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REDUCED ORDER MODELING FOR ELLIPTIC PROBLEMS WITH HIGH
CONTRAST DIFFUSION COEFFICIENTS

ALBERT COHEN'*, WOLFGANG DAHMEN?,
MATTHIEU DOLBEAULT' AND AGUSTIN SOMACAL'

Abstract. We consider a parametric elliptic PDE with a scalar piecewise constant diffusion coefficient
taking arbitrary positive values on fixed subdomains. This problem is not uniformly elliptic, as the con-
trast can be arbitrarily high, contrary to the Uniform Ellipticity Assumption (UEA) that is commonly
made on parametric elliptic PDEs. We construct reduced model spaces that approximate uniformly well
all solutions with estimates in relative error that are independent of the contrast level. These estimates
are sub-exponential in the reduced model dimension, yet exhibiting the curse of dimensionality as the
number of subdomains grows. Similar estimates are obtained for the Galerkin projection, as well as for
the state estimation and parameter estimation inverse problems. A key ingredient in our construction
and analysis is the study of the convergence towards limit solutions of stiff problems when diffusion
tends to infinity in certain domains.
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1. INTRODUCTION

1.1. Reduced models for parametrized PDEs

Parametric PDE’s are commonly used to describe complex physical phenomena. With y = (y1, .. ., yq) denot-
ing a parameter vector ranging in some domain Y C R¢, and u(y) the corresponding solution to the PDE of
interest, assumed to be well defined in some Hilbert space V', we denote by

M= {u(y) iy € Y}, (1.1)
the collection of all solutions, called the solution manifold.
There are two main ranges of problems associated to parametric PDEs:

(1) Forward modeling: in applications where many queries of the parameter to solution map y +— u(y) are
required, one needs numerical forward solvers that efficiently compute approximations @(y) with a pre-
scribed accuracy.
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(2) Inverse problems: when the exact value of the parameter y is unknown, one is interested in either recovering
an approximation to u(y) (state estimation) or to y (parameter estimation), from a limited number of
observations z; = ¢;(u(y)), possibly corrupted by noise.

Reduced order modeling is widely used for tackling both problems. In its most common form, its aim is to
construct linear spaces V,, of moderate dimension n that approximate all solutions u(y) with best possible
certified accuracy. The natural benchmark for measuring the performance of such linear reduced models is
provided by the Kolmogorov n-width of the solution manifold

dp( M)y = dim(igf):ndiSt(M’Vn)V (1.2)

that describes the performance of an optimal space. Here

dist(M, V,,)y, == sup inf |lu—v|y = sup ||lu— Py, ul,
uEM VEVR ueEM

where Py, is the V-orthogonal projector onto V,,. We refer the reader to [30] for a general treatment of n-widths.

While an optimal space achieving the above infimum is usually out of reach, there exist two main approaches
alming to construct “sub-optimal yet good” spaces. The first one consists in building expansions of the parameter
to solution map, for example by polynomials

un(y) = Y wy’, Y=yt (1.3)
VEAn

where A,, C N% is a set of cardinality n. The coefficients u, are elements of V and therefore, for all y € Y the
approximation u,(y) is picked from the space

V,, :=spanf{u, : v € A, }.

Notice that u,(y) is not the orthogonal projection Py, u(y) in this case, but u, (y) is easy to compute for a given
query y once the wu, have been constructed (usually through a high fidelity finite element solver). We refer to
[6,8-10,18,19,35] for instances of this approach.

The second approach is the reduced basis method [22,31,32], that consists in taking

Vy = Span{ul, R TA

where the u/ = u(y?) are particular solution instances corresponding to a selection of parameter vectors y/ € Y.
A close variant is the proper orthogonal decomposition method [17,37,38], where the reduced spaces are obtained
by principal component analysis applied to large training set of such instances. In the reduced basis method, the
parameter vectors y!,..., 4" can be selected by a greedy algorithm, introduced in [36] and originally studied in
[16]. For such a selection process, it is proved in [13,20] that if d,(M)y has a certain algebraic or exponential
rate of decay with n, then a similar rate is achieved by dist(M, V,,)y for the reduced basis spaces.

It follows that the reduced basis spaces constructed by the greedy algorithm are close to optimal. This is in
contrast to the spaces V,, spanned by the polynomial coefficients u, for which the approximation rate is not
guaranteed to be optimal. We refer to [7] for instances where reduced basis methods can be proved to converge
with a strictly higher rate than polynomial approximations. On the other hand, the polynomial constructions
(1.3) have certain numerical advantages. Namely, for several relevant classes of parametrized PDEs, it can be
shown that the parameter to solution mapping y — u(y) has certain smoothness properties that can be used to
obtain a priori bounds on the ||u, ||y without actually computing these norms. This allows an a priori selection
of an appropriate set A,, and the proof of concrete approximation estimates for the error sup, ¢y [[u(y) —un(y)[|v-
These estimates in turn provide an upper bound for d,, (M)y, and therefore for reduced basis approximations.
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1.2. Parametrized elliptic PDEs

One prototypal instance where the convergence analysis described above has been deeply studied is the
parametrized second order elliptic equation

—div(a(y)Vu(y)) = f inQ, wupg=0 ondQ, (1.4)

where 0 C R™ is the spatial domain, f € H~1(Q) is a source term, and a(y) has the affine form
d
a(y) 25‘5‘2%%‘» (1.5)
j=1

with @ and (1, ...,%q) some fixed functions in L ().

The corresponding solution u(y) € H}(Q) is defined through the standard variational formulation in H}(Q)
equipped with its usual norm. Up to renormalization, it is usually assumed that the y; range in [—1,1], or
equivalently Y = [—1,1]%. To ensure existence and uniqueness of solutions, one typically assumes that the
so-called Uniform Ellipticity Assumption (UEA) holds: for some fixed 0 < r < R < o0,

r < a(z,y) <R, reN, yevy, (1.6)

N

a(y) < R for all y € Y. Under this assumption,
is well defined from Y into H}(Q), with the

where a(z,y) = a(y)(x) = a(x) + 2?21 y;v;(z), or in short r
Lax—Milgram theory ensures that the solution map y — u(y
uniform bound

~—

C
[u@llay = 1Vu)lze < <, yev.
Here and throughout this paper
Cr = fllz-r (L.7)
It was proved in [9,35] that, under UEA, polynomial approximations (1.3) of given total degree converge sub-
exponentially: for A,, = {|v| < k} with n = (k;d), one has
sup [u(y) — un (9) |y < C" exp(—en'/?), (18)

yeY

Such sub-exponential rates show that the spaces V,, based on polynomial expansions or reduced bases perform
significantly better than standard finite element spaces, at least for a moderate number d of parameters. It is
possible to maintain a rate of convergence as d grows, and even when d = oo, when assuming some anisotropy
in the variable y; through the decay of the size of 1; as j — oo, see in particular [8,18,19] for results of this

type.
1.3. High constrast problems

The Uniform Ellipticity Assumption (1.6) implies that there is a uniform control on the level of contrast in

the diffusion function
maXgeQ a(a:, y) R

This assumption also plays a key role in the derivation of the above approximation results, since it guarantees
that the parameter to solution map has a holomorphic extension to a sufficiently large complex neighbourhood
of Y. In this case, a good polynomial approximation u,, may be defined by simply truncating the power series
> vend Uy’ leading to the estimate (1.8).

On the other hand, there exist various situations where one would like to avoid such a strong restriction on
the level of contrast. Perhaps the most representative setting is when the domain (2 is partitioned into disjoint
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subdomains {Q,...,Q4}, each of them admitting a constant diffusivity level that could vary strongly between
subdomains. This is typically the case when modeling diffusion in materials having multiple layers or inclusions
that could have very different nature, for example air or liquid versus solid. This situation can be encountered in
groundwater flow applications, where certain subdomains correspond to cavities, for which the diffusion function
becomes nearly infinite, as opposed to subdomains containing sediments or other porous rocks.

In such a case, we do not want to limit the contrast level. To represent this setting, we let

a(y)io, =Y, Yj €10,00] (1.10)

or equivalently a(y) = Z?:l yjXq,, which corresponds to the affine form (1.5) with @ = 0 and ¢; = Xq,, now
with

Y :=]0,00[% (1.11)
We take (1.11) as the definition of the parameter domain Y for the remainder of this paper. The solution u(y)
satisfies the variational formulation

d
Sy [ Vuls) - Vode = (Foo) sy 0 € Q) (1.12)

Jj=1

or equivalently —y;Au(y) = f as elements of H~'(Q;) on each Q;, with the standard jump conditions
[a(y)Onu(y)] = 0 across the boundaries between subdomains.

Let us observe that in this setting, it is hopeless to find spaces V,, that approximate all solutions u(y)
uniformly well. Indeed, the following homogeneity property obviously holds: for any y € Y and t > 0, one has

u(ty) =t tu(y). (1.13)

This property implies in particular that [|u(y)z; tends to infinity as y — 0, and so does [lu(y) — Pv, u(y)|
in general. In fact, this also shows that the solution manifold M is not relatively compact and does not have
finite n-widths.

In addition to this principal difficulty, let us remind that when using the spaces V,, in forward modeling, we
typically use the Galerkin method, that delivers the orthogonal projection onto V;, however for the energy norm

d
ol =" yj/ﬂ Vol da. (1.14)
j=1 i

This approximation is thus optimal in H{ (€), however up to the constant r(y)'/?

contrast.

, which deteriorates with high

The main contribution of this paper is to treat these issues, and derive approximation estimates that are

robust to high contrast, in the sense that they are independent of y € Y.

Due to the main objection coming from the homogeneity property (1.13), it is natural to look for uniform
approximation estimates in relative error, that is, estimates of the form

lu(y) — Pv,u)llmy <enllu@)lm, yevy, (1.15)
with lim,, .. &, = 0, and similarly for the | -[|,-projection Py u(y) of u(y) on V,, however in the form. Our

main results, Theorems 3.7 and 4.2, exhibit spaces V,, ensuring the validity of such uniform estimates with ¢,
having sub-exponential decay with n, similar to the known results under UEA.

Remark 1.1. High contrast problems have been the object of intense investigation, in particular with the
objective of developing techniques for multilevel or domain decomposition preconditioning [3,4,21] and a pos-
teriori error estimation [2,12], that are provably robust with respect to the level of contrast. We also refer to
[23,29] for the treatment of high-contrast problems by multiscale methods, in the context of hetereogeneous
media, see also [5]. To our knowledge, the present work is the first in which this robustness is established for
reduced modeling methods in the context of parametrized coefficients.
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1.4. Outline

Throughout this paper, we consider the parametrized elliptic PDE (1.4) with a(y) having piecewise constant
form (1.10) over a fixed partition. In view of the homogeneity property (1.13), we are led to consider the
subset

Y’ =1, 00[* (1.16)

of parameters corresponding to the coercive regime. Any result on relative approximation error that is established
for Y’ extends automatically to all of Y because of the homogeneity property. Accordingly, we let

B:={u(y):yeY'}. (1.17)

In Section 2, we start by proving that B is a precompact set of H} (). One crucial ingredient for this analysis
are the limit solutions of the so-called stiff problem, obtained as y; — oo for certain j € {1,...,d}.

In Section 3, we construct specific reduced model spaces for which the approximation estimate (1.15)
holds with €, decaying sub-exponentially. Our construction is based on partitioning the parametric domain
Y’ into rectangular regions and using a different polynomial approximations on each region. This results in
global reduced model space V,, for which the accuracy bound remains sub-exponential, however in the form
exp(fcnﬁ). A key ingredient for establishing these sub-exponential rates is the derivation of quantitative
estimates on the convergence of u(y) towards limit solutions defined in Section 2 as some y; tend to infinity.
These estimates are established under an additional geometrical assumption on the partition, similar results for
a general partition of 2 being an open problem.

In Section 4, we discuss the use of these reduced model spaces in forward modeling and inverse problems.
Our main result relative to forward modeling is that the estimate (1.15) also holds for the Galerkin projection
with the same exponential decay e,,. We show that such a result is only possible if V;, includes functions that
have constant values over some subdomains. For the state estimation problem, we follow the Parametrized
Background Data Weak (PBDW) method [14,27], and obtain recovery bounds that are uniform over y € Y in
relative error. For the parameter estimation problem, we introduce an ad hoc strategy that specifically exploits
the piecewise constant structure of the diffusion coefficient and obtain similar recovery bounds for the inverse
diffusivity.

We conclude in Section 5 by presenting some numerical illustrations revealing the effectiveness of the reduced
model spaces even in the high-contrast regime, as expressed by the approximation results.

2. UNIFORM APPROXIMATION IN RELATIVE ERROR

In this section we work under no particular geometric assumption on the partition {Qq,...,Q4} of ©, and
consider the solution manifold M defined by (1.1), where u(y) € H}(f2) is a solution to the elliptic boundary
value problem with variational formulation (1.12). Our objective is to show the existence of spaces V,, that
uniformly approximate M in the relative error sense expressed by (1.15).

2.1. Limit solutions and the extended solution manifold

Our first observation is that this collection can be continuously extended when y; = oo for some values of j,
through limit solutions of stiff inclusion problems. Such limit solutions have for example been considered in the
context homogeneization, see e.g. p. 98 of [24].

For this purpose, to any S C {1,...,d}, we associate the space

Vs :={ve Hj(Q): Vg, =0, je S} (2.1)

In other words, Vg consists of the functions from H{(£2) that have constant values on the subdomains ©; for
j € S (or on each of their connected components if these subdomains are not connected). It is a closed subspace
of Hi (). We decompose the parameter vector y according to

Y= (y57y56)7 Ys = (yj)jes and Yse = (yj)jeSC' (22)
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For any finite and positive vector yge, similar to the || - ||, norm (1.14), we may define
ol i= 3w [ 9o d (2.3
jese %%

which is a semi-norm on H}(f2), and a full norm equivalent to the Hi-norm on Vs. Also note that when
y = (ys,yse) is finite, one then has ||v||ys. = |v|l, for any v € V.

For any finite and positive vector yge, we define the function ug(ysc) € Vg as the solution to the following
stiff inclusions problem:

Z yj/ Vug(yse) - Voda = (f, v)H_leé, ve Vs (2.4)
jese 7%

The following result shows that this solution is well defined and is the limit of u(y), when ygc is fixed and
y; — oo for j € S. Note that the weak convergence is established in [24] (p. 98) and so we concentrate the proof
on the strong convergence.

Lemma 2.1. There exists a unique solution us(ys:) € Vs to (2.4), which is the limit in H} () of the solution
w(ys,yse) asy; — oo for allj € S.

Proof. Using the bilinear form (u,v) — > .csc yj fQj Vu - Vudz in the space Vg, Lax-Milgram theory implies
the existence of a unique solution us(ys:) € Vg to (2.4).

Consider now a sequence (y"),>1 € Y, with y2. = yse and y; — oo for all j € S. Denoting u, = u(y"), it is
readily seen that (uy,),>1 is uniformly bounded in H(} norm by C = C ¢!, where ¢ := min,>1 minigi<a y; > 0,
and that any weak limit of a sequence extraction is a solution to the variational equation (2.4). Therefore the
whole sequence (un)n>1 converges weakly to @ = ug(yse).

We finally prove strong convergence by writing

clen = i < [ alyI(un — 0P do
Q
R R TR W 1

_ 12
e (f, U>H71,H(} - ||u||y5c =0.

The above lemma allows us to readily extend the solution manifold by introducing
Y =10, 00]¢,
and N
M = {u(y) TS Y},

where we have formally set
u(y) = us(yse),

when y; = oo for j € S and y; < oo for j € S°. Note that when S = {1,...,d} the space Vg is trivial and one
has
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Remark 2.2. Although we do not make explicit use of it, it can be checked that despite the fact that y; = 0
is excluded in the definition of M, it indeed coincides with the closure of M in H}(Q) due to the fact that
lu()||y — 00 asy — 0.

Remark 2.3. More precisely, when some y; tend to zero, u(y) converges to the solution of the so-called soft
inclusions problem (see [24], Chap. 3), outside the corresponding subdomains ;. Here, due to the fact that the
approximation estimates that we prove further are in relative error, these other limit solutions are of no use in
our analysis.

2.2. A compactness result

As already observed in the introduction, the manifold M is not bounded in H}(Q) due to the homogeneity
property (1.13) and therefore not compact.
In order to treat this defect, we consider

Y’ = [1,00]%,

and the submanifold

B:= {u(y) (Y € }7'},
which is now bounded in Hg(£2), from the standard a priori estimate

Cy
min y;

)y < e

that is obtained by taking v = u(y) in the variational formulation (1.12), with Cy = || f|/g-1 as in (1.7). This
estimate trivially extends to ug(yse) when the y; have infinite value for j € S. In addition we have the following
result.

Theorem 2.4. The set B is compact in H} ().

Proof. Consider any sequence of vectors y™ = (y7,...,y7) € Y’ for n > 1. We need to prove that the corre-
sponding sequence of solutions (u(y™)),>1 admits a converging subsequence. For this purpose, we observe that
there exists a subset S € {1,...,d} such that, up to subsequence extraction,

lim y! =00, j€S,
n—oo
and
lim y =y; <oo, je€S°

n—00

Note that S could be empty, for instance in the case where the y7 are uniformly bounded for all j.

Let € > 0. Using the strong convergence result in Lemma 2.1, for all n > 1 there exists an auxiliary vector
y" such that y7' = y7 when y7' < oo, §7 < oo when yj' = oo, such that by having picked g7 large enough in the
second case

[u(y™) = w(@) gy <e/3.

In addition we may assume that y7' — oo for j € S. Next we introduce the vector y" such that ;' = y7 when
j € S and g} = y; when j € S¢. Applying again Lemma 2.1, we find that with ysc = (y;);jes<, one has

l[u(g™) — US(ySc)HHg <e/3,
for n sufficiently large. Finally we argue that

[u(g") = u(@) gy < /3,
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for n large enough. This is a consequence of the following variant of Strang’s first lemma (whose proof is similar
and left as an exercise to the reader) that says that for two diffusion functions @ and @, the corresponding
solution @ and u with the same data f satisfy

Crlla—allp-

[ =l gy < — .
Ho = Hun{dmin;a/min}2

il

We then apply this to @ := @, = a(y") and a := a,, = a(§"), observing that from their definition, ||@ — ||~ =
maxjese [§7 — yj| — 0 as n — oo. Therefore |[u(y") — us(yse)|| gy < € for n sufficiently large, which concludes
the proof. O

We next observe that any y € Y can be rewritten as

y =ty,

with § € Y’ and normalization ming; = 1, for some ¢ > 0, and from (1.13) one has u(y) = t~'u(y). This
motivates the study of the further reduced manifold

N = {u(y) cyey’, miny; = 1}, (2.5)

which is a subset of B.
One important observation is that the solutions contained in N are also uniformly bounded from below,
under mild assumptions on the data f.

Lemma 2.5. The set N is compact in H}(2). Moreover, one has the framing

i —1 < < .
i [1fey) < lu)lgg < Cr. (26)

for all u(y) € N.

Proof. The compactness of A/ follows from that of B, since N is a closed subset of B. For the framing, as
a(y) > 1 on Q, taking S = {j : y; = oo},

)iy < 3 w5 [ 190 do = (Ful)hgos g < Coluln.

jese

so [lu(y)||gz < Cf. Now take j € {1,...,d} such that y; = 1, and consider ¢ € H3(€;). Then

-y = [ ) Tods < [yl

which gives the result. |
In the sequel of this paper, we always work under the condition that the lower bound in (2.6) is strictly

positive
cf = 1r<nj12d ||fHH—1(Q].) > 0. (2.7)

Let us observe that when f is a function in L?(f2), this is ensured as soon as f is not identically zero on any of
the €1;. We thus have
0 <ecp < lu@llm < C, (2.8)

for all u(y) € N.
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Remark 2.6. The condition ¢y > 0 is in general necessary for controlling [|u(y)| 73 from below. Indeed assume

| fllzr-1(0,) = 0 for some j such that Q\ Q; is connected. Then taking y, = oo for k # j and y; = 1, we find
that u(y) € Vs with S = {;j}¢, which is equivalent to u(y) € H}(£2;) since it vanishes on the other sub-domains.
As || fllz-1(a,) = 0, we obtain u(y) = 0.

Remark 2.7. One also has the uniform framing in the energy norm since

0 <cp < llu@llmy < llu@llyse = /(g1 gy < C, (2.9)
for all u(y) € N, with S = {j : y; = oco}.

The framing (2.8) has  an implication on the existence of reduced model spaces that approximate uniformly
well all solutions u(y) € M in relative error.

Theorem 2.8. There exists a sequence of linear spaces (Vy,)n>1 such that dim(V,,) = n, and a sequence (€,)n>1
that converges to zero such that

lu(y) = Pv,u@)ll gz < enllu)llm (2.10)
forally € }7, where Py, is the H}(Q)-orthogonal projector onto V,,.

Proof. Since N is compact, there exists a sequence of spaces (V,,)n,>1 with dim(V},) = n and a sequence (04, )n>1
that tends to 0, such that

v =Py, vl <om, vEN.

Now let y € Y different from (00, ...,00), for which there is nothing to prove since u(oo,...,00) = 0, and let
t~1 = minj¢j<qy; < co. By homogeneity, t'u(y) = u(ty) € N, and therefore

lu(y) = Pv,u()ll gz = tlulty) — Pv,uty)ll g1 o) < ton.

On the other hand, [[u(y)m) = tlu(ty)llai @) > tcy by framing (2.6), which proves Theorem 2.8 with
En = (Tn/Cf. O

The above theorem tells us that we can achieve contrast-independent approximation in relative error. It is
however still unsatisfactory from two perspectives:

(1) It does not describe the rate of decay of €,, as the reduced dimension n grows. In practice, one would like to
construct reduced spaces V,, such that this decay is fast, similar to the exponential decay obtained under
UEA.

(2) The approximation property is expressed in terms of the orthogonal projection Py, . In applications to
forward modeling, we approximate the solution u(y) in the space V;, by the Galerkin projection P{jnu(y).
We thus wish for uniform estimates also for such approximations.

These two problems are treated in Sections 3 and 4 respectively.

3. APPROXIMATION RATES

_ Our construction of efficient reduced model spaces is based on a certain partitioning of the parameter domain
Y’ associated to the manifold B. To any ¢ = (¢y,...,¢;) € Nd we associate the dyadic rectangle

Ry = [25,201] x o x [20 2fat]) (3.1)
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FIGURE 1. Partition of [0,1]¢ by the inverse rectangles R, ' in the case d = 2.

For a positive integer L to be fixed later, we modify the definition of R, by replacing the interval [2¢,2% 1] by
[2%, 0o] when ¢; = L for some j. This leads to the partition

Y= |J R (3.2)
tef{0,...,L}4

This partition is best visualized in the inverse parameter domain by setting
z=(21,...,2d) = (yl_l,...,ygl) e [0,1]4. (3.3)

Then, the inverse rectangles R[l split the unit cube, as shown on Figure 1. In particular, the rectangles touching
the axes correspond to rectangles R, of infinite size.
We build reduced model spaces through a piecewise polynomial approximation over this partition. In other

words, for each ¢ € {0,...,L}?, we use different polynomials
wk(y) =Y ueny’,
lvI<k

of total degree k for approximating u(y) when y € Ry. This leads to a family of local reduced model spaces
Ve r = span{ug,, : [v| <k}, (3.4)

that can be either used individually when approximating wu(y) if the rectangle Ry containing y is known, or
summed up in order to obtain a global reduced model space.

In this section we show that this construction yields exponential convergence rates in (1.15), similar to those
obtained under a Uniform Ellipticity Assumption. This requires a proper tuning between the total polynomial
degree k and the integer L that determines the size of the partition. In the study of local polynomial approxima-
tion, we treat separately the inner rectangles for which £ € {0,--- , L — 1} and the infinite rectangles for which
one or several ¢; are equal to L. The estimates obtained in the latter case rely on the additional assumption
that the partition has a geometry of disjoint inclusions.

3.1. Polynomial approximation on inner rectangles

Inner rectangles Ry are particular cases of rectangles of the form

R =a1,2a1] X -+ X [ag, 2a4], (3.5)
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for some a; > 1. The following lemma, adapted from [7], shows that one can approximate the parameter to
solution map in the [ - [, and || - || ; norms on such rectangles, with a rate that decreases exponentially in the
total polynomial degree.

Lemma 3.1. Let R be any rectangle of the form (3.5). Then, for each k > 0, there exist functions u, € Hg(£2)
such that

uly) — Y wy’|| <C37F, yeR, (3.6)
lv|<k y
where C' := %Cf, and
uly) = Y wy’| <C37F, yeR, (3.7)
lv|<k H%

where C := %Cf.

Proof. The exponential rate is established in [7] for a single parameter domain with uniform ellipticity assump-
tion. Here the difficulty lies in the fact that we want the same estimate for all parametric rectangles R and thus
without control on the uniform ellipticity. Still the technique of proof, based on power series, is similar.

The elliptic equation —div(a(y)u(y)) = f may be written in operator form

Ayu(y) = fa
where the invertible operator A, : Hj () — H~1(Q) is defined by

(Ayv,w)H_17H5 = /a(y)Vv Vwdz = (v,w),.
We introduce
Y= §(a aq)
Y= 9 1y---,0d),
the center of the rectangle, and write any y € R as
y=9+9,
where the components §; of § vary in [—a;/2,a;/2]. We may write A, = Ay + Z?Zl 9;A;, where the operators
Aj: H} () — H™(Q) are defined by
(Ajv,w) HY ::/ Vv - Vwdz.
; 0,

This allows us to rewrite the equation as
(I + B(®))uly) = 9,
where g := Ay_lf € HY(Q) and B()) = ijl ﬂjAy_lAj acts in H} (). We then observe that

d d
<B(g)vvw>g = <A§B@)’an>H71,Hé = Zgj<Ajv7w>H71,Hé = Zg]/ﬂ Vv - Vwdz,
=1 =1 i

and therefore, since |7;| < 37,

d
- 1 _ 1
(B@w.w)y <5377, < 5 lolgllwll,
j=1

/ Vv -Vwdzx
Q;
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which shows that || B(7)|l7—y < &. We may thus approximate (I + B(f)) ! by the partial Neumann series

>

=0

which is a polynomial in § of total degree k. The corresponding polynomial approximation to u(y) is given by

k

I
K d

Neu(y) = > (=1)'B@)'g =D (D' D454 | 9= > wit",
=1

1=0 1=0 lv|<k

and coincides with the truncated power series of 4(g) := w(y + §) at § = 0, that is,

vy = EB”U@), vli= Hl/j!.

It can be rewritten in the form

Niu(y Z uyy”.

lv|<k

One has

i) ~ Nty < 3|55 9Hy<< )HA ) =24

and

a5t = szt roazts), = @) sy < Colu@ly < C3

where the last inequality follows from framing (2.6) since a(g) > 1. This proves the estimate

- Z uuyy < Cg_kv Yy € Ra
lvI<k 7

with C := 1C;. Using the inequalities
402 1
lolly < glvl  ve Ho(Q), y R,

and )
vl < gllvH%’ v e Hy(Q),

we obtain the estimate (3.6) and (3.7) with the modified multiplicative constants.

(3.8)

O

Remark 3.2. The above lemma shows that the set Mg := {u(y) : y € R} can be approximated with accuracy

C3~F by the space
Vg :=span{u, : |v| < k}.

The dimension of Vg is at most (kﬂl) however, as noticed in [7], it can in fact be seen that

) k+d—1
< .
dlm(VR)\< J_1 )

(3.9)

(3.10)
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This stems from the fact that the operators defined in the above proof satisfy the dependency relation

d
Ay = T4,
=1

and therefore, one can rewrite A, as

[

Ay = 1+ §a/T) Ay + > (05 — §aT;/Ta) Aj-

1

<

k+d—1

o1 ) independent terms.

Using this form, the partial Neumann sum Nju(y) has at most (

We shall also make use of the following adaptation of the above lemma to the approximation of the limit
solution map yge — ug(yse), defined by (2.4). Its proof is an immediate adaptation of the previous one and is
therefore omitted.

Lemma 3.3. Let S C {1,...,d}, and for some a; > 1, let R be a rectangle of the form

R = H [CLj,QCl]‘}. (3.11)

jese

Then, there exists functions u, € Vg such that

US(ZUSC) - Z Uuygc < CS_k7 Yse S Ra (312)
lvI<k ,
Yse
where C := %Cf, and
us(yse) — Z UpYse <037%  ysc €R, (3.13)
lv|<k Hé
where C' := %Cf.

3.2. Polynomial approximation on infinite rectangles

We now consider the infinite rectangles R, corresponding to the £ such that some of the ¢; equal L. We
define
S:={j:{; =L}, (3.14)

the set of such indices. When y € R, we thus have
Yj = 2La J € Sa

and so u(y) should be close to ug(yse) as L is large. On the other hand ys. belongs to a rectangle of the form

Rige = [ [29,2571].
JjES*®

Therefore, by Lemma 3.3, we can approximate ug(yse) by a polynomial of total degree k in these restricted
variables.
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0 | % | o

Qs Q Qs Q,

FIGURE 2. A Lipschitz partition of © (left) and a counter-example (right) since €1 U 4 is not
Lipschitz.

In order to conclude that this polynomial is a good approximation to u(y) on Ry, we need a quantitative
estimate on the convergence of u(y) towards ug(ys<). Let us observe that since

d
Zyj/ Vu(y) - Vodz = <f,v>H,17Hé = Z yj/ Vus(yse) - Vode, v € Vg,
j=1 2 jese Q;

the function ug(ysc) coincides with the orthogonal projection of u(y) onto Vs for the y-norm, as well as for the
Y§e-NOTM:

us(yse) = Py uly) = Pysu(y). (3.15)
In addition, with
Q5= 95, (3.16)
JES

we have
2V Py < 05 [ IVul0)de < (Fuw)gos g < CF
jes i

since [[u(y)|lmy < Cy, and therefore, since Vug(ys<) = 0 on Qg, we find that

IVu(y) = Vus (yse)ll 20 < Cr2 "2 (3.17)

Our objective is to obtain a similar error bound on the remaining domains 2; for j € S¢. This turns out to
be feasible, with an even better rate 2~ 7, when making certain geometric assumptions on the partition of the
domain €.

Definition 3.4. We say that {Q4,...,Qq} is a Lipschitz partition if and only if for any subset T' C {1,...,d},
the domain Q7 = (J;cp €5 has Lipschitz boundaries.

Note that such a property is stronger than just saying that each domain is Lipschitz, see Figure 2 (right) for a
counter-example. In a Lipschitz partition, all subdomains €2; are Lipschitz, and the common boundary between
two subdomains is either empty or a (n — 1)-dimensional surface, as illustrated on Figure 2 (left). In particular,
it is easily checked that partitions consisting of a background domain and well separated subdomains that have
Lipschitz boundaries fall in this category. Similar to the €07, the individual §2; could have several connected
components, that should then be well separated. Here by “well separated”, we mean that d-neighbourhoods of
the subdomains remain disjoints for some ¢ > 0.

For the inner domains Q7 such that dQr N 9N = 0, the classical Stein’s extension theorem [33] guarantees
the existence of continuous extension operators

Er: H'(Qr) — HY(Q),
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that satisfy (E7v)|q, = v for all v € H'(Qr). We refer to chapter 5 of [1] for a relatively simple construction of
the extension operator E; by local reflection after using a partitioning of unity along the boundary of Q7 and
local transformations mapping the boundary to the hyperplane R*~1,

For the domains Q1 touching the boundary 0f2, these operators are modified in order to take into account
the homogeneous boundary condition, and we refer to [39] for such adaptations. Here, the relevant space is

HY(Qr) = Ry (H(Q)), (3.18)

where Ry is the restriction to Qp, over which v — ||Vvl|12(q,) is equivalent to the H' norm by Poincaré
inequality. Then, there exists a continuous extension operator

Er: HY (Qr) — HY(Q).

Note that the norm of all these operators depends on the geometry of the partition. These operators are
instrumental in proving the following convergence estimate.

Lemma 3.5. Assume that {Q4,...,Q4} is a Lipschitz partition of Q. Then there exists a constant Cy that only
depends on the geometry of the partition such that for any S C {1,...,d} andy = (ys,ysc) € Y', one has

[u(y) = us(yse)ll gy < CoCy gleagyjl- (3.19)

In particular, for the infinite rectangle Ry,

lu(y) — us(yse)l gz < CoCy27", yeRy, (3.20)

with S defined by (3.14).

Proof. We first note that it suffices to prove (3.19) in the particular case where the largest y; are those for
which j € S. Indeed, if this is not the case, we use the decomposition

u(y) — us(yse) = (u(y) — us (ysr)) = (u(y') — us (ysee)) + (w(y') — us(yse)),

with S = {i : y; > minjcsy,} and ¢’ defined by y; =max;—1,.qy; if j €5, y; = y; otherwise, so that each
term falls in this particular case and will be bounded in H} norm by CoC fmaxjeg yj_l. This leads to the same
estimate (3.19) up to a factor 3 in constant Cy. In addition, up to reordering the subdomains §2;, we may assume
y1 = -+ > yq and therefore S = {1,...,]9|}.

Fix j > |S|, and denote u = u(y) and us = ug(ys:) for simplicity. We define the Lipschitz domain Q7 =
Q; U---UQ;, remarking that

Qs =J Q=0
jES

Poincaré’s inequality ensures that there exists a function ¢ on €27, constant on any connected component of 7,
and null on 9Q N 7, such that

u—us — C”Hl(m) < CplIV(u - uS)HL?(QJ')7

with Cp the maximal Poincaré constant of all unions of subdomains from the partition. Moreover, there is an
extension v € H}(Q) of u —ug — ¢ € H'(€7) such that

||U||H3(Q) < Cpllu—us — C||H1(QJ‘) < CpCp|V(u— US)||L2(QJ')7

with C'g the maximal norm of all extension operators Er, T C {1,...,d}.
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Asu—ug—v =con Qg C O, the function uw—ug —v is in Vg, and therefore orthogonal to u —ug = v — Pgsu
for the || - ||, norm:

0= (u—us,u—us—uv),

:éyi/ﬂiW(u_“S)ﬁ_éyi/S)iV(U—us)-Vv
:Zyi/ﬂi|v(u_us)|2—Zyi/QiV(U—us)-Vv

i>j i>j
since Vo = V(u — ug) on 7. In particular, we obtain
2 2
BV =), < X | (9= us)
i>j

<y / V(- us) - Vel
Q\QJ

< Yjtallu - uS”Hé(Q) vl e o)
< yjtaflu— US”H&(Q)CPCE”V(“ —us)l 2 iy
and therefore
2
[V (u— US)HLZ(QJ'+1) < (1+CpCr)[IV(u - US>||L2(Q)||V(U - US)||L2(QJ)~
Applying this inequality inductively for j =d —1,...,d — k, we get
k_
19— us)ll 2y < (14 CpCE)? IV (= us) | 2go-vy-
forany k =1,...,d—|S|. For k = d — | S|, this results in the bound
2 2
IV (= us) 2200y < CollV(w — ) 2 gy = CollVall 2 (3.21)
for any non-empty S, with Cy = (1 + C’pC’E)QEF1
We now write, using the orthogonality of ug and v — ug
. 2 2
<mgy> 19 — ) 2agengy < 1 — s = (w1 — us),
=(fiu— uS>H*1,H3 < Cyl|V(u— uS)HLQ(Q)v
which, combined to the previous estimate, gives
_ -1
Ju— USHH(} =[|V(u— US)||L2(Q) < CoCy Igleagiyi )
therefore proving (3.19). For (3.20), we simply notice that max;eg yj_l < 27l for y € Y/ N Ry, and use a
continuity argument when y takes infinite values. O

Combining the estimate (3.20) from the above lemma with (3.13) from Lemma 3.3, we obtain the following
estimate for polynomial approximation on an infinite rectangle Ry:

Cy ,_ _
uly) = Y uyhel| < —L37F+CoCr27F, ye Ry, (3.22)
lv|<k 1 \/6
where Cj is the constant in (3.20). This estimate hints how the level L in the partition should be tuned to the
total polynomial degree k, so that the two contributions in the above estimate are of the same order.
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Remark 3.6. Note that the constant Cy = (1 + C’pC’E)zdf1 becomes prohibitive even for moderate values
of d. However, under more restrictive geometric assumptions, for instance if the subdomains o, ..., Qq are
disjoint inclusions in a background i, better bounds can be obtained, with a constant Cy that does not suffer
a similar curse of dimensionality. One can replace the induction in the proof by a two-step procedure, consisting
of extensions first from the high-diffusivity inclusions to the background, and then to the whole domain €.

3.3. Approximation rates and n-widths

We are now in position to establish an approximation result for the reduced model spaces. For this purpose,
we fix the smallest level L = L > 1 such that

C
CoC2 L < ZL 3=k,

In particular L scales linearly with k, with the bound ak + 8 < Ly < ak + vy, where

ﬂ:m%?w’v:mﬁfm' (3.23)

L. In3
" In?2’

Then, the polynomial approximation estimates (3.7) and (3.22) show that for each £ € {0,--- , L; }¢, there exist
functions ug, € H} () such that

Cf Cf —k —k
u(y) — Z U y” < ( )3 <Cp37%, yeR,.
lv|<k Hé \@ \/g

Note that in the case of an infinite rectangle Ry, the ug, are non-trivial only for monomials of the form y%. and
they belong to Vg, where S := {j : {; = Ly}.
Thus the solutions u(y) for y € Ry are approximated with accuracy C f3’k in the space

Ve i = span{ug, : |v] < k},

which in view of Remark 3.2 has dimension at most (kazl).

Note also that approximating the reduced manifold N defined in (2.5) requires a smaller subset of rectangles,
since
{yezy“;nnnyj::1} c URe  Bo={0- Ly \ {1, L)
LEE)

We thus introduce the reduced model space

. k+d—1
Vo= P Vi, n—&mMﬁé#@@(d_l), (3.24)
LEEY,
and find that
lu(y) = Pv,u(y)ll gy < Cr37", (3.25)

for all y € Y’ such that min y; = 1. In view of (3.23), there exists a constant C' that depends on d and Cjy, such
that
k+d—-1

we (v o) (V10

This leads to the following approximation theorem.

) <Ok 4 1)2472, (3.26)
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Theorem 3.7. Assume that the partition has the geometry of disjoint inclusions. The reduced basis space Vi,
defined in (3.24) then satisfies

() = Py, u(®) sy < C exp(—en7=2), (3.27)

forallyeY' = [1,00]? such that miny; = 1. The Kolmogorov n-width (1.2) of the reduced manifold N satisfies

dn(N)pp < Cexp(—cnﬁ). (3.28)
Over the full manifold M, one has the estimate in relative error
lu(y) = Py, u(y) sy < C exp(—en=2 ) fu(w)ll ;. (3.29)

for all y € Y =]0,00]¢. The positive constants ¢ and C only depend on d, Cy, and on the geometry of the
partition through the constant Cy.

Proof. The estimate (3.27) follows directly by combining (3.25) and (3.26), and (3.28) is an immediate con-
sequence. We then derive (3.29) by using the homogeneity property (1.13) and the lower inequality in (2.8),
similar to the proof of (2.10) in Theorem 2.8. O

Remark 3.8. In the above construction of V,,, the dimension n only takes the values ny := #(Ek)(kjﬁ;l) for
k > 0. However it is easily seen that if we set V;, = V,,, for ny <n < ng41, then all the estimates in the above

theorem remain valid up to a change in the constants (¢, C).

Remark 3.9. Note that the union of the V; j, for ¢ € E) would suffice to approximate A/ with uniform accuracy
C fS*k, their sum V,, is an overkill. When y is known, for example in forward modeling, it is therefore possible to
first identify the proper space V; j associated to the rectangle R, that contains y, and build the approximation
to u(y) from this space. This nonlinear reduced modeling strategy has been studied in [15] with similar local
polynomial approximation under UEA, and in [25, 26, 28] with local reduced basis. The natural benchmark is
given by the notion of library width introduced in [34], that is defined for any compact set K in a Banach space
V as

d K)y:= inf sup min min ||u—v 3.30
ny(RJvi= Il sup min woin ffu = vlv, (3.30)

where the first infimum is taken over all libraries £,, of n-dimensional spaces with cardinality at most N. Our
results thus show that

k+d-1

d—1

Note that the above sub-exponential rate can be misleading due to fact that the constant ¢ has a hidden
dependence in d. As an example, up to the constant C'y, we find that taking k = 4,7,9 leads to error bounds
37k of order 102,1072,10~%, with n = 15, 36,55 for d = 3, and n = 35,120,220 for d = 4, which is far better
than the value of exp(—ni).

dn,N(N')Hg < Cf3*k ~ Cexp(fcné), n = ( >, N = (Lk+1)d ng.

Remark 3.10. In view of the results from [13,20], we are ensured that a proper selection of reduced basis
elements in the manifold A/ should generate spaces V,, that perform at least with the same exponential rates
as those achieved by the spaces V;, in Theorem 3.7. As explained in the introduction, reduced basis spaces
may perform significantly better than reduced model spaces based on polynomial or piecewise polynomial
approximation. This occurs in particular when the polynomial coefficients have certain linear dependency, as
established in [7] for the elliptic problem with piecewise constant coefficients in the low contrast regime, and
recalled in Remark 3.2. There, it is shown that the rate O(exp(—cni)) is at least improved to O(exp(—cnﬁ))
and that further improvements in the rate may result from certain symmetry properties of the domain partition,
however not circumventing the curse of dimensionality. While we do not pursue this analysis in the present high
contrast setting, we expect similar results to hold.
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4. FORWARD MODELING AND INVERSE PROBLEMS

4.1. Galerkin projection

In the context of forward modeling, the reduced model space V,, is used to approximate the parameter to
solution map, by a map

Y= un(y) € Vo,
computed through the Galerkin method: u,(y) € V,, is such that

d
Zyj/ﬂ Vun(y)-Vvdx:U,v)H,l’Hé, v e V.
j=1 7%

Therefore (un(y),v), = (u(y),v),, that is

un(y) = Py, uly),
where P, is the projection onto V,, with respect to norm || - ||,
Hence, one would like to derive estimates on [lu(y) — Py, u(y)|z: in place of the estimates on [u(y) —

Py, u(y)|m; that we have obtained so far, since Py, u(y) is not practically accessible. As explained in the
introduction, we cannot be satisfied with combining the latter estimates with the bound

luty) = PY )] ;5 < 5(w)"2lluly) = P u)llm

derived from Cea’s lemma, since the multiplicative constant x(y) from (1.9) is not uniformly bounded over the
manifolds M, B or N. Here, we shall employ another approach to derive the same rates of convergence for
lu(y) = P u(y) s

One first observation is that in order for the Galerkin projection P‘Z onto a reduced model space V,, to satisty
a convergence bound in relative error, it is critical that this space contains some functions from the limit spaces
Vs. This is expressed by the following result.

Proposition 4.1. Assume that there exists S C {1,...,d} such that V,, N Vs = {0}. Then for any C €]0,1],
there exists y € Y’ such that

[uly) = Py u@)]| 1, = Cllu() - (4.1)
Proof. Since V;, N Vg = {0}, the quantity || Vv| 12(q4) is a norm on V,, and one can define

Vv
o = min VVlz2@s)

> 0.
vV ol

For any € > 0, take y; = &2 for j € S and y; = 1 for j € §¢. Then, for v = P}, u(y),

« 1 C
Sl < ZIVellzean) < ol < )l < 7 < L )l

where we have used the framings (2.8) and (2.9). Therefore, taking ¢ = é—ffoz(l — O) implies [lv]m < (1 —
O)lu(y)|| gy > and (4.1) follows. ‘ O

However, in the construction of V,, in Section 3, each space Vi is a subset of Vg for S = {j : {; = Ly}.
This prevents the phenomenon described in the previous proposition from occurring. Instead, we obtain similar
convergence bounds as those obtained for Py, , as expressed in the following result.
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Theorem 4.2. Assume that the partition of Q has the geometry of disjoint inclusions. On the rectangles Ry

for £ €{0,...,L}?, the following uniform convergence estimates hold:
HU(y) - Py U(y)H < Yy y € Ry (4.2)
Ve,k H \/g ) y
if €)oo < L, and
HU(y) - Py U(y)H < Sy g CoC27E, yeR, (4.3)
w,k H[% \/g ’ 3

if [€]loo = L. As a consequence, with L = Ly, and V,, defined as in Section 3.3, one has the estimates
Hu(y) — P‘?jnu(y)HHé < C’exp(—chl—2)7 (4.4)
forally € Y’ such that min y; =1, and
) = 2, utw ], < ©exp(=en 42 ) fu(y) (45)
for ally € 37, with constants ¢ and C' that only depend on d, C'¢, and on the geometry of the partition through

the constant Cy.

Proof. For bounded rectangles R, with ||€||.c < L, we know from Lemma 3.1, and more precisely from (3.6),
that

Jut) = P2, )], = i o) = ol < o)~ 3 war|] < s

vEVY &
o <k

for any y € R,. Since all the y; are greater or equal to 1, one has [[v[|g1 < [[v[ly for all v and therefore (4.2)
follows.
For infinite rectangles R, such that ||{||« = L, we again introduce S = {j : ¢; = L}. Then, using (3.20),

Jret) = 3w, < ) = wstse g + [fusose) = P, ]|,

< O()Cf27L + Hug(ysc) — P‘Zku(y)HHl
0

Since Vi, C Vs, we have
P‘%’ku(y) = P‘Z}MP‘%Su(y) = P‘%Tkug(ysc) = ng:;us(ySc).
Similarly to the previous case, we apply (3.12) from Lemma 3.3:

G

37k,
V3

<

HUS(ySC) — Py, us(yse) ‘Hl < HUS(ySc) — Py, us(yse) Y
0

and we thus obtain (4.3).
After taking L = Ly and defining V,, as the sum of the V;, for ¢ € Ej, the derivation of (4.4) and (4.5) is

exactly the same as for (3.27) and (3.29). O
Remark 4.3. Asin Remark 3.10, it is expected that the same rate of convergence is attained if V,, is a reduced
basis space generated by solutions u(y?), i = 1,...,n, as long as there are O((k;le)) samples ¢’ in each

rectangle, however with samples forced to be of the form ug(y%.) € Vs in the case of infinite rectangles.
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4.2. State and parameter estimation

The state estimation problem consists in retrieving the solution @ = u(y) when the parameter g is unknown,
and one observes m linear measurements

wlzﬁz(ﬂ), izl,...,m,

where the ¢; are continuous linear functionals on the Hilbert space V' that contains the solution manifold. These
linear functionals may thus be written in terms of Riesz representers

4i(v) = (Wi, v)y,

The Parametrized Background Data Weak (PBDW) method, introduced in [27] and further studied in [14],
exploits the fact that all potential solutions are well approximated by reduced model spaces V,,. It is based on
a simple recovery algorithm that consists in solving the problem

o L
Din min flu —olly, (4.6)

where, for w = (wy,...,w,) € R™,
Vw ={ueV ) =w, i=1,..,m}

is the affine space of functions that agree with the measurements.
The analysis of this problem is governed by the quantity

M = ;Uf(vnvw) ‘= sup ”UHV

7 47
S TPy 4.7)

where W := span{wi,...,w,}, which is finite if and only if V,, N W+ = {0}. Then, there exists a unique
minimizing pair

(u*,v") = (U (w),v"(w)) € Vo x Vyy
to (4.6), which satisfies the estimates

7= 0"l < pn mim [ — ol (48)
veV,
and
a—u*, < min uw—v|y,. 4.9
=l <o min Ju ol (1.9

The computation of (u*,v*) amounts to solving finite linear systems, and both solutions depend linearly on w.

Turning to our specific elliptic problem, and assuming that the ¢; belong to H=1(Q) = V' for V = H(Q),
we may apply the above PBDW method using the reduced basis spaces V,, introduced in Section 3. As an
immediate consequence of Theorem 3.7, we obtain a recovery estimate in relative error.

Proposition 4.4. Lety € Y andu = u(y). Then both estimators v* € V,, and u* € V,, satisfy

max{ [ = 0" gy, 1 = 0l 5 } < Cpim exp(—en=2 ) [l . (4.10)

The positive constants c and C' only depend on d, Cy, and on the geometry of the partition through the constant
Co.-

Proof. Tt follows readily by combining (3.29) applied to y = 7 with the recovery estimates (4.8) and (4.9). O
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We next turn to the problem of parameter estimation, namely recovering an approximation y* to g from the
measurements w. In contrast to state estimation, this is a nonlinear inverse problem since the first mapping in

Y= u—w

is typically nonlinear. One way of relaxing this problem into a linear one is by first using a recovery u* of
the state u, for example obtained by the PBDW method. One then defines y* as the minimizer over Y of the
residual

R(y) := ||div(a(y)Vu*) + f|l g-1-

This is a quadratic problem when a(y) has an affine dependence in y, that can be solved by standard quadratic
optimization methods. The rationale for this approach is the fact that

R(y) = [Ayu” = Ayu)ll -+ ~ llv” = w(y)ll .

and therefore we should be close to finding the parameter y that best explains the approximation u*. Unfortu-
nately, this approach is not very viable in the high-contrast regime since the equivalence ||Ayv|g-1 ~ ||v]| Hl
has constants that are not uniform in y and deteriorate with the level of contrast.

Instead, we propose a more specific approach that exploits the piecewise constant structure of a(y), assuming
that V,, is a reduced space of the form

V, = span(ul, . ,u"), ut = u(yl),
for some properly selected parameter vectors

yi:(yi7"'7yé)7 i:]‘""’n'

As mentioned, see Remark 3.10, these spaces satisfy the same exponential convergence bounds as the spaces
constructed in Section 3.
The PBDW estimator v* = v*(w) € V,, thus has the form

n
v* = E cu' €V,
i=1

and satisfies a similar bound (4.10) as in the above proposition. Then, on the particular domain €2;, one has

I = —AU|QJ_ ~ - E i—lciAu‘Qj = g C; i]7

Y; =y
and therefore, a natural candidate for the parameter estimate is y* = (y7,...,y}) with
n i -1
y; = Z = . (4.11)
i=1 Y

The following result gives a recovery bound in relative error for the inverse diffusivity.

(4.12)

Proposition 4.5. With the notation 1/y = (1/y1,...,1/yaq), the estimator y* defined by (4.11) satisfies the
1 1 C 1
<ot

00 Y

bound
‘ y* oy cf

where Cy and ¢y are as in (2.8), and the other constants as in (4.10).

)
o0
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Proof. For 1 < j < d, take ¢ € H}(Q;), then

1 1 " e . ) 1
— = =|l{f, D) - = i/ yz-Vul'VgZ)dx—j/ 7. Vu-Vodx
yi Y; Ol ;y; Q, Y Jo,

/ V(* —u) - Vodr
Q;

< o =l gp o) l9llm@,)-

Optimizing over ¢ gives

|3 <t -
—_— = = S C v —Uu 1,
vl Ho
which combined with (4.10) gives
1 1
\ e H < ¢ Cpy exp(—en 7 ) .
Y Ylleo 0
Using the Lax—Milgram estimate
_ 1
[l < Crll=]| s
we reach (4.12). O

Remark 4.6. The bound (4.12) is not entirely satisfactory since the approximation error on y,; remains high
when y € N with y; > 1. We do not know if a bound of the form

1 1

y; Y;

which would imply |y} — ;| < e€n/(1 —€5)¥;, holds uniformly over N withe, — 0.

n—-+4oo

5. NUMERICAL ILLUSTRATION

The base model that will be used all along the numerical illustrations is the diffusion equation (1.4) with
data f = 1 set on the two-dimensional square Q = [—1,1]? with homogeneous Dirichlet boundary conditions.
We consider a piece-wise constant diffusion coefficient

a’|Qj:yj7 lgjgda

on a partition of {2 into 16 squares of quarter side-length.

As such this partition does not satisfy the geometrical assumption of “Lipschitz partition” that was critical
in our analysis for the application of Lemma 3.5. Therefore we consider sub-partitions that comply with the
assumptions, such as illustrated on Figure 3, which amounts to equate the parameters y; of squares belonging
to the same sub-domain. This way we can consider that y = (ya,¥yB,Yc,yp) consists of four parameters, one
per each subdomain.

The numerical results that we next present aim to illustrate the robustness to high-contrast of the reduced
basis method, and discuss in addition the effect of parameter selection, higher parametric dimensions, and
inclusions that are not satisfying the geometric assumption as exemplified on Figure 4.

We construct different reduced bases {u!, ..., u"} of moderate dimension 1 < n < 15, where

uk = u(yk),
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Qp | Q| Q¢ | Qa
Qe Qp | Qp | Q4 | Q¢
Qp QB Qc | Q4| Qp | Q5
Qa Qa | Qc | Q| Op
FI1GURE 3. Lipschitz partition FIGURE 4. Non-lipschitz
of 2. partition of 2.
for certain parameter selections y',...,4". Each reduced basis element u* is numerically computed by the

Galerkin method in a background finite element space V} of dimension 6241.
The reduced basis spaces are thus subspaces of V},, thus strictly speaking spaces V,, ;, depending on n and on
the meshsize h. In our numerical computation, we always assess the error

Py u(y) — Py, u(y).

We noticed that for the considered values of n = 1,...,15 the error curves do not vary much when further
reducing the mesh size h. In fact they are already essentially the same when the dimension of V}, is four times
smaller. Therefore, for simplicity of the presentation, we still write

u(y) — Py u(y),

bearing in mind that the additional finite element error u(y) — Pghu(y) depends on h (with algebraic decay in
the finite element dimension).

All the tests were done using Python 3.8. For more information and experiments not presented here we invite
the reader to look into the github repository https://github.com/agussomacal/ROMHighContrast.

5.1. Parameter selection

We first study the case of a one parameter family: the diffusion coefficient y4 of Q4 in Figure 3 varies from
1 to oo, while the other subdomains are considered as background with all coefficents equal to 1. Thus the y*
are of the form y* = (y%,1,1,1).

In reduced basis constructions, two approaches for parameter selection are usually considered: random or
greedy. Random selection usually performs well enough in many situations, however we shall see that it fails
in the high contrast regime. This is in particular due to the fact that it does not capture the limit solutions,
while we have observed in Section 4 that robust convergence of the Galerkin method in the high-contrast regime
critically requires to include limit solutions in the space V,,. Here, there is only one limit solution s = 4(Yso)
where yoo = (00,1,1,1), and this element is picked by the greedy method if initialized at any other point.

More precisely, we compare four strategies for selecting the yfz € [1,00]:

— Random: the y¥ are drawn independently according to the uniform law for % € [0,1].

— Random-oo: First the limit solution corresponding to y4 = oo is put in the basis. The rest of the elements
are randomly picked as in the previous case.

— Greedy Hg: The y* are picked incrementally, y**! maximizing the relative H} projection error |ju(y) —
Pyw() g /lw)l -

— Greedy Galerkin: The y* are picked incrementally, y**! maximizing the relative H{ error of the Galerkin

projection [|u(y) — Py, u(y)ll rg /w()m3-
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FIGURE 5. Galerkin (left) and H{ (right) projection error, both measured in H{} relative error,
maximized over the parameter domain, for different reduced bases, case d = 1.

Figure 5 displays on the left the evolution of the maximal relative error of the Galerkin projection

Ju(w) - Pt 0w

sup
pacti) T

)

as a function of n = dim(V},) for these various selection strategies. It reveals the superiority of the greedy
selection that reaches machine precision after picking n = 11 reduced basis elements, and the gain in including
the limit solution in the case of a random selection. As a comparison, we display on the right the decay of the
relative Hg-orthogonal projection error

luly) — Py, u(@) g
sup

ya€[L,00] [|u(y)

Hj

for the same parameter selection strategies. Here, we notice that the inclusion of the limit solution ., is not
anymore critical for reaching good accuracy. Nevertheless, these errors still decay faster for the greedy strategies.

Remark 5.1. As the diffusion coefficient is piecewise constant on the partition €24 U 2%, the parameter space
dimension is d = 2 in this numerical example. The theoretical results thus provide a bound on the error of order
exp(—cy/n). However, this bound is obtained with local reduced spaces Vp on dyadic intervals, which does
not perform as well as Vi, = @,cp, Vik, for which one might expect a rate closer to exp(—cn). In Figure 5 for
n < 11, that is, until numerical precision issues arise, we even observe a faster than exponential convergence,
that could be due to the superiority of reduced bases over polynomial approximations.

Remark 5.2. It is well known that the reduced basis can be very ill-conditioned, since u™ becomes extremely
close to V,,_1 = span{u!,...,u" 1} as n gets moderately large. In order to avoid numerical instabilities, prior
to the computation of the Galerkin or H} projection onto V;,, we need to perform a change of basis, typically
by some orthonormalization process. In our numerical test, we perform this orthonormalization with respect to
the discrete £2 inner product for the nodal values in the background finite element representation, using the
QR decomposition, and obtain a satisfactory stable numerical behavior. However, this process is not invariant
under permutations, and we observe that it behaves better in terms of numerical stability when sorting the
reduced basis elements from higher contrast to lower contrast.
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FIGURE 6. Galerkin and H{} projection error (both measured in H} relative error maximized
over the parameter domain) for different reduced bases, case d = 2.
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FIGURE 7. The Galerkin projection of Greedy Galerkin method for increasing dimensionality
in geometries satisfying (left) or not (right) the assumptions.

In this one parameter scenario, both greedy strategies behaved equally well. However, as we increase the
dimensionality of the problem d > 1, Greedy Galerkin appears to be the best selection procedure, as could
be expected since it optimizes the error based on the approximation which is effectively computed in forward
modeling. Figure 6 shows this effect when d = 2, where y4 and yp are allowed to vary independently while y¢&
and yp are taken as background always equal to 1.

5.2. Influence of dimensionality and geometry

In order to study the impact of dimensionality on the approximation rates, we compare the behavior of the
Greedy Galerkin selection method, as we increase the number of freely varying parameters. As before, we will
have for y = (ya,1,1,1) when d = 1, then y = (ya,ys5,1,1) when d = 2, until having all four subdomains freely
varying between 1 and +oo.
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In Figure 7 the degradation with respect to dimension is clearly observed as the approximation capabilities
strongly decrease. Even thought the exponential decay rate is still conserved, the decay parameter shrinks from
almost 3 down to 0.22 when d = 4.

Secondly, we study the case where the geometrical assumptions are not satisfied. We follow the same incre-
mental subdomains unfreezing as in the previous case but using the geometry stated in Figure 4. We observe
that the reduced basis approach still achieves exponential approximation rates, actually higher than in the
previous example. This hints that the geometric assumptions which are needed in our proofs could be artificial,
and leaves open the question of achieving such results without relying on these assumptions.
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