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Abstract
Turing bifurcation and Hopf bifurcation are two important kinds of transitions giving birth to inhomo-
geneous solutions, in spatial or temporal ways. On a disk, these two bifurcations may lead to equivariant
Turing-Hopf bifurcations, whose normal forms are given in three different cases in this paper. In addition,
we analyzed the possible solutions for each normal form, which can guide us to find solutions with physical
significance in real-world systems, and the breathing, standing wave-like, and rotating wave-like patterns

are found in a delayed mussel-algae model.



I. INTRODUCTION

Complex spatiotemporal patterns that appear on approximate circular domains are abundant
and absorbing, such as the distribution of microbial bioherms in irregular natural or artificial lakes
[1, 2], spiral waves generated by the interaction of activator and inhibitor in Petri dishes [3, 4], and
rotating waves in an optical system consisting of a thin Kerr nonlinear layer and a feedback loop
[5, 6], and so on. To comprehend and manage these dynamic phenomena effectively, modeling
with reaction-diffusion equations and analysis through Turing-Hopf bifurcations are proved to be
essential tools. Such approaches offer valuable insights into the future management of some fragile
ecosystems [7, 8], the formation mechanisms of spiral waves in fibrous ventricular fibrillation
and tachycardia [9, 10], and enable pattern selection and control, thereby expanding the scope of
optical information processing [11, 12]. Mathematically, in the case of planar waves, the solution
to the reaction-diffusion equation is given by u;(¥,1) = u,e'?*" [13], where § is the wave vector
and o is the eigenvalue with the largest real part. For a point where both Turing instability [14]
and Hopf bifurcation [15-17] occur, or Turing-Hopf bifurcation point we say, ¢ is nonzero and
o is also an imaginary value i@. Thus, there exists the interaction of two Fourier modes, which
is accompanied by quite complicated dynamics [18-21]. The wave solutions on circular domains

mentioned above are also important, and we will study them in this paper.

Turing-Hopf bifurcation has been studied both numerically and analytically in the literature
[22-28]. In recent years, scholars have begun to use normal forms to analyze Turing-Hopf bifur-
cation. In particular, Song et al. [29] and Jiang et al. [30] extended the results in Ref. [31] and
derived the normal form of the Turing-Hopf bifurcation of partial differential equations (PDEs)
and partial functional differential equations (PFDEs), respectively. Following the method pro-
posed, there are many subsequent works on normal forms of the Turing-Hopf bifurcation [32-37].

The recently developed analytical tool using normal form is adopted in the current work.

However, most of these works have focused on one-dimensional intervals and cannot better
describe the complex patterns that occur in high-dimensional domains. In fact, the complex spa-
tiotemporal patterns appearing in circular domains can be studied through equivariant bifurcation
[38, 39]. That is to say, the existence of symmetry leads to the multiplicity of eigenvalues, and
some more complex phenomena may occur under the influence of symmetric groups. In previous
works, inspired by theories of the symmetric group [38] and equivariant normal forms [39—41],

we provided approximate expressions for periodic solutions generated by the Hopf bifurcation,
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including the rotating wave and the standing wave solution on a circular domain in [42]. Equivari-
ant Turing-Hopf bifurcation on a disk has not been considered, to our best knowledge. Therefore,
in this paper, we shall consider a general reaction-diffusion system with homogeneous Neuman-
n boundary conditions on a disk and aim to explain more complicated spatiotemporal patterns
induced by Turing-Hopf interaction and symmetry.

Compared to previous work, this paper has several additional features. We derive formulas of
the equivariant normal forms truncated to the third order of a general reaction-diffusion system
on a disk and divide them into three types: ET-H, T-EH, and ET-EH bifurcations, according to the
different structure of the center subspace of the equilibrium. We characterize the long-term asymp-
totic behavior of the solution by normal forms, which can explain the occurrence of many patterns
in real life more fitly. The theoretical results indicate the existence of several kinds of interesting
patterns, several of which are unique to the equivariant Turing-Hopf bifurcation, including mixed
ET-EH, breathing, quasi-periodic ET-H, standing wave-like T-EH, rotating wave-like patterns T-
EH patterns.

The rest of the paper is organized as follows. In Sec. II, we provide preliminaries required for
normal form derivation, including the introduction to the model, the definition of phase space, the
eigenvalue problem of the Laplace operator on a circular domain, and the necessary assumptions
for bifurcations. In Sec. III, we prove the main results of normal forms for ET-H, T-EH, and ET-
EH bifurcations on a disk, respectively, and provide the classification of various pattern solutions.
In Sec. IV, to verify the theory, we study two delayed mussel-algae systems numerically. Rich

spatiotemporal patterns are observed near the Turing-Hopf points.

II. ANALYTICAL PRELIMINARIES

This section begins with an explanation of the reaction-diffusion equation studied and we pro-
vide some simple results on characteristic equations and sufficient conditions for the existence of

bifurcations through traditional linearization methods.

A. Mathematical model

The reaction-diffusion equation stands as an important theoretical model in the fields of ecolo-

gy, medicine, chemistry, physics, and so on, which provides valuable insights into the understand-
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ing of interesting phenomena that occur in complex systems. Its general formulation is

Ju
Fri dAu+ f(u),

where A denotes the Laplacian, d represents the diffusion coefficient and f is the kinetic func-
tion. In many scenarios, it is necessary to establish a reaction-diffusion system, incorporating
multiple equations to characterize distinct interaction processes through the varied selection of f.
Examples include predator-prey behavior [43—46], disease infection [47, 48], chemical reactions
[49, 50], semiconductor charge transport in heterostructure devices [23, 25], and so on. Addi-
tionally, considering factors such as biological maturation periods, the time required for energy
conversion in biological systems or chemical reactions, incubation periods, and charge transfer
times, introducing time delay in reaction-diffusion systems can better depict real-world situations.

Taking these factors into consideration, we select a general delayed reaction-diffusion system
of n equations with homogeneous Neumann boundary conditions defined on a disk as follows:

U (t,r,0)

S5 = D(V)AU(1,1,0) + L(V)Ui(r,0) + F (U(1,0),v), (16) €D, 1 >0, (1)

where D(v) = diag{d;(v),d>(V), -+ ,dy(V)}, Arg = g—rzz +1. % + r% : aa—; represents the Laplace
operator on a disk D = {(r,0) : 0 < r < R,0 < 6 < 2x}, v represents the sum of the system
control parameters, L(V) is a linear operator that preserves the eigenspace of the Laplace oper-
ator, and F(v) can be genuine nonlinear. U;(¥)(r,0) =U(t+ ¥,r,0), ¥ € [-1,0). Here, we
normalize the maximum delay to 1, so that the time delay 7 can be included in the parameter v.
The parameters in the kinetic functions have a certain possibility of inducing Hopf bifurcations,
among which the time delay 7 is most commonly selected as the bifurcation parameter. In addi-
tion, the diffusion coefficient is often used as an important parameter to induce Turing instability.
When studying the interaction between Turing instability and Hopf bifurcation, which is general-
ly of codimension-two, we set v = (v, V,) € R2. This is a general representation, which means
that any two parameters in the equation can be chosen as the bifurcation parameters of inducing
Turing-Hopf bifurcations. For example, if we focus on the impact of the diffusion coefficient in
the first equation and the time delay on bifurcation phenomenon, we can choose v = (dy, 1), and
other diffusion parameters are fixed as constants.

When considering a reaction-diffusion equation with time delay, one usually use the phase

space of functions ¢ := C([—1,0], Z¢) [51, 52], where Z¢ is the complexification of 2~ =
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{i(r,0) e W?*(D) : 9,ii(R,0) =0, 6 € [0,27) } , with L? inner product (weighted r)

(u(r, 0 //mre (r,6)drdo.

Then, U; € €"", L: R x €" — Z ¥ is a bounded linear operator, and F' : " x R — Z*, where n is
the number of equations included in the reaction-diffusion system (1). Here we only consider the
zero equilibrium, that is to say, we assume F (0, V) =0, Dy F (0, v) = 0 that stands for the Fréchet
derivative of F (¢, V) with respect to ¢ at ¢ =0, Vv € R?, and F is C* (k > 3).

B. Linearization analysis

Linearising (1) around the zero equilibrium gives

aU(t,r,0)

57— = D(V)AU(t,1,0) + L(V)Ui(r, 6). 2)

The characteristic equation of the linearized equation (2) is

HFP<7)Han(7) =0, 3)
p n,m
with
Ly(y) =det[yI+A,D(v) = L(v)(e")] =0, p=0,1,2,---,
Ty (7) = det [YI + AD(V) —L(V) (D) =0, n=1,2,--, m=1,2,---,
and ,
A= )‘p:%a p:071727"'7
)'nm— Iélﬁna n=1,2,---,m:1,2,---,

where —a, and —o,, are eigenvalues of the Laplacian on the unit disk, see [42, 53] and the

corresponding normalized eigenfuncitons are expressed from Bessel functions Jy,J,, by

N (ﬁ;? P:071727"‘7
(ﬁ;gma ¢r§m7 n:1727"'7m:1727"'7

with (a ) o ( o
nm in - 711’!

21 (%) I

e Jo(a ) s _ Ac¢

which form an orthonormal basis for Z¢.

To consider the interaction of Turing instability and Hopf bifurcation, assuming that there exists

a vector V¥ = (v{,v;) € RR?, such that one of the situations in Table I holds. Inspired by [38, 39],
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TABLE I: Roots with zero real part of (3) and the dimension of the central subspace (dim).

(ET-H) (T-EH) (ET-EH)
r,=0 Fiwy, 0 -
I, =0 0 (repeated) Fiwy, (repeated) 0 (repeated), £iwpy, (repeated)

— — — — — — — — - — a
p,n,m P =PH, ,n=np,m=mn p=pn,n=npg,, M=my, nN=Nn1r,M=mr,n=ny,, N = Mg,

dim 4 5 6

¢ In (ET-EH), for example, the chosen indexes mean that I'y;, . (0) =0, | (fiowg,) = 0.

if (ET-H) holds, we call this is a ET-H bifurcation, which means, the center space is spanned by
the eigenvectors of a repeated semi-simple zero eigenvalue (multiplicity 2) and a pair of simple
imaginary roots. Similarly, if (T-EH) holds, we call this a 7-EH bifurcation. If (ET-EH) holds, we
call this a ET-EH bifurcation.

To study the spatiotemporal dynamic behavior near the critical point v = v*, it is necessary to
introduce a new perturbation parameter 4 = (i, 2) = (Vi — v{,vi — v5) = v — v*. Then, system

(1) is equivalent to
U (1)
dt
where LU = DoAgU + LoU and F(U;,u) = [D(1 + v*) — Do|AeU + [L(u + v*) — Lo)U; +

= L(W)U, + F (U, ), (4)

F(U;,p). Do = D(v*), Lo = L(v*) are obtained by the following Taylor expansions

(1,0) (0,1) (2,0)

* 1
D(u+v7) =Do+mDy " + oDy + 5 (,ulzDz’ (L)

+ 201D, +N22D50’2)> e

(1,0) (0,1) (2,0)

. I
L(p+v*) = Lo+ L + ol + 2 (08 +2pperf) + L)+

We will conduct subsequent bifurcation analysis based on system (4).

III. MAIN RESULTS

A. Bifurcation analysis and normal forms

In this section, the center manifold reduction and normal form method are employed to simplify
the bifurcation problem. Based on the Turing-Hopf normal forms theory for reaction-diffusion
systems in a one-dimensional interval [29, 30], we will derive the normal forms for ET-H, T-

EH, and ET-EH bifurcations on a disk, respectively. If (ET-EH) holds, both the Turing and Hopf
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portions are affected by symmetry. At this time, the center subspace of the equilibrium is six-
dimensional and the result is the most complex. Therefore, let’s first tackle this difficult problem.
Normal forms in polar coordinates are used to represent the changes in amplitude (p) and complex
angle () of the solutions under different oscillation modes, and the mathematical derivation is
shown in the Appendix. When nr, # 2npy, or nt; = 2ny;, there will be two different normal forms.

When nz, # 2npy,, the normal form truncated to the third order for the ET-EH bifurcation can

be written in polar coordinates as

Pt = (&1(u +Cllp£,1 +612Pf,z +c13Ppr1P7r2)PH,

(
P2 = (&1(u +611Péz+612P§1 +C13Pp71P72)PH2,

) )
(&1 (1) ) )
pri = (&2(1) +c21pp1 +€22Pp2 + 3P P12) P11 s

pr> = (&2(1) + CZlP?;l + szpéz +c23pr1P12)Pr2-
This a four-dimensional real ordinary differential equations (ODEs) with py1, pg2, P71 and pp2
as independent variables, where pyi,i = 1,2 are variables on the eigenspace corresponding to
pure imaginary roots *i@y, (Hopf) and pzi,i = 1,2 correspond to the zero root (Turing). When
nr; = 2ny;, there will be additional terms like z3z5€1,2425€2, Z126€3and z22¢e4 in the normal form.
If we use the same polar coordinate transformation, a phase shift between two Hopf modes Ay =

X' — X2 Will appear as a new variable, i.e., the normal form written in polar coordinates becomes

pr = (&1(1t) + (c11+c12)piy + €137 + c1apr cOs AY ) pai,
Ax = —2c14pr SinAy, (6)
pr = (&2(1) + (c21 +ex)pfy +e23p7)pr-

For Ay = 0 or «, two Fourier modes are in-phase or anti-phase.

The normal forms for ET-H and T-EH bifurcations can be considered as parts of the normal
form of the ET-EH bifurcation, and the derivation is somewhat simpler. Therefore, based on
the derivation provided in the Appendix, it is easy to obtain normal forms of ET-H and T-EH
bifurcations, respectively. If (ET-H) holds, the dimension of the eigenspace corresponding to pure
imaginary roots imy, decreases. By (18) and (19), we can obtain that the normal form truncated

to the third order for ET-H bifurcation in polar coordinates is
pr = (ou (1) +an g +a2priPr2)pPu,
pri = (aa(t) +a21071 072 +an2piy) Pr1 )
Pr2 = (0o (1) +ax1 pp1pr2 + azapiy) Pr2-



If (T-EH) holds, the dimension of the eigenspace corresponding to the zero root decreases and the

the normal form truncated to the third order for T-EH bifurcation in polar coordinates is

Pt = (Bi (1) +b1pr +b11p7 +b12pr2 +b13p7) Py
Pz = (Bi(1) +bipr +br1pis +b12pfi +bi3p7) P2, (8)
pr = (B2(1) +bapr +b21pé1 +b22Pf,z +b23p7)pr-

B. Classification of pattern solutions

The normal form on the center manifold inherits the dynamic properties of the original system,
and equilibrium points of (5) to (8) correspond to different wave patterns. Therefore, we will
follow this approach to classify the possible wave patterns induced by equivariant Turing-Hopf

bifurcations in detail in this subsection.

1. ET-EH patterns

When nr; # 2npy,, we are mainly concerned with the properties corresponding to the following
fourteen equilibrium points of (5), which are separated into five categories.

(ET-EH-i) Stationary solution. (py1,py2,pr1,Pr2) = (0,0,0,0) corresponds to the origin in
the six-dimensional phase space, which is spatially homogeneous.

(ET-EH-ii) Static Turing pattern. (py1,pPy2,Pri,Pr2) = (0,0,p71,p72) With pripr =
—&(1)/cs.

(ET-EH-iii) Rotating wave pattern. In this case, for & (t)ci1 < 0, (py1,Pp2,P71,P72) =
(0,1/—¢€1(1)/c11,0,0) and (pg1, P2, P71, P72) = (/—€1(1)/c11,0,0,0) correspond to the peri-
odic solutions in the subspace of (z2,z3) and (z;,z4), respectively. The periodic solutions restricted

to the center subspace has one of the following approximate forms.

< [—&1(u) /
U(t)(r’ 9) ~ i—212|p1i| TJHH3( ;LnH3mH3 r) COS<Arg(p1i) + wH3t:|:nH36)ei7

where e; is the ith unit coordinate vector of R" and py;,1 <i < n are defined in the Appendix. The
physical solutions in (ET-EH-iii) are spatially inhomogenous oscillations with frequency @, and
rotates clockwise or anticlockwise, which can be inferred from the sign before npy, 6.

(ET-EH-iv) Standing wave pattern. In this case, (g1, Py2, Pr1,Pr2) = (\/ —e1(1) \/ —a1y) 0,0),

crite’ Vocritcern?




the periodic solution restricted to the center subspace has the following approximate form
24\ | —aw) ) g (1) A r)cos(Arg(p1;) + Op,t) cos(ng, 0)e;
1i cl +C12 Hj nH3mH3 g pll H3 H3 i
The physical solution in (ET-EH-iv) is also a spatially inhomogenous oscillation with frequency
op,. However, the existence of a fixed axis is out of the ordinary, which can be obtained from
cos(np,0) = 0.
(ET-EH-v) Mixed ET-EH pattern. In this case, there are nine groups of ET-EH patterns.

@) (Py1,Pp2, P71, P72) = ( \/CBCZCH 2322 ,PT17PT2> with pr1p72 = —(€1 () +c11pp)/c13s

C11 C11

or (0, —al) ,0 pTz) and (0 ( —al) P71, ) with &) — 82(“ ) , correspond to three
groups of type-A mixed ET-EH patterns. At these points, the solutlon of real form re-
stricted to the center subspace has the following approximate form
n
U(t)(r,0) ~ Z 2|p1i|pH2JnH3 (\/ }L’anmH r)cos(Arg(p1i) + Op;t +np; 0)e;
i=1 9
+&r (pr1 + Pr2) Jng, (\/ Angymz,7) cOS(n, 0).

\/ azl)ena ) 70,pT1,pTz> with pr1py2 = — (&1 (1) +c11p31) /c1a,

(®) (py1,Pm2,P71,P72) =

or < —aw) ,0,0 pTz) nd ( —aw) ,0,p71, ) with &) — 82(“) , correspond to three

C11 C11 C11

groups of type-B mixed ET-EH patterns. At these points, the solutlon restricted to the

center subspace has the following approximate form
n
U(t)(r’ 9) ~ Z 2|p1i|leJnH3 ( \/ )“nHSmH3 I") COS(Arg(pli) + Wt — nH39)ei
i=1
+&r (pr1 +Pr2) JnT3 (\/ lflT3mT3 r) cos(nr,0).

(10)

_ c13& (1) —co3€1 (1) c13& (1) —co3€1 (1) :
(©) (Py1,Pw2,P71,P72) = <\/623(C1l+012)*013(021+022) \/623(C11+612) C13(021+C22)’p71’pT2> with

e1(1)+(crni+e)pr, ) () I
PriPr2=— c13 » OT \/011+C12’\/C11+612’pT ,0 | and \/011+612 \/011+612’ »Pr2

with -S4 _elr) correspond to three groups of type-C mixed ET-EH patterns. At

c11+C12 21+

these point, the solution restricted to the center subspace has the following approximate

form

U(t)(r,6) %;4|Pu|PHIJnH3(\/7LnH mig; ) €OS(Arg(p17) + Opst) cos(nu, 0)e;
+&r (pr1 +pr2)J nry (\/ A’”T3mT3 r)cos(nz,6).

(11)

)



We demonstrated the specific forms of rotating and standing wave patterns in our previous work
[42]. Now, let’s discuss the mixed ET-EH patterns. (ET-EH-v) shows three types of complex
mixed ET-EH patterns. We draw a schematic diagram in Fig. 1 of the solution in (9) with nz, =

L,mp, = 1; ngy, = 2,mp, =2 and @y, = 1 as an example, which is

U(1)(r,0) ~ Jo(v/Aaar) cos(t +20) +J1 (v/ A1) cos 6. (12)

The subfigures in the first row provide mixed ET-EH patterns like (9) at r =0, 7 /3, 2T/3, and
T, respectively, where T = 6 is the period. Fixing r = R and r = R/2, we find that despite (12) is
a sum of two regular patterns generating from Hopf bifurcation and Turing instability, under the
interaction of the two, the spatial form of (12) is quite complex, making it difficult to summarize

general rule. Similarly, the solutions in (10) and (11) can be explained in the same way.

U, t=2T/3

t=T/3, =R t=2T/3, =R =T, =R
F~ N
0.5 Y 74 0513 /1 05 < =~ Hopf
o0 /\/—\\_// o0 \}/_/\\/—D 0 /V\ Turing
205 SE 0.5 N7 0.5 N—7 — — Turing-Hopf
T 0 L 2r 0 Ty 2r 0 T 0 27
t=T/3, =R/2 t=2T/3, =R/2 t=T, r=R/2
05 2N 0552 0.5 kQ ‘
N l Hopf
DOWDOMDO \Al Turing
-0.5 N 7 -0.5 ., -0.5 v = = Turing-Hopf
0 T 27 0 g 27 0 g 27 0 s 27
0 0 0 0

FIG. 1: First row: Mixed ET-EH patterns in (12). Second/Third row: At r =R/r = %, the Hopf

component, Turing component and there sum of (12) are illustrated.

When n7, = 2ny,, we are more concerned about the form of the original system solution
corresponds to the equilibrium point of (6) with py # 0, pr # 0 and Ay # 0, for instance,
2 _ /C2_
(pr,pr,Ax) = (\/ Cpy L 2N 4C1C3»”),Withcl=(6‘11+012)623+(621+022)013, G =

w, C; = (c11 +c12)& (1) + (c21 +c22)€1 (1). At these points, the solution restricted to
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the center subspace has the following approximate form
n
U(t)(rv 9) ~—= Z 4|p1i|pHJnH3 (\/ l711-13"11-13 I’) Sin<Arg(pli) + Xut (t)) Sin(nH39)ei
i=1

+ 2§TPTJnT3 (\ / }LnTSmTS r) COS(nT3 9)'

It can be observed that two Fourier modes of the equivariant Hopf parts are anti-phase, with a shift

(13)

AX = X1 — Xg2 = 7, which ultimately manifests as 7 phase difference in the Hopf part and Turing
part of the expression (13). Thus, the form of solution maintains standing wave characteristics

(Hopf) and static pattern characteristics (Turing) at opposite positions on the disk.

2.  ET-H patterns

We can explain dynamics of the system by analyzing five equilibrium points of system (7). The
o

equilibrium points (0,0,0) and (0, py1, py2) with pri1pr2 = —# are similar to (ET-EH-i)-(ET-

az]

EH-ii), but the dynamic properties of the other equilibrium points are simpler than (ET-EH-v).

Therefore, we only introduce the following mixed mode.

(ET-H-i) Breathing pattern. (py,p1,pr2) = <\/a12a2(“)_a21a1(”),pTl,pTz> with pripp2 =

appaz1 —agaz2

ou(p)+aripg —ou (1) —ou (1) b () o(w)
=, L or ( T,pTl,O) and ( T,O,pTl) with == = =2, correspond to three
groups of dynamic Turing-Hopf patterns. At these points, the solution restricted to the center

subspace has the following approximate form
n
U(t)(r,0) =Y 2|p1ilprdo(y/ Apy, r) cos(Arg(p1;) + opt)e;
i=1
+&r (Pr1 =+ Pr2) Jng, () Angymy, ) cOS(n1; 0).

The physical solution will maintain a fixed inhomogeneous form and oscillate up and down over
time with frequency @y, (breathing).

Further research on stability of the solution can be conducted to achieve pattern control. Let
p% = P71Pr2, PH = PH \/W , PT =Pr \/|aTl| , and drop the bars, then system (7) can be trans-

formed into

pr = (ou (k) + pi +app7)pr, "
pr = (0 (k) + acpiy +aap7)pr,
which has 12 distinct kinds of unfoldings. The stability conditions of equilibrium points can be

given, by Chap. 7.5 in [54]. Thus, in this case, the stability of spatiotemporal solutions and a
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complete bifurcation set are easily obtained and there will be a quasi-periodic solution on the
three-dimensional torus.

(ET-H-ii) Quasi-periodic ET-H pattern. Here, the solution corresponds to that system (14)
ab—H

has a center and level curves with pZ 4+ vp% = — o () where v = . The solution generated

by the Hopf bifurcation restricted to the center subspace has the followmg approximate form:
U(1)(r,8) = Y 2|p1ilpudo(y/ Apy, ) cos(Arg(pi;) + o, 1) cos(@r)e;
i=1
+&rPrdng, (\/ Ang,mg, 7) cOs(nr; ) sin( 1),

where @ = O(o;(u)). This is a rather complicated pattern including one spatial frequency and two
different temporal frequencies, which is actually a quasi-periodic oscillation with spatial inhomo-

geneous profiles.

3. T-EH patterns

We can explain dynamics of the system by analyzing at most twelve equilibrium points of
system (8). Similar to Sec. III B 2, several equilibrium points of system (8) are consistent with the
results of ET-EH patterns. Next, we will explain in detail several solutions for the interaction of

Turing-Hopf under (T-EH), which is more clearer than (ET-EH-v).

2
(T-EH-i) Rotating wave-like T-EH pattern. In this case, (01, Pp2, P1) = \/ Prlp Hi'[f’l Tl+b13p L

“Byt+/BI_4B B3\ .
? 5 =2) with By = bibyy — baby1, By = bybiz — biibys, By = bzzﬁl(ﬂ) — b Ba(p),

correspond to at most two periodic solutions, depending on the sign of B% —4B1B3. Similar-

w)+bipr+b —Bs++/B:—4B,B .
ly, (pg1,Pw2,PT) \/Bl _flTl 1397 .0, — 3B =5 ) with By = biby1 — babyy, Bs =

by1b13 — b11b23, Be = bo1B1(1) — b11B2(1), correspond to at most another two periodic solu-

tions. At these points, the periodic solution restricted to the center subspace has the following

approximate forms

n
U(t)(r, 9) ~ Z 2|p1i|pH2JnH2 (\/ AnHZmH )COS(AI‘g(pll) + Wp,t +nH20)e

i=1

+&rprdo(y/ App, 1),
U(t)( Zz‘pll’pHZ nH, (\/ ;LnH M, r)cos(Arg(p1i) + Oyt —np, 0)e;

+ ngTJO(\/A'prz r).

12

or



Similarly, the spatial form of the Turing component is constant. Therefore, along with a circle with
radius r on the disk, the solution will be in the form of a clockwise or counterclockwise rotating
wave.

2
(T-EH-ii) Standing wave-like T-EH pattern. In this case, (py1,Pp2, PT) = (\/ A _)(Zbllllf bfzb)wp L,

b b13p? —Bst+/B3—4B7B .
\/ﬁl(“j],lll’fb;)BpT, ) with By = (ba1 + bxn)biz — (bii + b12)bas, Bs = (ba1 +
by)by — (b11 + b12)by, By = (ba1 + b2o)B1(1) — (b11 + b12)B2 (1), correspond to at most two
periodic solutions. At these points, the periodic solution restricted to the center subspace has the

following approximate form

n
U(t)(r,0) ~ Z 4 prilPe Iny, (v Anggymu, ) cOS(ATE(p1:) + O, t) cOS(np, 6)€;
i=1

+&rprdo(y/Apy, 1)

IV. NUMERICAL SIMULATIONS AND APPLICATIONS

Avoiding critical points through spatial self-organization is very common in ecosystems, such
as patterns formed by mussels and algae on tidal flats, which can avoid critical points caused by
rising sea levels and protect tidal flats from being submerged [55, 56]. In [57], Shen and Wei
investigated a delayed mussel-algae system and gave the dynamic classification near the Turing-
Hopf bifurcation point in one-dimensional interval (0,/7). Considering the local tidal flats in
natural living environments or artificially cultivated mussels and freshwater algae in lakes, it is
more realistic to establish mathematical models in circular domains. Therefore, we investigate the

dynamics of such a model on a disk.

am(é,tr,e) — dlArer(l,I’, 9) +m(t,r, 6) ba(t —T,r, 9) — m s (r, 9) < ]D, t> O,
aa%}ne) =Arga(t,r,0)+ o[l —a(t,r,0)] —m(t,r,0)a(t,r,0), (r0) €D, t >0, (15)

d,m(-,R,0) = da(-,R,0) =0, 0 € [0,27).

For simplicity, we established a normalized model, where m(t,r,0) and a(z,r,0) represent the
mussel biomass density and the algae concentration at location (r,0) and time ¢, respectively.
The mussel is on the sediment, and the algae live in the lower water layer overlying the mussel
bed. b is related to the ingested algae-to-mussel biomass production, « is related to the rate of
exchange between the lower and upper water layers, and 7 is the digestion period of mussel. In the

real world, limited sources, like nutrients and light, can lead to nonlocal intraspecific competition
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among algae in the ocean [58, 59]. For the convenience of mathematical calculation, we take the
nonlocal effects on the disk here. That is to say, based on system (15), we introduced nonlocal

effects by replacing o (1 —a(t,r,0)) by o (1 —a(z,r,0)) with

27 _
a(t,r,9) / / (,7,6) dOdr.
~ IR

Then, system (15) becomes

am((;;r,m =d\Agm(t,r,0) +m(t,r,0) ba(t—r,r,e)—m , (n8)eD, t>0,
24lLr0) — A,galt,r,0) + [l —a(t,r,0)] —m(t,r,0)a(t,r,0), (0) €D, 1 >0, (16)

o,m(-,R,0) = da(-,R,0) =0, 6 € [0,27).

Fixing b = 1.5, a = 0.3, R = 6, we obtain partial bifurcation curves on the d; — 7 plane of
system (15) and system (16) shown in Fig. 2, respectively. For system (15), we select (d}, 1) =
(0.042,6) and get a type of breathing patterns (see Fig. 3). For system (16), we select (d;,7) =
(0.036,2.7), and get two different types of dynamic Turing-Hopf patterns. Similar to the results in
[42], Turing-Hopf pattern is standing wave-like with a specific initial value (see Fig. 4), and with

other initial values, rotating wave-like Turing-Hopf patterns appear (see Fig. 5).

The standing wave-like pattern has a fixed axis (see the subgraph corresponding to y = 0 in
Fig. 4) and a hot/cold spot indicating local maximum/minimum that does not change position over
time (see the area on the right side of the fixed axis). The other parts of the pattern oscillate in the
form of standing waves on both sides of the fixed axis (as shown in the subgraph corresponding to
x = 0 in Fig. 4). The rotating wave-like pattern in Fig. 5 has a portion of the pattern that remains

unchanged in position and the other parts of the pattern that change in the form of rotating wave.

The pattern formed in the mussel-algae system is actually an external manifestation of mussel
aggregation, and its main function is to increase population defense, including shedding caused by
wave impacts and threats from predators [60, 61]. The study of the interaction between Turing in-
stability, Hopf bifurcation, and symmetry reveals the formation mechanism of these new patterns,
which helps to explore the changes in mussel biomass and two-dimensional spatial distribution,
fully developing the mussel economy, and playing an ecological role in alleviating eutrophication

in marine systems [62, 63].
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FIG. 2: Partial bifurcation curves on the d; — 7 plane for two systems and eigenfuncitons related

to Turing instability.
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FIG. 3: System (15) produces breathing patterns with parameters:
b=1.5, o =0.3, R=06, d; =0.042, T = 6. Initial values are m(t,r,0) =
0.272740.01 - cost -cosr-cos B, a(t,r,0) =0.523840.01 -cost-cosr-cos O, t € [—1,0).
(a) : The mussel. (b) : The algae.

15



y=0

6 0.5 6 1 0.6
4 4
2 2 i
% 0 0.45 % 0 0.58
2 -2
4 -4 I
6 04 6 0.56
0 875 t 1000 N t 1000
p x=0 6
4 1035 4 0.54
2 2
> 0 > 0
-2 103 -2 0.52
-4 -4 7
/’/ N
-6 > . 6 2 S :
0 875 .~ t \ 1000 0 875, -~ . 1000
.k R A 4
m at timeZ942.5 m at time=950.0 0.25 aat time=942.5 a at time=950.0 03
5
. 0 * 0.2 0.48
5
0.15 0.46
5 . 5 5 0 5 -5 0 5
(a) X X (b) X X

FIG. 4: System (16) produces standing wave-like T-EH patterns with parameters:
b=15 6=0.3, R=6, d; =0.036, T =2.7. Initial values are m(t,r,0) =
0.2727+0.01-cost -cosr-cos 0, a(t,r,0) =0.5238 +0.01 - cost -cosr-cos 0, t € [—1,0).
(a) : The mussel. (b) : The algae.

0.5

0.45

(b)
FIG. 5: Rotating wave-like T-EH patterns of the mussel with parameters:
b=15, ¢« =0.3, R=6, d; =0.036, T =2.7. Initial values are m(t,r,0) =
0.272740.01-cost -cosr-®1(0), a(t,r,0) =0.5238 4+ 0.01 - cost -cosr-®,(0), t € [—1,0).
(a):(01(6),02(0)) = (cosB,sinO) — clockwise, (b) : (01(0),0,(0)) =

(sin @,cos 0) — anticlockwise.
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V. CONCLUDING REMARKS

In this paper, we investigate the interaction of Turing instability and Hopf bifurcation on a
disk. We first present three Turing-Hopf normal forms based on different types of eigenspaces
and then analyze the possible solutions for each normal form. Finally, breathing, standing wave-
like, and rotating wave-like patterns were simulated in a specific mussel-algae model. In realistic
models of approximate circular domains, patterns are often complex. The simple superposition of
Turing instability and Hopf bifurcation is not enough to describe the temporal and spatial variations
adequately. In this paper, our analysis of equivariant Turing-Hopf bifurcation and classification of
various patterns can provide theoretical guidance for characterizing complex patterns in circular
domains and finding realistic solutions with physical significance.

Under the case (ET-EH), the possible solutions are complex, and there are several questions that
can be further discussed. We believe that quasi-periodic solutions may also exist, which is quite
difficult to study. In addition, in previous studies on double Hopf bifurcation, the resonance may
occur: if the ratio of two imaginary roots i®; and i@, is rational, some additional terms cannot be
eliminated. In this paper, another kind of resonance of Turing and Hopf appears, i.e. ny, = 2ngy;.
Combining these factors and investigating the corresponding normal forms is a noteworthy issue

to be further considered.
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APPENDIX: CALCULATION OF NORMAL FORMS

In this Appendix, we provide the decomposition of the phase space and the derivation of normal
forms, by applying the method in [29-31], which leads to the results in Sec. III A.
Let Aj = {y:T,(y) =0, Rey=0}, Ay = {y:Tum(y) =0, Rey = 0}. Define a bilinear pair-
ing
R 2 [ 0 rv
o = [ [ [wo0) - [ [ WiE Dl 0)p(& ez are, we () g
(17)
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where (¢*)" is the dual space of ¢”. By [51, 52], one can decompose C" := C([—1,0],C") by A
asC" =P, ® Q;, i = 1,2, where P, is the generalised eigenspace associated with A; and Q; = {¢ €
¢ : (y,0)=0, forall y € P'}. Here, P is the dual space of P;. Suitably, choose the bases CIDie
and W, of P, and P, respectively, such that (W, ®' ) = I,,, where n; = dimP,. Analogously,
the phase space ¢ can be decomposed as 4" = & ¢ 2, where & = Imn, 2 = Kern, dim&¥ =
Y2 n,and m: 2 — P is a projection defined by 7(U;) = Y2 (P g (Wi, Up))".

In Table I, we list roots with zero real part of the characteristic equation. For the case (ET-EH),

we get that A; =0, Ay = {£iwy,,0}. Let

2(2 2(3 2(4 2(5 2(6
‘Dre _( ¢nm2> CI) (anz; CI) ¢nm27 CI) (ang? CI) (pnmz? (I) (pn;nz)

\PZQ =col (lpz (ang? le ‘anzﬂ le (anza \Pz q)nmzv (ang? ‘Pz (anz) )

where @2(1)(8) = &ue!s?, @22) () = @21 (), <I>2<3><19>:q>2<1>w> ¢2<4><19>:q>2<2><19),q>2<s>:

20 = &, w2(p) = nfeP, W22 (p) = w21)(p), W23 (p) = w2V (p), ¥ (p) =
lPZ()(p)’\PZ( ):\Pz() 77T7”—”H3»m mH3a19€[ ) ( ] 5[‘1 (p117p127"'7p1n)T€
C" is the eigenvector associated with the eigenvalue i® and & = (g11,912, - ,qln)T € R" is the

eigenvector associated with the eigenvalue 0. Ny € C" and nr € R" are the corresponding adjoint
eigenvectors that satisfy (‘I’EQ,CIDEB) =I.

According to the definition of the projection 7, U; = (uy,,uz;,- -+ ,upn;) can be decomposed as
U, = (CIDie (‘Pie, U,))T—f— (CIDEB <‘I’Ee, U,>)T—|—w, =®,9z+w;, with®D,g = CID%Q, 2= (21,22,23,24,25,26) \
and w; € 2. Notice that the part @fe (21,22,23,24,25, z6)T stands for the solution on the center man-
ifold, by which solutions on the center manifold are approximatively given.

It is easy to verify that

Mj(u'zPe) == D, (2" 1'ex)Bz — B ey = iy, (Pl —p2tp3—pat (—1)k> ey, k=1,2,3,4
Mj(u'zPey) := D, (2" p'e)Bz — B ' ey = i, (p1 — p2+ p3 — pa) Pl ex, k=56,

(18)
with M} defined in [31], B = diag{i@p;, =i, ,i0p;, —i0p;,0,0}, j > 2, 27 =21 252822 28000, ! =
,u]lluéz, P14+ p2+p3+ps+li+1h=j,and {e],es,e3,e4,e5,e6} being the canonical basis for €.
Therefore, after calculating two complementary space Im(le)c and Im(M31)C like being done in
[29, 42], the normal forms for Turing-Hopf bifurcation has the following form:

1 1
¢ =Bzt 2,22(2,0, ) + 3783(2,0,0) +o( [zl |u]?)- (19)
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where g}(z,0, ) and gl(z,0,0) are composed of the projection on Im(M3 )¢ or Im(M3 )¢, which

are defined in [31]. By the analysis in [29, 31, 42], noticing the fact

/R /27rr (éc )kl (és )k2 ((ﬁc >k3 (és )k4 40dr 75 07 klnH3 — kan3 +k3l’lT3 — ](4117"3
0 0 nH3mH3 nH3mH3 nTSmT3 I’lT3mT3 _ ()7 others,

and the relationship of ®,¢ and ¥, ¢, we obtain that when nz, # 2ng,, the normal forms truncated

to the third order for ET-EH bifurcation can be summarized as

.. 2 2 2 2
21 =10x;21 + Bii 121 + B21 4221 + B1000202125 + B0010202325 + B1000022126 + B001002232¢
2 2 2 2
+ B2100002122 + B2001002124 + B0120002322 + B0021002324 + B111000212223 + B101100212324

+ B100011212526 + B0010112325%6,

. : = = 2 2 B ——. 2 . 2
2 = — 10,22 + B11 122 + B2 222 + B1000202226 + B0010202426 + B1000022225 + B0010022425

+ B2100002125 + B2001002323 + B0120002321 + B0021002323 + B111000212224 + B1o1100222324,
+ B100011222526 + Boo1011222526

25 =B15M125 + Basazs + B110010212225 + B100110212425 + Bo11010222325 + Boo1110232425
+ B110001212226 + B100101212426 + B011001222326 + B001101232426

3 3 2 2
+ B00003025 + B00000325 + B0000212526 + B0000122525
(20)

and the equations for z3,z4,7¢ are given by z; <> z3, 72 <> z4 and z5 <> z¢ in the previous three
equations. By [40], after a sequence of local invertible transformations, the normal form truncated

to the third order can be reduced to

. . 2

21 = 10g,21 + B111z1 +B21 U221 + B2001002124 + B111000212223 + B100011212526,

. . = - - 2 5 -

2o = =10y, 22 + B 22 + Ba1 222 + B2001002325 + B111000212224 + B100011222526, (21)

: 2
25 = B15U125 + Basozs + B100110212425 + B011010222325 + B0000212526 -

Again, the equations for z3, 24,26 are given by z1 <+ z3, 22 <+ z4 and z5 <> z¢. The proof is similar
to Lemma II1.2 of [42].

Through the change of variables z; = py1e'%n! | 74 = pyie Xu! | 73 = prpe¥n? | 75 = prae Mn? | 75 =

P71, 26 = Pr2, we obtain (5) with &) (1) = Re{B11 } 41 +Re{Ba1 } 2, & (1) = Bisp1 +Bosila, c11 =
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