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Abstract

Turing bifurcation and Hopf bifurcation are two important kinds of transitions giving birth to inhomo-

geneous solutions, in spatial or temporal ways. On a disk, these two bifurcations may lead to equivariant

Turing-Hopf bifurcations, whose normal forms are given in three different cases in this paper. In addition,

we analyzed the possible solutions for each normal form, which can guide us to find solutions with physical

significance in real-world systems, and the breathing, standing wave-like, and rotating wave-like patterns

are found in a delayed mussel-algae model.
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I. INTRODUCTION

Complex spatiotemporal patterns that appear on approximate circular domains are abundant

and absorbing, such as the distribution of microbial bioherms in irregular natural or artificial lakes

[1, 2], spiral waves generated by the interaction of activator and inhibitor in Petri dishes [3, 4], and

rotating waves in an optical system consisting of a thin Kerr nonlinear layer and a feedback loop

[5, 6], and so on. To comprehend and manage these dynamic phenomena effectively, modeling

with reaction-diffusion equations and analysis through Turing-Hopf bifurcations are proved to be

essential tools. Such approaches offer valuable insights into the future management of some fragile

ecosystems [7, 8], the formation mechanisms of spiral waves in fibrous ventricular fibrillation

and tachycardia [9, 10], and enable pattern selection and control, thereby expanding the scope of

optical information processing [11, 12]. Mathematically, in the case of planar waves, the solution

to the reaction-diffusion equation is given by u j(~x, t) = u j0ei~q·~x+σt [13], where~q is the wave vector

and σ is the eigenvalue with the largest real part. For a point where both Turing instability [14]

and Hopf bifurcation [15–17] occur, or Turing-Hopf bifurcation point we say, ~q is nonzero and

σ is also an imaginary value iω . Thus, there exists the interaction of two Fourier modes, which

is accompanied by quite complicated dynamics [18–21]. The wave solutions on circular domains

mentioned above are also important, and we will study them in this paper.

Turing-Hopf bifurcation has been studied both numerically and analytically in the literature

[22–28]. In recent years, scholars have begun to use normal forms to analyze Turing-Hopf bifur-

cation. In particular, Song et al. [29] and Jiang et al. [30] extended the results in Ref. [31] and

derived the normal form of the Turing-Hopf bifurcation of partial differential equations (PDEs)

and partial functional differential equations (PFDEs), respectively. Following the method pro-

posed, there are many subsequent works on normal forms of the Turing-Hopf bifurcation [32–37].

The recently developed analytical tool using normal form is adopted in the current work.

However, most of these works have focused on one-dimensional intervals and cannot better

describe the complex patterns that occur in high-dimensional domains. In fact, the complex spa-

tiotemporal patterns appearing in circular domains can be studied through equivariant bifurcation

[38, 39]. That is to say, the existence of symmetry leads to the multiplicity of eigenvalues, and

some more complex phenomena may occur under the influence of symmetric groups. In previous

works, inspired by theories of the symmetric group [38] and equivariant normal forms [39–41],

we provided approximate expressions for periodic solutions generated by the Hopf bifurcation,
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including the rotating wave and the standing wave solution on a circular domain in [42]. Equivari-

ant Turing-Hopf bifurcation on a disk has not been considered, to our best knowledge. Therefore,

in this paper, we shall consider a general reaction-diffusion system with homogeneous Neuman-

n boundary conditions on a disk and aim to explain more complicated spatiotemporal patterns

induced by Turing-Hopf interaction and symmetry.

Compared to previous work, this paper has several additional features. We derive formulas of

the equivariant normal forms truncated to the third order of a general reaction-diffusion system

on a disk and divide them into three types: ET-H, T-EH, and ET-EH bifurcations, according to the

different structure of the center subspace of the equilibrium. We characterize the long-term asymp-

totic behavior of the solution by normal forms, which can explain the occurrence of many patterns

in real life more fitly. The theoretical results indicate the existence of several kinds of interesting

patterns, several of which are unique to the equivariant Turing-Hopf bifurcation, including mixed

ET-EH, breathing, quasi-periodic ET-H, standing wave-like T-EH, rotating wave-like patterns T-

EH patterns.

The rest of the paper is organized as follows. In Sec. II, we provide preliminaries required for

normal form derivation, including the introduction to the model, the definition of phase space, the

eigenvalue problem of the Laplace operator on a circular domain, and the necessary assumptions

for bifurcations. In Sec. III, we prove the main results of normal forms for ET-H, T-EH, and ET-

EH bifurcations on a disk, respectively, and provide the classification of various pattern solutions.

In Sec. IV, to verify the theory, we study two delayed mussel-algae systems numerically. Rich

spatiotemporal patterns are observed near the Turing-Hopf points.

II. ANALYTICAL PRELIMINARIES

This section begins with an explanation of the reaction-diffusion equation studied and we pro-

vide some simple results on characteristic equations and sufficient conditions for the existence of

bifurcations through traditional linearization methods.

A. Mathematical model

The reaction-diffusion equation stands as an important theoretical model in the fields of ecolo-

gy, medicine, chemistry, physics, and so on, which provides valuable insights into the understand-
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ing of interesting phenomena that occur in complex systems. Its general formulation is

∂u

∂ t
= d∆u+ f (u),

where ∆ denotes the Laplacian, d represents the diffusion coefficient and f is the kinetic func-

tion. In many scenarios, it is necessary to establish a reaction-diffusion system, incorporating

multiple equations to characterize distinct interaction processes through the varied selection of f .

Examples include predator-prey behavior [43–46], disease infection [47, 48], chemical reactions

[49, 50], semiconductor charge transport in heterostructure devices [23, 25], and so on. Addi-

tionally, considering factors such as biological maturation periods, the time required for energy

conversion in biological systems or chemical reactions, incubation periods, and charge transfer

times, introducing time delay in reaction-diffusion systems can better depict real-world situations.

Taking these factors into consideration, we select a general delayed reaction-diffusion system

of n equations with homogeneous Neumann boundary conditions defined on a disk as follows:

∂U(t,r,θ)

∂ t
= D(ν)∆rθU(t,r,θ)+L(ν)Ut(r,θ)+F (Ut(r,θ),ν) , (r,θ) ∈ D, t > 0, (1)

where D(ν) = diag{d1(ν),d2(ν), · · · ,dn(ν)}, ∆rθ = ∂ 2

∂ r2 +
1
r
· ∂

∂ r
+ 1

r2 · ∂ 2

∂θ 2 represents the Laplace

operator on a disk D = {(r,θ) : 0 ≤ r ≤ R,0 ≤ θ ≤ 2π}, ν represents the sum of the system

control parameters, L(ν) is a linear operator that preserves the eigenspace of the Laplace oper-

ator, and F(ν) can be genuine nonlinear. Ut(ϑ)(r,θ) = U(t +ϑ ,r,θ), ϑ ∈ [−1,0). Here, we

normalize the maximum delay to 1, so that the time delay τ can be included in the parameter ν .

The parameters in the kinetic functions have a certain possibility of inducing Hopf bifurcations,

among which the time delay τ is most commonly selected as the bifurcation parameter. In addi-

tion, the diffusion coefficient is often used as an important parameter to induce Turing instability.

When studying the interaction between Turing instability and Hopf bifurcation, which is general-

ly of codimension-two, we set ν = (ν1,ν2) ∈ R
2. This is a general representation, which means

that any two parameters in the equation can be chosen as the bifurcation parameters of inducing

Turing-Hopf bifurcations. For example, if we focus on the impact of the diffusion coefficient in

the first equation and the time delay on bifurcation phenomenon, we can choose ν = (d1,τ), and

other diffusion parameters are fixed as constants.

When considering a reaction-diffusion equation with time delay, one usually use the phase

space of functions C := C([−1,0],XC) [51, 52], where XC is the complexification of X =
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{

ũ(r,θ) ∈W 2,2(D) : ∂rũ(R,θ) = 0, θ ∈ [0,2π)
}

, with L
2 inner product (weighted r)

〈u(r,θ),v(r,θ)〉=
∫∫

D

ru(r,θ)v̄(r,θ)drdθ .

Then, Ut ∈ C n, L : R×C n →X n
C

is a bounded linear operator, and F : C n×R→X n
C

, where n is

the number of equations included in the reaction-diffusion system (1). Here we only consider the

zero equilibrium, that is to say, we assume F(0,ν) = 0, DϕF(0,ν) = 0 that stands for the Fréchet

derivative of F (ϕ,ν) with respect to ϕ at ϕ = 0, ∀ν ∈ R
2, and F is Ck (k ≥ 3).

B. Linearization analysis

Linearising (1) around the zero equilibrium gives

∂U(t,r,θ)

∂ t
= D(ν)∆rθU(t,r,θ)+L(ν)Ut(r,θ). (2)

The characteristic equation of the linearized equation (2) is

∏
p

Γp(γ)∏
n,m

Γnm(γ) = 0, (3)

with

Γp(γ) = det [γI +λpD(ν)−L(ν)(eγ·I)] = 0, p = 0,1,2, · · · ,

Γnm(γ) = det [γI +λnmD(ν)−L(ν)(eγ·I)]2 = 0, n = 1,2, · · · , m = 1,2, · · · ,
and

λ =







λp =
α2

p

R2 , p = 0,1,2, · · · ,
λnm =

α2
nm

R2 , n = 1,2, · · · , m = 1,2, · · · ,
where −αp and −αnm are eigenvalues of the Laplacian on the unit disk, see [42, 53] and the

corresponding normalized eigenfuncitons are expressed from Bessel functions J0,Jn by

φ̂ =







φ̂ c
p, p = 0,1,2, · · · ,

φ̂ c
nm, φ s

nm, n = 1,2, · · · , m = 1,2, · · · ,

with

φ̂ c
p =

J0

(αp

R
r
)

‖J0

(αp

R
r
)

‖
, φ̂ c

nm =
Jn

(

αnm

R
r
)

einθ

2π‖Jn

(

αnm

R
r
)

‖ , φ̂ s
nm = φ̂ c

nm =
Jn

(

αnm

R
r
)

e−inθ

2π‖Jn

(

αnm

R
r
)

‖ ,

which form an orthonormal basis for XC.

To consider the interaction of Turing instability and Hopf bifurcation, assuming that there exists

a vector ν∗ = (ν∗
1 ,ν

∗
2 ) ∈ R

2, such that one of the situations in Table I holds. Inspired by [38, 39],

5



TABLE I: Roots with zero real part of (3) and the dimension of the central subspace (dim).

(ET-H) (T-EH) (ET-EH)

Γp = 0 ±iωH1
0

Γnm = 0 0 (repeated) ±iωH2
(repeated) 0 (repeated), ±iωH3

(repeated)

p,n,m p = pH1
,n = nT1

,m = mT1
p = pT2

,n = nH2
,m = mH2

n = nT3
,m = mT3

,n = nH3
,m = mH3

a

dim 4 5 6

a In (ET-EH), for example, the chosen indexes mean that ΓnT3
mT3

(0) = 0, ΓnH3
mH3

(±iωH3
) = 0.

if (ET-H) holds, we call this is a ET-H bifurcation, which means, the center space is spanned by

the eigenvectors of a repeated semi-simple zero eigenvalue (multiplicity 2) and a pair of simple

imaginary roots. Similarly, if (T-EH) holds, we call this a T-EH bifurcation. If (ET-EH) holds, we

call this a ET-EH bifurcation.

To study the spatiotemporal dynamic behavior near the critical point ν = ν∗, it is necessary to

introduce a new perturbation parameter µ = (µ1,µ2) = (ν1−ν∗
1 ,ν1−ν∗

2 ) = ν −ν∗. Then, system

(1) is equivalent to
∂U(t)

∂ t
= L̃(µ)Ut + F̃(Ut ,µ), (4)

where L̃U = D0∆rθU + L0U and F̃(Ut ,µ) = [D(µ + ν∗)− D0]∆rθU + [L(µ + ν∗)− L0]Ut +

F(Ut ,µ). D0 = D(ν∗), L0 = L(ν∗) are obtained by the following Taylor expansions

D(µ +ν∗) = D0 +µ1D
(1,0)
1 +µ2D

(0,1)
1 +

1

2

(

µ2
1 D

(2,0)
2 +2µ1µ2D

(1,1)
2 +µ2

2 D
(0,2)
2

)

+ · · · ,

L(µ +ν∗) = L0 +µ1L
(1,0)
1 +µ2L

(0,1)
1 +

1

2

(

µ2
1 L

(2,0)
2 +2µ1µ2L

(1,1)
2 +µ2

2 L
(0,2)
2

)

+ · · · .

We will conduct subsequent bifurcation analysis based on system (4).

III. MAIN RESULTS

A. Bifurcation analysis and normal forms

In this section, the center manifold reduction and normal form method are employed to simplify

the bifurcation problem. Based on the Turing-Hopf normal forms theory for reaction-diffusion

systems in a one-dimensional interval [29, 30], we will derive the normal forms for ET-H, T-

EH, and ET-EH bifurcations on a disk, respectively. If (ET-EH) holds, both the Turing and Hopf
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portions are affected by symmetry. At this time, the center subspace of the equilibrium is six-

dimensional and the result is the most complex. Therefore, let’s first tackle this difficult problem.

Normal forms in polar coordinates are used to represent the changes in amplitude (ρ) and complex

angle (χ) of the solutions under different oscillation modes, and the mathematical derivation is

shown in the Appendix. When nT3
6= 2nH3

or nT3
= 2nH3

, there will be two different normal forms.

When nT3
6= 2nH3

, the normal form truncated to the third order for the ET-EH bifurcation can

be written in polar coordinates as

ρ̇H1 = (ε1(µ)+ c11ρ2
H1 + c12ρ2

H2 + c13ρT 1ρT 2)ρH1 ,

ρ̇H2 = (ε1(µ)+ c11ρ2
H2 + c12ρ2

H1 + c13ρT 1ρT 2)ρH2 ,

ρ̇T 1 = (ε2(µ)+ c21ρ2
H1 + c22ρ2

H2 + c23ρT 1ρT 2)ρT 1 ,

ρ̇T 2 = (ε2(µ)+ c21ρ2
H1 + c22ρ2

H2 + c23ρT 1ρT 2)ρT 2 .

(5)

This a four-dimensional real ordinary differential equations (ODEs) with ρH1 , ρH2 , ρT 1 and ρT 2

as independent variables, where ρH i , i = 1,2 are variables on the eigenspace corresponding to

pure imaginary roots ±iωH3
(Hopf) and ρT i , i = 1,2 correspond to the zero root (Turing). When

nT3
= 2nH3

, there will be additional terms like z3z5e1,z4z5e2, z1z6e3and z2z6e4 in the normal form.

If we use the same polar coordinate transformation, a phase shift between two Hopf modes ∆χ =

χH1 −χH2 will appear as a new variable, i.e., the normal form written in polar coordinates becomes

ρ̇H = (ε1(µ)+(c11 + c12)ρ
2
H + c13ρ2

T + c14ρT cos∆χ)ρH ,

∆̇χ =−2c14ρT sin∆χ,

ρ̇T = (ε2(µ)+(c21 + c22)ρ
2
H + c23ρ2

T )ρT .

(6)

For ∆χ = 0 or π , two Fourier modes are in-phase or anti-phase.

The normal forms for ET-H and T-EH bifurcations can be considered as parts of the normal

form of the ET-EH bifurcation, and the derivation is somewhat simpler. Therefore, based on

the derivation provided in the Appendix, it is easy to obtain normal forms of ET-H and T-EH

bifurcations, respectively. If (ET-H) holds, the dimension of the eigenspace corresponding to pure

imaginary roots ±iωH2
decreases. By (18) and (19), we can obtain that the normal form truncated

to the third order for ET-H bifurcation in polar coordinates is

ρ̇H = (α1(µ)+a11ρ2
H +a12ρT 1ρT 2)ρH ,

ρ̇T 1 = (α2(µ)+a21ρT 1ρT 2 +a22ρ2
H)ρT 1 ,

ρ̇T 2 = (α2(µ)+a21ρT 1ρT 2 +a22ρ2
H)ρT 2 .

. (7)
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If (T-EH) holds, the dimension of the eigenspace corresponding to the zero root decreases and the

the normal form truncated to the third order for T-EH bifurcation in polar coordinates is

ρ̇H1 = (β1(µ)+b1ρT +b11ρ2
H1 +b12ρ2

H2 +b13ρ2
T )ρH1 ,

ρ̇H2 = (β1(µ)+b1ρT +b11ρ2
H2 +b12ρ2

H1 +b13ρ2
T )ρH2 ,

ρ̇T = (β2(µ)+b2ρT +b21ρ2
H1 +b22ρ2

H2 +b23ρ2
T )ρT .

(8)

B. Classification of pattern solutions

The normal form on the center manifold inherits the dynamic properties of the original system,

and equilibrium points of (5) to (8) correspond to different wave patterns. Therefore, we will

follow this approach to classify the possible wave patterns induced by equivariant Turing-Hopf

bifurcations in detail in this subsection.

1. ET-EH patterns

When nT3
6= 2nH3

, we are mainly concerned with the properties corresponding to the following

fourteen equilibrium points of (5), which are separated into five categories.

(ET-EH-i) Stationary solution. (ρH1 ,ρH2 ,ρT 1 ,ρT 2) = (0,0,0,0) corresponds to the origin in

the six-dimensional phase space, which is spatially homogeneous.

(ET-EH-ii) Static Turing pattern. (ρH1 ,ρH2 ,ρT 1 ,ρT 2) = (0,0,ρT 1 ,ρT 2) with ρT 1ρT 2 =

−ε2(µ)/c23.

(ET-EH-iii) Rotating wave pattern. In this case, for ε1(µ)c11 < 0, (ρH1 ,ρH2 ,ρT 1 ,ρT 2) =

(0,
√

−ε1(µ)/c11,0,0) and (ρH1 ,ρH2 ,ρT 1 ,ρT 2) = (
√

−ε1(µ)/c11,0,0,0) correspond to the peri-

odic solutions in the subspace of (z2,z3) and (z1,z4), respectively. The periodic solutions restricted

to the center subspace has one of the following approximate forms.

U(t)(r,θ)≈
n

∑
i=1

2|p1i|
√

−ε1(µ)

c11
JnH3

(
√

λnH3
mH3

r)cos(Arg(p1i)+ωH3
t ±nH3

θ)ei,

where ei is the ith unit coordinate vector of Rn and p1i,1 ≤ i ≤ n are defined in the Appendix. The

physical solutions in (ET-EH-iii) are spatially inhomogenous oscillations with frequency ωH3
and

rotates clockwise or anticlockwise, which can be inferred from the sign before nH3
θ .

(ET-EH-iv) Standing wave pattern. In this case, (ρH1 ,ρH2 ,ρT 1 ,ρT 2)=

(

√

−ε1(µ)
c11+c12

,
√

−ε1(µ)
c11+c12

,0,0

)

,
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the periodic solution restricted to the center subspace has the following approximate form

U(t)(r,θ)≈
n

∑
i=1

4|p1i|
√

−ε1(µ)

c11 + c12
JnH3

(
√

λnH3
mH3

r)cos(Arg(p1i)+ωH3
t)cos(nH3

θ)ei.

The physical solution in (ET-EH-iv) is also a spatially inhomogenous oscillation with frequency

ωH3
. However, the existence of a fixed axis is out of the ordinary, which can be obtained from

cos(nH3
θ) = 0.

(ET-EH-v) Mixed ET-EH pattern. In this case, there are nine groups of ET-EH patterns.

(a) (ρH1 ,ρH2 ,ρT 1 ,ρT 2)=

(

0,
√

c13ε2(µ)−c23ε1(µ)
c23c11−c13c22

,ρT 1 ,ρT 2

)

with ρT 1ρT 2 =−(ε1(µ)+ c11ρ2
H2)/c13,

or

(

0,
√

−ε1(µ)
c11

,0,ρT 2

)

and

(

0,
√

−ε1(µ)
c11

,ρT 1 ,0

)

with
ε1(µ)

c11
= ε2(µ)

c22
, correspond to three

groups of type-A mixed ET-EH patterns. At these points, the solution of real form re-

stricted to the center subspace has the following approximate form

U(t)(r,θ)≈
n

∑
i=1

2|p1i|ρH2JnH3
(
√

λnH3
mH3

r)cos(Arg(p1i)+ωH3
t +nH3

θ)ei

+ξT (ρT 1 +ρT 2)JnT3
(
√

λnT3
mT3

r)cos(nT3
θ).

(9)

(b) (ρH1 ,ρH2 ,ρT 1 ,ρT 2)=

(

√

c13ε2(µ)−c23ε1(µ)
c23c11−c13c21

,0,ρT 1 ,ρT 2

)

with ρT 1ρT 2 =−(ε1(µ)+ c11ρ2
H1)/c13,

or

(

√

−ε1(µ)
c11

,0,0,ρT 2

)

and

(

√

−ε1(µ)
c11

,0,ρT 1 ,0

)

with
ε1(µ)

c11
= ε2(µ)

c22
, correspond to three

groups of type-B mixed ET-EH patterns. At these points, the solution restricted to the

center subspace has the following approximate form

U(t)(r,θ)≈
n

∑
i=1

2|p1i|ρH1JnH3
(
√

λnH3
mH3

r)cos(Arg(p1i)+ωH3
t −nH3

θ)ei

+ξT (ρT 1 +ρT 2)JnT3
(
√

λnT3
mT3

r)cos(nT3
θ).

(10)

(c) (ρH1 ,ρH2 ,ρT 1 ,ρT 2) =
(
√

c13ε2(µ)−c23ε1(µ)
c23(c11+c12)−c13(c21+c22)

,
√

c13ε2(µ)−c23ε1(µ)
c23(c11+c12)−c13(c21+c22)

,ρT 1 ,ρT 2

)

with

ρT 1ρT 2 =− ε1(µ)+(c11+c12)ρ
2

H1

c13
, or

(

√

−ε1(µ)
c11+c12

,
√

−ε1(µ)
c11+c12

,ρT 1 ,0

)

and

(

√

−ε1(µ)
c11+c12

,
√

−ε1(µ)
c11+c12

,0,ρT 2

)

with
ε1(µ)

c11+c12
= ε2(µ)

c21+c22
correspond to three groups of type-C mixed ET-EH patterns. At

these point, the solution restricted to the center subspace has the following approximate

form

U(t)(r,θ)≈
n

∑
i=1

4|p1i|ρH1JnH3
(
√

λnH3
mH3

r)cos(Arg(p1i)+ωH3
t)cos(nH3

θ)ei

+ξT (ρT 1 +ρT 2)JnT3
(
√

λnT3
mT3

r)cos(nT3
θ).

(11)
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We demonstrated the specific forms of rotating and standing wave patterns in our previous work

[42]. Now, let’s discuss the mixed ET-EH patterns. (ET-EH-v) shows three types of complex

mixed ET-EH patterns. We draw a schematic diagram in Fig. 1 of the solution in (9) with nT3
=

1,mT3
= 1; nH3

= 2,mH3
= 2 and ωH3

= 1 as an example, which is

U(t)(r,θ)≈ J2(
√

λ22r)cos(t +2θ)+ J1(
√

λ11r)cosθ . (12)

The subfigures in the first row provide mixed ET-EH patterns like (9) at t = 0, T/3, 2T/3, and

T , respectively, where T ≈ 6 is the period. Fixing r = R and r = R/2, we find that despite (12) is

a sum of two regular patterns generating from Hopf bifurcation and Turing instability, under the

interaction of the two, the spatial form of (12) is quite complex, making it difficult to summarize

general rule. Similarly, the solutions in (10) and (11) can be explained in the same way.

FIG. 1: First row: Mixed ET-EH patterns in (12). Second/Third row: At r = R/r = R
2

, the Hopf

component, Turing component and there sum of (12) are illustrated.

When nT3
= 2nH3

, we are more concerned about the form of the original system solution

corresponds to the equilibrium point of (6) with ρH 6= 0, ρT 6= 0 and ∆χ 6= 0, for instance,

(ρH ,ρT ,∆χ)=

(

√

c23ρ2
T+ε2(µ)

c21+c22
,

−C2±
√

C2
2−4C1C3

2C1
,π

)

, with C1 =(c11+c12)c23+(c21+c22)c13, C2 =

−(c21+c22)c14π
2

, C3 = (c11 + c12)ε2(µ)+(c21 + c22)ε1(µ). At these points, the solution restricted to
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the center subspace has the following approximate form

U(t)(r,θ)≈−
n

∑
i=1

4|p1i|ρHJnH3
(
√

λnH3
mH3

r)sin(Arg(p1i)+χH1(t))sin(nH3
θ)ei

+2ξT ρT JnT3
(
√

λnT3
mT3

r)cos(nT3
θ).

(13)

It can be observed that two Fourier modes of the equivariant Hopf parts are anti-phase, with a shift

∆χ = χH1 −χH2 = π , which ultimately manifests as π phase difference in the Hopf part and Turing

part of the expression (13). Thus, the form of solution maintains standing wave characteristics

(Hopf) and static pattern characteristics (Turing) at opposite positions on the disk.

2. ET-H patterns

We can explain dynamics of the system by analyzing five equilibrium points of system (7). The

equilibrium points (0,0,0) and (0,ρT 1 ,ρT 2) with ρT 1ρT 2 =−α2(µ)
a21

are similar to (ET-EH-i)-(ET-

EH-ii), but the dynamic properties of the other equilibrium points are simpler than (ET-EH-v).

Therefore, we only introduce the following mixed mode.

(ET-H-i) Breathing pattern. (ρH ,ρT 1 ,ρT 2) =

(

√

a12α2(µ)−a21α1(µ)
a11a21−a12a22

,ρT 1 ,ρT 2

)

with ρT 1ρT 2 =

α1(µ)+a11ρ2
H

−a12
, or (

√

−α1(µ)
a11

,ρT 1 ,0) and (
√

−α1(µ)
a11

,0,ρT 1) with
α1(µ)

a11
= α2(µ)

a22
, correspond to three

groups of dynamic Turing-Hopf patterns. At these points, the solution restricted to the center

subspace has the following approximate form

U(t)(r,θ)≈
n

∑
i=1

2|p1i|ρHJ0(
√

λpH1
r)cos(Arg(p1i)+ωH1

t)ei

+ξT (ρT 1 +ρT 2)JnT1
(
√

λnT1
mT1

r)cos(nT1
θ).

The physical solution will maintain a fixed inhomogeneous form and oscillate up and down over

time with frequency ωH1
(breathing).

Further research on stability of the solution can be conducted to achieve pattern control. Let

ρ2
T = ρT 1ρT 2 , ρ̄H = ρH

√

|a11|, ρ̄T = ρT

√

|a21|, and drop the bars, then system (7) can be trans-

formed into

ρ̇H = (α1(µ)+ρ2
H +abρ2

T )ρH ,

ρ̇T = (α2(µ)+acρ2
H +adρ2

T )ρT ,
(14)

which has 12 distinct kinds of unfoldings. The stability conditions of equilibrium points can be

given, by Chap. 7.5 in [54]. Thus, in this case, the stability of spatiotemporal solutions and a

11



complete bifurcation set are easily obtained and there will be a quasi-periodic solution on the

three-dimensional torus.

(ET-H-ii) Quasi-periodic ET-H pattern. Here, the solution corresponds to that system (14)

has a center and level curves with ρ2
H +υρ2

T = −α1(µ) where υ = ab+1
ac−1

. The solution generated

by the Hopf bifurcation restricted to the center subspace has the following approximate form:

U(t)(r,θ)≈
n

∑
i=1

2|p1i|ρHJ0(
√

λpH1
r)cos(Arg(p1i)+ωH1

t)cos(ω̄t)ei

+ξT ρT JnT1
(
√

λnT1
mT1

r)cos(nT1
θ)sin(ω̄t),

where ω̄ = O(αi(µ)). This is a rather complicated pattern including one spatial frequency and two

different temporal frequencies, which is actually a quasi-periodic oscillation with spatial inhomo-

geneous profiles.

3. T-EH patterns

We can explain dynamics of the system by analyzing at most twelve equilibrium points of

system (8). Similar to Sec. III B 2, several equilibrium points of system (8) are consistent with the

results of ET-EH patterns. Next, we will explain in detail several solutions for the interaction of

Turing-Hopf under (T-EH), which is more clearer than (ET-EH-v).

(T-EH-i) Rotating wave-like T-EH pattern. In this case, (ρH1 ,ρH2 ,ρT )= (0,

√

β1(µ)+b1ρT+b13ρ2
T

−b11
,

−B2±
√

B2
2−4B1B3

2B1
) with B1 = b1b22 − b2b11, B2 = b22b13 − b11b23, B3 = b22β1(µ)− b11β2(µ),

correspond to at most two periodic solutions, depending on the sign of B2
2 − 4B1B3. Similar-

ly, (ρH1 ,ρH2 ,ρT ) =

(

√

β1(µ)+b1ρT+b13ρ2
T

−b11
,0,

−B5±
√

B2
5−4B4B6

2B4

)

with B4 = b1b21 − b2b11, B5 =

b21b13 − b11b23, B6 = b21β1(µ)− b11β2(µ), correspond to at most another two periodic solu-

tions. At these points, the periodic solution restricted to the center subspace has the following

approximate forms

U(t)(r,θ)≈
n

∑
i=1

2|p1i|ρH2JnH2
(
√

λnH2
mH2

r)cos(Arg(p1i)+ωH2
t +nH2

θ)ei

+ξT ρT J0(
√

λpT2
r),

or

U(t)(r,θ)≈
n

∑
i=1

2|p1i|ρH2JnH2
(
√

λnH2
mH2

r)cos(Arg(p1i)+ωH2
t −nH2

θ)ei

+ξT ρT J0(
√

λpT2
r).

12



Similarly, the spatial form of the Turing component is constant. Therefore, along with a circle with

radius r on the disk, the solution will be in the form of a clockwise or counterclockwise rotating

wave.

(T-EH-ii) Standing wave-like T-EH pattern. In this case, (ρH1 ,ρH2 ,ρT )= (

√

β1(µ)+b1ρT+b13ρ2
T

−(b11+b12)
,

√

β1(µ)+b1ρT+b13ρ2
T

−(b11+b12)
,
−B8±

√
B2

8−4B7B9

2B7
) with B7 = (b21 + b22)b13 − (b11 + b12)b23, B8 = (b21 +

b22)b1 − (b11 + b12)b2, B9 = (b21 + b22)β1(µ)− (b11 + b12)β2(µ), correspond to at most two

periodic solutions. At these points, the periodic solution restricted to the center subspace has the

following approximate form

U(t)(r,θ)≈
n

∑
i=1

4|p1i|ρH1JnH2
(
√

λnH2
mH2

r)cos(Arg(p1i)+ωH2
t)cos(nH2

θ)ei

+ξT ρT J0(
√

λpT2
r).

IV. NUMERICAL SIMULATIONS AND APPLICATIONS

Avoiding critical points through spatial self-organization is very common in ecosystems, such

as patterns formed by mussels and algae on tidal flats, which can avoid critical points caused by

rising sea levels and protect tidal flats from being submerged [55, 56]. In [57], Shen and Wei

investigated a delayed mussel-algae system and gave the dynamic classification near the Turing-

Hopf bifurcation point in one-dimensional interval (0, lπ). Considering the local tidal flats in

natural living environments or artificially cultivated mussels and freshwater algae in lakes, it is

more realistic to establish mathematical models in circular domains. Therefore, we investigate the

dynamics of such a model on a disk.



















∂m(t,r,θ)
∂ t

= d1∆rθ m(t,r,θ)+m(t,r,θ)
[

ba(t − τ,r,θ)− 1
1+m(t−τ,r,θ)

]

, (r,θ) ∈ D, t > 0,

∂a(t,r,θ)
∂ t

= ∆rθ a(t,r,θ)+α [1−a(t,r,θ)]−m(t,r,θ)a(t,r,θ), (r,θ) ∈ D, t > 0,

∂rm(·,R,θ) = ∂ra(·,R,θ) = 0, θ ∈ [0,2π).

(15)

For simplicity, we established a normalized model, where m(t,r,θ) and a(t,r,θ) represent the

mussel biomass density and the algae concentration at location (r,θ) and time t, respectively.

The mussel is on the sediment, and the algae live in the lower water layer overlying the mussel

bed. b is related to the ingested algae-to-mussel biomass production, α is related to the rate of

exchange between the lower and upper water layers, and τ is the digestion period of mussel. In the

real world, limited sources, like nutrients and light, can lead to nonlocal intraspecific competition

13



among algae in the ocean [58, 59]. For the convenience of mathematical calculation, we take the

nonlocal effects on the disk here. That is to say, based on system (15), we introduced nonlocal

effects by replacing α (1−a(t,r,θ)) by α (1− â(t,r,θ)) with

â(t,r,θ) =
1

πR2

∫ R

0

∫ 2π

0
r̄a

(

t, r̄, θ̄
)

dθ̄dr̄.

Then, system (15) becomes



















∂m(t,r,θ)
∂ t

= d1∆rθ m(t,r,θ)+m(t,r,θ)
[

ba(t − τ,r,θ)− 1
1+m(t−τ,r,θ)

]

, (r,θ) ∈ D, t > 0,

∂a(t,r,θ)
∂ t

= ∆rθ a(t,r,θ)+α [1− â(t,r,θ)]−m(t,r,θ)a(t,r,θ), (r,θ) ∈ D, t > 0,

∂rm(·,R,θ) = ∂ra(·,R,θ) = 0, θ ∈ [0,2π).

(16)

Fixing b = 1.5, α = 0.3, R = 6, we obtain partial bifurcation curves on the d1 − τ plane of

system (15) and system (16) shown in Fig. 2, respectively. For system (15), we select (d1,τ) =

(0.042,6) and get a type of breathing patterns (see Fig. 3). For system (16), we select (d1,τ) =

(0.036,2.7), and get two different types of dynamic Turing-Hopf patterns. Similar to the results in

[42], Turing-Hopf pattern is standing wave-like with a specific initial value (see Fig. 4), and with

other initial values, rotating wave-like Turing-Hopf patterns appear (see Fig. 5).

The standing wave-like pattern has a fixed axis (see the subgraph corresponding to y = 0 in

Fig. 4) and a hot/cold spot indicating local maximum/minimum that does not change position over

time (see the area on the right side of the fixed axis). The other parts of the pattern oscillate in the

form of standing waves on both sides of the fixed axis (as shown in the subgraph corresponding to

x = 0 in Fig. 4). The rotating wave-like pattern in Fig. 5 has a portion of the pattern that remains

unchanged in position and the other parts of the pattern that change in the form of rotating wave.

The pattern formed in the mussel-algae system is actually an external manifestation of mussel

aggregation, and its main function is to increase population defense, including shedding caused by

wave impacts and threats from predators [60, 61]. The study of the interaction between Turing in-

stability, Hopf bifurcation, and symmetry reveals the formation mechanism of these new patterns,

which helps to explore the changes in mussel biomass and two-dimensional spatial distribution,

fully developing the mussel economy, and playing an ecological role in alleviating eutrophication

in marine systems [62, 63].
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FIG. 2: Partial bifurcation curves on the d1 − τ plane for two systems and eigenfuncitons related

to Turing instability.

(a) (b)

FIG. 3: System (15) produces breathing patterns with parameters:

b = 1.5, α = 0.3, R = 6, d1 = 0.042, τ = 6. Initial values are m(t,r,θ) =

0.2727+0.01 · cos t · cosr · cosθ , a(t,r,θ) = 0.5238+0.01 · cos t · cosr · cosθ , t ∈ [−τ,0).

(a) : T he mussel. (b) : T he algae.

15



(a) (b)

FIG. 4: System (16) produces standing wave-like T-EH patterns with parameters:

b = 1.5, α = 0.3, R = 6, d1 = 0.036, τ = 2.7. Initial values are m(t,r,θ) =

0.2727+0.01 · cos t · cosr · cosθ , a(t,r,θ) = 0.5238+0.01 · cos t · cosr · cosθ , t ∈ [−τ,0).

(a) : T he mussel. (b) : T he algae.

(a) (b)

FIG. 5: Rotating wave-like T-EH patterns of the mussel with parameters:

b = 1.5, α = 0.3, R = 6, d1 = 0.036, τ = 2.7. Initial values are m(t,r,θ) =

0.2727+0.01 · cos t · cosr ·Θ1(θ), a(t,r,θ) = 0.5238+0.01 · cos t · cosr ·Θ2(θ), t ∈ [−τ,0).

(a) : (Θ1(θ),Θ2(θ)) = (cosθ ,sinθ)− clockwise, (b) : (Θ1(θ),Θ2(θ)) =

(sinθ ,cosθ)−anticlockwise.
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V. CONCLUDING REMARKS

In this paper, we investigate the interaction of Turing instability and Hopf bifurcation on a

disk. We first present three Turing-Hopf normal forms based on different types of eigenspaces

and then analyze the possible solutions for each normal form. Finally, breathing, standing wave-

like, and rotating wave-like patterns were simulated in a specific mussel-algae model. In realistic

models of approximate circular domains, patterns are often complex. The simple superposition of

Turing instability and Hopf bifurcation is not enough to describe the temporal and spatial variations

adequately. In this paper, our analysis of equivariant Turing-Hopf bifurcation and classification of

various patterns can provide theoretical guidance for characterizing complex patterns in circular

domains and finding realistic solutions with physical significance.

Under the case (ET-EH), the possible solutions are complex, and there are several questions that

can be further discussed. We believe that quasi-periodic solutions may also exist, which is quite

difficult to study. In addition, in previous studies on double Hopf bifurcation, the resonance may

occur: if the ratio of two imaginary roots iω1 and iω2 is rational, some additional terms cannot be

eliminated. In this paper, another kind of resonance of Turing and Hopf appears, i.e. nT3
= 2nH3

.

Combining these factors and investigating the corresponding normal forms is a noteworthy issue

to be further considered.
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APPENDIX: CALCULATION OF NORMAL FORMS

In this Appendix, we provide the decomposition of the phase space and the derivation of normal

forms, by applying the method in [29–31], which leads to the results in Sec. III A.

Let Λ1 =
{

γ : Γp(γ) = 0, Reγ = 0
}

, Λ2 = {γ : Γnm(γ) = 0, Reγ = 0}. Define a bilinear pair-

ing

(ψ,ϕ) =
∫ R

0

∫ 2π

0
r

[

ψ(0)ϕ(0)−
∫ 0

−τ

∫ ϑ

ξ=0
ψ(ξ −ϑ)dη(ν∗,ϑ)ϕ(ξ )dξ

]

drdθ , ψ ∈ (C ∗)n , ϕ ∈ C
n,

(17)
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where (C ∗)n
is the dual space of C n. By [51, 52], one can decompose Cn :=C([−1,0],Cn) by Λi

as Cn = Pi ⊕Qi, i = 1,2, where Pi is the generalised eigenspace associated with Λi and Qi = {φ ∈
C : (ψ,φ) = 0, f or all ψ ∈ P∗

i }. Here, P∗
i is the dual space of Pi. Suitably, choose the bases Φi

rθ

and Ψi
rθ of Pi and P∗

i , respectively, such that
(

Ψi
rθ ,Φ

i
rθ

)

= Ini
, where ni = dimPi. Analogously,

the phase space C n can be decomposed as C n = P ⊕Q, where P = Imπ, Q = Kerπ, dimP =

∑
2
i=1 ni, and π : X → P is a projection defined by π(Ut) = ∑

2
i=1

(

Φi
rθ 〈Ψi

rθ ,Ut〉
)T

.

In Table I, we list roots with zero real part of the characteristic equation. For the case (ET-EH),

we get that Λ1 = /0, Λ2 = {±iωH3
,0}. Let

Φ2
rθ =

(

Φ2(1) · φ̂ c
nm2

, Φ2(2) · φ̂ c
nm2

, Φ2(3) · φ̂ s
nm2

, Φ2(4) · φ̂ s
nm2

, Φ2(5) · φ̂ c
nm2

, Φ2(6) · φ̂ s
nm2

)

,

Ψ2
rθ =col

(

Ψ2(1) · φ̂ c
nm2

, Ψ2(2) · φ̂ c
nm2

, Ψ2(3) · φ̂ s
nm2

, Ψ2(4) · φ̂ s
nm2

, Ψ2(5) · φ̂ c
nm2

, Ψ2(6) · φ̂ s
nm2

)

,

where Φ2(1)(ϑ)= ξHeiωH3
ϑ , Φ2(2)(ϑ)=Φ2(1)(ϑ), Φ2(3)(ϑ)=Φ2(1)(ϑ), Φ2(4)(ϑ)=Φ2(2)(ϑ), Φ2(5)=

Φ2(6) = ξT , Ψ2(1)(ρ) = ηT
HeiωH3

ρ , Ψ2(2)(ρ) = Ψ2(1)(ρ), Ψ2(3)(ρ) = Ψ2(1)(ρ), Ψ2(4)(ρ) =

Ψ2(2)(ρ), Ψ2(5)=Ψ2(6)=ηT
T , n= nH3

, m=mH3
, ϑ ∈ [−1,0), ρ ∈ (0,1]. ξH =(p11, p12, · · · , p1n)

T ∈
C

n is the eigenvector associated with the eigenvalue iω and ξT = (q11,q12, · · · ,q1n)
T ∈ R

n is the

eigenvector associated with the eigenvalue 0. ηH ∈ C
n and ηT ∈ R

n are the corresponding adjoint

eigenvectors that satisfy
(

Ψ2
rθ ,Φ

2
rθ

)

= I6.

According to the definition of the projection π , Ut = (u1t ,u2t , · · · ,unt) can be decomposed as

Ut =
(

Φ1
rθ 〈Ψ1

rθ ,Ut〉
)T

+
(

Φ2
rθ 〈Ψ2

rθ ,Ut〉
)T

+wt =Φrθ z+wt , with Φrθ =Φ2
rθ , z=(z1,z2,z3,z4,z5,z6)

T,

and wt ∈Q. Notice that the part Φ2
rθ (z1,z2,z3,z4,z5,z6)

T stands for the solution on the center man-

ifold, by which solutions on the center manifold are approximatively given.

It is easy to verify that

M1
j (µ

lzpek) := Dz(z
pµ lek)Bz−Bzpµ lek = iωH3

(

p1 − p2 + p3 − p4 +(−1)k
)

zpµ lek, k = 1,2,3,4

M1
j (µ

lzpek) := Dz(z
pµ lek)Bz−Bzpµ lek = iωH3

(p1 − p2 + p3 − p4)zpµ lek, k = 5,6,

(18)

with M1
j defined in [31], B= diag{iωH3

,−iωH3
, iωH3

,−iωH3
,0,0}, j ≥ 2, zp = z

p1

1 z
p2

2 z
p3

3 z
p4

4 z
p5

5 z
p6

6 , µ l =

µ l1
1 µ l2

2 , p1+ p2+ p3+ p4+ l1+ l2 = j, and {e1,e2,e3,e4,e5,e6} being the canonical basis for C 6.

Therefore, after calculating two complementary space Im(M1
2)

c and Im(M1
3)

c like being done in

[29, 42], the normal forms for Turing-Hopf bifurcation has the following form:

ż = Bz+
1

2!
g1

2(z,0,µ)+
1

3!
g1

3(z,0,0)+o(|z||µ|2). (19)
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where g1
2(z,0,µ) and g1

3(z,0,0) are composed of the projection on Im(M1
2)

c or Im(M1
3)

c, which

are defined in [31]. By the analysis in [29, 31, 42], noticing the fact

∫ R

0

∫ 2π

0
r
(

φ̂ c
nH3

mH3

)k1
(

φ̂ s
nH3

mH3

)k2
(

φ̂ c
nT3

mT3

)k3
(

φ̂ s
nT3

mT3

)k4

dθdr







6= 0, k1nH3
− k2nH3

+ k3nT3
− k4nT3

= 0,

= 0, others,

and the relationship of Φrθ and Ψrθ , we obtain that when nT3
6= 2nH3

, the normal forms truncated

to the third order for ET-EH bifurcation can be summarized as

ż1 =iωH3
z1 +B11µ1z1 +B21µ2z1 +B100020z1z2

5 +B001020z3z2
5 +B100002z1z2

6 +B001002z3z2
6

+B210000z2
1z2 +B200100z2

1z4 +B012000z2
3z2 +B002100z2

3z4 +B111000z1z2z3 +B101100z1z3z4

+B100011z1z5z6 +B001011z3z5z6,

ż2 =− iωH3
z2 +B11µ1z2 +B21µ2z2 +B100020z2z2

6 +B001020z4z2
6 +B100002z2z2

5 +B001002z4z2
5

+B210000z1z2
2 +B200100z2

2z3 +B012000z2
4z1 +B002100z2

4z3 +B111000z1z2z4 +B101100z2z3z4,

+B100011z2z5z6 +B001011z2z5z6,

ż5 =B15µ1z5 +B25µ2z5 +B110010z1z2z5 +B100110z1z4z5 +B011010z2z3z5 +B001110z3z4z5

+B110001z1z2z6 +B100101z1z4z6 +B011001z2z3z6 +B001101z3z4z6

+B000030z3
5 +B000003z3

6 +B000021z2
5z6 +B000012z5z2

6,

(20)

and the equations for z3,z4,z6 are given by z1 ↔ z3, z2 ↔ z4 and z5 ↔ z6 in the previous three

equations. By [40], after a sequence of local invertible transformations, the normal form truncated

to the third order can be reduced to

ż1 = iωH3
z1 +B11µ1z1 +B21µ2z1 +B200100z2

1z4 +B111000z1z2z3 +B100011z1z5z6,

ż2 =−iωH3
z2 +B11µ1z2 +B21µ2z2 +B200100z3z2

2 +B111000z1z2z4 +B100011z2z5z6,

ż5 = B15µ1z5 +B25µ2z5 +B100110z1z4z5 +B011010z2z3z5 +B000021z2
5z6.

(21)

Again, the equations for z3,z4,z6 are given by z1 ↔ z3, z2 ↔ z4 and z5 ↔ z6. The proof is similar

to Lemma III.2 of [42].

Through the change of variables z1 = ρH1eiχ
H1 , z4 = ρH1e−iχ

H1 , z3 = ρH2eiχ
H2 , z2 = ρH2e−iχ

H2 , z5 =

ρT 1 , z6 = ρT 2 , we obtain (5) with ε1(µ)=Re{B11}µ1+Re{B21}µ2, ε2(µ)=B15µ1+B25µ2, c11 =

19



Re{B200100}, c12 = Re{B111000}, c13 = Re{B100011}, c21 = B100110, c22 = B011010, c23 = B000021.
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