Defending Hash Tables from Algorithmic Complexity
Attacks with Resource Burning

Trisha Chakraborty®, Jared Saia”, Maxwell Young®

@ Mississippi State University, Department of Computer Science and
Engineering, Mississippi State, 39762, MS, USA, tc2006@msstate.edu
b University of New Mezico, Department of Computer
Science, Albuquerque, 87131, NM, USA, saia@cs.unm.edu
€ Mississippi State University, Department of Computer Science and
Engineering, Mississippi State, 39762, MS, USA, myoung@cse.msstate.edu

Abstract

We consider the problem of defending a hash table against a Byzantine at-
tacker that is trying to degrade the performance of query, insertion and
deletion operations. Our defense makes use of resource burning (RB)—the
verifiable expenditure of network resources—where the issuer of a request
incurs some RB cost. Our algorithm, DEPTH CHARGE, charges RB costs for
operations based on the depth of the appropriate object in the list that the
object hashes to in the table. By appropriately setting the RB costs, our al-
gorithm mitigates the impact of an attacker on the hash table’s performance.
In particular, in the presence of a significant attack, our algorithm incurs a
cost which is asymptotically less that the attacker’s cost.

Keywords: algorithmic complexity attack, hash table, resource burning

1. Introduction

While hash tables are a popular data structure, their performance can
be significantly degraded if the objects to be stored are chosen adversarially
(e.g., Crosby and Wallach (2003), Bar-Yosef and Wool (2007), and Tobin and
Malone (2012)). In an extreme case, all objects can be hashed to the same

A preliminary version of this work appeared in the proceedings of the 25th Interna-
tional Conference on Distributed Computing and Networking (ICDCN) (see Chakraborty
et al. (2024)).

Preprint submitted to Theoretical Computer Science (TCS-A) April 15, 2024

index of the table. Under the common collision-resolution method of chain-
ing, this attack effectively transforms the hash table into a linked list, which
leads to a worst-case query time that is linear in the number of objects; this is
an example of an algorithmic complexity attack (ACA) (see Bar-Yosef
and Wool (2007), Crosby and Wallach (2003), Cai et al. (2009), Sun et al.
(2011), and Khan and Traore (2005)). Many data structures are vulnerable
to ACAs, and designing a defense is challenging, since malicious inputs need
not be large, or arrive at a high rate, in order to degrade performance. In
other words, ACAs are often less costly to launch than they are to defend
against.

In hash tables, a common defensive measure is to keep the hash function
secret (known only to the server) and use stronger (cryptographic) hash
functions that are difficult to invert. However, side-channel attacks may
allow an adversary to learn the hash function (see Oleksdk and Miskovsky
(2022)), and in distributed settings where the hash table may be stored
on multiple machines, a single compromised machine may reveal the secret.
Similarly, stronger hash functions offer insufficient protection, as an adversary
can find objects that hash to the same index through trial and error. These
vulnerabilities are discussed in Section 1.5, which highlight a fundamental
shortcoming of prior defenses: they do not counteract the cost advantage
enjoyed by the attacker.

In this work, we design and analyze a new defense for hash tables that
employs resource burning (RB)—the verifiable expenditure of a network
resource—to reverse this cost asymmetry. Specifically, any user wishing to
access the hash table must pay an RB cost. By setting the amount of RB
appropriately, our defense guarantees that the cost to legitimate users grows
slowly as a function of an attacker’s cost for launching an ACA. In practice,
attackers must often pay for the resources needed to launch attacks, such
as renting compromised machines (see Franklin et al. (2007)). Therefore,
the asymptotic advantage given by our approach ultimately translates into
a financial edge for the defenders.

1.1. Motivating Our Setting

We consider the challenging setting where both (1) the number of indices
in the hash table; and (2) the hash function are fixed. Our “fixed” setting
is particularly relevant for many applications in distributed computing. For
example, in the client-server setting, changing the hash table size or the hash
function can result in down time that negatively impacts quality of service

for the clients. Thus, system administrators often analyze workload data
to set the hash table size appropriately; a discussion of this is provided in
IBM (2023). In peer-to-peer systems such as distributed hash tables (DHTS)
(e.g., Wang and Kangasharju (2013), Falkner et al. (2007), and Stoica et al.
(2001)), memory and disk space is bound by the number of participating
machines, and thus resizing is not possible.

Our approach allows for flexibility in setting the appropriate table size.
Specifically, we parameterize our results by £, which is the maximum num-
ber of legitimate objects (or “good objects”, as defined below) that are hashed
to the same index. Intuitively, this parameter is small when the table is ap-
propriately sized, and we discuss this further in Section 1.3.

1.2. Model

In our setting, there are clients, an adversary, and a server. Note that
all clients are “good”; we do not refer to “bad” clients, since the adversary
incarnates them. Our server may represent multiple real-world servers. We
now describe the key aspects of our model.

Hash Table. The server holds a hash table that services insertions, queries,
and deletions of objects by request from the clients and the adversary. An
insertion by a client is a good insertion, and the corresponding object is
a good object, which is placed at an index selected uniformly at random
(w.a.r.).! Otherwise, the insertion is a bad insertion and the corresponding
object is a bad object; in this case, the adversary selects the index where
the object is inserted. Good insertions cannot be distinguished from bad
insertions, and good objects cannot be distinguished from bad objects.

A collision occurs when two or more objects are inserted at the same index
of the hash table, and this is resolved via the popular method of chaining.
That is, the objects involved in the collision form a list, where the head
of the list (HoL) is located in the index of the hash table, with subsequent
objects added to the tail of the list (ToL) in the order that they are inserted.
The length of a list at index ¢ is the number of objects stored at index 1.
The depth of an object is the position measured from the head of its list;

'We view this as performing a hash function evaluation on an identifier for the object.
The first evaluation returns an index in the hash table selected uniformly at random,
while subsequent evaluations of this identifier always map to the same index (i.e., our
hash function obeys the random oracle assumption by Koblitz and Menezes (2015)).

the minimum depth is 1. If a list exists at the index of insertion, then an
object inserted at that index is added to the ToL.?

In addition to insertion, the hash table also handles query and delete
requests. A query (deletion) from a client is said to be a good query (good
deletion); otherwise, it is a bad query (bad deletion). Good queries
(deletions) cannot be distinguished from bad queries (deletions). Clients
only issue queries for good objects, while the adversary may issue queries
for any object; this captures a pessimistic setting where the objects inserted
by the adversary are not useful and only serve to degrade the performance
of the algorithm. Clients may delete good objects, and the adversary may
delete bad objects but not good objects.

Resource Burning. Upon receiving a request to insert or query an object
the server may issue a resource-burning (RB) challenge to the requester
(i.e., a client or the adversary). The requester must return a solution to the
RB challenge before the corresponding request is satisfied. To specify the RB
cost x, for any positive integer x, we will refer to an x-hard RB challenge.

The mechanisms for issuing and verifying RB challenges can be protected
from attack themselves, given their narrow functionality (see Waters et al.
(2004)). Furthermore, significant work has gone into addressing the many
practical details of designing and deploying RB challenges, such as handling
device heterogeneity, pre-computation attacks, and the reuse of old solutions
(see Ali et al. (2020), Li et al. (2012), and Walfish et al. (2010)).

Performance Metrics. We use two metrics for gauging performance: (1)
the RB cost of solving RB challenges and (2) the latency for servicing re-
quests. Regarding (1), the algorithm’s RB cost is the sum of the hardness
values for all RB challenges solved by the clients; likewise, the adversary’s
RB cost is the sum of the hardness values for RB challenges it solves.

Regarding (2), if the request is an insertion, then the latency equals 1,
since we assume that each list maintains a pointer to the ToL. If the request
is a query and the object exists in that list, then the latency equals the
object’s depth in that list; otherwise, the latency equals the list length at
the index where the object would have been stored if it existed in the table.
We pessimistically assume that only the algorithm, and not the adversary,
incurs a latency cost.

2A design where objects are inserted at the HoL are also vulnerable to ACAs and would
result in essentially the same analysis.

Communication. Requests received by the server are ordered in time, and
we pessimistically assume this ordering is set by the adversary. Point-to-point
communication can occur between the clients and the server, and between
the adversary and the server. This communication occurs instantaneously;
however, in Section 4.1 we discuss handling communication delay.

Adversary. We consider a Byzantine adversary that is not constrained
to obey protocol and is not computationally bounded. The adversary has full
knowledge of the hash table’s configuration, as well as the state of the clients
and server. The adversary can instantaneously create as many bad objects
as it likes that hash to any targeted index of the hash table. In other words,
the number of bad objects and the indices into which they are inserted is
chosen by the adversary.

In contrast, the adversary has no control over where good objects are
inserted; each good object is inserted into an index chosen u.a.r. from the
set of all indices. While the adversary does not control where good objects
are inserted, it may control which good objects are queried (i.e., generate or
schedule queries for good objects). We consider both the case where (1) the
good queries are generated by the adversary (Section 3.2); and (2) the good
queries are distributed u.a.r. over all indices (Section 3.3).

1.3. Main Results

For requests, we let Z be the number of good insertions; let @ and D be
the number of good queries and good deletions for objects that exist in the
hash table.

In discussing the hash table, we denote the number of indices in the hash
table by t; the maximum number of good objects in any index by £€5;. The
number of good objects in index ¢ is £;, and the average number of good
objects, (1/t) 2221 ¢;, is denoted by £,...

Throughput, we use B to denote the total RB cost incurred by the ad-
versary. We state our main result below regarding our defense algorithm,
DEpPTH CHARGE.

Theorem 1. DEPTH CHARGE guarantees the following properties:

1. (Single Requests) Any single insertion has RB cost O(v/B + y) and la-
tency O(1). Any single query or deletion has an RB cost and latency that
are each O(vV/B+ lyy).

2. (Amortized Requests) When Z, Q, and D are set by an Byzantine adver-
sary, the total RB cost and the total latency are each O((Z + Q + D +
V(Z+Q+D)B)EA)).

3. (Randomly Queried Indices) Consider () queries where the corresponding
objects belong to indices of the hash table chosen u.a.r.. For Q > (3,8,
the average cost per query is O({,,.) in expectation.

Discussion. As mentioned earlier, our results are parameterized by £,;.
For 7 insertions into a table of size t, £)y = O([Z/t]logt) with high prob-
ability in ¢t (w.h.p.).> Notably, for Z = O(t), it is well known that £, =
O(logt/loglogt) (see Oliveira (2021), Kesselheim (2016), and Raab and Ste-
ger (1998)). This case is pertinent, since many applications limit the amount
by which their hash table can grow (see Crosby and Wallach (2003)), and the
number of size increases may be very limited (e.g. see Czubak and Szymanek
(2017)).* From a theory perspective, such limited growth increases the table
size by a constant factor, and using the the largest size aligns with our model.

To provide context for Theorem 1, it is helpful to compare DEPTH CHARGE
to a standard hash table with chaining. In the latter, the adversary may cre-
ate a list that has size linear in the number of bad objects for “free”. This
attack leads to poor latency if good objects reside at the ToL. By compar-
ison, Property 1 bounds improves (roughly) quadratically by bounding the
longest list length to be O(\/B + (pr); clearly, this holds for any query, even
for objects that do not exist in the table. Another implication of Property 1
is that when there is little-to-no attack (i.e., when B & 0), the RB cost and
latency are each roughly O(¢,,), which should be small (i.e., logarithmic in
t) for an appropriately sized table, as discussed above.

Regarding Property 2, for multiple requests scheduled by a Byzantine
adversary, DEPTH CHARGE retains an asymptotic advantage when under
significant attack. Conversely, when the attack is not large relative to Z +
Q+D, DEpTH CHARGE has RB cost and latency proportional to this number
of requests and £3,. In contrast, in a standard hash table, the adversary can
amplify its attack by forcing multiple requests involving a linear-sized chain.

Finally, Property 3 provides bounds on the expected performance under

3With probability at least 1 — ¢t~ for some constant d > 1.
4For example, the table in the Cisco router examined in Czubak and Szymanek (2017)
has an initial size of 1024, and can increase to sizes 2048, 4096, and 8192.

a sequence of queries that map to indices selected u.a.r. Specifically, the
expected cost for @ such good queries is O(QV,,. + {3+/@QB). Thus, if that
expectation holds, then the average cost per query is O(/,,.) when @ is large
relative to B and £);. When ¢,,, = O(1), this implies that the average cost
per query is O(1) in expectation. Interestingly, this is comparable to the
expected O(1) latency per query in a standard hash table.

1.4. Technical Overview

At a high level, our analysis relies on upper bounding DEPTH CHARGE’s
cost and lower bounding the adversary’s cost. Below we sketch how to do
this first for insertions, and then for queries and deletions.

Insertion Costs. We define a targeted index to be an index where there is
at least one bad object and at least one good object. Then we lower bound
the adversary’s cost as a function of the number of bad objects inserted into
targeted indices (Lemma 1).

Next, we upper bound the total cost of good insertions as a function of the
number of objects in targeted indices, noting that this cost is maximized when
the bad objects are distributed as uniformly as possible across such indices
(Lemma 3). We pessimistically assume that good insertions come after bad
insertions, since this minimizes the insertion cost to the adversary, while
maximizing the insertion cost to the algorithm. Additionally, we assume
that there are ¢;; good insertions in every targeted index.

Why Use Move-to-Front? An analysis of the longest list (Lemma 5) shows
that the worst-case latency per query is O(v/B+£5;). While this significantly
improves over the linear latency—for example, where the adversary inserts
all objects in a single list—that can arise in undefended hash tables, there is
still room for improvement. To see why, consider that even if the adversary
ceases its attack, good objects will remain near the tails of their respective
lists, leading to persistently poor query latency. By moving queried objects to
the head of their respective lists, we can improve their latency in subsequent
queries.

The classic move-to-front (MTF) heuristic proposed by Bentley and Mec-
Geoch (1985), Hester and Hirschberg (1985), and Rivest (1976) is known to
improve performance in chained hash tables when they are not under attack
(see Zobel et al. (2001), Askitis and Zobel (2011), and Song et al. (2017)).
Our motivation for using MTF in our adversarial setting is that a substantial

improvement may be attained over multiple queries, since good objects can
“skip the line” in long lists that contain mostly bad objects.

However, the adversary can cause trouble for MTF in the following man-
ner. When the adversary queries a bad object, it is moved to the front of
the list. This increments the depth of a number of good objects as large as
the depth of the bad object prior to being moved to the front; this increases
the query latency of these good objects. We can discourage this bad behav-
ior by charging for a query, but how much should we charge? Intuitively, a
reasonable charge would be the depth of the queried object.

Analysis of Charging by Depth for Queries. To see why this is the
correct charging scheme, consider a list composed of bad objects, except for
a single good object o at the HoL. In order to increase the depth of o by d, the
adversary must pay for d bad queries. Observe that each bad query must be
for a bad object with larger depth than o; otherwise, querying the bad object
does not increase o’s depth. Under our charging scheme, the adversary pays
at least Z?Zl(j + 1) = ©(d?). Then, when DEPTH CHARGE next queries o,
it will pay an RB cost of ©(d), and the query requires ©(d) latency. Thus,
DepTH CHARGE obtains a quadratic advantage, similar to what is achieved
for our bound on insertion costs.

This charging scheme motivates the name DEPTH CHARGE and it guaran-
tees that the adversary must spend continually in order to keep good objects
at large depth in the list.

The Amortized Analysis. A major technical challenge of our paper is to
formalize the above intuition in the general case—with multiple lists, each
with potentially multiple good objects. This analysis is challenging, since
both bad and good queries can increase the depth of multiple good objects
in a list. Over all lists, we need to track the depth of all good objects
over a sequence of requests. We highlight that must account not only for
queries—although they are what increases the depth of an object—but also
insertions and deletions. Fortunately, insertions do not increase depth of
other objects, given that objects are added to the ToL, so our bound on
insertion cost (discussed above) can be used. As for deletions, we can treat
them as queries, since they are no worse in terms of increasing depth.

One main analytic tool used is amortized analysis; in particular, the ac-
counting method (see pg. 453 by Cormen et al. (2022)). Each good object is
given a (conceptual) wallet into which DEPTH CHARGE makes deposits for
each request that increases the depth of that object. The payments ensure

a key invariant: the depth of a good object is never more than the number
of dollars in its wallet. Therefore, an object’s wallet always contains enough
dollars to cover the cost of its next query. Over a sequence of requests, the
total number of dollars deposited into all wallets is an upper bound on both
DeEpTH CHARGE’s RB cost and latency.

How can we relate the number of dollars deposited into wallets to the
adversary’s cost? This is addressed formally in Lemma 6; however, to gain
insight, let us extend our example to ¢; > 1 good queries in a single list at
index 7. Prior to each good query, there are d, bad queries that increase the
depth of at most ¢, good objects by d.., forr = 1, ..., ¢;. The resulting number
of dollars that DEPTH CHARGE places into the wallets of the corresponding
lyr good objects is A; < lyy z;l d,, while the adversary’s cost is B; >

A2 =Q((1/q:)(>°" d.)?) by Jensen’s inequality for concave functions.
Therefore, the number of dollars deposited into wallets for objects in the list
at index ¢ is A; = O(larv/q:BB;). To this, we add DEPTH CHARGE’s cost for
insertions, denoted by A", to get an upper bound on all requests involving
this list.

Finally, in Lemma 7 and Corollary 3, we sum up the costs to DEPTH
CHARGE over all lists. Our previous bound on the insertion costs handles
the sum of the A terms. To simplify O(>", arv/q:B;), we apply the Cauchy-
Schwarz inequality to get an upper bound of O(¢,+/OB), where Y, ¢; = Q
is the total number of queries and Y B; < B, where B is total adversarial
cost. Together, these bounds yield the expression in Property 2.

Randomly Queried Indices. Our result for randomly queried indices
does not follow directly from Property 2. Instead, our argument (Lemma 8)
leverages the bound for a single list (Lemma 6) in order to express the total
cost from the randomly queried indices as a function of E[Q;] and E[/Q;).
The latter is the more complicated term, which is handled by the application
of Jensen’s inequality for the expectation of concave functions, which shows

that E[vQ;] < v/ E[Q;]. Using the fact that E[Q;] = Q/t, and summing the
terms over all lists, yields the expression in Property 3.

1.5. Related Work

In this section, we summarize work on RB-based defenses for a variety of
attacks. Next, we discuss results from the literature on ACAs, with a focus
on prior results for hash tables. We highlight that a preliminary version of

this work appeared in the proceedings of the 25th International Conference
on Distributed Computing and Networking (Chakraborty et al. (2024)).

9

1.5.1. Defenses using Resource Burning

RB is a well-established tool for securing distributed systems; for example,
this is discussed by Gupta et al. (2020). Many approaches based on RB
consist of two primary components: a prover and a werifier; for example
see Dwork and Naor (1992), Waters et al. (2004), and Aura et al. (2000).
The prover offers verifiable evidence of completed work, while the verifier
is responsible for confirming that the evidence is valid. For instance, when
a client requests a service, the server responds by issuing an RB challenge.
The client provides an RB solution, and if this solution is verified, the service
is granted. The difficulty of the challenge can be adjusted, where a higher
difficulty requires using more units of a chosen resource.

There is a substantial body of research spanning several decades that
utilizes RB to address general security issues; we refer the interested reader
to the surveys by Ali et al. (2020) and Gupta et al. (2020). RB has been
applied in various domains such as in wireless networks by Gilbert and Zheng
(2013), in peer-to-peer systems by Li et al. (2012) and Borisov (2006), and in
blockchains (see the survey by Lin and Liao (2017)). Specifically, RB tech-
niques have contributed to auditing metered websites (Franklin and Malkhi
(1997)), making a digital data preservation protocol resistant to malicious
peers (Neudecker (2017) and Nakamoto (2008)), limiting the incoming flow
of service requests (Waters et al. (2004)), and combating electronic spam
mails (Dwork and Naor (1993)).

The choice of resource burned in an RB system is an implementation
detail and should be approached by finding a balance between security, fair
participation, and integration feasibility in different network settings. Given
this, our algorithm is deliberately agnostic about the resource burned, such as
computational power (e.g., Wang and Reiter (2003)), bandwidth (e.g., Wal-
fish et al. (2006)), computer memory (eg., Abadi et al. (2005), Dwork et al.
(2003), and Dziembowski et al. (2015)), and human effort (e.g., Von Ahn
et al. (2003) and Oikonomou and Mirkovic (2009)).

1.5.2. Prior Defenses for ACAs.

Many other common data structures and algorithms are vulnerable to
ACAs, such as linked lists (see Atre et al. (2022)), quicksort (see Khan and
Traore (2005) and Mecllroy (1999)), cardinality sketches (see Reviriego and
Ting (2020)), pattern matchers (see Kirrage et al. (2013) and Namjoshi and
Narlikar (2010)), cuckoo filters (see Reviriego and Larrabeiti (2020)), and
bloom filters (see Reviriego and Rottenstreich (2020)). As a result, AC at-

10

tacks can impact common applications: networked applications (see Chang
et al. (2009) and Atre et al. (2022)), firewalls (see Czubak and Szymanek
(2017)), PDF compressors (see Hauke and Renardy (2019)), web services
(see Altmeier et al. (2016)), and intrusion detection systems (see Crosby and
Wallach (2003)).

In the context of hash tables, the prior literature on defending against
ACAs falls into the three general categories discussed below.

Choice of Hash Functions. Crosby and Wallach (2003) showed the first
ACA on hash tables, which caused a server to drop over 70% of queries.
The authors proposed two techniques to mitigate ACAs: (a) adding a secret
value as a parameter to the hash function, and (b) using universal hash func-
tions (UHFs). The usage of UHFs can minimize the number of collisions,
but UHF's can add computational overhead on the server side. Furthermore,
Bar-Yosef and Wool (2007) demonstrated an ACA against hash tables de-
spite the use of a secret value; the authors suggest that the secret-key length
should be increased (beyond 32 bits) or be changed frequently. In a similar
vein, Aumasson and Bernstein (2012) proposed SipHash which uses a secret
key (known only to the server), which is used as input to the hash function.
Unfortunately, a secret key may be compromised via side-channel attacks
(see Oleksak and Miskovsky (2022)) or, in distributed settings, by an adver-
sary who controls one or more of the servers. Finally, perfect hashing is a
technique that guarantees no collisions (see Lu et al. (2006), Cercone (1988),
and Majewski et al. (1996)). However, constructing perfect hash functions is
time consuming and requires knowing the set of objects to be hashed, which
is not always available.

Application-Specific Defenses. Many defenses against ACAs are application-
specific. For example, PHP limits the number of GET and POST HTTP
requests so that the adversary cannot request to store many bad objects in

a hash table (see Heimes (2013)). Another approach is the use of caching to
store pre-computed results of expensive hash table lookups (see Zhang and
Sanchez (2019), Metreveli et al. (2012), and Bender et al. (2012)).

Switching to Deterministic Data Structures. Another method for de-
fending against ACAs is to adopt deterministic data structures with strong
worst-case performance guarantees. For example, a deterministic skip list Munro
et al. (1992) performs each insertion and each query with a worst-case bound
that is logarithmic in the number of objects. However, this is inferior to the
performance of a hash table, which have constant expected time per query

11

in the absence of attack. If attacks are likely to occur over a minority of the
system lifetime, then using a deterministic data structure is costly.

More generally, deterministic data structures incur theoretical and/or
practical costs exceeding that of their randomized equivalents; for example,
this shortcoming is acknowledged by Czubak and Szymanek (2017) in regards
to B-trees, AVL-trees, and red-black trees, which offer worst-case logarithmic
guarantees. Maintaining both a deterministic and randomized data structure
might provide the advantages of both options, but such redundancy is likely
to be expensive. In contrast, our algorithm’s costs adapts to the degree of
attack—in particular, growing slowly in the amount spent by the adversary—
which allows for low cost when the attack is absent/small, and giving a
favorable relative cost when the attack is large.

1.5.3. Resource Competitiveness

Algorithms that parameterize the algorithm’s cost by the adversary’s cost
are called resource competitive. Prior resource-competitive algorithms
have been utilized for a number of network security problems, where the
aim is to impose a higher cost on the adversary for launching attacks rel-
ative to the defender’s cost. For example, Bender et al. (2016), Gilbert
and Young (2012), Gilbert et al. (2014), King et al. (2011), and Chen and
Zheng (2020) introduce resource-competitive algorithms to combat malicious
interference on broadcast channels. In permissionless systems, Gupta et al.
(2023) and Gupta et al. (2018) propose defenses against the Sybil attack,
while Augustine et al. (2019) presents a Byzantine agreement protocol. The
approach has been applied to mixing networks, where Zamani et al. (2017)
optimize bridge assignment in the Oinion Router network (see Dingledine
et al. (2004). A recent application has been to denial-of-service (DoS) at-
tacks, where Chakraborty et al. (2022) propose a resource-competitive algo-
rithm for mitigating DoS in the client-server setting.

1.5.4. Compatibility with Prior Defenses

We emphasize that our results may be used in conjunction with many
prior solutions. For example, DEPTH CHARGE can be used alongside meth-
ods that use stronger hash functions and secret keys, and also within application-
specific defenses—these approaches are not mutually exclusive. Given that
there is no single approach that can completely protect against ACAs, hav-
ing multiple complementary tools for defense can be useful, and we view our
approach as adding to a defensive “toolkit”.

12

DEPTH CHARGE
Insert at index i:

e Respond with an (L; + 1)-hard RB challenge, where L;
is the list length at index i.

e If the requester solves the RB challenge, then insert
the object at the tail of the list at index i.

Query object at index i:

e Traverse the list at the index i. If the object is found,
then issue a A-hard RB challenge to the requester, where
A is the object’s depth; else, respond with an L;-hard
challenge.

e If the requester solves the RB challenge, then if the

object exists, service the query and move the object to
the HoL; else, respond that the object was not found.

Figure 1: Pseudocode for DEPTH CHARGE.

2. Our Algorithm

The pseudocode for our algorithm, DEPTH CHARGE, is presented in Fig-
ure 1 and is assumed to be executed by the server; for clarity, as discussed
below, we omit deletions and the specifics of message exchanges omitted.

Insertions. Upon receiving an insertion request, the server responds with
an RB challenge whose hardness equals L;+ 1, where L; is list length at index
1. If the server receives a valid solution to this challenge, then the object is
inserted at the ToL; a pointer is assumed to be kept to the ToL in order to
give O(1) latency per insertion.

Queries. Upon receiving a query request for an object, the server calculates
the index ¢ where the object should be stored and traverses that list starting
from the HoL. If the object is found, then the server responds with a A-hard
RB challenge, where A is the object’s depth. Otherwise, the server discovers
that the object does not exist by traversing the entire list and then issues an
L;-hard RB challenge. In the latter case, imposing a cost mitigates spurious

13

requests by the adversary for non-existent objects, while the cost for such
requests from clients can be viewed as the price for a membership test.

If a valid solution is received and the object exists in the table, then
the server services the query and also performs a move-to-front operation
by repositioning the queried object to the head of its corresponding list.
Otherwise, the queried object does not exist in the table, and responds that
the object was not found.

Deletions. A deletion is performed almost identically to a query. However,
in the case where the object is located, the object is deleted rather than
being moved to the HoL. For ease of presentation, we omit deletions from
the pseudocode in Figure 1.

2.1. Ensuring Payment by the Adversary

In DEPTH CHARGE, when a request is received, the server sets the hard-
ness of the RB challenge to be issued to the requester (and this challenge
must be solved prior to the request being serviced). For clarity of presen-
tation, in our pseudocode we omit the details of how the server sets this
hardness and instead discuss them here.

For each index of the table, the server maintains state on the length of
the corresponding chain. When handling an insertion request, the server
computes the challenge hardness by simply using this chain-length value.
Thus, the algorithm incurs no latency cost for issuing the RB challenge.

But what about query and deletion operations? The server must find the
corresponding object and learn its depth prior to creating the RB challenge.
What happens if the adversary issues such a request, but then abandons the
request without solving the RB challenge? This would impose a latency cost
on the algorithm at no cost to the adversary.

To prevent this, the server responds to any initial query or deletion request
with an RB challenge of hardness 1. Upon receiving a valid solution, the
server only traverses the list to a depth of 1 (i.e., the object at HoL). If
the object is not found there, the server then issues a second challenge of
hardness of 2 and, if a valid solution is received, the server checks up to
depth 2 in the corresponding list. This process continues, with the server
increasing the challenge hardness by a factor of 2 until the object is located
or the end of the list is reached.

If this process completes, then it guarantees that the adversary incurs an
RB cost that is to within a constant factor of the requested object’s depth.

14

Otherwise, if the adversary abandons the request partway through when,
say, the challenge hardness is 2¢, then we may treat this a bad request for
an object at depth ©(2%). In this way, this process imposes a cost on the
adversary that aligns with that prescribed by our algorithm up to a constant
factor; thus, for the purposes of our analysis, we ignore this aspect, since
it does not alter our asymptotic results. Finally, we note that this process
requires only O(log L) challenges and messages per request, where L is the
list length at the corresponding table index.

3. Analysis

Our analysis of DEPTH CHARGE is presented in three pieces. First,
in Section 3.1, we analyze the RB cost and latency for insertions; this is
a stepping stone to proving bounds on sequences of requests. Second, in
Section 3.2, we provide a bound on the longest list length (Lemma 5), which
is used to establish Property 1. We then use an amortized analysis for a
sequence of queries, which is combined with our bound on insertions to prove
Property 2 (in Corollary 3). Third, in Section 3.3, we bound the expected
RB cost and latency for a sequence of queries that occur in indices selected
u.a.r., which allows us to establish Property 3 (in Lemma 8).

3.1. Insertion Cost

In this section, we analyze DEPTH CHARGE’s RB cost over all Z good
insertions. Define an targeted index to be any index that contains at least
one bad object and at least one good object. In the current table, let s be
the number of targeted indices.

Unless specified otherwise, our analysis in this section pessimistically as-
sumes that all targeted indices contain ¢;; good objects; this can only increase
the cost to DEPTH CHARGE.

Lemma 1. Suppose the adversary inserts b bad balls in the s targeted indices.
Then, DEPTH CHARGE’s RB cost for insertions into the targeted indices is

2
at most SETM + bl
Proof. Let x; be the number of bad objects placed by the adversary into the
1-th targeted index, where ¢ = 1,...;s. Fix any particular index i, DEPTH
CHARGE’s cost for this index is at most:

159,

62
k=1

15

Using the above bound, DEPTH CHARGE’s insertion cost over all targeted
indices is at most:

S g?w g?w S

Z 7+€sz §87+€MZJZZ

=1 =1
62

where the second line follows from noting that ">, x; = b. O]

Lemma 2. Suppose that the adversary inserts b > 1 objects in s > 1 targeted
indices. Then, B > g—z.

Proof. Assume that the adversary’s bad objects are all added before any
good objects are added to the table; this only reduces the adversary’s cost.
Furthermore, observe that the adversary’s cost from the placement of bad
objects in targeted indices is minimized when these b objects are spread as
evenly as possible over the s indices. To see this, we describe two cases.

Case 1: b (mod s) = 0. Consider any two indices, each with x = b/s
bad objects. In this case, the adversary’s cost is 2> 7 | i. In contrast, if we
move p bad object, where p € [1,z] from one of these indices to the other,
the adversary’s cost is) 71 j + >+ P k. Note that the first cost minus the
second cost is:

22i—<2j+2k>
=((z—p+D)+..+2)—((x+1)+ ..+ (x+p))
<0.

Therefore, deviating from the case where all indices have the same number
of bad objects will increase the adversary’s cost.

Case 2: b (mod s) # 0. In this case, consider that the inserted bad objects
are spread as evenly as possible. Then, we will show that deviating from this
arrangement can only increase the adversary’s cost. Under this spreading of
bad objects, there will be indices with = b/s bad objects and at least one
index with at most x + 1 bad objects; thus, there can be at most a difference
of 1 bad object between any two indices. Consider any a “small” index and

16

a “large” index with z and x + 1 bad objects, respectively. In this case, the
adversary’s cost is Sr_ h+ ST,

Moving p bad objects from the small index to the large index means that
the adversary’s cost is now 3 777 j + Z}(ﬁx;l)er k. Note that the first cost

minus the second cost is:

T z+1 (z+1)+p T—p
D oh4> i J+ Yk
h=1 i=1 j=1 k=1

=((z—p+1)+..+(x+1))
—((z+1)+...+(x+1+p)
< 0.

Again, deviating from the case where all indices have the same number of
bad objects will increase the adversary’s cost.

Given this case analysis, the adversary’s cost over the s targeted indices
is at least:

S

= (5) (/s)?
> () (max{L, (b/s) = 1}

S b\>
> () ()
2 2s
b2
85
where the first line follows since ¢ is a monotonically increasing function, and
the third line holds since b > s by definition of targeted indices and |x| >
x — 1. The fourth line follows by noting that, if max{1, (b/s) — 1} = 1, then
b/s <2 and so b/(2s) < 1, which justifies the inequality. Else, if b/s —1 > 1,
which implies b/(2s) > 1 iff (b/s) — (b/2s) > 1 iff (b/s) — 1 > b/(2s), which
again justifies the inequality (although, it is strict in this case). O

Lemma 3. The RB cost to DEPTH CHARGE for insertions into targeted

indices is O (fﬁ/[\/%)

17

Proof. By Lemma 2, B > g—z for placing b objects into targeted indices.
Solving for b yields b < v/8sB. Next, we use Lemma 1, which shows that the

RB cost to DEPTH CHARGE due to the targeted indices is at most > M +lp0.
Thus, DEPTH CHARGE s cost for good objects in targeted indices is at most:

=M b
2+M

S T +£M\/85
~0 (eM\/stﬁNsB)

where the second step holds by substituting the upper bound on b, and the

third step holds since s < b. O]

Define a good index to be an index containing only good objects. Having
analyzed the cost to targeted indices, we now analyze the additional cost to
DeEPTH CHARGE due to good indices.

Lemma 4. With high probability, the RB cost to DEPTH CHARGE for good
insertions into good indices is O(Z(3,).

Proof. There are at most Z good indices, each with ¢;; good objects. The
resource burning cost to DEPTH CHARGE for at most ¢ such indices is at
most:

Lar
I (Z@) =0 (16))
i=1
which completes the argument. O]

We can now bound the total RB cost to DEPTH CHARGE over the Z inser-
tions.

Corollary 2. The total RB cost to DEPTH CHARGE for good insertions is:
O((x/IB + I) @) .

Proof. This follows directly by adding up DEPTH CHARGE’s cost incurred
by all targeted indices and good indices as derived in Lemmas 3 and 4,
respectively, and noting that Z > s. O

18

3.2. Single and Amortized Requests

We start by obtaining an upper bound on the longest list that can be
created by the adversary, which in turn, provides an upper bound on the RB
cost and latency for any single query. Note that this bound holds regardless of
whether the corresponding object exists in the hash table, which establishes
Property 1 in Theorem 1.

Lemma 5. The mazximum number of bad objects in any list is O(\/E) and,
with high probability, the RB cost and latency for any single query is O (\/E + €M> .

Proof. The cost to the adversary is minimized if its bad objects are inserted
in a list ahead of any good objects; thus, the cost for b bad objects is at least
Z?’:l 7. Given that the adversary spends B, the maximum number of bad
objects b that can be placed in an index satisfies the following equation:

b
B>>j
j=1
> b%/2

and solving for b yields b < v/2B. Noting that there are at most £5; good
objects in this list establishes the maximum number of bad objects in the
list. Finally, since the RB cost and latency for a query are both equal to the
depth of the associated object, the claim follows. O

Next, we examine the cost to our algorithm under a sequence of @ good
queries, whose corresponding objects exist in the table. We analyze the MTF
heuristic to show that the adversary must continually incur an RB cost in
order cause bad latency for Q.

Setup and Argument Overview. We first focus on a single list and the
subsequence of ¢ good queries that involve this list: we denote these queries
by Q1,Q2, ..., Q, for the queried (good) objects 01,09, ...,0,. We can later
aggregate the costs to DEPTH CHARGE over all lists to arrive at our final
claim.

A complication arises due to the changing position of good objects over
time. For example, once a good object o, is queried under @, for 1 <r < g,
we must keep track of 0., so that we can charge DEPTH CHARGE the correct
amount if it is queried again later; simply assuming the object has an RB cost

19

HoL

19 Qo

|

0000000

S
K

increases
depth by 2

@)

o ; o
@) 3m ©
@) @)
s@ Qo @)
; @)

@)

o

T o—

@ |
© : ,

80 O «—ToL 8 8

List before round r. : Adversary performs d, = 2 bad queries, Object o, is moved to front, which
' increasing depth for 0, and o,_, by 2; each H empties its wallet. Wallets for
of their wallets increases by $2. the 0,and o,_; then increase by $1.

Figure 2: An illustration of the query analysis for some intermediate round r. Green and
red balls represent good and bad objects, respectively. The amount of money in a wallet
is depicted by the number of coins.

and latency equal to the list length would result in poor bounds. Additionally,
queries prior to @), do not only increase the depth of o,, but also every other
object in the list (except for the object at the ToL), thus increasing their
query cost and latency. This increase in depth is illustrated in Figure 2.

As discussed in Section 1.4, we use amortized analysis to handle such
complications. Specifically, we use the accounting method, where we track
DePTH CHARGE’s cost by letting each good object have a conceptual “wal-
let”; in this section, we speak of cost in terms of generic dollars. When
queried, the good object pays for this query with dollars from its wallet. The
total amount of money placed in the wallets of all good objects provides an
upper bound on DEPTH CHARGE’s RB cost and latency for queries.

Initially, each wallet holds a dollar amount equal to the insertion cost
in its list. For the purposes of our accounting-method analysis, this means
that when o, is originally inserted, DEPTH CHARGE conceptually pays L+ 1
dollars for the insertion and another L+1 dollars as a down-payment towards
its next query, where L is the list length immediately prior to the insertion
of 0,. Thus, the RB cost for the first query of o, is at least partially paid
for, since o,’s wallet holds dollars equal to its depth when inserted. These
extra L + 1 dollars are charged to the insertion of o,; this is captured by
Corollary 2.

Defining Rounds. To analyze attacks on the use of MTF in a single list, we
consider a sequence of rounds also indexed by r, for r = 1,...,q. Round r
starts with the adversary selecting an integer value d,, > 0 and moving d,. bad

20

objects to the HoL via d, queries, which the adversary pays for.> For each
good object in this list, DEPTH CHARGE places a dollar amount into each
wallet equal to the increase in the depth of the corresponding good object,
which is upper bounded by d,. Then, query @, is executed, which brings the
queried good object o, to the HoL. and reduces o,’s wallet to zero. Next, we
insert an additional 1 dollar into each of the wallets of all good objects in the
list whose depth increased by 1 by bringing o, to the HoL, and also place an
additional 1 dollar into o,’s wallet. After these actions are completed, round
r ends.

Figure 2 illustrates the query analysis for some intermediate round r. In
Figure 2 (left), the hash table’s state at the end of previous round r — 1,
where object 0,_1 resides at the HoL and the good objects hold $1, $5, and
$8 in their respective wallets. In Figure 2 (center), the adversary chooses
d, = 2 and so executes 2 bad queries, which increases the depth of the first
two good objects by 2 (and does not impact the good object already at the
ToL). In Figure 2 (right), a query for object o, is executed, which empties its
wallet corresponding to the cost of 7 for this query. This results in a depth
of 1 for o,, while increasing the depth of the second good object from the
HoL by 1; therefore, DEPTH CHARGE adds $1 to each of their wallets (but
not to the wallet of the good object at the ToL). Thus, round r ends with
each good object holding an amount of money at least equal to its current
depth.

Payments by DEPTH CHARGE at the end of each round allow us to main-
tain the following invariant in our amortized analysis: At the end of each
round, for every good object, the amount of money in the good object’s wallet
1s at least equal to its depth. We leverage this invariant in our analysis of
DeEpTH CHARGE’s RB cost and latency.

Finally, over all rounds, the adversary may schedule good and bad in-
sertions arbitrarily. These insertions do not increase the depth of any good
object in a list, since objects are inserted at the ToL. Consequently, DEPTH
CHARGE’s RB cost and latency for good insertions in any list can be ac-
counted for separately in our analysis.

Our next lemma considers the subsequence of queries in a single list of

5The adversary can never increase the depth of a good object to more than the its
corresponding list length; however, the adversary can perform as many bad queries as it
wishes, i.e. it can set d, to any non-negative value.

21

the hash table. We note that deletions are no worse than any queries, since
deletions can only decrease the depth of a good object. Thus, for ease of
presentation, our analysis only argues about insertions and queries, even
though the statement of our final result will include deletions.

Lemma 6. Consider any fixed list at index © in the hash table and suppose
this list is involved in q; good queries whose corresponding objects exist in
the table. Let A7 be DEPTH CHARGE’s total RB cost to insert the good
objects in list i. Let B; be the cost to the adversary for bad queries and bad
insertions in list i. For all of the q; queries, the total RB cost and total
latency for DEPTH CHARGE is at most:

Proof. Our aim is to guarantee that, prior to round r > 1, each good object
has a number of dollars in its wallet equal to its depth. Given this, we then
argue that the number of dollars in each object’s wallet can pay for the cost
of querying the object; notably, this cost can be either RB cost or latency,
since they are both equal to the object’s depth.

Round 1. We first prove that, for each good object, the depth is at most the
number of dollars in the corresponding object’s wallet. Initially, sometime
prior to @)1, 0 is be inserted (since, by assumption, it exists in the table
when @) is executed). The wallet of 0; contains a number of dollars equal to
its depth when o; is inserted. This is done by having o; pay 2(L + 1) when
inserted, where L is the list length immediately prior to the o;’s insertion.
The first L + 1 dollars pay for the insertion, while the extra L + 1 dollars
are held in the o,’s wallet to help pay for the cost when it is next queried.

Any increase in depth experienced by good objects due to d; bad queries
in round 1 results in a matching number of dollars added to each wallet. Thus,
when (), is executed, 0;’s wallet has sufficient funds to pay for the latency of
the query. Object 0, moves to the HolL, and every good object whose depth
increased by 1, along with o;, has 1 dollar added to its corresponding wallet.
These deposits to the wallets ensures that the invariant holds at the end of
round 1.

Round > 2. At the end of round r—1, for r > 2, each good object in the list
holds a number of dollars at least equal to its depth. Thus, in round r, o, has
sufficient funds in its wallet to pay for the RB cost of @),.. The adversary’s d,
bad queries increase the depth of each good object by at most an additional

22

d,., and @), results in all other good objects increasing their depth by at most
1. Since DEPTH CHARGE puts dollars in each good objects’ wallets equal to
the corresponding increase in depth due to bad queries, the invariant holds
at the end of round r.

Total Cost. DEPTH CHARGE pays the following. First, the cost for all
good insertions is A™. Second, the algorithm pays for all the increases in
depth over all rounds for all ¢; good objects in this list, which amounts to at
most £; Y " (d, + 1) dollars.

In contrast, the total RB cost to the adversary is at least:

(1)

vV
S
TR
HMS?
N
N——

(V)

where the last line follows from Jensen’s inequality for convex functions. By
substituting into the algorithm’s cost, we have that DEPTH CHARGE pays
at most:

qi qi
.Aiins + Ez Z(dr + 1) = A;ns + Eiqi + Ez Z dr

r=1 r=1
= A"+ ligi + 0/ 2¢:8;

where the second line follows by solving for >.% | d, < \/2¢;B; in Equation 1.
Since A is measured in RB cost, this concludes the bound on RB cost.

To derive total latency, recall that the RB cost for an insertion equals the
depth of the object being inserted. In other words, A" equals the sum of the
depths of the good objects when they are inserted. Thus, the extra dollars
can also be viewed as being stored in o0;’s wallet to help pay the latency when
the object is next queried. This leads to the same bound on latency. O

We can now account for the algorithm’s total RB cost and total latency for
all good queries Q.

23

Lemma 7. The total RB cost and the total latency of DEPTH CHARGE due
to the Q queries is:

O ((I+ O+ (ZT+ Q)B) @) :
Proof. Let S denote the indices of the hash table where at least one good
query takes place. For ¢ € S, ¢; is the number of good queries that occur in
this list; A is algorithm’s RB cost to insert the good objects in list ¢; and
B; be the amount spent by the adversary on bad queries in this list.
By Lemma 6, over all good queries, the total RB cost and the total latency
are each at most:

Z ("41“ + 4 (%’ + 2%’&))

€S

<> (At (0 + V20B;))
icS
< Z Aizns‘i“«gMZ gi +lary |2 (Z Bi) (Z Qi>

i€S €S i€S i€S

< (z A) i+t (0-+ v2B0)

i€S

=0 (1+VIB) &+ ((Q+VaB))

where the first line follows since ¢; < ¢;;. The second line is obtained via

the Cauchy—Schwarz inequality (3.5 VBiv/@ < \/>.; Bi >.; ¢;). The third

line is derived from noting » . ¢ ¢ = Q and), ¢ B; < B. The fourth line
follows from Corollary 2, which states that >, ¢ A = O((Z + VIB)(3,).

We can rewrite the last line of our above bound on the total RB cost and
total latency as:

O((z+Q+VB(VI+VQ))8)

By Jensen’s inequality for concave functions:

VI+VQ<V2(T+9Q)
=0(VI+9Q)

from which the claimed result follows. O

24

We are now ready to bound the total RB cost and the total latency for
all good insertions, along with all good queries and good deletions whose
corresponding objects are in the hash table. Corollary 3 establishes the
expression in Property 2 of Theorem 1.

Corollary 3. FEach of the total RB cost and the total latency for DEPTH
CHARGE 1is:

O((Z+Q+D+\/(I+Q+D)B>E§W>.

Proof. Adding the cost from all good insertions in the table, given by Corol-
lary 2, alters the asymptotic cost given in Lemma 7. Then, since (as dis-
cussed earlier) deletions are no more costly than queries, we may replace Q
with O + D to obtain the result. O

3.3. Randomly Queried Indices

Note that Corollary 3 addresses a challenging setting: deriving worst case
bounds where a significant attack may be underway and the good requests are
scheduled by the adversary. We conclude this section on a more optimistic
note in regards to) queries that occur in randomly chosen indices. Recall
(from Section 1.3) that ¢; is the maximum number of good objects that are
ever in bin 4 and that £,. = (1/t)3.'_, £;. We show that when Q is large
relative to B and /), the average query cost is O(,,.) in expectation.

This result implies that, if £,,. = O(1) and the adversary does not launch a
significant attack, then we should expect per-query performance that matches
that of standard hash tables in benign settings. The following result estab-
lishes Property 3 of Theorem 1.

Lemma 8. Consider () queries where the corresponding objects belong to
indices of the hash table chosen u.a.r.. For Q > (%,B, the average cost per
query is O(L,,.) in expectation.

Proof. By Lemma 6, the RB cost and latency for the i-th index are each at
most:

t; (Qz + 2@151')
where ¢;, ();, and B; are the number of good objects, number of good queries,

and adversarial cost in the i-th index. Given that each query occurs in an

25

index selected uniformly at random, in expectation over (); the RB cost and
latency are each at most:

GEQ)] + /2B, E[\/Qi] < 6:(Q/t) + lin/2B,\/Q]t

where the second step holds since F[Q;] = Q/t, and by applying Jensen’s
inequality for concave functions (i.e., E[p(X)] < ¢(E[X]), where ¢ is a
concave function and X is a random variable). Summing the above over all
bins, we can bound the total RB cost and latency for queries to be at most:

> (@Q/t+V2BA/QT)
=0(Ql,.)+ 0 (x/zQ/tZ&\/E>

since £,,. = (1/t) 3_'_, £;. Noting that ¢; < 5, this becomes:

0(Q) + 0 ((V2Q/t) tr/BJt)

Simplifying terms yields:

0 (Qluw+03y/QB).

For Q > (2,8, if this expectation holds, then the average cost per query is
O(,..), as claimed. O

4. Discussion and Future Work

We have designed and analyzed an RB-based defense against ACAs on
hash tables, where the cost of our defense grows slowly with the cost of the
adversary. To the best of our knowledge, our defense is the first to leverage
RB for defending against ACA attacks. In this section, we discuss aspects of
our defense, including those that touch on practical issues, as well as potential
future work.

26

4.1. Delay from Communication and RB

In our model (recall Section 1.2), communication occurs instantaneously,
while in practice there will be communication delay, either involving the time
required to transmit data between the client and server, or due to generating
RB solutions.

What happens if there is such communication delay? For example, con-
sider the following scenario where such delay exists. Upon an initial request,
the server sends a message to the client, specifying the hardness of an RB-
challenge, say x. The client solves this challenge, returns its solution to the
server, but the new hardness for the request has now been increased to x + 1.

Fortunately, the x amount of RB already performed by the client is not
wasted. RB work required to solve RB challenges is cumulative: the effort
required to solve x 1-hard challenges is equivalent to the effort required to
solve a single x-hard challenge. Consequently, if a client burns z units during
the initial request, they only need to burn one additional unit to solve a x4 1-
hard challenge; thus, no RB is wasted. Given this observation, the impact
of delay is equivalent to the case where the adversary inserts x bad objects
into the corresponding table index ahead of this client who then must solve
an x + 1 hard challenge, and our analysis accounts for this.

While this observation preserves our cost analysis, the number of messages
can increase. Specifically, in the worst case, the client must participate in
O(z) message exchanges with the server instead of O(1). To mitigate this,
we can have the server issue a puzzle of hardness 2/1°82(*)1 instead of . For
example, instead of the hardness values 1,2,3,4,5,6,7,8, ..., the server would
use 1,2,2,4,4,4,4,8, This preserves our cost analysis, to within a factor
of 2, and has the benefit that the hardness value changes much less often.
In particular, if the current hardness is 2 for 7 > 0, then 2° (valid) solutions
will be accepted before the hardness value increases. Consequently, a client
need only participate in O(log H) message exchanges with the server before
obtaining service, where H is the maximum hardness value for this operation.

Finally, we note that the delay from generating RB solutions could in-
crease the latency of hash table operations. However, this delay is small
when there is no attack. Under significant attack, the delay will grow, but
our algorithm will maintain the availability of the hash table, which would
otherwise be greatly reduced in the absence of a defense.

27

4.2. Challenges Become Too Hard

When it comes to denial-of-service attacks, there is no silver bullet against
a sufficiently powerful adversary. In contrast to prior results, our defense
provably increases the cost on the attacker, giving legitimate clients an
asymptotic advantage. Our defense is thus tailored to ACAs, given that
ACA attackers often use carefully chosen inputs (recall Section 1), rather
than a brute force attack that uses significant resource expenditure.

That said, our defense has limitations. Specifically, suppose the hardest
RB challenge any client can solve is m. Imagine an adversary that can
insert m objects into an index ahead of time, thus preventing any client from
performing operations on this index. If this occurs in a small number of
indices, then the hash table is still useful to many clients, as most operations
will still be available.

However, the situation can be taken to an extreme where the adversary
uses this tactic for most or all of the table indices, which would cost the
adversary Q(tm?), where ¢ represents the hash table size. Against such a
powerful adversary, new ideas seem to be required. To speculate on a pos-
sible solution, imagine that for an insertion operation, the hardness of a
challenge depends on the rate of operations, rather than on the chain length
at the corresponding index. Then, the adversary would have to continually
attack this index in order to prevent clients from executing operations at this
location in the table; otherwise, the hardness would decrease over time. This
may be a promising avenue for future work.

4.8. Lowering RB Costs in the Absence of Attack

In our algorithm, good clients incurs a non-zero cost, even in the absence
of an attack. To elaborate, even when B = 0, any client incurs an insertion
cost of O(F%;), where ¢;; is the maximum number of good objects possible
in an index. Similarly, for a query or deletion operation, a client incurs
O(yr) despite B = 0. While ¢3; = O(logn/loglogn) (see Oliveira (2021),
Kesselheim (2016), and Raab and Steger (1998)), it is worth considering
whether these costs can be reduced when there is no attack.

A potential solution is to alter the charging scheme. Specifically, we can
initiate RB challenges only after a threshold number of objects are inserted
into an index; say £,;. In the absence of an attack, w.h.p., the algorithm will
incur zero cost for insertion of O(¢);) objects in any index. Of course, during
an attack, the adversary may insert ¢j; objects into an index at no cost.
However, this does not greatly advantage the adversary, and we expect that

28

our asymptotic results remain valid. Similarly, query and deletion operations
would only incur an RB charge only if the corresponding object’s depth
surpasses the threshold beyond ¢j;. To the best of our knowledge, prior
resource-competitive algorithms do not achieve zero cost in the absence of
attack, which makes this an interesting approach to explore.

4.4. Additional Extensions

There are many directions for future work. First, our current approach
addresses fixed-size hash tables, which captures settings where there is no
need to resize the hash table, or it is not desirable to do so. However, can we
extend our approach to the case when legitimate system load is unpredictable
and there exist adequate server-side resources to resize many times?

Second, can we extend our approach to other data structures that employ
hash functions, such as Bloom filters? Similarly, decentralized data structures
other than those based on hash tables—such as skip graphs (see Aspnes and
Shah (2003))—might also benefit from a RB-based defense, offering greater
resilience for large-scale distributed systems.

Third, our upper bound on single requests may be pessimistic. Specif-
ically, our upper bound applies to any index, but consider if only a single
index is targeted by an adversary. In this case, our upper bound is loose for
the other indices. It may be worthwhile to purseu an analysis that captures
this aspect.

Finally, machine learning (ML) has become an important tool for im-
proving the performance of algorithms (see Mitzenmacher and Vassilvitskii
(2021) and Chakraborty et al. (2022)). In our setting, it would be interesting
to determine if ML predictions about whether a request is good or bad can
be leveraged to improve performance.

Acknowledgements. This work is supported by NSF awards CNS-2210299,
CNS-2210300, and CCF-2144410.

References

Abadi, M., Burrows, M., Manasse, M., Wobber, T.; 2005. Moderately
hard, memory-bound functions. ACM Transactions on Internet Technol-
ogy (TOIT) 5, 299-327.

29

Ali, I.M., Caprolu, M., Pietro, R.D., 2020. Foundations, properties, and
security applications of puzzles: A survey. ACM Computing Survey 53,
1-38.

Altmeier, C., Mainka, C., Somorovsky, J., Schwenk, J., 2016. AdIDoS—
adaptive and intelligent fully-automatic detection of denial-of-service
weaknesses in web services, in: Proceedings of the 10th International Work-
shop on Data Privacy Management, and Security Assurance, pp. 65-80.

Askitis, N., Zobel, J., 2011. Redesigning the string hash table, burst trie,
and BST to exploit cache. Journal of Experimental Algorithmics (JEA)
15, 1-1.

Aspnes, J., Shah, G., 2003. Skip graphs, in: Proceedings of the 14" Annual
ACM-STAM Symposium on Discrete Algorithms (SODA), pp. 384-393.

Atre, N., Sadok, H., Chiang, E., Wang, W., Sherry, J., 2022. Surgeprotec-
tor: Mitigating temporal algorithmic complexity attacks using adversarial
scheduling, in: Proceedings of the ACM SIGCOMM 2022 Conference, pp.
723-738.

Augustine, J., King, V., Molla, A.R., Pandurangan, G., Saia, J., 2019.
Scalable and secure computation among strangers: Resource-competitive
byzantine protocols. arXiv preprint arXiv:1907.10308 .

Aumasson, J.P., Bernstein, D.J., 2012. SipHash: a fast short-input PRF, in:
Proceedings of the 13th International Conference on Cryptology in India
(INDOCRYPT), Springer. pp. 489-508.

Aura, T., Nikander, P., Leiwo, J., 2000. Dos resistant authentication with
client puzzles, in: Revised Papers from the 8th International Workshop on
Security Protocols, Springer-Verlag, Berlin, Heidelberg. p. 170-177.

Bar-Yosef, N., Wool, A., 2007. Remote algorithmic complexity attacks
against randomized hash tables, in: Proceedings of the International Con-
ference on E-Business and Telecommunications (ICETE), pp. 162-174.

Bender, M.A., Farach-Colton, M., Johnson, R., Kraner, R., Kuszmaul, B.C.,
Medjedovic, D., Montes, P., Shetty, P., Spillane, R.P., Zadok, E., 2012.
Don’t thrash: how to cache your hash on flash. Proc. VLDB Endow. ,
1627-1637.

30

Bender, M.A., Fineman, J.T., Gilbert, S., Young, M., 2016. How to Scale
Exponential Backoff: Constant Throughput, Polylog Access Attempts, and
Robustness, in: Proceedings of the 27" Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 636-654.

Bentley, J.L., McGeoch, C.C., 1985. Amortized analyses of self-organizing
sequential search heuristics. Communications of the ACM 28, 404-411.

Borisov, N., 2006. Computational puzzles as Sybil defenses, in: Proceed-

ings of the 6" IEEE International Conference on Peer-to-Peer Computing
(P2P), pp. 171-176.

Cai, X., Gui, Y., Johnson, R., 2009. Exploiting UNIX file-system races
via algorithmic complexity attacks, in: 2009 30th IEEE Symposium on
Security and Privacy, IEEE. pp. 27-41.

Cercone, N.; 1988. Finding and applying perfect hash functions. Applied
Mathematics Letters 1, 25-28.

Chakraborty, T., Islam, A., King, V., Rayborn, D., Saia, J., Young, M., 2022.
Bankrupting DoS attackers. arXiv preprint arXiv:2205.08287 .

Chakraborty, T., Saia, J., Young, M., 2024. Defending hash tables from
subterfuge with depth charge, in: Proceedings of the 25th International
Conference on Distributed Computing and Networking, pp. 134-143.

Chang, R., Jiang, G., Ivancic, F., Sankaranarayanan, S., Shmatikov, V.,
2009. Inputs of coma: Static detection of denial-of-service vulnerabili-
ties, in: Proceedings of the 22nd IEEE Computer Security Foundations
Symposium, pp. 186-199. doi:10.1109/CSF.2009.13.

Chen, H., Zheng, C., 2020. Broadcasting competitively against adaptive ad-
versary in multi-channel radio networks, in: 24th International Conference
on Principles of Distributed Systems, OPODIS, pp. 22:1-22:16.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2022. Introduction
to algorithms. 4th ed., MIT press.

Crosby, S.A., Wallach, D.S., 2003. Denial of service via algorithmic com-
plexity attacks, in: 12th USENIX Security Symposium (USENIX Security
03).

31

Czubak, A., Szymanek, M., 2017. Algorithmic complexity vulnerability anal-
ysis of a stateful firewall, in: Proceedings of 37th International Conference
on Information Systems Architecture and Technology (ISAT), pp. 77-97.

Dingledine, R., Mathewson, N., Syverson, P.F., et al., 2004. Tor: The second-
generation onion router., in: USENIX security symposium, pp. 303-320.

Dwork, C., Goldberg, A., Naor, M., 2003. On memory-bound functions for
fighting spam, in: Proceedings of the Annual International Cryptology
Conference, Springer. pp. 426-444.

Dwork, C., Naor, M., 1992. Pricing via processing or combatting junk mail,
Springer-Verlag, Berlin, Heidelberg. p. 139-147.

Dwork, C., Naor, M., 1993. Pricing via processing or combatting junk mail,
in: Proceedings of the 12 Annual International Cryptology Conference
on Advances in Cryptology, pp. 139-147.

Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K., 2015. Proofs of
space, in: Annual Cryptology Conference, Springer. pp. 585-605.

Falkner, J., Piatek, M., John, J.P., Krishnamurthy, A., Anderson, T., 2007.
Profiling a million user DHT, in: Proceedings of the 7" ACM SIGCOMM
Conference on Internet Measurement, pp. 129-134.

Franklin, J., Paxson, V., Perrig, A., Savage, S., 2007. An inquiry into the
nature and causes of the wealth of internet miscreants, in: Proceedings of

the 14H ACM Conference on Computer and Communications Security,
pp. 375-388.

Franklin, M.K., Malkhi, D., 1997. Auditable metering with lightweight se-
curity, in: Proceedings of the First International Conference on Financial
Cryptography, Springer-Verlag, Berlin, Heidelberg. p. 151-160.

Gilbert, S., King, V., Pettie, S., Porat, E., Saia, J., Young, M., 2014. (Near)
optimal resource-competitive broadcast with jamming, in: Proceedings of
the 26" ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 257-266.

Gilbert, S., Young, M., 2012. Making Evildoers Pay: Resource-Competitive
Broadcast in Sensor Networks, in: Proceedings of the 31" Symposium on
Principles of Distributed Computing (PODC), pp. 145-154.

32

Gilbert, S., Zheng, C., 2013. Sybilcast: Broadcast on the open airwaves,
in: Proceedings of the 25" Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 130-139.

Gupta, D., Saia, J., Young, M., 2018. Proof of work without all the work,
in: Proceedings of the 19" International Conference on Distributed Com-
puting and Networking (ICDCN).

Gupta, D., Saia, J., Young, M., 2020. Resource burning for permissionless
systems, in: Proceedings of the International Colloquium on Structural
Information and Communication Complexity, Springer. pp. 19-44.

Gupta, D., Saia, J., Young, M., 2023. Bankrupting sybil despite churn.
Journal of Computer and System Sciences 135, 89-124.

Hauke, N.,; Renardy, D., 2019. Denial of service with a fistful of packets:
Exploiting algorithmic complexity vulnerabilities. Black Hat USA .

Heimes, C., 2013. Alternative counter measures against hash collision
DoS. https://peps.python.org/pep-0456/#alternative-counter-measures-
against-hash-collision-dos.

Hester, J.H., Hirschberg, D.S., 1985. Self-organizing linear search. ACM
Computing Surveys 17, 295-311.

IBM, 2023. Considerations for sizing hash tables.
https://www.ibm.com/docs/en/iirfz/11.3.07topic=
analysis-considerations-sizing-hash-tables.

Kesselheim, T., 2016. Load balancing and chernoff bounds. www.mpi-
inf.mpg.de/fileadmin/inf/d1/teaching /summer16 /random/loadbalancing.pdf.

Khan, S., Traore, 1., 2005. A prevention model for algorithmic complexity
attacks, in: Second International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), Springer. pp. 160—
173.

King, V., Saia, J., Young, M., 2011. Conflict on a Communication Chan-
nel, in: Proceedings of the 30" Symposium on Principles of Distributed
Computing (PODC), pp. 277-286.

33

Kirrage, J., Rathnayake, A., Thielecke, H., 2013. Static analysis for regular
expression denial-of-service attacks, in: Proceedings of the 7th Interna-
tional Conference on Network and System Security (NSS), pp. 135-148.

Koblitz, N., Menezes, A.J., 2015. The Random Oracle Model: A Twenty-
Year Retrospective. Designs, Codes and Cryptography 77, 587-610.

Li, F., Mittal, P., Caesar, M., Borisov, N., 2012. SybilControl: Practical
Sybil defense with computational puzzles, in: Proceedings of the Seventh
ACM Workshop on Scalable Trusted Computing, pp. 67-78.

Lin, I.C., Liao, T.C., 2017. A survey of blockchain security issues and chal-
lenges. International Journal of Network Security 19, 653-659.

Lu, Y., Prabhakar, B., Bonomi, F., 2006. Perfect hashing for network appli-
cations, in: 2006 IEEE International Symposium on Information Theory,
[EEE. pp. 2774-2778.

Majewski, B.S., Wormald, N.C., Havas, G., Czech, Z.J., 1996. A family of
perfect hashing methods. The Computer Journal 39, 547-554.

Mecllroy, M.D., 1999. A killer adversary for quicksort. Software: Practice
and Experience 29, 341-344.

Metreveli, Z., Zeldovich, N., Kaashoek, M.F., 2012. CPHash: A cache-
partitioned hash table. ACM SIGPLAN Notices 47, 319-320.

Mitzenmacher, M., Vassilvitskii, S., 2021. Algorithms with Predictions. In
Beyond the Worst-Case Analysis of Algorithms. 'T. Roughgarden, Ed.
Cambridge University Press. doi:10.1017/9781108637435.

Munro, J.I., Papadakis, T., Sedgewick, R., 1992. Deterministic skip lists,
in: Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 367-375.

Nakamoto, S., 2008. Bitcoin: A peer-to-peer electronic cash system. http:
//bitcoin.org/bitcoin.pdf.

Namjoshi, K., Narlikar, G., 2010. Robust and fast pattern matching for
intrusion detection, in: Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), IEEE. pp. 1-9.

34

Neudecker, T., 2017. Bitcoin cash (BCH) Sybil nodes on the Bitcoin peer-to-
peer network. http://dsn.tm.kit.edu/publications/files/332/bch_
sybil.pdf.

Oikonomou, G., Mirkovic, J., 2009. Modeling human behavior for defense
against flash-crowd attacks, in: Proceedings of the IEEE International
Conference on Communications, pp. 1-6.

Oleksak, M., Miskovsky, V., 2022. Correlation power analysis of SipHash,
in: Proceedings of the 25th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), pp. 84-87.
doi:10.1109/DDECS54261.2022.9770139.

Oliveira, R., 2021. Lecture 4: Balls & bins.
cs.uwaterloo.ca/~rbolivei/courses/2021-spring-cs466 /lecture04.pdf.

Raab, M., Steger, A., 1998. “Balls into bins”—A simple and tight analysis, in:
International Workshop on Randomization and Approximation Techniques
in Computer Science, Springer. pp. 159-170.

Reviriego, P., Larrabeiti, D., 2020. Denial of service attack on cuckoo filter
based networking systems. IEEE Communications Letters 24, 1428-1432.
doi:10.1109/LCOMM. 2020.2983405.

Reviriego, P., Rottenstreich, O., 2020. Pollution attacks on counting bloom
filters for black box adversaries, in: Proceedings of the 16th Interna-
tional Conference on Network and Service Management (CNSM), pp. 1-7.
doi:10.23919/CNSM50824 .2020.9269076.

Reviriego, P., Ting, D., 2020. Security of hyperloglog (HLL) cardinality
estimation: Vulnerabilities and protection. IEEE Communications Letters
24, 976-980. do0i:10.1109/LCOMM.2020.2972895.

Rivest, R., 1976. On self-organizing sequential search heuristics. Communi-
cations of the ACM 19, 63-67.

Song, T., Yang, Y., Crowley, P., 2017. RwHash: Rewritable hash table for
fast network processing with dynamic membership updates, in: Proceed-
ings of the ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), IEEE. pp. 142-152.

35

Stoica, 1., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H., 2001.
Chord: A scalable peer-to-peer lookup service for internet applications,
in: Proceedings of the Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications (SIGCOMM), pp.
149-160.

Sun, X., Cheng, L., Zhang, Y., 2011. A covert timing channel via algorith-
mic complexity attacks: Design and analysis, in: 2011 IEEE International
Conference on Communications (ICC), IEEE. pp. 1-5.

Tobin, R.J., Malone, D., 2012. Hash pile ups: Using collisions to identify un-
known hash functions, in: Proceedings of the 7th International Conference
on Risks and Security of Internet and Systems (CRiSIS), pp. 1-6.

Von Ahn, L., Blum, M., Hopper, N.J., Langford, J., 2003. CAPTCHA:
Using hard Al problems for security, in: Proceedings of the International
Conference on the Theory and Applications of Cryptographic Techniques,
Springer. pp. 294-311.

Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D., Shenker, S., 2006.
DDoS defense by offense, in: Proceedings of the 2006 Conference on Ap-

plications, Technologies, Architectures, and Protocols for Computer Com-
munications (SIGCOMM), pp. 303-314.

Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D., Shenker, S.,
2010. DDoS defense by offense. ACM Transactions on Computer Sys-
tems (TOCS) 28, 3.

Wang, L., Kangasharju, J., 2013. Measuring large-scale distributed systems:
Case of BitTorrent Mainline DHT, in: IEEE 13th International Conference
on Peer-to-Peer Computing (P2P), pp. 1-10.

Wang, X., Reiter, M.K., 2003. Defending against denial-of-service attacks
with puzzle auctions, in: Proceedings of the 2003 IEEE Symposium on
Security and Privacy, pp. 78-92.

Waters, B., Juels, A., Halderman, A., Felten, E., 2004. New client puzzle
outsourcing techniques for DoS resistance, in: Proceedings of the 11th

ACM Conference on Computer and Communications Security (CCS), pp.
246-256.

36

Zamani, M., Saia, J., Crandall, J., 2017. TorBricks: Blocking-Resistant Tor
Bridge Distribution, in: International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS), Springer. pp. 426-440.

Zhang, G., Sanchez, D., 2019. Leveraging caches to accelerate hash tables
and memoization, in: Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pp. 440-452.

Zobel, J., Heinz, S., Williams, H.E., 2001. In-memory hash tables for accu-
mulating text vocabularies. Information Processing Letters 80, 271-277.

37

