].

Unfortunately, uniform occupancy-based partitioning may still

result in partitions with varying occupancies because a partition

must end where its parent fiber ends. Flattening (Section 2.1), when

combined with occupancy-based partitioning, mitigates this imbal-

ance by first combining the flattened ranks, then redistributing the

elements so that, globally, each partition has the same number of

values. For example, Figure 2 shows how a fibertree whose fibers

start with an unequal number of coordinates can be flattened and

re-partitioned to equalize the number of coordinates per partition.

Note that, though all partitioning directives modify the fibertree

abstract representation, the concrete representation may remain

unchanged.

The above describes how tensor data can be efficiently split in

the presence of sparsity. More subtly, we observe that partitioning

1260

TeAAL: A Declarative Framework for Modeling Sparse Tensor Accelerators MICRO ’23, October 28śNovember 01, 2023, Toronto, ON, Canada

Matrix A [K, M] Partial products T [K, M] Partial products T [M, K]

0 2

0 22

2 1 4

K

M

1

3

2

0 2

0 22

15 6 24

K

M

0 2

0 22

6 15 24

M

K
=×

Rank
Swizzle①Multiply: !!,# = "!,#× $!

②Merge: %# =!!,#

Read access pattern

Write access pattern

R R

Vector B

1 2

5 6

K

R

R

Vector Z

0 2

6 39

K

R

=

Figure 4: Rank swizzling in sparse tensor algebra computations, using outer-product multiply-merge matrix-vector multiplication. Matrix 𝐴

and vector 𝐵 use values from Figure 1 for consistency. An offline rank swap ensures that 𝐴 has rank order [𝐾,𝑀] prior to the multiply phase,

and an online rank swap ensures that𝑇 has rank order [𝑀,𝐾] prior to the merge phase, ensuring concordant traversal in both phases.

and flattening are also useful abstractions through which to specify

work scheduling when work is parallelized. Consider OuterSPACE,

which works on 256 non-empty elements of matrix 𝐴 at a time

during the multiply phase, further subdividing these into 16 groups

of 16 elements to each be processed by a łProcessing Tilež (a group

of PEs [34]). The TeAAL specification for OuterSPACE (Figure 3)

represents this as a flattening (Line 18) and then an occupancy-based

partitioning applied twice hierarchically (Line 19).2 The TeAAL

specification describes the parallelism this partitioning enables on

Line 27 by scheduling ranks 𝐾𝑀1 and 𝐾𝑀0 in space (Section 2.3).

3.2.2 Transposition, Sorting, and Merging. We observe that sparse

tensor algebra accelerators employ a number of techniques that,

when expressing their tensors in the fibertree abstraction, are tan-

tamount to fibertree rank swizzles. These operations enable the

more efficient concordant (as opposed to discordant) traversal [45].

Concordant traversal occurs when a loop nest traverses a fibertree

in the order in which its ranks appear, i.e., traverses each fiber

sequentially and in a depth-first manner. For example, in Figure 4,

𝐴 is traversed concordantly, since it has a [𝐾,𝑀] rank order, and

the multiply phase has a [𝐾,𝑀] loop order. Thus, we never have to

search for the next 𝑘 or𝑚 coordinate; it is always the first or next

coordinate in the current fiber.3 Conversely, iterating over 𝐾 in the

bottom-most loop would be a discordant traversal (for this rank

order). In OuterSPACE (Figure 3), despite all of the partitioning,

during the multiply phase both 𝐴 and 𝐵 are traversed concordantly.

𝐾 is traversed sequentially and most slowly, then𝑀 and then 𝑁 .

It is common practice to swizzle ranks to enable concordant

traversal on input tensors. For example, the transposition of amatrix

from the CSR format into the CSC format can be viewed as a rank

swizzle and is used by OuterSPACE to achieve a [𝐾,𝑀] rank order

on 𝐴 (Line 12) in preparation for the outer-product-style multiply

phase. Input tensor swizzles are usually performed offline.

More subtly, we observe that sparse tensor accelerators also

perform rank swizzles on intermediate tensors formed during ker-

nels expressed as cascades of Einsums (Section 3.1). Depending

on whether coordinates in the intermediate tensors are stored in

sorted or unsorted order and on the extent to which the intermedi-

ate tensors are built before being consumed, this either requires a

merge or a (more expensive) sort operation.

2Note: OuterSPACE only enables half its PEs during the merge step, so the occupancy-
based partitioning applied to the second Einsum (Line 21) only involves 128 PEs (8 per
łProcessing Tilež).
3Though many concrete representations enable efficient sequential iteration through
fibers, some do not. The true cost of iteration is accounted for during modeling (Sec-
tion 4).

Table 3: Supported hardware components and their attributes.

Component Attributes

DRAM bandwidth
Buffer type (buffet [37] or cache), width, depth, bandwidth
Intersection type (two-finger, leader-follower, or skip-ahead), leader
Merger inputs, comparator_radix, outputs, order (fifo, opt), reduce
Sequencer num_ranks
Compute type (mul or add)

Figure 4 shows an example of a multiply-merge for outer product,

matrix-vector multiplication. To support concordant traversal on

both input and output tensors, the multiply phase uses a [𝐾,𝑀]

loop order, while the merge phase uses an [𝑀,𝐾] loop order. Thus,

at the end of the multiply phase, 𝑇 has rank order [𝐾,𝑀]. Then,

during the reduction, a rank swizzle changes the rank order of 𝑇

to [𝑀,𝐾] to match the [𝑀,𝐾] loop order. The dashed arrows in

Figure 4 show that both the tensor read and write access patterns

through 𝐴, 𝐵, 𝑇 , and 𝑍 are all concordant through both phases.

Importantly, such online rank swizzles may degrade performance

and, therefore, warrant dedicated hardware support. Yet, they can

significantly improve spatial/temporal locality, and thus, appear in

multiple prior designs [34, 55, 56].

By default, TeAAL infers rank swizzling automatically to main-

tain concordant traversal. For example, for OuterSPACE (Figure 3),

𝑇 has rank order [𝑀,𝐾, 𝑁], but TeAAL produces 𝑇 during the mul-

tiply phase in [𝐾,𝑀, 𝑁] order, swizzles it to [𝑀,𝐾, 𝑁] order to be

stored in memory, and then swizzles it again to [𝑀, 𝑁,𝐾] order to

prepare for the merge.

4 GENERATING THE MODEL

In Section 3, we showed that the fibertree abstraction is general

enough to describe many of the design decisions used in sparse

tensor algebra accelerators. However, to manifest a specific design,

the fibertrees must be lowered onto concrete representations and

their operations bound to specific hardware components. In this

section, we define three additional specificationsÐformat, architec-

ture, and bindingÐused by TeAAL to perform this lowering and

describe how these, plus the einsum and mapping specifications

from Section 3, are combined to produce an executable model for

evaluating accelerator workload performance.

4.1 Lowering Mapped Einsums to Hardware

This section describes the three additional specifications (format,

architecture, and binding) that are used to lower mapped Einsums

to concrete representations and hardware resources.

4.1.1 Format. Prior works on modeling sparse tensor algebra com-

putations [31, 52] extend TACO’s level formats concept [9], which

1261

TeAAL: A Declarative Framework for Modeling Sparse Tensor Accelerators MICRO ’23, October 28śNovember 01, 2023, Toronto, ON, Canada

define a list of hardware components local to that level and a list

of subtrees below that level. In addition to the component classes

supported by Timeloop, we define new classes of components that

are involved in performance-limiting operations on sparse acceler-

ators, including caches, intersection units, and hardware mergers.

Table 3 gives the full list of supported classes and their attributes.

Since an accelerator (e.g., OuterSPACE [34]) may reorganize itself

during the execution of a single computation, TeAAL also supports

specifying multiple topologies for the same design.

4.1.3 Binding. Finally, TeAAL’s binding specification matches the

Einsum- and mapping-induced fibertree operations to specific con-

crete representations and hardware components in the architecture.

First, each Einsum must be bound to a single accelerator topol-

ogy. Then, for each storage component, its bindings describe what

data resides there. Each binding contains the data’s tensor, config-

uration, rank, type (e.g., payload), whether elements are accessed

lazily (loading/storing only the element on access) or eagerly (load-

ing/storing the entire subtree below an element on access), and

sometimes (e.g., for buffets [37]), how long the data is buffered. A

storage component can have multiple such bindings. Similarly, for

each compute component, the binding describes which compute

operations are performed on that component.

4.1.4 TeAAL’s Expressibility and Extensibility. Putting everything

together: TeAAL decomposes the design of an accelerator into a set

of categories of abstractions, where a specific design choice is an

instance of the category. As shown in Figure 7, these abstractions

are hierarchical; the accelerator’s cascade of Einsums is the most

concise representation of that accelerator’s design, while its binding

encodes the finest-grain design decisions enabling the highest-

fidelity modeling.

This separation of concerns enables TeAAL to express a large

number of accelerators, and facilitates the process of adding new

features to represent yet other accelerators. For example, TeAAL

can express accelerators that differ only in specific details (such

as tensor format [23] or cache replacement policy [55]) simply

by changing that part of the specification, leaving all else equal.

New features can likewise be added by augmenting the relevant

abstraction category, again leaving other categories unmodified.

4.2 Specifying OuterSPACE [34]

We continue to use OuterSPACE as a running example to motivate

the features provided by TeAAL. Figure 5 shows a simplified ver-

sion of OuterSPACE’s custom tensor format, its architecture during

the merge phase, and the correspondence between the fibertree

representation of 𝑇 and its concrete representation and binding.

In Figure 5a, we see the fibertree for a concrete example tensor 𝑇 .

The format specification (Figure 5b) for this tensor lowers it onto

OuterSPACE’s custom array-of-linked-lists format (Figure 5c). To

differentiate it from other representations of the same tensor, we

give it the configuration name 𝐿𝑖𝑛𝑘𝑒𝑑𝐿𝑖𝑠𝑡𝑠 . On the 𝑀 rank, the

array of pointers is given by an uncompressed (𝑈) array of pay-

loads. On the 𝑁 rank, the fiber header data width (𝑓 ℎ𝑏𝑖𝑡𝑠) describes

the linked list pointers, the 𝑙𝑎𝑦𝑜𝑢𝑡 describes that corresponding

coordinates and payloads are adjacent (array-of-structs), and the

𝑐𝑏𝑖𝑡𝑠 and 𝑝𝑏𝑖𝑡𝑠 describe the data widths of the coordinates and pay-

loads, respectively. Figure 5d shows an OuterSPACE PE. During the

merge phase, this level has three components: the ALU, the register

file, and the L0 scratchpad. OuterSPACE loads the entire subtree

under a given𝑀 coordinate into the L0 scratchpad to perform its

sort. TeAAL expresses this binding with the specification given in

Figure 5e. The 𝑡𝑒𝑛𝑠𝑜𝑟 , 𝑐𝑜𝑛𝑓 𝑖𝑔, 𝑟𝑎𝑛𝑘 , and 𝑡𝑦𝑝𝑒 denote exactly what

data is buffered, and the 𝑒𝑣𝑖𝑐𝑡 − 𝑜𝑛 keyword is required for binding

to explicitly managed buffers, whose fill and drain policy must be

set by the user. Because the elements bound to this buffer evict

on𝑀 , old data is drained when the𝑀 coordinate changes. Finally,

Figure 5f shows an overview of the entire accelerator topology.

4.3 Simulator Generation

Figure 6 demonstrates how TeAAL puts everything together. For

each Einsum in the cascade, TeAAL combines the Einsum equa-

tion with its mapping information to produce an executable loop

nest. To do so, it identifies the necessary per-tensor fibertree ma-

nipulations (e.g., rank swizzling) and per-rank fiber co-iterators

(e.g., intersection). TeAAL then uses this information to build a

dataflow graph of a loop nest, which it then lowers to an embedded

DSL within Python for executing computations as fibertree opera-

tions [1]. The resulting code is an imperative-style representation

of the Einsum cascade (i.e., a series of loop nests, one per Einsum),

which can directly evaluate real tensors represented as fibertrees.

TeAAL then breaks the modeling of an accelerator into three stages:

generate traces describing when each coordinate and each payload

is accessed, calculate the action counts for each component from

the traces, and combine the action counts from all components to

produce summary statistics like execution time and energy.

Trace generation. TeAAL combines information from the for-

mat, architecture, and binding to identify which traces need to be

collected in preparation for performance modeling. It then instru-

ments the mapped loop nests to collect the desired traces. When

executed, the mapped loop nests perform the computation on fib-

ertrees (storing real tensor data) and generate a trace of when each

coordinate and each payload is accessed. Therefore, unlike an an-

alytical model, TeAAL is able to fully capture the impact of each

real tensor’s specific sparsity patterns on the kernel’s performance,

significantly improving TeAAL’s fidelity over that of analytical

models. We quantitatively explore this phenomenon in Section 7

and Figure 10a.

Trace consumption. TeAAL provides a library of per-

component action count models (see Table 3 for a full list). It inserts

calls to these component models after the loop nest, passing infor-

mation about their specific attributes (e.g., buffer width and depth)

and a list of traces to be read. During the evaluation of the model,

each component uses the traces generated to produce the action

counts it performed.

Action count consumption. TeAAL uses Accelergy [51] to

translate action counts to energy use and a custom analytical mod-

eling/bottleneck analysis to translate the action counts to execution

time. To compute execution time, TeAAL must first determine the

Einsum blocks, or sets of Einsums that are fused together. Fusion

occurs when Einsums communicate by sharing sub-tensors with

each other (instead of entire tensors). The full cascade of Einsums,

1263

MICRO ’23, October 28śNovember 01, 2023, Toronto, ON, Canada Nayak et al.

1 einsum:

2 declaration:

3 A: [K, M]

4 B: [K, N]

5 T: [K, M, N]

6 Z: [M, N]

7 expressions:

8 − T[k,m,n] = take(A[k,m], B[k,n], 1)

9 − Z[m,n] = T[k,m,n] ∗ A[k,m]

10 mapping:

11 rank−order:

12 A: [M, K]

13 B: [K, N]

14 T: [M, K, N]

15 Z: [M, N]

16 partitioning:

17 T:

18 M: [uniform_occupancy(A.32)]

19 K: [uniform_occupancy(A.64)]

20 Z:

21 M: [uniform_occupancy(A.32)]

22 K: [uniform_occupancy(A.64)]

23 loop−order:

24 T: [M1, M0, K1, K0, N]

25 Z: [M1, M0, K1, N, K0]

26 spacetime:

27 T:

28 space: [M0, K1]

29 time: [M1, K0, N]

30 Z:

31 space: [M0, K1]

32 time: [M1, N, K0]

(a) Gamma accelerator [55].

1 einsum:

2 declaration:

3 A: [K, M]

4 B: [K, N]

5 Z: [M, N]

6 expressions:

7 − Z[m,n] = A[k,m] ∗ B[k,n]

8 mapping:

9 rank−order:

10 A: [K, M]

11 B: [K, N]

12 Z: [M, N]

13 partitioning:

14 Z:

15 K:

16 − uniform_shape(K1)

17 − uniform_shape(K0)

18 M:

19 − uniform_shape(M1)

20 − uniform_shape(M0)

21 N:

22 − uniform_shape(N1)

23 − uniform_shape(N0)

24 loop−order:

25 Z: [N2, K2, M2, M1, N1, K1, M0, N0, K0]

26 spacetime:

27 Z:

28 space: [K1]

29 time: [N2, K2, M2, M1, N1, M0, N0, K0]

(b) ExTensor accelerator [16].

1 einsum:

2 declaration:

3 A: [K, M]

4 B: [K, N]

5 S: [K, M]

6 T: [K, M]

7 Z: [M, N]

8 expressions:

9 − S[k, m] = take(A[k, m], B[k, n], 0)

10 − T[k, m] = take(A[k, m], S[k, m], 0)

11 − Z[m, n] = T[k, m] ∗ B[k, n]

12 mapping:

13 rank−order:

14 A: [K, M]

15 B: [K, N]

16 S: [K, M]

17 T: [K, M]

18 Z: [M, N]

19 partitioning:

20 Z:

21 K: [uniform_shape(128)]

22 (M, K0): [flatten()]

23 MK0: [uniform_occupancy(T.16384)]

24 loop−order:

25 S: [K, M, N]

26 T: [K, M]

27 Z: [K1, MK01, MK00, N]

28 spacetime:

29 S:

30 space: []

31 time: [K, M, N]

32 T:

33 space: []

34 time: [K, M]

35 Z:

36 space: [MK00]

37 time: [K1, MK01, N.coord]

(c) SIGMA accelerator [38].

Figure 8: State-of-the-art sparse tensor accelerators. uniform_shape()/flatten() are syntax for shape-based partitioning/flattening (Section 3.2.1).

mappings, architectures, and bindings are used to determine the

Einsum blocks. Specifically, TeAAL infers that Einsums can be fused

together when three conditions are met:4

• The Einsums use the same accelerator configuration.

• The temporal ranks in all loop orders before the first spatial

rank are the same.

• Disjoint subsets of the non-storage components are each

exclusively used by only one Einsum.

As a simple heuristic, TeAAL starts at the first Einsum and greedily

fuses the successive Einsums together into a single block, until it

cannot do so any more. At which point, it starts a new block. TeAAL

sums together the action counts for each component performed by

each block and then computes per-block, per-component execution

times. It then applies a bottleneck analysis: the execution time of

4These conditions for inferring fusion are not fundamental and can be changed if
needed.

the block is the execution time of the longest component, and the

execution time of the cascade is the sum of the execution times of

all of the blocks.

5 ACCELERATOR SPECIFICATION

Sections 3-4 used OuterSPACE [34] as a running example. We now

describe the Einsums and mapping specifications for three other,

state-of-the-art accelerators relevant to our evaluation, shown in

Figure 8.We havemodeled other accelerators that we omit for space,

including Graphicionado [14] and GraphDynS [53] (Section 8), Ey-

eriss [8], Tensaurus [43], Flexagon [30], and DSTC [47]. We also

omit the format, architecture, and binding specifications for brevity.

Gamma [55].Gamma (Figure 8a) is a row-wise-style accelerator

that uses a tightly-pipelined multiply-merge-style architecture to

reduce partial output traffic and enable concordant traversal across

both input and output tensors. In Gamma’s dataflow, a row of 𝐴 is

combined and reduced with rows of 𝐵. Gamma distributes rows of𝐴

1264

TeAAL: A Declarative Framework for Modeling Sparse Tensor Accelerators MICRO ’23, October 28śNovember 01, 2023, Toronto, ON, Canada

Table 4: Tensor data set characteristics. The top 5 tensors are used

in our validation study (Section 7); the bottom 3 in our new design

study (Section 8).

Matrix Shape NNZ Domain

wiki-Vote (wi) 8.3𝐾 × 8.3𝐾 104K elections
p2p-Gnutella31 (p2) 63𝐾 × 63𝐾 148K file-sharing
ca-CondMat (ca) 23𝐾 × 23𝐾 187K collab. net.
poisson3Da (po) 14𝐾 × 23𝐾 353K fluid dynamics
email-Enron (em) 37𝐾 × 37𝐾 368K email comms.

flickr (fl) 0.82𝑀 × 0.82𝑀 9.8M site crawl graph
wikipedia-20070206 (wk) 3.6𝑀 × 3.6𝑀 42M site link graph
soc-LiveJournal1 (lj) 4.8𝑀 × 4.8𝑀 69M follower graph

Table 5: Hardware configs, chosen to match original publications.

ExTensor [16] 1 GHz clock speed, 128 PEs, 64 kB PE buffer per PE, 30
MB LLC, 68.256 GB/s memory bandwidth

Gamma [55] 1 GHz clock speed, 64-way merger per PE, 32 PEs, 3 MB
FiberCache, 16 64-bit HBM channels, 8 GB/s/channel

OuterSPACE [34] 1.5 GHz clock speed, 16 PEs per PT, 16 PTs, 16 kB L0
cache per PT, 4 kB L1 cache per 4 PTs, 16 64-bit HBM
channels, 8000 MB/s/channel

SIGMA [38] 500 MHz clock speed, 128 PEs per FlexDPE, 128 FlexDPEs,
32 MB Data SRAM, 4 MB Bitmap SRAM, 960 GB/s SRAM
bandwidth, 1024 GB/s HBM bandwidth

Graphicionado [14] 1 GHz clock speed, 8 streams, 64MB eDRAM, 68 GB/s
memory bandwidth

to each PE and, based on which values in each row are non-zero, the

PE fetches a subset of the rows of 𝐵. This filtering is implemented

using the take(.) operator (Section 3.1). After being fetched to each

PE, the rows of 𝐵 (which initially have rank order [𝐾, 𝑁]) are sorted

with hardware mergers to facilitate reduction over 𝐾 . Similar to

OuterSPACE, this is expressed as a rank swizzle: 𝑇 has rank order

[𝑀,𝐾, 𝑁] and the rightmost (bottommost) rank in the loop order

for the Einsum computing 𝑍 is 𝐾 . Hence, TeAAL inserts a rank

swizzle on 𝑇 , making its rank order [𝑀, 𝑁,𝐾] in the context of

the second Einsum. Unlike OuterSPACE, the two Einsums in the

cascade are fused together, per the criteria described in Section 4.3.

ExTensor [16]. ExTensor (Figure 8b) employs a hybrid dataflow

that is inner product-style at the innermost level. ExTensor’s two

salient characteristics are the use of uniform shape-based partition-

ing (Section 2.3) and hierarchical intersection. Lines 14-23 describe

this partitioning, while hierarchical intersection is accounted for

implicitly due to fibertree semantics (Section 2.4). Note that our

ExTensor specification includes details beyond the original paper

from private correspondence with the authors about the actual

design of the simulator used for evaluation.

SIGMA [38]. SIGMA (Figure 8c) is a deep-learning accelera-

tor that uses occupancy-based partitioning to only distribute non-

zero elements of the stationary matrix to PEs, reducing ineffectual

compute. While SIGMA can be configured to support 𝐴 and 𝐵-

stationary dataflows, we only describe/evaluate the 𝐴-stationary

dataflow here. SIGMA utilizes an Einsum cascade (Section 3.1), first

identifying empty 𝐾-fibers (rows) of 𝐵 (Line 9), removing them

from 𝐴 (Line 10), and then performing the multiplication (Line 11).

We express the partitioning on Lines 21-23 using a combination of

shape-based partitioning, flattening, and occupancy-based parti-

tioning (Section 3.2.1). Finally, because all PEs work in parallel, the

spatial dimension is𝑀𝐾00 (Line 36).

6 EXPERIMENTAL SETUP

This section describes the details of the experimental set-up used in

Sections 7-8 to evaluate the performance characteristics of concrete

accelerators.

Tensors. To evaluate the TeAAL models, we execute the mod-

els for the accelerators on a combination of randomly generated

matrices with uniform sparsity and a set of matrices from SuiteS-

parse [11] and SNAP [26], described in Table 4.

Simulation Framework. We implement the accelerators by

writing TeAAL specifications for their Einsums, mappings, formats,

architectures, and bindings. For each accelerator, we use the hard-

ware parameters given in Table 5. TeAAL uses Accelergy [51] as

a power model to convert the per-component action counts to an

energy characterization.

Baselines. To validate our results, we normalize our perfor-

mance estimates using the same baseline as the original papers

that published the relevant accelerators. All accelerators’ łreportedž

statistics come either from published results or from private com-

munication with the original authors. When possible, we also report

Sparseloop [52] performance estimates using the hypergeometric

sparsity distribution on both the inputs and outputs, estimated

using the values in Table 4, and the hardware parameters in Table 5.

7 SIMULATOR VALIDATION

In this section, we describe a set of experiments used to validate

TeAAL as an accurate cost model. Specifically, we compare mem-

ory traffic, performance, and power as reported by TeAAL to the

numbers reported in the papers originally proposing each accel-

erator. We report all averages as arithmetic means, following the

methodology presented in [21].

Memory Traffic. Figure 9 presents a comparison of the memory

traffic of the TeAAL models of each of the accelerators to the corre-

sponding baseline. We use the first five tensors in Table 4 because

the prior work evaluates these tensors. The takeaway is that we

can reproduce each accelerator’s memory traffic with low error

(on average, 3.8%). The single outlier, ExTensor on p2, is caused by

slightly different policies for eager loading between ExTensor and

TeAAL (Section 4.1.3). This policy difference is not fundamental,

and can be remedied with additional effort. We were unable to

validate TeAAL’s memory traffic model of SIGMA because there

were no baseline numbers available.

Performance. Figure 10 presents a performance compari-

son of each TeAAL model against the reported numbers and

Sparseloop [52]’s estimate, when possible. We evaluate on the same

five tensors as were used in the memory-traffic study or uniformly

random sparse tensors.

Figures 10a and 10b show the speedup of ExTensor and Gamma,

respectively, over Intel MKL. TeAAL shows consistently low error

rates for each (on average, 10% and 6.4%, respectively). We perform

an analogous evaluation for SIGMA in Figure 10d, relative to a

Google Cloud TPU and using synthetic matrices with uniform-

random sparsity (where all matrices 𝐴 and 𝐵 had 80% and 10%

sparsity, respectively). Here, we show an average error of only

2.5%.

1265

TeAAL: A Declarative Framework for Modeling Sparse Tensor Accelerators MICRO ’23, October 28śNovember 01, 2023, Toronto, ON, Canada

1 # Processing Phase

2 − SO[d, s] = take(G[d, s], A0[s], 0)

3 − R[d] = SO[d, s] ∗ A0[s]

4

5 # Apply Phase

6 − P1[v] = R[v] + P0[v]

7 −M[v] = P1[v] − P0[v]

8 − A1[v] = take(M[v], P1[v], 1)

(a) Graphicionado [14]

1 # Processing Phase

2 − SO[d, s] = take(G[d, s], A0[s], 0)

3 − R[d] = SO[d, s] ∗ A0[s]

4

5 # Apply Phase

6 − MP[v] = take(R[v], P0[v], 1)

7 − NP[v] = R[v] + MP[v]

8 −M[v] = NP[v] −MP[v]

9 − P0[v] = take(M[v], NP[v], 1)

10 − A1[v] = take(M[v], NP[v], 1)

11 − P1 = P0

(b) GraphDynS [53]

Figure 12: Einsum cascades for two vertex-centric programming

accelerators. A specific algorithm manifests by redefining the × and

+ operators (e.g., for SSSP, to addition and minimum, respectively).

property [44]. In this evaluation, we will focus on algorithms where

a subset of the vertices are active each iteration.

Figure 12a shows a cascade of Einsums representing Graphi-

cionado [14]. We omit the rest of the TeAAL specification for space.

Graphicionado divides its evaluation into two stages. During the

processing phase, the active vertices𝐴0 are used to select the edges

that need to be processed 𝑆𝑂 (Line 2), the weights of those edges are

combined with the source vertex properties (Line 3), and reduced

into 𝑅 (implicit in Line 3). Then, during the apply phase, the vertex

property 𝑃0/𝑃1 is updated (Line 6) and the new set of active vertices

𝐴1 is created using a mask 𝑀 of updated vertices (Lines 7-8). By

redefining the multiplication and addition operators (e.g., for single

source shortest path (SSSP), to addition and minimum, respectively),

this represents a functionally correct implementation of a graph

kernel written in the vertex-centric programming model. Through

private correspondence with the Graphicionado authors, we found

that all data, simulators, etc. used in this paper are proprietary, mak-

ing it impossible for us to perform a similar analysis to Section 7.

However, using TeAAL, we were able to profile Graphicionado

ourselves and compare it with other designs.

GraphDynS [53] optimizes Graphicionado by adding new Ein-

sums to the cascade to take advantage of the sparsity of𝑅. Figure 12b

shows the updated cascade. Building an additional intermediate

𝑀𝑃 (Line 6), containing the values of 𝑃0 that can be modified, de-

creases the memory traffic incurred by 𝑃0 and the number of apply

operations the accelerator needs to perform. Filtering the writes to

𝑃0 with𝑀 (Line 9) also decreases the memory traffic. GraphDynS

implements this optimization by keeping a 256-element bitmap,

where each bit corresponds to 1/256th of the vertices. In TeAAL,

this manifests as an additional uniform_shape partitioning. If the

bit is 1, the accelerator eagerly loads the entire partition of vertex

properties. GraphDynS further improves upon Graphicionado by

changing the format of the graph from an edge-list representation

to CSR. This format change eliminates unnecessary reloading of

the source vertex ID and removes the loading of the edge weight

for algorithms that do not use it (e.g., BFS).

We optimize this design by removing the partitioning, allowing

us to only load the property and perform the apply on vertices that

Table 6: Sparse tensor modeling frameworks.

STONNE
[30, 31]

Sparseloop
[52]

SAM
[18]

CIN-P
[2]

TeAAL
(this work)

Models Hardware ✓ ✓ ✓ ✓

Generic Kernels ✓ ✓ ✓ ✓

Cascaded Einsums ✓ ✓ ✓

Index Expressions ✓ ✓

Shape-Based Part. ✓ ✓ ✓

Occ.-Based Part. ✓ ✓

Generic Flattening ✓ ✓

Rank Swizzling ✓ ✓

Format Expressivity ✓ ✓ ✓ ✓

Caches ✓ ✓

Precise Data Set ✓ ✓ ✓

High Model Fidelity ✓ ✓

are actually modified during the processing phase. Our proposed

accelerator also implements the format optimization.

We evaluate Graphicionado, GraphDynS, and our proposal on

a subset of the graphs and all sparse active vertex set algorithms

evaluated in the original Graphiciondo paper. To enable an apples-

to-apples comparison, we use the hardware parameters chosen for

Graphicionado (see Table 5). Figure 13 shows the speedup achieved

by each of the designs over Graphicionado. Figure 13a shows that

our proposal enables an average of 1.9× improvement over Graph-

DynS on BFS, while Figure 13b shows that our proposal enables an

average of 1.2× improvement over GraphDynS on SSSP. Figure 13c

explains this improvement. While GraphDynS’s bitmap approach

reduces the number of apply operations required when the set

of active vertices is small, our proposal is also able to skip apply

operations when the set of active vertices is large.

This study shows that TeAAL can express designs in domains

beyond sparse tensor algebra. Furthermore, it also demonstrates

TeAAL’s value as a tool for qualitatively and quantitatively compar-

ing designs, improving the iterative design refinement process. No-

tably, our proposed optimization only required meaningful changes

to the mapping specification. By decomposing the design of an

accelerator into a hierarchy of specifications, TeAAL enables us to

efficiently express existing designs and propose new optimizations.

9 RELATED WORK

The rise in machine learning and tensor algebra accelerators has

been followed by an increase in tools that explore the accelerator

design space and model various efficiency characteristics [2, 19,

25, 29, 31, 35, 40, 52, 54]. Most frameworks solely support dense

computations and target DNN applications [19, 25, 29, 35].

Table 6 compares frameworks that model architectures com-

puting on sparse tensors. STONNE [31] is a cycle-level modeling

framework for DNN accelerators. Like TeAAL, STONNE’s analysis

is data-driven; however, the only sparse workload it supports is

SpMSpM.

Two other worksÐSparseloop [52] and the Sparse Abstract Ma-

chine (SAM) [18]Ðmodel sparse workloads expressed in the Einsum

language, but with lower fidelity than TeAAL. Sparseloop [52] has a

flexible hardware backend and takes as input a specification of the

architecture, a statistical model of the data, sparse optimizations

such as intersection [16], and a user-specified mapping. It returns

estimates of performance and energy consumption. Unlike TeAAL,

1267

TeAAL: A Declarative Framework for Modeling Sparse Tensor Accelerators MICRO ’23, October 28śNovember 01, 2023, Toronto, ON, Canada

SIGMA, and Graphicionado: Tae Jun Ham, Kartik Hegde, Tushar Kr-

ishna, Francisco Muñoz-Martinez, Eric Qin, Daniel Sanchez, Hanrui

Wang, Lisa WuWills, Guowei Zhang, and Zhekai Zhang. We would

also like to thank Yannan (Nellie) Wu for help with Sparseloop, and

Timor Averbuch, Alex Dicheva, John D. Owens, Yasmin Sarita, and

Xinrui (Alice) Wu for many helpful discussions. Finally, we thank

Willow Ahrens and Jaeyeon Won for feedback on early versions of

the manuscript.

REFERENCES
[1] 2023. Fibertree Project. https://github.com/Fibertree-Project/fibertree.
[2] Peter Ahrens, Fredrik Kjolstad, and Saman P. Amarasinghe. 2022. Autoscheduling

for sparse tensor algebra with an asymptotic cost model. In PLDI’22.
[3] Hasan Metin Aktulga, Aydin Buluç, Samuel Williams, and Chao Yang. 2014. Op-

timizing sparse matrix-multiple vectors multiplication for nuclear configuration
interaction calculations. In IPDPS’14.

[4] Jorge Albericio, Patrick Judd, Tayler H. Hetherington, Tor M. Aamodt, Natalie
D. Enright Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-Neuron-
Free Deep Neural Network Computing. In ISCA’16.

[5] Ariful Azad, Aydın Buluc, and John Gilbert. 2015. Parallel Triangle Counting and
Enumeration Using Matrix Algebra. In IPDPSW’15.

[6] Manya Bansal, Olivia Hsu, Kunle Olukotun, and Fredrik Kjolstad. 2023. Mosaic:
An Interoperable Compiler for Tensor Algebra. In PLDI’23.

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q. Yan, Leyuan
Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018.
TVM: End-to-End Optimization Stack for Deep Learning. In OSDI’18.

[8] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architecture
for Energy-efficient Dataflow for Convolutional Neural Networks. In ISCA’16.

[9] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format Abstrac-
tion for Sparse Tensor Algebra Compilers. In OOPSLA’18.

[10] James W. Cooley and John W. Tukey. 1965. An Algorithm for the Machine
Calculation of Complex Fourier Series. Math. Comp. (1965).

[11] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. (2011).

[12] Stijn Dongen. 2000. Graph Clustering by Flow Simulation. PhD thesis, Center for
Math and Computer Science (CWI) (2000).

[13] A. Einstein. 1916. The Foundation of the General Theory of Relativity. Annalen
der Physik (1916).

[14] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. 2016. Graphicionado: A high-performance and energy-efficient accel-
erator for graph analytics. In MICRO’16.

[15] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: efficient inference engine on compressed deep
neural network. In ISCA’16.

[16] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W. Fletcher. 2019. ExTensor:
An Accelerator for Sparse Tensor Algebra. In MICRO’19.

[17] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman Parashar,
and Christopher W. Fletcher. 2021. Mind Mappings: Enabling Efficient Algorithm-
Accelerator Mapping Space Search. In ASPLOS’21.

[18] Olivia Hsu, Maxwell Strange, Ritvik Sharma, Jaeyeon Won, Kunle Olukotun,
Joel S. Emer, Mark A. Horowitz, and Fredrik Kjùlstad. 2023. The Sparse Abstract
Machine. In ASPLOS’23.

[19] Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind Kalaiah, James
Demmel, John Wawrzynek, and Yakun Sophia Shao. 2021. CoSA: Scheduling by
Constrained Optimization for Spatial Accelerators. In ISCA’21.

[20] Jürg Hutter, Marcella Iannuzzi, Florian Schiffmann, and Joost VandeVondele. 2014.
CP2K: Atomistic simulations of condensed matter systems. WIREs Computational
Molecular Science (2014).

[21] Bruce Jacob and Trevor N. Mudge. 1995. Notes on Calculating Computer Perfor-
mance.

[22] Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe. 2019.
Tensor Algebra Compilation with Workspaces. In CGO’19.

[23] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Ama-
rasinghe. 2017. The Tensor Algebra Compiler. In OOPSLA’17.

[24] B. Kumar and E. S. Davidson. 1980. Computer SystemDesign Using a Hierarchical
Approach to Performance Evaluation. CACM’80 (1980).

[25] Hyoukjun Kwon, Michael Pellauer, and Tushar Krishna. 2019. Understanding
Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-Centric
Approach Using MAESTRO. In MICRO’19.

[26] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[27] Mostafa Mahmoud, Isak Edo, Ali Hadi Zadeh, Omar Mohamed Awad, Gennady
Pekhimenko, Jorge Albericio, and Andreas Moshovos. 2020. TensorDash: Exploit-
ing Sparsity to Accelerate Deep Neural Network Training. In MICRO’20.

[28] Tim Mattson, David Bader, Jon Berry, Aydin Buluc, Jack Dongarra, Christos
Faloutsos, John Feo, John Gilbert, Joseph Gonzalez, Bruce Hendrickson, Jeremy
Kepner, Charles Leiserson, Andrew Lumsdaine, David Padua, Stephen Poole,
Steve Reinhardt, Mike Stonebraker, Steve Wallach, and Andrew Yoo. 2013. Stan-
dards for graph algorithm primitives. In HPEC’13.

[29] Linyan Mei, Pouya Houshmand, Vikram Jain, Sebastian Giraldo, and Marian
Verhelst. 2020. ZigZag: A Memory-Centric Rapid DNN Accelerator Design Space
Exploration Framework. In Arxiv’20.

[30] Francisco Muñoz-Martínez, Raveesh Garg, Michael Pellauer, José L. Abellán,
Manuel E. Acacio, and Tushar Krishna. 2023. Flexagon: A Multi-dataflow Sparse-
Sparse Matrix Multiplication Accelerator for Efficient DNN Processing. In ASP-
LOS’23.

[31] Francisco Muñoz-Martínez, José L. Abellán, Manuel E. Acacio, and Tushar Kr-
ishna. 2021. STONNE: Enabling Cycle-Level Microarchitectural Simulation for
DNN Inference Accelerators. In IISWC’21.

[32] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. 2019. Perfor-
mance optimization, modeling and analysis of sparse matrix-matrix products on
multi-core and many-core processors. Parallel Comput. (2019).

[33] Toluwanimi O. Odemuyiwa, Hadi Asghari-Moghaddam, Michael Pellauer, Kartik
Hegde, Po-An Tsai, Neal Crago, Aamer Jaleel, John D. Owens, Edgar Solomonik,
Joel Emer, and Christopher Fletcher. 2023. Accelerating Sparse Data Orchestration
via Dynamic Reflexive Tiling. In ASPLOS’23.

[34] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siying
Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge, and
Ronald Dreslinski. 2018. OuterSPACE: An Outer Product Based Sparse Matrix
Multiplication Accelerator. In HPCA’18.

[35] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to
DNN Accelerator Evaluation. In ISPASS’19.

[36] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and
William J Dally. 2017. SCNN: An accelerator for compressed-sparse convolutional
neural networks. In ISCA’17.

[37] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde,
Rangharajan Venkatesan, Stephen Keckler, Christopher W. Fletcher, and Joel
Emer. 2019. Buffets: An Efficient and Composable Storage Idiom for Explicit
Decoupled Data Orchestration. In ASPLOS’19.

[38] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse
and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.
In HPCA’20.

[39] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler
for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. In PLDI’13.

[40] Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson, Stephen
Chou, Shoaib Kamil, Saman Amarasinghe, and Fredrik Kjolstad. 2020. A Sparse
Iteration Space Transformation Framework for Sparse Tensor Algebra. In OOP-
SLA’20.

[41] Edgar Solomonik, Maciej Besta, Flavio Vella, and Torsten Hoefler. 2017. Scaling be-
tweenness centrality using communication-efficient sparse matrix multiplication.
In SC’17.

[42] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.
MatRaptor: A Sparse-Sparse Matrix Multiplication Accelerator Based on Row-
Wise Product. In MICRO’20.

[43] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi, and
Zhiru Zhang. 2020. Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense
Tensor Computations. In HPCA’20.

[44] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R.
Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar Das, and
Pradeep Dubey. 2015. GraphMat: High Performance Graph Analytics Made
Productive. In VLDB’15.

[45] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2020. Efficient
Processing of Deep Neural Networks. Springer.

[46] Joost VandeVondele, Urban Borštnik, and Jürg Hutter. 2012. Linear Scaling Self-
Consistent Field Calculations with Millions of Atoms in the Condensed Phase.
Journal of Chemical Theory and Computation (2012).

[47] Yang Wang, Chen Zhang, Zhiqiang Xie, Cong Guo, Yunxin Liu, and Jingwen
Leng. 2021. Dual-side Sparse Tensor Core. In ISCA’21.

[48] Sasindu Wijeratne, Rajgopal Kannan, and Viktor Prasanna. 2021. Reconfigurable
Low-latency Memory System for Sparse Matricized Tensor Times Khatri-Rao
Product on FPGA. In HPEC’21.

[49] Jan Wilhelm, Patrick Seewald, Mauro Del Ben, and Jürg Hutter. 2016. Large-Scale
Cubic-Scaling Random Phase Approximation Correlation Energy Calculations

1269

MICRO ’23, October 28śNovember 01, 2023, Toronto, ON, Canada Nayak et al.

Using a Gaussian Basis. Journal of Chemical Theory and Computation (2016).
[50] Jaeyeon Won, Changwan Hong, Charith Mendis, Joel Emer, and Saman Ama-

rasinghe. 2023. Unified Convolution Framework: A compiler-based approach to
support sparse convolutions. In MLSys’23.

[51] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. 2019. Accelergy: An
Architecture-Level Energy Estimation Methodology for Accelerator Designs.
In ICCAD’19.

[52] Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and Joel S.
Emer. 2022. Sparseloop: An Analytical Approach To Sparse Tensor Accelerator
Modeling. In MICRO’22.

[53] Mingyu Yan, Xing Hu, Shuangchen Li, Abanti Basak, Han Li, Xin Ma, Itir Akgun,
Yujing Feng, Peng Gu, Lei Deng, Xiaochun Ye, Zhimin Zhang, Dongrui Fan,
and Yuan Xie. 2019. Alleviating irregularity in graph analytics acceleration: A
hardware/software co-design approach. In MICRO’19.

[54] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven
Bell, Kaidi Cao, Heonjae Ha, Priyanka Raina, Christos Kozyrakis, and Mark
Horowitz. 2020. Interstellar: Using Halide’s Scheduling Language to Analyze
DNN Accelerators. In ASPLOS’20.

[55] Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez. 2021. Gamma:
Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication.
In ASPLOS’21.

[56] Zhekai Zhang, Hanrui Wang, Song Han, and William J. Dally. 2020. SpArch:
Efficient Architecture for Sparse Matrix Multiplication. In HPCA’20.

A ARTIFACT APPENDIX

A.1 Abstract

In this artifact, we provide the source code for TeAAL, a simu-

lator generator for sparse tensor algebra accelerators, as well as

the scripts required to display the results of the simulation. For

ease-of-use, we provide a Docker container and a set of Jupyter

notebooks through which to run the experiments. This artifact can

be evaluated on an x86-84 machine with 256 GB of memory and 75

GB of disk space.

A.2 Artifact check-list (meta-information)
• Algorithm: Automatic generation of sparse tensor algebra acceler-

ator simulators

• Program: Python, Sparseloop

• Run-time environment: Docker, Jupyter

• Hardware: An x86-64 machine with 256 GB of memory and 125

GB of disk space

• Output: Plots generated from scripts

• Experiments: Automatic generation of sparse tensor algebra ac-

celerator simulators and execution of those simulators on specific

benchmark data

• How much disk space required (approximately)?: 125 GB

• How much time is needed to prepare workflow (approxi-

mately)?: < 30 minutes

• How much time is needed to complete experiments (approxi-

mately)?: 70 hours

• Publicly available?: Yes

• Code licenses (if publicly available)?:MIT

A.3 Description - How to Access

Manually: The artifact is hosted on Github at https://github.com/

FPSG-UIUC/micro23-teaal-artifact. Following the instructions in

this repository will allow you to run specific experiments and nicely

display the graphs.

Via the MLCommons CM Interface: It is also accessible through

the MLCommons CM interface at https://github.com/ctuning/cm-

reproduce-research-projects/tree/main/script/reproduce-ieee-

acm-micro2023-paper-8. This method provides less control over

what experiments are executed.

A.4 Installation

Manually: Since we provide a Docker container with all de-

pendencies pre-installed, the artifact relies on Docker and ac-

cess to a web browser. Specific installation instructions can be

found at https://github.com/FPSG-UIUC/micro23-teaal-artifact/

blob/main/README.md.

Via the MLCommons CM Interface: The instructions for

installation can be found at https://github.com/ctuning/cm-

reproduce-research-projects/blob/main/script/reproduce-ieee-

acm-micro2023-paper-8/README.md.

A.5 Evaluation

Manually: We provide two notebooks to guide you

through the evaluation: notebooks/figs9and10.ipynb and

notebooks/fig11.ipynb. Please launch the docker container,

open the Jupyter Lab in a web browser, and navigate to this

notebook. Each cell either runs a simulation or displays a graph.

The output of each display cell corresponds to a figure in the paper.

Via the MLCommons CM Interface: The instructions for

evaluation can be found at https://github.com/ctuning/cm-

reproduce-research-projects/blob/main/script/reproduce-ieee-

acm-micro2023-paper-8/README.md

A.6 Expected Results

This artifact reproduces Figures 9a-11. The easiest way to check

validity is to visually compare the figures, but raw results will

be written to data/generated/ and can be compared with the

expected results found in data/pregenerated/. We note that

certain experiments use randomly generated sparse tensors whose

performance characteristics will exhibit some variety. Such datasets

are noted in the notebook, and simulations can be rerun to obtain

new seeds.

A.7 Experiment Customization

Input specifications in yamls/teaal/ can be updated to work on

new kernels, execute new mappings, represent tensors with new

formats, and evaluate new architectures.

A.8 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-

and-badging-current

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

1270

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Tensors and Fibertrees
	2.2 Tensor Algebra with Extended Einsums
	2.3 Mapping Hardware Accelerators
	2.4 Accelerating Sparse Tensor Algebra

	3 Overview and Insights
	3.1 Insight 1: Einsum cascades capture multi-phase accelerators
	3.2 Insight 2: Content-preserving transformations on fibertrees capture accelerator data-orchestration strategies

	4 Generating the Model
	4.1 Lowering Mapped Einsums to Hardware
	4.2 Specifying OuterSPACE outerspace
	4.3 Simulator Generation

	5 Accelerator Specification
	6 Experimental Setup
	7 Simulator Validation
	8 Improving Graphicionado
	9 Related Work
	10 Conclusion and Future Work
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description - How to Access
	A.4 Installation
	A.5 Evaluation
	A.6 Expected Results
	A.7 Experiment Customization
	A.8 Methodology

