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REDUCED ORDER MODELING FOR ELLIPTIC PROBLEMS WITH HIGH
CONTRAST DIFFUSION COEFFICIENTS
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Abstract. We consider a parametric elliptic PDE with a scalar piecewise constant diffusion coefficient
taking arbitrary positive values on fixed subdomains. This problem is not uniformly elliptic, as the con-
trast can be arbitrarily high, contrary to the Uniform Ellipticity Assumption (UEA) that is commonly
made on parametric elliptic PDEs. We construct reduced model spaces that approximate uniformly well
all solutions with estimates in relative error that are independent of the contrast level. These estimates
are sub-exponential in the reduced model dimension, yet exhibiting the curse of dimensionality as the
number of subdomains grows. Similar estimates are obtained for the Galerkin projection, as well as for
the state estimation and parameter estimation inverse problems. A key ingredient in our construction
and analysis is the study of the convergence towards limit solutions of stiff problems when diffusion
tends to infinity in certain domains.
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1. Introduction

1.1. Reduced models for parametrized PDEs

Parametric PDE’s are commonly used to describe complex physical phenomena. With 𝑦 = (𝑦1, . . . , 𝑦𝑑) denot-
ing a parameter vector ranging in some domain 𝑌 ⊂ R𝑑, and 𝑢(𝑦) the corresponding solution to the PDE of
interest, assumed to be well defined in some Hilbert space 𝑉 , we denote by

ℳ := {𝑢(𝑦) : 𝑦 ∈ 𝑌 }, (1.1)

the collection of all solutions, called the solution manifold.
There are two main ranges of problems associated to parametric PDEs:

(1) Forward modeling: in applications where many queries of the parameter to solution map 𝑦 ↦→ 𝑢(𝑦) are
required, one needs numerical forward solvers that efficiently compute approximations 𝑢̃(𝑦) with a pre-
scribed accuracy.
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(2) Inverse problems: when the exact value of the parameter 𝑦 is unknown, one is interested in either recovering
an approximation to 𝑢(𝑦) (state estimation) or to 𝑦 (parameter estimation), from a limited number of
observations 𝑧𝑖 = ℓ𝑖(𝑢(𝑦)), possibly corrupted by noise.

Reduced order modeling is widely used for tackling both problems. In its most common form, its aim is to
construct linear spaces 𝑉𝑛 of moderate dimension 𝑛 that approximate all solutions 𝑢(𝑦) with best possible
certified accuracy. The natural benchmark for measuring the performance of such linear reduced models is
provided by the Kolmogorov 𝑛-width of the solution manifold

𝑑𝑛(ℳ)𝑉 := inf
dim(𝑉𝑛)=𝑛

dist(ℳ, 𝑉𝑛)𝑉 (1.2)

that describes the performance of an optimal space. Here

dist(ℳ, 𝑉𝑛)𝑉 := sup
𝑢∈ℳ

inf
𝑣∈𝑉𝑛

‖𝑢− 𝑣‖𝑉 = sup
𝑢∈ℳ

‖𝑢− 𝑃𝑉𝑛𝑢‖𝑉 ,

where 𝑃𝑉𝑛
is the 𝑉 -orthogonal projector onto 𝑉𝑛. We refer the reader to [30] for a general treatment of 𝑛-widths.

While an optimal space achieving the above infimum is usually out of reach, there exist two main approaches
aiming to construct “sub-optimal yet good” spaces. The first one consists in building expansions of the parameter
to solution map, for example by polynomials

𝑢𝑛(𝑦) :=
∑︁

𝜈∈Λ𝑛

𝑢𝜈𝑦
𝜈 , 𝑦𝜈 := 𝑦𝜈1

1 . . . 𝑦𝜈𝑑

𝑑 , (1.3)

where Λ𝑛 ⊂ N𝑑 is a set of cardinality 𝑛. The coefficients 𝑢𝜈 are elements of 𝑉 and therefore, for all 𝑦 ∈ 𝑌 the
approximation 𝑢𝑛(𝑦) is picked from the space

𝑉𝑛 := span{𝑢𝜈 : 𝜈 ∈ Λ𝑛}.

Notice that 𝑢𝑛(𝑦) is not the orthogonal projection 𝑃𝑉𝑛𝑢(𝑦) in this case, but 𝑢𝑛(𝑦) is easy to compute for a given
query 𝑦 once the 𝑢𝜈 have been constructed (usually through a high fidelity finite element solver). We refer to
[6, 8–10,18,19,35] for instances of this approach.

The second approach is the reduced basis method [22,31,32], that consists in taking

𝑉𝑛 := span
{︀
𝑢1, . . . , 𝑢𝑛

}︀
,

where the 𝑢𝑗 = 𝑢(𝑦𝑗) are particular solution instances corresponding to a selection of parameter vectors 𝑦𝑗 ∈ 𝑌 .
A close variant is the proper orthogonal decomposition method [17,37,38], where the reduced spaces are obtained
by principal component analysis applied to large training set of such instances. In the reduced basis method, the
parameter vectors 𝑦1, . . . , 𝑦𝑛 can be selected by a greedy algorithm, introduced in [36] and originally studied in
[16]. For such a selection process, it is proved in [13, 20] that if 𝑑𝑛(ℳ)𝑉 has a certain algebraic or exponential
rate of decay with 𝑛, then a similar rate is achieved by dist(ℳ, 𝑉𝑛)𝑉 for the reduced basis spaces.

It follows that the reduced basis spaces constructed by the greedy algorithm are close to optimal. This is in
contrast to the spaces 𝑉𝑛 spanned by the polynomial coefficients 𝑢𝜈 for which the approximation rate is not
guaranteed to be optimal. We refer to [7] for instances where reduced basis methods can be proved to converge
with a strictly higher rate than polynomial approximations. On the other hand, the polynomial constructions
(1.3) have certain numerical advantages. Namely, for several relevant classes of parametrized PDEs, it can be
shown that the parameter to solution mapping 𝑦 ↦→ 𝑢(𝑦) has certain smoothness properties that can be used to
obtain a priori bounds on the ‖𝑢𝜈‖𝑉 without actually computing these norms. This allows an a priori selection
of an appropriate set Λ𝑛 and the proof of concrete approximation estimates for the error sup𝑦∈𝑌 ‖𝑢(𝑦)−𝑢𝑛(𝑦)‖𝑉 .
These estimates in turn provide an upper bound for 𝑑𝑛(ℳ)𝑉 , and therefore for reduced basis approximations.
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1.2. Parametrized elliptic PDEs

One prototypal instance where the convergence analysis described above has been deeply studied is the
parametrized second order elliptic equation

−div(𝑎(𝑦)∇𝑢(𝑦)) = 𝑓 in Ω, 𝑢|𝜕Ω = 0 on 𝜕Ω, (1.4)

where Ω ⊂ R𝑚 is the spatial domain, 𝑓 ∈ 𝐻−1(Ω) is a source term, and 𝑎(𝑦) has the affine form

𝑎(𝑦) = 𝑎+
𝑑∑︁

𝑗=1

𝑦𝑗𝜓𝑗 , (1.5)

with 𝑎 and (𝜓1, . . . , 𝜓𝑑) some fixed functions in 𝐿∞(Ω).
The corresponding solution 𝑢(𝑦) ∈ 𝐻1

0 (Ω) is defined through the standard variational formulation in 𝐻1
0 (Ω)

equipped with its usual norm. Up to renormalization, it is usually assumed that the 𝑦𝑗 range in [−1, 1], or
equivalently 𝑌 = [−1, 1]𝑑. To ensure existence and uniqueness of solutions, one typically assumes that the
so-called Uniform Ellipticity Assumption (UEA) holds: for some fixed 0 < 𝑟 6 𝑅 <∞,

𝑟 6 𝑎(𝑥, 𝑦) 6 𝑅, 𝑥 ∈ Ω, 𝑦 ∈ 𝑌, (1.6)

where 𝑎(𝑥, 𝑦) := 𝑎(𝑦)(𝑥) = 𝑎(𝑥) +
∑︀𝑑

𝑗=1 𝑦𝑗𝜓𝑗(𝑥), or in short 𝑟 6 𝑎(𝑦) 6 𝑅 for all 𝑦 ∈ 𝑌 . Under this assumption,
Lax–Milgram theory ensures that the solution map 𝑦 ↦→ 𝑢(𝑦) is well defined from 𝑌 into 𝐻1

0 (Ω), with the
uniform bound

‖𝑢(𝑦)‖𝐻1
0

:= ‖∇𝑢(𝑦)‖𝐿2 6
𝐶𝑓

𝑟
, 𝑦 ∈ 𝑌.

Here and throughout this paper
𝐶𝑓 := ‖𝑓‖𝐻−1 . (1.7)

It was proved in [9, 35] that, under UEA, polynomial approximations (1.3) of given total degree converge sub-
exponentially: for Λ𝑛 = {|𝜈| 6 𝑘} with 𝑛 =

(︀
𝑘+𝑑

𝑑

)︀
, one has

sup
𝑦∈𝑌

‖𝑢(𝑦)− 𝑢𝑛(𝑦)‖𝐻1
0
6 𝐶 ′ exp

(︁
−𝑐𝑛1/𝑑

)︁
, (1.8)

Such sub-exponential rates show that the spaces 𝑉𝑛 based on polynomial expansions or reduced bases perform
significantly better than standard finite element spaces, at least for a moderate number 𝑑 of parameters. It is
possible to maintain a rate of convergence as 𝑑 grows, and even when 𝑑 = ∞, when assuming some anisotropy
in the variable 𝑦𝑗 through the decay of the size of 𝜓𝑗 as 𝑗 → ∞, see in particular [8, 18, 19] for results of this
type.

1.3. High constrast problems

The Uniform Ellipticity Assumption (1.6) implies that there is a uniform control on the level of contrast in
the diffusion function

𝜅(𝑦) :=
max𝑥∈Ω 𝑎(𝑥, 𝑦)
min𝑥∈Ω 𝑎(𝑥, 𝑦)

6
𝑅

𝑟
, 𝑦 ∈ 𝑌. (1.9)

This assumption also plays a key role in the derivation of the above approximation results, since it guarantees
that the parameter to solution map has a holomorphic extension to a sufficiently large complex neighbourhood
of 𝑌 . In this case, a good polynomial approximation 𝑢𝑛 may be defined by simply truncating the power series∑︀

𝜈∈N𝑑 𝑢𝜈𝑦
𝜈 , leading to the estimate (1.8).

On the other hand, there exist various situations where one would like to avoid such a strong restriction on
the level of contrast. Perhaps the most representative setting is when the domain Ω is partitioned into disjoint
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subdomains {Ω1, . . . ,Ω𝑑}, each of them admitting a constant diffusivity level that could vary strongly between
subdomains. This is typically the case when modeling diffusion in materials having multiple layers or inclusions
that could have very different nature, for example air or liquid versus solid. This situation can be encountered in
groundwater flow applications, where certain subdomains correspond to cavities, for which the diffusion function
becomes nearly infinite, as opposed to subdomains containing sediments or other porous rocks.

In such a case, we do not want to limit the contrast level. To represent this setting, we let

𝑎(𝑦)|Ω𝑗
= 𝑦𝑗 , 𝑦𝑗 ∈ ]0,∞[ (1.10)

or equivalently 𝑎(𝑦) =
∑︀𝑑

𝑗=1 𝑦𝑗𝜒Ω𝑗
, which corresponds to the affine form (1.5) with 𝑎 = 0 and 𝜓𝑗 = 𝜒Ω𝑗

, now
with

𝑌 := ]0,∞[𝑑. (1.11)

We take (1.11) as the definition of the parameter domain 𝑌 for the remainder of this paper. The solution 𝑢(𝑦)
satisfies the variational formulation

𝑑∑︁
𝑗=1

𝑦𝑗

ˆ
Ω𝑗

∇𝑢(𝑦) · ∇𝑣 d𝑥 = ⟨𝑓, 𝑣⟩𝐻−1,𝐻1
0
, 𝑣 ∈ 𝐻1

0 (Ω), (1.12)

or equivalently −𝑦𝑗∆𝑢(𝑦) = 𝑓 as elements of 𝐻−1(Ω𝑗) on each Ω𝑗 , with the standard jump conditions
[𝑎(𝑦)𝜕𝑛𝑢(𝑦)] = 0 across the boundaries between subdomains.

Let us observe that in this setting, it is hopeless to find spaces 𝑉𝑛 that approximate all solutions 𝑢(𝑦)
uniformly well. Indeed, the following homogeneity property obviously holds: for any 𝑦 ∈ 𝑌 and 𝑡 > 0, one has

𝑢(𝑡𝑦) = 𝑡−1𝑢(𝑦). (1.13)

This property implies in particular that ‖𝑢(𝑦)‖𝐻1
0

tends to infinity as 𝑦 → 0, and so does ‖𝑢(𝑦) − 𝑃𝑉𝑛𝑢(𝑦)‖𝐻1
0

in general. In fact, this also shows that the solution manifold ℳ is not relatively compact and does not have
finite 𝑛-widths.

In addition to this principal difficulty, let us remind that when using the spaces 𝑉𝑛 in forward modeling, we
typically use the Galerkin method, that delivers the orthogonal projection onto 𝑉𝑛 however for the energy norm

‖𝑣‖2𝑦 :=
𝑑∑︁

𝑗=1

𝑦𝑗

ˆ
Ω𝑗

|∇𝑣|2 d𝑥. (1.14)

This approximation is thus optimal in 𝐻1
0 (Ω), however up to the constant 𝜅(𝑦)1/2, which deteriorates with high

contrast.
The main contribution of this paper is to treat these issues, and derive approximation estimates that are
robust to high contrast, in the sense that they are independent of 𝑦 ∈ 𝑌 .

Due to the main objection coming from the homogeneity property (1.13), it is natural to look for uniform
approximation estimates in relative error, that is, estimates of the form

‖𝑢(𝑦)− 𝑃𝑉𝑛
𝑢(𝑦)‖𝐻1

0
6 𝜀𝑛‖𝑢(𝑦)‖𝐻1

0
, 𝑦 ∈ 𝑌, (1.15)

with lim𝑛→∞ 𝜀𝑛 = 0, and similarly for the ‖ · ‖𝑦-projection 𝑃 𝑦
𝑉𝑛
𝑢(𝑦) of 𝑢(𝑦) on 𝑉𝑛 however in the form. Our

main results, Theorems 3.7 and 4.2, exhibit spaces 𝑉𝑛 ensuring the validity of such uniform estimates with 𝜀𝑛

having sub-exponential decay with 𝑛, similar to the known results under UEA.

Remark 1.1. High contrast problems have been the object of intense investigation, in particular with the
objective of developing techniques for multilevel or domain decomposition preconditioning [3, 4, 21] and a pos-
teriori error estimation [2, 12], that are provably robust with respect to the level of contrast. We also refer to
[23, 29] for the treatment of high-contrast problems by multiscale methods, in the context of hetereogeneous
media, see also [5]. To our knowledge, the present work is the first in which this robustness is established for
reduced modeling methods in the context of parametrized coefficients.
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1.4. Outline

Throughout this paper, we consider the parametrized elliptic PDE (1.4) with 𝑎(𝑦) having piecewise constant
form (1.10) over a fixed partition. In view of the homogeneity property (1.13), we are led to consider the
subset

𝑌 ′ := [1,∞[𝑑 (1.16)

of parameters corresponding to the coercive regime. Any result on relative approximation error that is established
for 𝑌 ′ extends automatically to all of 𝑌 because of the homogeneity property. Accordingly, we let

ℬ := {𝑢(𝑦) : 𝑦 ∈ 𝑌 ′}. (1.17)

In Section 2, we start by proving that ℬ is a precompact set of 𝐻1
0 (Ω). One crucial ingredient for this analysis

are the limit solutions of the so-called stiff problem, obtained as 𝑦𝑗 →∞ for certain 𝑗 ∈ {1, . . . , 𝑑}.
In Section 3, we construct specific reduced model spaces for which the approximation estimate (1.15)

holds with 𝜀𝑛 decaying sub-exponentially. Our construction is based on partitioning the parametric domain
𝑌 ′ into rectangular regions and using a different polynomial approximations on each region. This results in
global reduced model space 𝑉𝑛 for which the accuracy bound remains sub-exponential, however in the form
exp(−𝑐𝑛

1
2𝑑−2 ). A key ingredient for establishing these sub-exponential rates is the derivation of quantitative

estimates on the convergence of 𝑢(𝑦) towards limit solutions defined in Section 2 as some 𝑦𝑗 tend to infinity.
These estimates are established under an additional geometrical assumption on the partition, similar results for
a general partition of Ω being an open problem.

In Section 4, we discuss the use of these reduced model spaces in forward modeling and inverse problems.
Our main result relative to forward modeling is that the estimate (1.15) also holds for the Galerkin projection
with the same exponential decay 𝜀𝑛. We show that such a result is only possible if 𝑉𝑛 includes functions that
have constant values over some subdomains. For the state estimation problem, we follow the Parametrized
Background Data Weak (PBDW) method [14, 27], and obtain recovery bounds that are uniform over 𝑦 ∈ 𝑌 in
relative error. For the parameter estimation problem, we introduce an ad hoc strategy that specifically exploits
the piecewise constant structure of the diffusion coefficient and obtain similar recovery bounds for the inverse
diffusivity.

We conclude in Section 5 by presenting some numerical illustrations revealing the effectiveness of the reduced
model spaces even in the high-contrast regime, as expressed by the approximation results.

2. Uniform approximation in relative error

In this section we work under no particular geometric assumption on the partition {Ω1, . . . ,Ω𝑑} of Ω, and
consider the solution manifold ℳ defined by (1.1), where 𝑢(𝑦) ∈ 𝐻1

0 (Ω) is a solution to the elliptic boundary
value problem with variational formulation (1.12). Our objective is to show the existence of spaces 𝑉𝑛 that
uniformly approximate ℳ in the relative error sense expressed by (1.15).

2.1. Limit solutions and the extended solution manifold

Our first observation is that this collection can be continuously extended when 𝑦𝑗 = ∞ for some values of 𝑗,
through limit solutions of stiff inclusion problems. Such limit solutions have for example been considered in the
context homogeneization, see e.g. p. 98 of [24].

For this purpose, to any 𝑆 ⊂ {1, . . . , 𝑑}, we associate the space

𝑉𝑆 :=
{︀
𝑣 ∈ 𝐻1

0 (Ω) : ∇𝑣|Ω𝑗
= 0, 𝑗 ∈ 𝑆

}︀
. (2.1)

In other words, 𝑉𝑆 consists of the functions from 𝐻1
0 (Ω) that have constant values on the subdomains Ω𝑗 for

𝑗 ∈ 𝑆 (or on each of their connected components if these subdomains are not connected). It is a closed subspace
of 𝐻1

0 (Ω). We decompose the parameter vector 𝑦 according to

𝑦 = (𝑦𝑆 , 𝑦𝑆𝑐), 𝑦𝑆 := (𝑦𝑗)𝑗∈𝑆 and 𝑦𝑆𝑐 := (𝑦𝑗)𝑗∈𝑆𝑐 . (2.2)
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For any finite and positive vector 𝑦𝑆𝑐 , similar to the ‖ · ‖𝑦 norm (1.14), we may define

‖𝑣‖2𝑦𝑆𝑐 :=
∑︁
𝑗∈𝑆𝑐

𝑦𝑗

ˆ
Ω𝑗

|∇𝑣|2 d𝑥, (2.3)

which is a semi-norm on 𝐻1
0 (Ω), and a full norm equivalent to the 𝐻1

0 -norm on 𝑉𝑆 . Also note that when
𝑦 = (𝑦𝑆 , 𝑦𝑆𝑐) is finite, one then has ‖𝑣‖𝑦𝑆𝑐 = ‖𝑣‖𝑦 for any 𝑣 ∈ 𝑉𝑆 .

For any finite and positive vector 𝑦𝑆𝑐 , we define the function 𝑢𝑆(𝑦𝑆𝑐) ∈ 𝑉𝑆 as the solution to the following
stiff inclusions problem: ∑︁

𝑗∈𝑆𝑐

𝑦𝑗

ˆ
Ω𝑗

∇𝑢𝑆(𝑦𝑆𝑐) · ∇𝑣 d𝑥 = ⟨𝑓, 𝑣⟩𝐻−1,𝐻1
0
, 𝑣 ∈ 𝑉𝑆 . (2.4)

The following result shows that this solution is well defined and is the limit of 𝑢(𝑦), when 𝑦𝑆𝑐 is fixed and
𝑦𝑗 →∞ for 𝑗 ∈ 𝑆. Note that the weak convergence is established in [24] (p. 98) and so we concentrate the proof
on the strong convergence.

Lemma 2.1. There exists a unique solution 𝑢𝑆(𝑦𝑆𝑐) ∈ 𝑉𝑆 to (2.4), which is the limit in 𝐻1
0 (Ω) of the solution

𝑢(𝑦𝑆 , 𝑦𝑆𝑐) as 𝑦𝑗 →∞ for all 𝑗 ∈ 𝑆.

Proof. Using the bilinear form (𝑢, 𝑣) ↦→
∑︀

𝑗∈𝑆𝑐 𝑦𝑗

´
Ω𝑗
∇𝑢 · ∇𝑣 d𝑥 in the space 𝑉𝑆 , Lax–Milgram theory implies

the existence of a unique solution 𝑢𝑆(𝑦𝑆𝑐) ∈ 𝑉𝑆 to (2.4).
Consider now a sequence (𝑦𝑛)𝑛>1 ∈ 𝑌 N, with 𝑦𝑛

𝑆𝑐 = 𝑦𝑆𝑐 and 𝑦𝑛
𝑗 →∞ for all 𝑗 ∈ 𝑆. Denoting 𝑢𝑛 = 𝑢(𝑦𝑛), it is

readily seen that (𝑢𝑛)𝑛>1 is uniformly bounded in 𝐻1
0 norm by 𝐶 = 𝐶𝑓 𝑐

−1, where 𝑐 := min𝑛>1 min16𝑗6𝑑 𝑦
𝑛
𝑗 > 0,

and that any weak limit of a sequence extraction is a solution to the variational equation (2.4). Therefore the
whole sequence (𝑢𝑛)𝑛>1 converges weakly to 𝑢̄ = 𝑢𝑆(𝑦𝑆𝑐).

We finally prove strong convergence by writing

𝑐‖𝑢𝑛 − 𝑢̄‖2𝐻1
0
6
ˆ

Ω

𝑎(𝑦𝑛)|∇(𝑢𝑛 − 𝑢̄)|2 d𝑥

= ⟨𝑓, 𝑢𝑛⟩𝐻−1,𝐻1
0
− 2⟨𝑢̄, 𝑢𝑛⟩𝑦𝑆𝑐

+ ‖𝑢̄‖2𝑦𝑆𝑐

−→
𝑛→∞

⟨𝑓, 𝑢̄⟩𝐻−1,𝐻1
0
− ‖𝑢̄‖2𝑦𝑆𝑐

= 0.

�

The above lemma allows us to readily extend the solution manifold by introducing

̃︀𝑌 := ]0,∞]𝑑,

and
ℳ :=

{︁
𝑢(𝑦) : 𝑦 ∈ ̃︀𝑌 }︁,

where we have formally set
𝑢(𝑦) := 𝑢𝑆(𝑦𝑆𝑐),

when 𝑦𝑗 = ∞ for 𝑗 ∈ 𝑆 and 𝑦𝑗 <∞ for 𝑗 ∈ 𝑆𝑐. Note that when 𝑆 = {1, . . . , 𝑑} the space 𝑉𝑆 is trivial and one
has

𝑢(∞, . . . ,∞) = 0.
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Remark 2.2. Although we do not make explicit use of it, it can be checked that despite the fact that 𝑦𝑗 = 0
is excluded in the definition of ℳ, it indeed coincides with the closure of ℳ in 𝐻1

0 (Ω) due to the fact that
‖𝑢(𝑦)‖𝐻1

0
→∞ as 𝑦 → 0.

Remark 2.3. More precisely, when some 𝑦𝑗 tend to zero, 𝑢(𝑦) converges to the solution of the so-called soft
inclusions problem (see [24], Chap. 3), outside the corresponding subdomains Ω𝑗 . Here, due to the fact that the
approximation estimates that we prove further are in relative error, these other limit solutions are of no use in
our analysis.

2.2. A compactness result

As already observed in the introduction, the manifold ℳ is not bounded in 𝐻1
0 (Ω) due to the homogeneity

property (1.13) and therefore not compact.
In order to treat this defect, we consider ̃︀𝑌 ′ := [1,∞]𝑑,

and the submanifold
ℬ :=

{︁
𝑢(𝑦) : 𝑦 ∈ ̃︀𝑌 ′}︁,

which is now bounded in 𝐻1
0 (Ω), from the standard a priori estimate

‖𝑢(𝑦)‖𝐻1
0
6

𝐶𝑓

min 𝑦𝑗
6 𝐶𝑓 ,

that is obtained by taking 𝑣 = 𝑢(𝑦) in the variational formulation (1.12), with 𝐶𝑓 = ‖𝑓‖𝐻−1 as in (1.7). This
estimate trivially extends to 𝑢𝑆(𝑦𝑆𝑐) when the 𝑦𝑗 have infinite value for 𝑗 ∈ 𝑆. In addition we have the following
result.

Theorem 2.4. The set ℬ is compact in 𝐻1
0 (Ω).

Proof. Consider any sequence of vectors 𝑦𝑛 = (𝑦𝑛
1 , . . . , 𝑦

𝑛
𝑑 ) ∈ ̃︀𝑌 ′ for 𝑛 > 1. We need to prove that the corre-

sponding sequence of solutions (𝑢(𝑦𝑛))𝑛>1 admits a converging subsequence. For this purpose, we observe that
there exists a subset 𝑆 ∈ {1, . . . , 𝑑} such that, up to subsequence extraction,

lim
𝑛→∞

𝑦𝑛
𝑗 = ∞, 𝑗 ∈ 𝑆,

and
lim

𝑛→∞
𝑦𝑛

𝑗 = 𝑦𝑗 <∞, 𝑗 ∈ 𝑆𝑐.

Note that 𝑆 could be empty, for instance in the case where the 𝑦𝑛
𝑗 are uniformly bounded for all 𝑗.

Let 𝜀 > 0. Using the strong convergence result in Lemma 2.1, for all 𝑛 > 1 there exists an auxiliary vector
𝑦𝑛 such that 𝑦𝑛

𝑗 = 𝑦𝑛
𝑗 when 𝑦𝑛

𝑗 <∞, 𝑦𝑛
𝑗 <∞ when 𝑦𝑛

𝑗 = ∞, such that by having picked 𝑦𝑛
𝑗 large enough in the

second case
‖𝑢(𝑦𝑛)− 𝑢(𝑦𝑛)‖𝐻1

0
6 𝜀/3.

In addition we may assume that 𝑦𝑛
𝑗 → ∞ for 𝑗 ∈ 𝑆. Next we introduce the vector 𝑦𝑛 such that 𝑦𝑛

𝑗 = 𝑦𝑛
𝑗 when

𝑗 ∈ 𝑆 and 𝑦𝑛
𝑗 = 𝑦𝑗 when 𝑗 ∈ 𝑆𝑐. Applying again Lemma 2.1, we find that with 𝑦𝑆𝑐 = (𝑦𝑗)𝑗∈𝑆𝑐 , one has

‖𝑢(𝑦𝑛)− 𝑢𝑆(𝑦𝑆𝑐)‖𝐻1
0
6 𝜀/3,

for 𝑛 sufficiently large. Finally we argue that

‖𝑢(𝑦𝑛)− 𝑢(𝑦𝑛)‖𝐻1
0
6 𝜀/3,
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for 𝑛 large enough. This is a consequence of the following variant of Strang’s first lemma (whose proof is similar
and left as an exercise to the reader) that says that for two diffusion functions 𝑎̄ and 𝑎̃, the corresponding
solution 𝑢̄ and 𝑢̃ with the same data 𝑓 satisfy

‖𝑢̄− 𝑢̃‖𝐻1
0
6

𝐶𝑓 ‖𝑎̄− 𝑎̃‖𝐿∞

min{𝑎̄min, 𝑎̃min}2
·

We then apply this to 𝑎 := 𝑎𝑛 = 𝑎(𝑦𝑛) and 𝑎̃ := 𝑎̃𝑛 = 𝑎(𝑦𝑛), observing that from their definition, ‖𝑎̄− 𝑎̃‖𝐿∞ =
max𝑗∈𝑆𝑐 |𝑦𝑛

𝑗 − 𝑦𝑗 | → 0 as 𝑛→∞. Therefore ‖𝑢(𝑦𝑛)− 𝑢𝑆(𝑦𝑆𝑐)‖𝐻1
0
6 𝜀 for 𝑛 sufficiently large, which concludes

the proof. �

We next observe that any 𝑦 ∈ 𝑌 can be rewritten as

𝑦 = 𝑡𝑦,

with 𝑦 ∈ 𝑌 ′ and normalization min 𝑦𝑗 = 1, for some 𝑡 > 0, and from (1.13) one has 𝑢(𝑦) = 𝑡−1𝑢(𝑦). This
motivates the study of the further reduced manifold

𝒩 :=
{︁
𝑢(𝑦) : 𝑦 ∈ ̃︀𝑌 ′, min 𝑦𝑗 = 1

}︁
, (2.5)

which is a subset of ℬ.
One important observation is that the solutions contained in 𝒩 are also uniformly bounded from below,

under mild assumptions on the data 𝑓 .

Lemma 2.5. The set 𝒩 is compact in 𝐻1
0 (Ω). Moreover, one has the framing

min
16𝑗6𝑑

‖𝑓‖𝐻−1(Ω𝑗) 6 ‖𝑢(𝑦)‖𝐻1
0
6 𝐶𝑓 , (2.6)

for all 𝑢(𝑦) ∈ 𝒩 .

Proof. The compactness of 𝒩 follows from that of ℬ, since 𝒩 is a closed subset of ℬ. For the framing, as
𝑎(𝑦) > 1 on Ω, taking 𝑆 = {𝑗 : 𝑦𝑗 = ∞},

‖𝑢(𝑦)‖2𝐻1
0
6
∑︁
𝑗∈𝑆𝑐

𝑦𝑗

ˆ
Ω𝑗

|∇𝑢(𝑦)|2 d𝑥 = ⟨𝑓, 𝑢(𝑦)⟩𝐻−1,𝐻1
0
6 𝐶𝑓‖𝑢(𝑦)‖𝐻1

0
,

so ‖𝑢(𝑦)‖𝐻1
0
6 𝐶𝑓 . Now take 𝑗 ∈ {1, . . . , 𝑑} such that 𝑦𝑗 = 1, and consider 𝜑 ∈ 𝐻1

0 (Ω𝑗). Then

⟨𝑓, 𝜑⟩𝐻−1,𝐻1
0

=
ˆ

Ω𝑗

∇𝑢(𝑦) · ∇𝜑d𝑥 6 ‖𝑢(𝑦)‖𝐻1
0 (Ω)‖𝜑‖𝐻1

0 (Ω𝑗),

which gives the result. �

In the sequel of this paper, we always work under the condition that the lower bound in (2.6) is strictly
positive

𝑐𝑓 := min
16𝑗6𝑑

‖𝑓‖𝐻−1(Ω𝑗) > 0. (2.7)

Let us observe that when 𝑓 is a function in 𝐿2(Ω), this is ensured as soon as 𝑓 is not identically zero on any of
the Ω𝑗 . We thus have

0 < 𝑐𝑓 6 ‖𝑢(𝑦)‖𝐻1
0
6 𝐶𝑓 , (2.8)

for all 𝑢(𝑦) ∈ 𝒩 .



ELLIPTIC PROBLEMS WITH HIGH CONTRAST 2783

Remark 2.6. The condition 𝑐𝑓 > 0 is in general necessary for controlling ‖𝑢(𝑦)‖𝐻1
0

from below. Indeed assume
‖𝑓‖𝐻−1(Ω𝑗) = 0 for some 𝑗 such that Ω ∖ Ω𝑗 is connected. Then taking 𝑦𝑘 = ∞ for 𝑘 ̸= 𝑗 and 𝑦𝑗 = 1, we find
that 𝑢(𝑦) ∈ 𝑉𝑆 with 𝑆 = {𝑗}𝑐, which is equivalent to 𝑢(𝑦) ∈ 𝐻1

0 (Ω𝑗) since it vanishes on the other sub-domains.
As ‖𝑓‖𝐻−1(Ω𝑗) = 0, we obtain 𝑢(𝑦) = 0.

Remark 2.7. One also has the uniform framing in the energy norm since

0 < 𝑐𝑓 6 ‖𝑢(𝑦)‖𝐻1
0
6 ‖𝑢(𝑦)‖𝑦𝑆𝑐 =

√︁
⟨𝑓, 𝑢⟩𝐻−1,𝐻1

0
6 𝐶𝑓 , (2.9)

for all 𝑢(𝑦) ∈ 𝒩 , with 𝑆 = {𝑗 : 𝑦𝑗 = ∞}.

The framing (2.8) has an implication on the existence of reduced model spaces that approximate uniformly
well all solutions 𝑢(𝑦) ∈ℳ in relative error.

Theorem 2.8. There exists a sequence of linear spaces (𝑉𝑛)𝑛>1 such that dim(𝑉𝑛) = 𝑛, and a sequence (𝜀𝑛)𝑛>1

that converges to zero such that
‖𝑢(𝑦)− 𝑃𝑉𝑛𝑢(𝑦)‖𝐻1

0
6 𝜀𝑛‖𝑢(𝑦)‖𝐻1

0
(2.10)

for all 𝑦 ∈ ̃︀𝑌 , where 𝑃𝑉𝑛
is the 𝐻1

0 (Ω)-orthogonal projector onto 𝑉𝑛.

Proof. Since 𝒩 is compact, there exists a sequence of spaces (𝑉𝑛)𝑛>1 with dim(𝑉𝑛) = 𝑛 and a sequence (𝜎𝑛)𝑛>1

that tends to 0, such that
‖𝑣 − 𝑃𝑉𝑛

𝑣‖𝐻1
0
6 𝜎𝑛, 𝑣 ∈ 𝒩 .

Now let 𝑦 ∈ ̃︀𝑌 different from (∞, . . . ,∞), for which there is nothing to prove since 𝑢(∞, . . . ,∞) = 0, and let
𝑡−1 = min16𝑗6𝑑 𝑦𝑗 <∞. By homogeneity, 𝑡−1𝑢(𝑦) = 𝑢(𝑡𝑦) ∈ 𝒩 , and therefore

‖𝑢(𝑦)− 𝑃𝑉𝑛
𝑢(𝑦)‖𝐻1

0
= 𝑡‖𝑢(𝑡𝑦)− 𝑃𝑉𝑛

𝑢(𝑡𝑦)‖𝐻1
0 (Ω) 6 𝑡𝜎𝑛.

On the other hand, ‖𝑢(𝑦)‖𝐻1
0 (Ω) = 𝑡‖𝑢(𝑡𝑦)‖𝐻1

0 (Ω) > 𝑡𝑐𝑓 by framing (2.6), which proves Theorem 2.8 with
𝜀𝑛 = 𝜎𝑛/𝑐𝑓 . �

The above theorem tells us that we can achieve contrast-independent approximation in relative error. It is
however still unsatisfactory from two perspectives:

(1) It does not describe the rate of decay of 𝜀𝑛 as the reduced dimension 𝑛 grows. In practice, one would like to
construct reduced spaces 𝑉𝑛 such that this decay is fast, similar to the exponential decay obtained under
UEA.

(2) The approximation property is expressed in terms of the orthogonal projection 𝑃𝑉𝑛 . In applications to
forward modeling, we approximate the solution 𝑢(𝑦) in the space 𝑉𝑛 by the Galerkin projection 𝑃 𝑦

𝑉𝑛
𝑢(𝑦).

We thus wish for uniform estimates also for such approximations.

These two problems are treated in Sections 3 and 4 respectively.

3. Approximation rates

Our construction of efficient reduced model spaces is based on a certain partitioning of the parameter domaiñ︀𝑌 ′ associated to the manifold ℬ. To any ℓ = (ℓ1, . . . , ℓ𝑑) ∈ N𝑑
0 we associate the dyadic rectangle

𝑅ℓ =
[︀
2ℓ1 , 2ℓ1+1

]︀
× · · · ×

[︀
2ℓ𝑑 , 2ℓ𝑑+1

]︀
, (3.1)
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Figure 1. Partition of [0, 1]𝑑 by the inverse rectangles 𝑅−1
ℓ in the case 𝑑 = 2.

For a positive integer 𝐿 to be fixed later, we modify the definition of 𝑅ℓ by replacing the interval [2ℓ𝑗 , 2ℓ𝑗+1] by
[2ℓ𝑗 ,∞] when ℓ𝑗 = 𝐿 for some 𝑗. This leads to the partition

̃︀𝑌 ′ =
⋃︁

ℓ∈{0,...,𝐿}𝑑

𝑅ℓ. (3.2)

This partition is best visualized in the inverse parameter domain by setting

𝑧 = (𝑧1, . . . , 𝑧𝑑) :=
(︀
𝑦−1
1 , . . . , 𝑦−1

𝑑

)︀
∈ [0, 1]𝑑. (3.3)

Then, the inverse rectangles 𝑅−1
ℓ split the unit cube, as shown on Figure 1. In particular, the rectangles touching

the axes correspond to rectangles 𝑅ℓ of infinite size.
We build reduced model spaces through a piecewise polynomial approximation over this partition. In other

words, for each ℓ ∈ {0, . . . , 𝐿}𝑑, we use different polynomials

𝑢ℓ,𝑘(𝑦) =
∑︁
|𝜈|6𝑘

𝑢ℓ,𝜈𝑦
𝜈 ,

of total degree 𝑘 for approximating 𝑢(𝑦) when 𝑦 ∈ 𝑅ℓ. This leads to a family of local reduced model spaces

𝑉ℓ,𝑘 = span{𝑢ℓ,𝜈 : |𝜈| 6 𝑘}, (3.4)

that can be either used individually when approximating 𝑢(𝑦) if the rectangle 𝑅ℓ containing 𝑦 is known, or
summed up in order to obtain a global reduced model space.

In this section we show that this construction yields exponential convergence rates in (1.15), similar to those
obtained under a Uniform Ellipticity Assumption. This requires a proper tuning between the total polynomial
degree 𝑘 and the integer 𝐿 that determines the size of the partition. In the study of local polynomial approxima-
tion, we treat separately the inner rectangles for which ℓ ∈ {0, · · · , 𝐿− 1}𝑑 and the infinite rectangles for which
one or several ℓ𝑗 are equal to 𝐿. The estimates obtained in the latter case rely on the additional assumption
that the partition has a geometry of disjoint inclusions.

3.1. Polynomial approximation on inner rectangles

Inner rectangles 𝑅ℓ are particular cases of rectangles of the form

𝑅 = [𝑎1, 2𝑎1]× · · · × [𝑎𝑑, 2𝑎𝑑], (3.5)
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for some 𝑎𝑗 > 1. The following lemma, adapted from [7], shows that one can approximate the parameter to
solution map in the ‖ · ‖𝑦 and ‖ · ‖𝐻1

0
norms on such rectangles, with a rate that decreases exponentially in the

total polynomial degree.

Lemma 3.1. Let 𝑅 be any rectangle of the form (3.5). Then, for each 𝑘 > 0, there exist functions 𝑢𝜈 ∈ 𝐻1
0 (Ω)

such that ⃦⃦⃦⃦
⃦⃦𝑢(𝑦)−

∑︁
|𝜈|6𝑘

𝑢𝜈𝑦
𝜈

⃦⃦⃦⃦
⃦⃦

𝑦

6 𝐶3−𝑘, 𝑦 ∈ 𝑅, (3.6)

where 𝐶 := 1√
3
𝐶𝑓 , and ⃦⃦⃦⃦

⃦⃦𝑢(𝑦)−
∑︁
|𝜈|6𝑘

𝑢𝜈𝑦
𝜈

⃦⃦⃦⃦
⃦⃦

𝐻1
0

6 𝐶3−𝑘, 𝑦 ∈ 𝑅, (3.7)

where 𝐶 := 1√
6
𝐶𝑓 .

Proof. The exponential rate is established in [7] for a single parameter domain with uniform ellipticity assump-
tion. Here the difficulty lies in the fact that we want the same estimate for all parametric rectangles 𝑅 and thus
without control on the uniform ellipticity. Still the technique of proof, based on power series, is similar.

The elliptic equation −div(𝑎(𝑦)𝑢(𝑦)) = 𝑓 may be written in operator form

𝐴𝑦𝑢(𝑦) = 𝑓,

where the invertible operator 𝐴𝑦 : 𝐻1
0 (Ω) → 𝐻−1(Ω) is defined by

⟨𝐴𝑦𝑣, 𝑤⟩𝐻−1,𝐻1
0

:=
ˆ
𝑎(𝑦)∇𝑣 · ∇𝑤 d𝑥 = ⟨𝑣, 𝑤⟩𝑦.

We introduce
𝑦 :=

3
2

(𝑎1, . . . , 𝑎𝑑),

the center of the rectangle, and write any 𝑦 ∈ 𝑅 as

𝑦 = 𝑦 + 𝑦,

where the components 𝑦𝑗 of 𝑦 vary in [−𝑎𝑗/2, 𝑎𝑗/2]. We may write 𝐴𝑦 = 𝐴𝑦 +
∑︀𝑑

𝑗=1 𝑦𝑗𝐴𝑗 , where the operators
𝐴𝑗 : 𝐻1

0 (Ω) → 𝐻−1(Ω) are defined by

⟨𝐴𝑗𝑣, 𝑤⟩𝐻−1,𝐻1
0

:=
ˆ

Ω𝑗

∇𝑣 · ∇𝑤 d𝑥.

This allows us to rewrite the equation as
(𝐼 +𝐵(𝑦))𝑢(𝑦) = 𝑔,

where 𝑔 := 𝐴−1
𝑦 𝑓 ∈ 𝐻1

0 (Ω) and 𝐵(𝑦) =
∑︀𝑑

𝑗=1 𝑦𝑗𝐴
−1
𝑦 𝐴𝑗 acts in 𝐻1

0 (Ω). We then observe that

⟨𝐵(𝑦)𝑣, 𝑤⟩𝑦 = ⟨𝐴𝑦𝐵(𝑦)𝑣, 𝑤⟩𝐻−1,𝐻1
0

=
𝑑∑︁

𝑗=1

𝑦𝑗⟨𝐴𝑗𝑣, 𝑤⟩𝐻−1,𝐻1
0

=
𝑑∑︁

𝑗=1

𝑦𝑗

ˆ
Ω𝑗

∇𝑣 · ∇𝑤 d𝑥,

and therefore, since |𝑦𝑗 | 6 1
3𝑦𝑗 ,

⃒⃒⃒
⟨𝐵(𝑦)𝑣, 𝑤⟩𝑦

⃒⃒⃒
6

1
3

𝑑∑︁
𝑗=1

𝑦𝑗

⃒⃒⃒⃒
⃒
ˆ

Ω𝑗

∇𝑣 · ∇𝑤 d𝑥

⃒⃒⃒⃒
⃒ 6 1

3
‖𝑣‖𝑦‖𝑤‖𝑦,
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which shows that ‖𝐵(𝑦)‖𝑦→𝑦 6 1
3 . We may thus approximate (𝐼 +𝐵(𝑦))−1 by the partial Neumann series

𝑘∑︁
𝑙=0

(−1)𝑙𝐵(𝑦)𝑙,

which is a polynomial in 𝑦 of total degree 𝑘. The corresponding polynomial approximation to 𝑢(𝑦) is given by

𝑁𝑘𝑢(𝑦) =
𝑘∑︁

𝑙=0

(−1)𝑙𝐵(𝑦)𝑙𝑔 =
𝑘∑︁

𝑙=0

(−1)𝑙

⎛⎝ 𝑑∑︁
𝑗=1

𝑦𝑗𝐴
−1
𝑦 𝐴𝑗

⎞⎠𝑙

𝑔 =
∑︁
|𝜈|6𝑘

𝑣𝜈𝑦
𝜈 ,

and coincides with the truncated power series of 𝑢̃(𝑦) := 𝑢(𝑦 + 𝑦) at 𝑦 = 0, that is,

𝑣𝜈 :=
1
𝜈!
𝜕𝜈𝑢(𝑦), 𝜈! :=

∏︁
𝜈𝑗 !.

It can be rewritten in the form
𝑁𝑘𝑢(𝑦) =

∑︁
|𝜈|6𝑘

𝑢𝜈𝑦
𝜈 .

One has

‖𝑢(𝑦)−𝑁𝑘𝑢(𝑦)‖𝑦 6
∑︁
𝑙>𝑘

⃦⃦
𝐵(𝑦)𝑙𝑔

⃦⃦
𝑦
6

(︃∑︁
𝑙>𝑘

3−𝑙

)︃⃦⃦⃦
𝐴−1

𝑦 𝑓
⃦⃦⃦

𝑦
=

3−𝑘

2

⃦⃦⃦
𝐴−1

𝑦 𝑓
⃦⃦⃦

𝑦
,

and ⃦⃦⃦
𝐴−1

𝑦 𝑓
⃦⃦⃦2

𝑦
=
⟨
𝐴𝑦𝐴

−1
𝑦 𝑓,𝐴−1

𝑦 𝑓
⟩

𝐻−1,𝐻1
0

= ⟨𝑓, 𝑢(𝑦)⟩𝐻−1,𝐻1
0
6 𝐶𝑓‖𝑢(𝑦)‖𝐻1

0
6 𝐶2

𝑓 ,

where the last inequality follows from framing (2.6) since 𝑎(𝑦) > 1. This proves the estimate⃦⃦⃦⃦
⃦⃦𝑢(𝑦)−

∑︁
|𝜈|6𝑘

𝑢𝜈𝑦
𝜈

⃦⃦⃦⃦
⃦⃦

𝑦

6 𝐶3−𝑘, 𝑦 ∈ 𝑅, (3.8)

with 𝐶 := 1
2𝐶𝑓 . Using the inequalities

‖𝑣‖2𝑦 6
4
3
‖𝑣‖2𝑦, 𝑣 ∈ 𝐻1

0 (Ω), 𝑦 ∈ 𝑅,

and

‖𝑣‖2𝐻1
0
6

2
3
‖𝑣‖2𝑦, 𝑣 ∈ 𝐻1

0 (Ω),

we obtain the estimate (3.6) and (3.7) with the modified multiplicative constants. �

Remark 3.2. The above lemma shows that the set ℳ𝑅 := {𝑢(𝑦) : 𝑦 ∈ 𝑅} can be approximated with accuracy
𝐶3−𝑘 by the space

𝑉𝑅 := span{𝑢𝜈 : |𝜈| 6 𝑘}. (3.9)

The dimension of 𝑉𝑅 is at most
(︀
𝑘+𝑑

𝑑

)︀
, however, as noticed in [7], it can in fact be seen that

dim(𝑉𝑅) 6
(︂
𝑘 + 𝑑− 1
𝑑− 1

)︂
. (3.10)
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This stems from the fact that the operators defined in the above proof satisfy the dependency relation

𝐴𝑦 =
𝑑∑︁

𝑗=1

𝑦𝑗𝐴𝑗 ,

and therefore, one can rewrite 𝐴𝑦 as

𝐴𝑦 := (1 + 𝑦𝑑/𝑦𝑑)𝐴𝑦 +
𝑑−1∑︁
𝑗=1

(︀
𝑦𝑗 − 𝑦𝑑𝑦𝑗/𝑦𝑑

)︀
𝐴𝑗 .

Using this form, the partial Neumann sum 𝑁𝑘𝑢(𝑦) has at most
(︀
𝑘+𝑑−1

𝑑−1

)︀
independent terms.

We shall also make use of the following adaptation of the above lemma to the approximation of the limit
solution map 𝑦𝑆𝑐 ↦→ 𝑢𝑆(𝑦𝑆𝑐), defined by (2.4). Its proof is an immediate adaptation of the previous one and is
therefore omitted.

Lemma 3.3. Let 𝑆 ⊂ {1, . . . , 𝑑}, and for some 𝑎𝑗 > 1, let 𝑅 be a rectangle of the form

𝑅 =
∏︁

𝑗∈𝑆𝑐

[𝑎𝑗 , 2𝑎𝑗 ]. (3.11)

Then, there exists functions 𝑢𝜈 ∈ 𝑉𝑆 such that⃦⃦⃦⃦
⃦⃦𝑢𝑆(𝑦𝑆𝑐)−

∑︁
|𝜈|6𝑘

𝑢𝜈𝑦
𝜈
𝑆𝑐

⃦⃦⃦⃦
⃦⃦

𝑦𝑆𝑐

6 𝐶3−𝑘, 𝑦𝑆𝑐 ∈ 𝑅, (3.12)

where 𝐶 := 1√
3
𝐶𝑓 , and ⃦⃦⃦⃦

⃦⃦𝑢𝑆(𝑦𝑆𝑐)−
∑︁
|𝜈|6𝑘

𝑢𝜈𝑦𝑆𝑐

⃦⃦⃦⃦
⃦⃦

𝐻1
0

6 𝐶3−𝑘, 𝑦𝑆𝑐 ∈ 𝑅, (3.13)

where 𝐶 := 1√
6
𝐶𝑓 .

3.2. Polynomial approximation on infinite rectangles

We now consider the infinite rectangles 𝑅ℓ, corresponding to the ℓ such that some of the ℓ𝑗 equal 𝐿. We
define

𝑆 := {𝑗 : ℓ𝑗 = 𝐿}, (3.14)

the set of such indices. When 𝑦 ∈ 𝑅ℓ, we thus have

𝑦𝑗 > 2𝐿, 𝑗 ∈ 𝑆,

and so 𝑢(𝑦) should be close to 𝑢𝑆(𝑦𝑆𝑐) as 𝐿 is large. On the other hand 𝑦𝑆𝑐 belongs to a rectangle of the form

𝑅ℓ𝑆𝑐 =
∏︁

𝑗∈𝑆𝑐

[︀
2ℓ𝑗 , 2ℓ𝑗+1

]︀
.

Therefore, by Lemma 3.3, we can approximate 𝑢𝑆(𝑦𝑆𝑐) by a polynomial of total degree 𝑘 in these restricted
variables.
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Figure 2. A Lipschitz partition of Ω (left) and a counter-example (right) since Ω1 ∪Ω4 is not
Lipschitz.

In order to conclude that this polynomial is a good approximation to 𝑢(𝑦) on 𝑅ℓ, we need a quantitative
estimate on the convergence of 𝑢(𝑦) towards 𝑢𝑆(𝑦𝑆𝑐). Let us observe that since

𝑑∑︁
𝑗=1

𝑦𝑗

ˆ
Ω𝑗

∇𝑢(𝑦) · ∇𝑣 d𝑥 = ⟨𝑓, 𝑣⟩𝐻−1,𝐻1
0

=
∑︁
𝑗∈𝑆𝑐

𝑦𝑗

ˆ
Ω𝑗

∇𝑢𝑆(𝑦𝑆𝑐) · ∇𝑣 d𝑥, 𝑣 ∈ 𝑉𝑆 ,

the function 𝑢𝑆(𝑦𝑆𝑐) coincides with the orthogonal projection of 𝑢(𝑦) onto 𝑉𝑆 for the 𝑦-norm, as well as for the
𝑦𝑆𝑐-norm:

𝑢𝑆(𝑦𝑆𝑐) = 𝑃 𝑦
𝑉𝑆
𝑢(𝑦) = 𝑃 𝑦𝑆𝑐

𝑉𝑆
𝑢(𝑦). (3.15)

In addition, with
Ω𝑆 :=

⋃︁
𝑗∈𝑆

Ω𝑗 , (3.16)

we have
2𝐿‖∇𝑢(𝑦)‖2𝐿2(Ω𝑆) 6

∑︁
𝑗∈𝑆

𝑦𝑗

ˆ
Ω𝑗

|∇𝑢(𝑦)|2 d𝑥 6 ⟨𝑓, 𝑢(𝑦)⟩𝐻−1,𝐻1
0
6 𝐶2

𝑓 ,

since ‖𝑢(𝑦)‖𝐻1
0
6 𝐶𝑓 , and therefore, since ∇𝑢𝑆(𝑦𝑆𝑐) = 0 on Ω𝑆 , we find that

‖∇𝑢(𝑦)−∇𝑢𝑆(𝑦𝑆𝑐)‖𝐿2(Ω𝑆) 6 𝐶𝑓 2−𝐿/2. (3.17)

Our objective is to obtain a similar error bound on the remaining domains Ω𝑗 for 𝑗 ∈ 𝑆𝑐. This turns out to
be feasible, with an even better rate 2−𝐿, when making certain geometric assumptions on the partition of the
domain Ω.

Definition 3.4. We say that {Ω1, . . . ,Ω𝑑} is a Lipschitz partition if and only if for any subset 𝑇 ⊂ {1, . . . , 𝑑},
the domain Ω𝑇 =

⋃︀
𝑗∈𝑇 Ω𝑗 has Lipschitz boundaries.

Note that such a property is stronger than just saying that each domain is Lipschitz, see Figure 2 (right) for a
counter-example. In a Lipschitz partition, all subdomains Ω𝑗 are Lipschitz, and the common boundary between
two subdomains is either empty or a (𝑛− 1)-dimensional surface, as illustrated on Figure 2 (left). In particular,
it is easily checked that partitions consisting of a background domain and well separated subdomains that have
Lipschitz boundaries fall in this category. Similar to the Ω𝑇 , the individual Ω𝑗 could have several connected
components, that should then be well separated. Here by “well separated”, we mean that 𝛿-neighbourhoods of
the subdomains remain disjoints for some 𝛿 > 0.

For the inner domains Ω𝑇 such that 𝜕Ω𝑇 ∩ 𝜕Ω = ∅, the classical Stein’s extension theorem [33] guarantees
the existence of continuous extension operators

𝐸𝑇 : 𝐻1(Ω𝑇 ) → 𝐻1(Ω),
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that satisfy (𝐸𝑇 𝑣)|Ω𝑇
= 𝑣 for all 𝑣 ∈ 𝐻1(Ω𝑇 ). We refer to chapter 5 of [1] for a relatively simple construction of

the extension operator 𝐸𝑗 by local reflection after using a partitioning of unity along the boundary of Ω𝑇 and
local transformations mapping the boundary to the hyperplane R𝑛−1.

For the domains Ω𝑇 touching the boundary 𝜕Ω, these operators are modified in order to take into account
the homogeneous boundary condition, and we refer to [39] for such adaptations. Here, the relevant space is

𝐻̃1(Ω𝑇 ) := 𝑅𝑇

(︀
𝐻1

0 (Ω)
)︀
, (3.18)

where 𝑅𝑇 is the restriction to Ω𝑇 , over which 𝑣 ↦→ ‖∇𝑣‖𝐿2(Ω𝑇 ) is equivalent to the 𝐻1 norm by Poincaré
inequality. Then, there exists a continuous extension operator

𝐸𝑇 : 𝐻̃1(Ω𝑇 ) → 𝐻1
0 (Ω).

Note that the norm of all these operators depends on the geometry of the partition. These operators are
instrumental in proving the following convergence estimate.

Lemma 3.5. Assume that {Ω1, . . . ,Ω𝑑} is a Lipschitz partition of Ω. Then there exists a constant 𝐶0 that only
depends on the geometry of the partition such that for any 𝑆 ⊂ {1, . . . , 𝑑} and 𝑦 = (𝑦𝑆 , 𝑦𝑆𝑐) ∈ 𝑌 ′, one has

‖𝑢(𝑦)− 𝑢𝑆(𝑦𝑆𝑐)‖𝐻1
0
6 𝐶0𝐶𝑓 max

𝑗∈𝑆
𝑦−1

𝑗 . (3.19)

In particular, for the infinite rectangle 𝑅ℓ,

‖𝑢(𝑦)− 𝑢𝑆(𝑦𝑆𝑐)‖𝐻1
0
6 𝐶0𝐶𝑓 2−𝐿, 𝑦 ∈ 𝑅ℓ, (3.20)

with 𝑆 defined by (3.14).

Proof. We first note that it suffices to prove (3.19) in the particular case where the largest 𝑦𝑗 are those for
which 𝑗 ∈ 𝑆. Indeed, if this is not the case, we use the decomposition

𝑢(𝑦)− 𝑢𝑆(𝑦𝑆𝑐) = (𝑢(𝑦)− 𝑢𝑆′(𝑦𝑆′𝑐))− (𝑢(𝑦′)− 𝑢𝑆′(𝑦𝑆′𝑐)) + (𝑢(𝑦′)− 𝑢𝑆(𝑦𝑆𝑐)),

with 𝑆′ = {𝑖 : 𝑦𝑖 > min𝑗∈𝑆 𝑦𝑗} and 𝑦′ defined by 𝑦′𝑗 = max𝑖=1,...,𝑑 𝑦𝑖 if 𝑗 ∈ 𝑆, 𝑦′𝑗 = 𝑦𝑗 otherwise, so that each
term falls in this particular case and will be bounded in 𝐻1

0 norm by 𝐶0𝐶𝑓 max𝑗∈𝑆 𝑦
−1
𝑗 . This leads to the same

estimate (3.19) up to a factor 3 in constant 𝐶0. In addition, up to reordering the subdomains Ω𝑗 , we may assume
𝑦1 > · · · > 𝑦𝑑 and therefore 𝑆 = {1, . . . , |𝑆|}.

Fix 𝑗 > |𝑆|, and denote 𝑢 = 𝑢(𝑦) and 𝑢𝑆 = 𝑢𝑆(𝑦𝑆𝑐) for simplicity. We define the Lipschitz domain Ω𝑗 =
Ω1 ∪ · · · ∪ Ω𝑗 , remarking that

Ω𝑆 =
⋃︁
𝑗∈𝑆

Ω𝑗 = Ω|𝑆|.

Poincaré’s inequality ensures that there exists a function 𝑐 on Ω𝑗 , constant on any connected component of Ω𝑗 ,
and null on 𝜕Ω ∩ Ω𝑗 , such that

‖𝑢− 𝑢𝑆 − 𝑐‖𝐻1(Ω𝑗) 6 𝐶𝑃 ‖∇(𝑢− 𝑢𝑆)‖𝐿2(Ω𝑗),

with 𝐶𝑃 the maximal Poincaré constant of all unions of subdomains from the partition. Moreover, there is an
extension 𝑣 ∈ 𝐻1

0 (Ω) of 𝑢− 𝑢𝑆 − 𝑐 ∈ 𝐻̃1(Ω𝑗) such that

‖𝑣‖𝐻1
0 (Ω) 6 𝐶𝐸‖𝑢− 𝑢𝑆 − 𝑐‖𝐻1(Ω𝑗) 6 𝐶𝐸𝐶𝑃 ‖∇(𝑢− 𝑢𝑆)‖𝐿2(Ω𝑗),

with 𝐶𝐸 the maximal norm of all extension operators 𝐸𝑇 , 𝑇 ⊂ {1, . . . , 𝑑}.
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As 𝑢−𝑢𝑆−𝑣 = 𝑐 on Ω𝑆 ⊂ Ω𝑗 , the function 𝑢−𝑢𝑆−𝑣 is in 𝑉𝑆 , and therefore orthogonal to 𝑢−𝑢𝑆 = 𝑢−𝑃 𝑦
𝑉𝑆
𝑢

for the ‖ · ‖𝑦 norm:

0 = ⟨𝑢− 𝑢𝑆 , 𝑢− 𝑢𝑆 − 𝑣⟩𝑦

=
𝑑∑︁

𝑖=1

𝑦𝑖

ˆ
Ω𝑖

|∇(𝑢− 𝑢𝑆)|2 −
𝑑∑︁

𝑖=1

𝑦𝑖

ˆ
Ω𝑖

∇(𝑢− 𝑢𝑆) · ∇𝑣

=
∑︁
𝑖>𝑗

𝑦𝑖

ˆ
Ω𝑖

|∇(𝑢− 𝑢𝑆)|2 −
∑︁
𝑖>𝑗

𝑦𝑖

ˆ
Ω𝑖

∇(𝑢− 𝑢𝑆) · ∇𝑣

since ∇𝑣 = ∇(𝑢− 𝑢𝑆) on Ω𝑗 . In particular, we obtain

𝑦𝑗+1‖∇(𝑢− 𝑢𝑆)‖2𝐿2(Ω𝑗+1)
6
∑︁
𝑖>𝑗

𝑦𝑖

ˆ
Ω𝑖

|∇(𝑢− 𝑢𝑆)|2

6 𝑦𝑗+1

ˆ
Ω∖Ω𝑗

|∇(𝑢− 𝑢𝑆) · ∇𝑣|

6 𝑦𝑗+1‖𝑢− 𝑢𝑆‖𝐻1
0 (Ω)‖𝑣‖𝐻1

0 (Ω)

6 𝑦𝑗+1‖𝑢− 𝑢𝑆‖𝐻1
0 (Ω)𝐶𝑃𝐶𝐸‖∇(𝑢− 𝑢𝑆)‖𝐿2(Ω𝑗),

and therefore
‖∇(𝑢− 𝑢𝑆)‖2𝐿2(Ω𝑗+1) 6 (1 + 𝐶𝑃𝐶𝐸)‖∇(𝑢− 𝑢𝑆)‖𝐿2(Ω)‖∇(𝑢− 𝑢𝑆)‖𝐿2(Ω𝑗).

Applying this inequality inductively for 𝑗 = 𝑑− 1, . . . , 𝑑− 𝑘, we get

‖∇(𝑢− 𝑢𝑆)‖𝐿2(Ω) 6 (1 + 𝐶𝑃𝐶𝐸)2
𝑘−1‖∇(𝑢− 𝑢𝑆)‖𝐿2(Ω𝑑−𝑘),

for any 𝑘 = 1, . . . , 𝑑− |𝑆|. For 𝑘 = 𝑑− |𝑆|, this results in the bound

‖∇(𝑢− 𝑢𝑆)‖2𝐿2(Ω) 6 𝐶0‖∇(𝑢− 𝑢𝑆)‖2𝐿2(Ω𝑆) = 𝐶0‖∇𝑢‖2𝐿2(Ω𝑆), (3.21)

for any non-empty 𝑆, with 𝐶0 = (1 + 𝐶𝑃𝐶𝐸)2
𝑑−1

.
We now write, using the orthogonality of 𝑢𝑆 and 𝑢− 𝑢𝑆(︂

min
𝑖∈𝑆

𝑦𝑖

)︂
‖∇(𝑢− 𝑢𝑆)‖2𝐿2(Ω𝑆) 6 ‖𝑢− 𝑢𝑆‖2𝑦 = ⟨𝑢, 𝑢− 𝑢𝑆⟩𝑦

= ⟨𝑓, 𝑢− 𝑢𝑆⟩𝐻−1,𝐻1
0
6 𝐶𝑓‖∇(𝑢− 𝑢𝑆)‖𝐿2(Ω),

which, combined to the previous estimate, gives

‖𝑢− 𝑢𝑆‖𝐻1
0

= ‖∇(𝑢− 𝑢𝑆)‖𝐿2(Ω) 6 𝐶0𝐶𝑓 max
𝑖∈𝑆

𝑦−1
𝑖 ,

therefore proving (3.19). For (3.20), we simply notice that max𝑗∈𝑆 𝑦
−1
𝑗 6 2−𝐿 for 𝑦 ∈ 𝑌 ′ ∩ 𝑅ℓ, and use a

continuity argument when 𝑦 takes infinite values. �

Combining the estimate (3.20) from the above lemma with (3.13) from Lemma 3.3, we obtain the following
estimate for polynomial approximation on an infinite rectangle 𝑅ℓ:⃦⃦⃦⃦

⃦⃦𝑢(𝑦)−
∑︁
|𝜈|6𝑘

𝑢𝜈𝑦
𝜈
𝑆𝑐

⃦⃦⃦⃦
⃦⃦

𝐻1
0

6
𝐶𝑓√

6
3−𝑘 + 𝐶0𝐶𝑓 2−𝐿, 𝑦 ∈ 𝑅ℓ, (3.22)

where 𝐶0 is the constant in (3.20). This estimate hints how the level 𝐿 in the partition should be tuned to the
total polynomial degree 𝑘, so that the two contributions in the above estimate are of the same order.
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Remark 3.6. Note that the constant 𝐶0 = (1 + 𝐶𝑃𝐶𝐸)2
𝑑−1

becomes prohibitive even for moderate values
of 𝑑. However, under more restrictive geometric assumptions, for instance if the subdomains Ω2, . . . ,Ω𝑑 are
disjoint inclusions in a background Ω1, better bounds can be obtained, with a constant 𝐶0 that does not suffer
a similar curse of dimensionality. One can replace the induction in the proof by a two-step procedure, consisting
of extensions first from the high-diffusivity inclusions to the background, and then to the whole domain Ω.

3.3. Approximation rates and 𝑛-widths

We are now in position to establish an approximation result for the reduced model spaces. For this purpose,
we fix the smallest level 𝐿 = 𝐿𝑘 > 1 such that

𝐶0𝐶𝑓 2−𝐿 6
𝐶𝑓√

3
3−𝑘.

In particular 𝐿 scales linearly with 𝑘, with the bound 𝛼𝑘 + 𝛽 6 𝐿𝑘 6 𝛼𝑘 + 𝛾, where

𝛼 :=
ln 3
ln 2

, 𝛽 :=
ln
(︀√

3𝐶0

)︀
ln 2

, 𝛾 :=
ln
(︀
2
√

3𝐶0

)︀
ln 2

· (3.23)

Then, the polynomial approximation estimates (3.7) and (3.22) show that for each ℓ ∈ {0, · · · , 𝐿𝑘}𝑑, there exist
functions 𝑢ℓ,𝜈 ∈ 𝐻1

0 (Ω) such that⃦⃦⃦⃦
⃦⃦𝑢(𝑦)−

∑︁
|𝜈|6𝑘

𝑢ℓ,𝜈𝑦
𝜈

⃦⃦⃦⃦
⃦⃦

𝐻1
0

6

(︂
𝐶𝑓√

6
+
𝐶𝑓√

3

)︂
3−𝑘 6 𝐶𝑓 3−𝑘, 𝑦 ∈ 𝑅ℓ.

Note that in the case of an infinite rectangle 𝑅ℓ, the 𝑢ℓ,𝜈 are non-trivial only for monomials of the form 𝑦𝜈
𝑆𝑐 and

they belong to 𝑉𝑆 , where 𝑆 := {𝑗 : ℓ𝑗 = 𝐿𝑘}.
Thus the solutions 𝑢(𝑦) for 𝑦 ∈ 𝑅ℓ are approximated with accuracy 𝐶𝑓 3−𝑘 in the space

𝑉ℓ,𝑘 := span{𝑢ℓ,𝜈 : |𝜈| 6 𝑘},

which in view of Remark 3.2 has dimension at most
(︀
𝑘+𝑑−1

𝑑−1

)︀
.

Note also that approximating the reduced manifold 𝒩 defined in (2.5) requires a smaller subset of rectangles,
since {︁

𝑦 ∈ ̃︀𝑌 ′ : min 𝑦𝑗 = 1
}︁
⊂
⋃︁

ℓ∈𝐸𝑘

𝑅ℓ, 𝐸𝑘 := {0, · · · , 𝐿𝑘}𝑑 ∖ {1, · · · , 𝐿𝑘}𝑑
.

We thus introduce the reduced model space

𝑉𝑛 :=
⨁︁
ℓ∈𝐸𝑘

𝑉ℓ,𝑘, 𝑛 = dim(𝑉𝑛) 6 #(𝐸𝑘)
(︂
𝑘 + 𝑑− 1
𝑑− 1

)︂
, (3.24)

and find that
‖𝑢(𝑦)− 𝑃𝑉𝑛𝑢(𝑦)‖𝐻1

0
6 𝐶𝑓 3−𝑘, (3.25)

for all 𝑦 ∈ ̃︀𝑌 ′ such that min 𝑦𝑗 = 1. In view of (3.23), there exists a constant 𝐶 that depends on 𝑑 and 𝐶0, such
that

𝑛 6
(︁

(𝐿𝑘 + 1)𝑑 − 𝐿𝑑
𝑘

)︁(︂𝑘 + 𝑑− 1
𝑑− 1

)︂
6 𝐶(𝑘 + 1)2𝑑−2. (3.26)

This leads to the following approximation theorem.
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Theorem 3.7. Assume that the partition has the geometry of disjoint inclusions. The reduced basis space 𝑉𝑛

defined in (3.24) then satisfies

‖𝑢(𝑦)− 𝑃𝑉𝑛𝑢(𝑦)‖𝐻1
0
6 𝐶 exp

(︁
−𝑐𝑛

1
2𝑑−2

)︁
, (3.27)

for all 𝑦 ∈ ̃︀𝑌 ′ = [1,∞]𝑑 such that min 𝑦𝑗 = 1. The Kolmogorov 𝑛-width (1.2) of the reduced manifold 𝒩 satisfies

𝑑𝑛(𝒩 )𝐻1
0
6 𝐶 exp

(︁
−𝑐𝑛

1
2𝑑−2

)︁
. (3.28)

Over the full manifold ℳ, one has the estimate in relative error

‖𝑢(𝑦)− 𝑃𝑉𝑛
𝑢(𝑦)‖𝐻1

0
6 𝐶 exp

(︁
−𝑐𝑛

1
2𝑑−2

)︁
‖𝑢(𝑦)‖𝐻1

0
, (3.29)

for all 𝑦 ∈ ̃︀𝑌 =]0,∞]𝑑. The positive constants 𝑐 and 𝐶 only depend on 𝑑, 𝐶𝑓 , and on the geometry of the
partition through the constant 𝐶0.

Proof. The estimate (3.27) follows directly by combining (3.25) and (3.26), and (3.28) is an immediate con-
sequence. We then derive (3.29) by using the homogeneity property (1.13) and the lower inequality in (2.8),
similar to the proof of (2.10) in Theorem 2.8. �

Remark 3.8. In the above construction of 𝑉𝑛, the dimension 𝑛 only takes the values 𝑛𝑘 := #(𝐸𝑘)
(︀
𝑘+𝑑−1

𝑑−1

)︀
for

𝑘 > 0. However it is easily seen that if we set 𝑉𝑛 = 𝑉𝑛𝑘
for 𝑛𝑘 6 𝑛 < 𝑛𝑘+1, then all the estimates in the above

theorem remain valid up to a change in the constants (𝑐, 𝐶).

Remark 3.9. Note that the union of the 𝑉ℓ,𝑘 for ℓ ∈ 𝐸𝑘 would suffice to approximate 𝒩 with uniform accuracy
𝐶𝑓 3−𝑘, their sum 𝑉𝑛 is an overkill. When 𝑦 is known, for example in forward modeling, it is therefore possible to
first identify the proper space 𝑉ℓ,𝑘 associated to the rectangle 𝑅ℓ that contains 𝑦, and build the approximation
to 𝑢(𝑦) from this space. This nonlinear reduced modeling strategy has been studied in [15] with similar local
polynomial approximation under UEA, and in [25, 26, 28] with local reduced basis. The natural benchmark is
given by the notion of library width introduced in [34], that is defined for any compact set 𝒦 in a Banach space
𝑉 as

𝑑𝑛,𝑁 (𝒦)𝑉 := inf
#(ℒ𝑛)6𝑁

sup
𝑢∈𝒦

min
𝑉𝑛∈ℒ𝑛

min
𝑣∈𝑉𝑛

‖𝑢− 𝑣‖𝑉 , (3.30)

where the first infimum is taken over all libraries ℒ𝑛 of 𝑛-dimensional spaces with cardinality at most 𝑁 . Our
results thus show that

𝑑𝑛,𝑁 (𝒩 )𝐻1
0
6 𝐶𝑓 3−𝑘 ∼ 𝐶 exp

(︁
−𝑐𝑛 1

𝑑

)︁
, 𝑛 :=

(︂
𝑘 + 𝑑− 1
𝑑− 1

)︂
, 𝑁 = (𝐿𝑘 + 1)𝑑 − 𝐿𝑑

𝑘.

Note that the above sub-exponential rate can be misleading due to fact that the constant 𝑐 has a hidden
dependence in 𝑑. As an example, up to the constant 𝐶𝑓 , we find that taking 𝑘 = 4, 7, 9 leads to error bounds
3−𝑘 of order 10−2, 10−3, 10−4, with 𝑛 = 15, 36, 55 for 𝑑 = 3, and 𝑛 = 35, 120, 220 for 𝑑 = 4, which is far better
than the value of exp(−𝑛 1

𝑑 ).

Remark 3.10. In view of the results from [13, 20], we are ensured that a proper selection of reduced basis
elements in the manifold 𝒩 should generate spaces 𝑉𝑛 that perform at least with the same exponential rates
as those achieved by the spaces 𝑉𝑛 in Theorem 3.7. As explained in the introduction, reduced basis spaces
may perform significantly better than reduced model spaces based on polynomial or piecewise polynomial
approximation. This occurs in particular when the polynomial coefficients have certain linear dependency, as
established in [7] for the elliptic problem with piecewise constant coefficients in the low contrast regime, and
recalled in Remark 3.2. There, it is shown that the rate 𝒪(exp(−𝑐𝑛 1

𝑑 )) is at least improved to 𝒪(exp(−𝑐𝑛
1

𝑑−1 ))
and that further improvements in the rate may result from certain symmetry properties of the domain partition,
however not circumventing the curse of dimensionality. While we do not pursue this analysis in the present high
contrast setting, we expect similar results to hold.
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4. Forward modeling and inverse problems

4.1. Galerkin projection

In the context of forward modeling, the reduced model space 𝑉𝑛 is used to approximate the parameter to
solution map, by a map

𝑦 ↦→ 𝑢𝑛(𝑦) ∈ 𝑉𝑛,

computed through the Galerkin method: 𝑢𝑛(𝑦) ∈ 𝑉𝑛 is such that

𝑑∑︁
𝑗=1

𝑦𝑗

ˆ
Ω𝑗

∇𝑢𝑛(𝑦) · ∇𝑣 d𝑥 = ⟨𝑓, 𝑣⟩𝐻−1,𝐻1
0
, 𝑣 ∈ 𝑉𝑛.

Therefore ⟨𝑢𝑛(𝑦), 𝑣⟩𝑦 = ⟨𝑢(𝑦), 𝑣⟩𝑦, that is
𝑢𝑛(𝑦) = 𝑃 𝑦

𝑉𝑛
𝑢(𝑦),

where 𝑃 𝑦
𝑉𝑛

is the projection onto 𝑉𝑛 with respect to norm ‖ · ‖𝑦.
Hence, one would like to derive estimates on ‖𝑢(𝑦) − 𝑃 𝑦

𝑉𝑛
𝑢(𝑦)‖𝐻1

0
in place of the estimates on ‖𝑢(𝑦) −

𝑃𝑉𝑛
𝑢(𝑦)‖𝐻1

0
that we have obtained so far, since 𝑃𝑉𝑛

𝑢(𝑦) is not practically accessible. As explained in the
introduction, we cannot be satisfied with combining the latter estimates with the bound⃦⃦

𝑢(𝑦)− 𝑃 𝑦
𝑉𝑛
𝑢(𝑦)

⃦⃦
𝐻1

0
6 𝜅(𝑦)1/2‖𝑢(𝑦)− 𝑃𝑉𝑛𝑢(𝑦)‖𝐻1

0

derived from Cea’s lemma, since the multiplicative constant 𝜅(𝑦) from (1.9) is not uniformly bounded over the
manifolds ℳ, ℬ or 𝒩 . Here, we shall employ another approach to derive the same rates of convergence for
‖𝑢(𝑦)− 𝑃 𝑦

𝑉𝑛
𝑢(𝑦)‖𝐻1

0
.

One first observation is that in order for the Galerkin projection 𝑃 𝑦
𝑉𝑛

onto a reduced model space 𝑉𝑛 to satisfy
a convergence bound in relative error, it is critical that this space contains some functions from the limit spaces
𝑉𝑆 . This is expressed by the following result.

Proposition 4.1. Assume that there exists 𝑆 ( {1, . . . , 𝑑} such that 𝑉𝑛 ∩ 𝑉𝑆 = {0}. Then for any 𝐶 ∈]0, 1[,
there exists 𝑦 ∈ 𝑌 ′ such that ⃦⃦

𝑢(𝑦)− 𝑃 𝑦
𝑉𝑛
𝑢(𝑦)

⃦⃦
𝐻1

0
> 𝐶‖𝑢(𝑦)‖𝐻1

0
. (4.1)

Proof. Since 𝑉𝑛 ∩ 𝑉𝑆 = {0}, the quantity ‖∇𝑣‖𝐿2(Ω𝑆) is a norm on 𝑉𝑛 and one can define

𝛼 = min
𝑣∈𝑉𝑛

‖∇𝑣‖𝐿2(Ω𝑆)

‖𝑣‖𝐻1
0

> 0.

For any 𝜀 > 0, take 𝑦𝑗 = 𝜀−2 for 𝑗 ∈ 𝑆 and 𝑦𝑗 = 1 for 𝑗 ∈ 𝑆𝑐. Then, for 𝑣 = 𝑃 𝑦
𝑉𝑛
𝑢(𝑦),

𝛼

𝜀
‖𝑣‖𝐻1

0
6

1
𝜀
‖∇𝑣‖𝐿2(Ω𝑆) 6 ‖𝑣‖𝑦 6 ‖𝑢(𝑦)‖𝑦 6 𝐶𝑓 6

𝐶𝑓

𝑐𝑓
‖𝑢(𝑦)‖𝐻1

0
,

where we have used the framings (2.8) and (2.9). Therefore, taking 𝜀 = 𝑐𝑓

𝐶𝑓
𝛼(1 − 𝐶) implies ‖𝑣‖𝐻1

0
6 (1 −

𝐶)‖𝑢(𝑦)‖𝐻1
0
, and (4.1) follows. �

However, in the construction of 𝑉𝑛 in Section 3, each space 𝑉ℓ,𝑘 is a subset of 𝑉𝑆 for 𝑆 = {𝑗 : ℓ𝑗 = 𝐿𝑘}.
This prevents the phenomenon described in the previous proposition from occurring. Instead, we obtain similar
convergence bounds as those obtained for 𝑃𝑉𝑛

, as expressed in the following result.
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Theorem 4.2. Assume that the partition of Ω has the geometry of disjoint inclusions. On the rectangles 𝑅ℓ

for ℓ ∈ {0, . . . , 𝐿}𝑑, the following uniform convergence estimates hold:⃦⃦⃦
𝑢(𝑦)− 𝑃 𝑦

𝑉ℓ,𝑘
𝑢(𝑦)

⃦⃦⃦
𝐻1

0

6
𝐶𝑓√

3
3−𝑘, 𝑦 ∈ 𝑅ℓ, (4.2)

if ‖ℓ‖∞ < 𝐿, and ⃦⃦⃦
𝑢(𝑦)− 𝑃 𝑦

𝑉ℓ,𝑘
𝑢(𝑦)

⃦⃦⃦
𝐻1

0

6
𝐶𝑓√

3
3−𝑘 + 𝐶0𝐶𝑓 2−𝐿, 𝑦 ∈ 𝑅ℓ, (4.3)

if ‖ℓ‖∞ = 𝐿. As a consequence, with 𝐿 = 𝐿𝑘 and 𝑉𝑛 defined as in Section 3.3, one has the estimates⃦⃦
𝑢(𝑦)− 𝑃 𝑦

𝑉𝑛
𝑢(𝑦)

⃦⃦
𝐻1

0
6 𝐶 exp

(︁
−𝑐𝑛

1
2𝑑−2

)︁
, (4.4)

for all 𝑦 ∈ ̃︀𝑌 ′ such that min 𝑦𝑗 = 1, and⃦⃦⃦
𝑢(𝑦)− 𝑃 𝑦

𝑉ℓ,𝑘
𝑢(𝑦)

⃦⃦⃦
𝐻1

0

6 𝐶 exp
(︁
−𝑐𝑛1/(2𝑑−2)

)︁
‖𝑢(𝑦)‖𝐻1

0
, (4.5)

for all 𝑦 ∈ ̃︀𝑌 , with constants 𝑐 and 𝐶 that only depend on 𝑑, 𝐶𝑓 , and on the geometry of the partition through
the constant 𝐶0.

Proof. For bounded rectangles 𝑅ℓ with ‖ℓ‖∞ < 𝐿, we know from Lemma 3.1, and more precisely from (3.6),
that ⃦⃦⃦

𝑢(𝑦)− 𝑃 𝑦
𝑉ℓ,𝑘

𝑢(𝑦)
⃦⃦⃦

𝑦
= min

𝑣∈𝑉ℓ,𝑘

‖𝑢(𝑦)− 𝑣‖𝑦 6

⃦⃦⃦⃦
⃦⃦𝑢(𝑦)−

∑︁
|𝜈|6𝑘

𝑢𝜈𝑦
𝜈

⃦⃦⃦⃦
⃦⃦

𝑦

6
𝐶𝑓√

3
3−𝑘

for any 𝑦 ∈ 𝑅ℓ. Since all the 𝑦𝑗 are greater or equal to 1, one has ‖𝑣‖𝐻1
0
6 ‖𝑣‖𝑦 for all 𝑣 and therefore (4.2)

follows.
For infinite rectangles 𝑅ℓ such that ‖ℓ‖∞ = 𝐿, we again introduce 𝑆 = {𝑗 : ℓ𝑗 = 𝐿}. Then, using (3.20),⃦⃦⃦

𝑢(𝑦)− 𝑃 𝑦
𝑉ℓ,𝑘

𝑢(𝑦)
⃦⃦⃦

𝐻1
0

6 ‖𝑢(𝑦)− 𝑢𝑆(𝑦𝑆𝑐)‖𝐻1
0

+
⃦⃦⃦
𝑢𝑆(𝑦𝑆𝑐)− 𝑃 𝑦

𝑉ℓ,𝑘
𝑢(𝑦)

⃦⃦⃦
𝐻1

0

6 𝐶0𝐶𝑓 2−𝐿 +
⃦⃦⃦
𝑢𝑆(𝑦𝑆𝑐)− 𝑃 𝑦

𝑉ℓ,𝑘
𝑢(𝑦)

⃦⃦⃦
𝐻1

0

.

Since 𝑉ℓ,𝑘 ⊂ 𝑉𝑆 , we have

𝑃 𝑦
𝑉ℓ,𝑘

𝑢(𝑦) = 𝑃 𝑦
𝑉ℓ,𝑘

𝑃 𝑦
𝑉𝑆
𝑢(𝑦) = 𝑃 𝑦

𝑉ℓ,𝑘
𝑢𝑆(𝑦𝑆𝑐) = 𝑃 𝑦𝑆𝑐

𝑉ℓ,𝑘
𝑢𝑆(𝑦𝑆𝑐).

Similarly to the previous case, we apply (3.12) from Lemma 3.3:⃦⃦⃦
𝑢𝑆(𝑦𝑆𝑐)− 𝑃 𝑦

𝑉ℓ,𝑘
𝑢𝑆(𝑦𝑆𝑐)

⃦⃦⃦
𝐻1

0

6
⃦⃦⃦
𝑢𝑆(𝑦𝑆𝑐)− 𝑃 𝑦

𝑉ℓ,𝑘
𝑢𝑆(𝑦𝑆𝑐)

⃦⃦⃦
𝑦
6
𝐶𝑓√

3
3−𝑘,

and we thus obtain (4.3).
After taking 𝐿 = 𝐿𝑘 and defining 𝑉𝑛 as the sum of the 𝑉ℓ,𝑘 for ℓ ∈ 𝐸𝑘, the derivation of (4.4) and (4.5) is

exactly the same as for (3.27) and (3.29). �

Remark 4.3. As in Remark 3.10, it is expected that the same rate of convergence is attained if 𝑉𝑛 is a reduced
basis space generated by solutions 𝑢(𝑦𝑖), 𝑖 = 1, . . . , 𝑛, as long as there are 𝑂

(︀(︀
𝑘+𝑑−1

𝑑−1

)︀)︀
samples 𝑦𝑖 in each

rectangle, however with samples forced to be of the form 𝑢𝑆(𝑦𝑖
𝑆𝑐) ∈ 𝑉𝑆 in the case of infinite rectangles.
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4.2. State and parameter estimation

The state estimation problem consists in retrieving the solution 𝑢 = 𝑢(𝑦) when the parameter 𝑦 is unknown,
and one observes 𝑚 linear measurements

𝑤𝑖 = ℓ𝑖(𝑢), 𝑖 = 1, . . . ,𝑚,

where the ℓ𝑖 are continuous linear functionals on the Hilbert space 𝑉 that contains the solution manifold. These
linear functionals may thus be written in terms of Riesz representers

ℓ𝑖(𝑣) = ⟨𝜔𝑖, 𝑣⟩𝑉 .

The Parametrized Background Data Weak (PBDW) method, introduced in [27] and further studied in [14],
exploits the fact that all potential solutions are well approximated by reduced model spaces 𝑉𝑛. It is based on
a simple recovery algorithm that consists in solving the problem

min
𝑢∈𝑉𝑤

min
𝑣∈𝑉𝑛

‖𝑢− 𝑣‖𝑉 , (4.6)

where, for 𝑤 = (𝑤1, . . . , 𝑤𝑚) ∈ R𝑚,

𝑉𝑤 := {𝑢 ∈ 𝑉 : ℓ𝑖(𝑢) = 𝑤𝑖, 𝑖 = 1, . . . ,𝑚},

is the affine space of functions that agree with the measurements.
The analysis of this problem is governed by the quantity

𝜇𝑛 = 𝜇(𝑉𝑛,𝑊 ) := sup
𝑣∈𝑉𝑛

‖𝑣‖𝑉

‖𝑃𝑊𝑤‖𝑉

, (4.7)

where 𝑊 := span{𝜔1, . . . , 𝜔𝑚}, which is finite if and only if 𝑉𝑛 ∩ 𝑊⊥ = {0}. Then, there exists a unique
minimizing pair

(𝑢*, 𝑣*) = (𝑢*(𝑤), 𝑣*(𝑤)) ∈ 𝑉𝑤 × 𝑉𝑛

to (4.6), which satisfies the estimates

‖𝑢− 𝑣*‖𝑉 6 𝜇𝑛 min
𝑣∈𝑉𝑛

‖𝑢− 𝑣‖𝑉 , (4.8)

and
‖𝑢− 𝑢*‖𝑉 6 𝜇𝑛 min

𝑣∈𝑉𝑛+(𝑊∩𝑉 ⊥𝑛 )
‖𝑢− 𝑣‖𝑉 . (4.9)

The computation of (𝑢*, 𝑣*) amounts to solving finite linear systems, and both solutions depend linearly on 𝑤.
Turning to our specific elliptic problem, and assuming that the ℓ𝑖 belong to 𝐻−1(Ω) = 𝑉 ′ for 𝑉 = 𝐻1

0 (Ω),
we may apply the above PBDW method using the reduced basis spaces 𝑉𝑛 introduced in Section 3. As an
immediate consequence of Theorem 3.7, we obtain a recovery estimate in relative error.

Proposition 4.4. Let 𝑦 ∈ ̃︀𝑌 and 𝑢 = 𝑢(𝑦). Then both estimators 𝑣* ∈ 𝑉𝑛 and 𝑢* ∈ 𝑉𝑤 satisfy

max
{︁
‖𝑢− 𝑣*‖𝐻1

0
, ‖𝑢− 𝑢*‖𝐻1

0

}︁
6 𝐶𝜇𝑛 exp

(︁
−𝑐𝑛

1
2𝑑−2

)︁
‖𝑢‖𝐻1

0
. (4.10)

The positive constants 𝑐 and 𝐶 only depend on 𝑑, 𝐶𝑓 , and on the geometry of the partition through the constant
𝐶0.

Proof. It follows readily by combining (3.29) applied to 𝑦 = 𝑦 with the recovery estimates (4.8) and (4.9). �
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We next turn to the problem of parameter estimation, namely recovering an approximation 𝑦* to 𝑦 from the
measurements 𝑤. In contrast to state estimation, this is a nonlinear inverse problem since the first mapping in

𝑦 ↦→ 𝑢 ↦→ 𝑤

is typically nonlinear. One way of relaxing this problem into a linear one is by first using a recovery 𝑢* of
the state 𝑢, for example obtained by the PBDW method. One then defines 𝑦* as the minimizer over ̃︀𝑌 of the
residual

𝑅(𝑦) := ‖div(𝑎(𝑦)∇𝑢*) + 𝑓‖𝐻−1 .

This is a quadratic problem when 𝑎(𝑦) has an affine dependence in 𝑦, that can be solved by standard quadratic
optimization methods. The rationale for this approach is the fact that

𝑅(𝑦) = ‖𝐴𝑦𝑢
* −𝐴𝑦𝑢(𝑦)‖𝐻−1 ∼ ‖𝑢* − 𝑢(𝑦)‖𝐻1

0
,

and therefore we should be close to finding the parameter 𝑦 that best explains the approximation 𝑢*. Unfortu-
nately, this approach is not very viable in the high-contrast regime since the equivalence ‖𝐴𝑦𝑣‖𝐻−1 ∼ ‖𝑣‖𝐻1

0

has constants that are not uniform in 𝑦 and deteriorate with the level of contrast.
Instead, we propose a more specific approach that exploits the piecewise constant structure of 𝑎(𝑦), assuming

that 𝑉𝑛 is a reduced space of the form

𝑉𝑛 = span
(︀
𝑢1, . . . , 𝑢𝑛

)︀
, 𝑢𝑖 = 𝑢

(︀
𝑦𝑖
)︀
,

for some properly selected parameter vectors

𝑦𝑖 =
(︀
𝑦𝑖
1, . . . , 𝑦

𝑖
𝑑

)︀
, 𝑖 = 1, . . . , 𝑛.

As mentioned, see Remark 3.10, these spaces satisfy the same exponential convergence bounds as the spaces
constructed in Section 3.

The PBDW estimator 𝑣* = 𝑣*(𝑤) ∈ 𝑉𝑛 thus has the form

𝑣* =
𝑛∑︁

𝑖=1

𝑐𝑖𝑢
𝑖 ∈ 𝑉𝑛

and satisfies a similar bound (4.10) as in the above proposition. Then, on the particular domain Ω𝑗 , one has

𝑓|Ω𝑗

𝑦𝑗

= −∆𝑢|Ω𝑗
≈ −

∑︁𝑛

𝑖=1
𝑐𝑖∆𝑢𝑖

|Ω𝑗
=
∑︁𝑛

𝑖=1
𝑐𝑖
𝑓|Ω𝑗

𝑦𝑖
𝑗

,

and therefore, a natural candidate for the parameter estimate is 𝑦* = (𝑦*1 , . . . , 𝑦
*
𝑑) with

𝑦*𝑗 :=

(︃
𝑛∑︁

𝑖=1

𝑐𝑖
𝑦𝑖

𝑗

)︃−1

. (4.11)

The following result gives a recovery bound in relative error for the inverse diffusivity.

Proposition 4.5. With the notation 1/𝑦 = (1/𝑦1, . . . , 1/𝑦𝑑), the estimator 𝑦* defined by (4.11) satisfies the
bound ⃦⃦⃦⃦

1
𝑦*
− 1
𝑦

⃦⃦⃦⃦
∞
6
𝐶𝑓

𝑐𝑓
𝐶𝜇𝑛 exp

(︁
−𝑐𝑛

1
2𝑑−2

)︁⃦⃦⃦⃦1
𝑦

⃦⃦⃦⃦
∞
, (4.12)

where 𝐶𝑓 and 𝑐𝑓 are as in (2.8), and the other constants as in (4.10).
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Proof. For 1 6 𝑗 6 𝑑, take 𝜑 ∈ 𝐻1
0 (Ω𝑗), then⃒⃒⃒⃒

⃒ 1
𝑦*𝑗
− 1
𝑦𝑗

⃒⃒⃒⃒
⃒|⟨𝑓, 𝜑⟩𝐻−1,𝐻1

0
| =

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝑐𝑖
𝑦𝑖

𝑗

ˆ
Ω𝑗

𝑦𝑖
𝑗∇𝑢𝑖 · ∇𝜑 d𝑥− 1

𝑦𝑗

ˆ
Ω𝑗

𝑦𝑗∇𝑢 · ∇𝜑 d𝑥

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒
ˆ

Ω𝑗

∇(𝑣* − 𝑢) · ∇𝜑 d𝑥

⃒⃒⃒⃒
⃒

6 ‖𝑣* − 𝑢‖𝐻1
0 (Ω)‖𝜑‖𝐻1

0 (Ω𝑗).

Optimizing over 𝜑 gives ⃦⃦⃦⃦
1
𝑦*
− 1
𝑦

⃦⃦⃦⃦
∞
6 𝑐−1

𝑓 ‖𝑣* − 𝑢‖𝐻1
0
,

which combined with (4.10) gives⃦⃦⃦⃦
1
𝑦*
− 1
𝑦

⃦⃦⃦⃦
∞
6 𝑐−1

𝑓 𝐶𝜇𝑛 exp
(︁
−𝑐𝑛

1
2𝑑−2

)︁
‖𝑢‖𝐻1

0
.

Using the Lax–Milgram estimate

‖𝑢‖𝐻1
0
6 𝐶𝑓

⃦⃦⃦⃦
1
𝑦

⃦⃦⃦⃦
∞
,

we reach (4.12). �

Remark 4.6. The bound (4.12) is not entirely satisfactory since the approximation error on 𝑦𝑗 remains high
when 𝑦 ∈ 𝒩 with 𝑦𝑗 ≫ 1. We do not know if a bound of the form⃒⃒⃒⃒

⃒ 1
𝑦*𝑗
− 1
𝑦𝑗

⃒⃒⃒⃒
⃒ 6 𝜀𝑛

𝑦𝑗

, 1 6 𝑗 6 𝑑,

which would imply |𝑦*𝑗 − 𝑦𝑗 | 6 𝜀𝑛/(1− 𝜀𝑛) 𝑦𝑗 , holds uniformly over 𝒩 with 𝜀𝑛 −→
𝑛→+∞

0.

5. Numerical illustration

The base model that will be used all along the numerical illustrations is the diffusion equation (1.4) with
data 𝑓 = 1 set on the two-dimensional square Ω = [−1, 1]2 with homogeneous Dirichlet boundary conditions.
We consider a piece-wise constant diffusion coefficient

𝑎|Ω𝑗
= 𝑦𝑗 , 1 6 𝑗 6 𝑑,

on a partition of Ω into 16 squares of quarter side-length.
As such this partition does not satisfy the geometrical assumption of “Lipschitz partition” that was critical

in our analysis for the application of Lemma 3.5. Therefore we consider sub-partitions that comply with the
assumptions, such as illustrated on Figure 3, which amounts to equate the parameters 𝑦𝑗 of squares belonging
to the same sub-domain. This way we can consider that 𝑦 = (𝑦𝐴, 𝑦𝐵 , 𝑦𝐶 , 𝑦𝐷) consists of four parameters, one
per each subdomain.

The numerical results that we next present aim to illustrate the robustness to high-contrast of the reduced
basis method, and discuss in addition the effect of parameter selection, higher parametric dimensions, and
inclusions that are not satisfying the geometric assumption as exemplified on Figure 4.

We construct different reduced bases {𝑢1, . . . , 𝑢𝑛} of moderate dimension 1 6 𝑛 6 15, where

𝑢𝑘 = 𝑢
(︀
𝑦𝑘
)︀
,



2798 A. COHEN ET AL.

Figure 3. Lipschitz partition
of Ω.

Figure 4. Non-lipschitz
partition of Ω.

for certain parameter selections 𝑦1, . . . , 𝑦𝑛. Each reduced basis element 𝑢𝑘 is numerically computed by the
Galerkin method in a background finite element space 𝑉ℎ of dimension 6241.

The reduced basis spaces are thus subspaces of 𝑉ℎ, thus strictly speaking spaces 𝑉𝑛,ℎ depending on 𝑛 and on
the meshsize ℎ. In our numerical computation, we always assess the error

𝑃 𝑦
𝑉ℎ
𝑢(𝑦)− 𝑃 𝑦

𝑉𝑛,ℎ
𝑢(𝑦).

We noticed that for the considered values of 𝑛 = 1, . . . , 15 the error curves do not vary much when further
reducing the mesh size ℎ. In fact they are already essentially the same when the dimension of 𝑉ℎ is four times
smaller. Therefore, for simplicity of the presentation, we still write

𝑢(𝑦)− 𝑃 𝑦
𝑉𝑛
𝑢(𝑦),

bearing in mind that the additional finite element error 𝑢(𝑦)− 𝑃 𝑦
𝑉ℎ
𝑢(𝑦) depends on ℎ (with algebraic decay in

the finite element dimension).
All the tests were done using Python 3.8. For more information and experiments not presented here we invite

the reader to look into the github repository https://github.com/agussomacal/ROMHighContrast.

5.1. Parameter selection

We first study the case of a one parameter family: the diffusion coefficient 𝑦𝐴 of Ω𝐴 in Figure 3 varies from
1 to ∞, while the other subdomains are considered as background with all coefficents equal to 1. Thus the 𝑦𝑘

are of the form 𝑦𝑘 = (𝑦𝑘
𝐴, 1, 1, 1).

In reduced basis constructions, two approaches for parameter selection are usually considered: random or
greedy. Random selection usually performs well enough in many situations, however we shall see that it fails
in the high contrast regime. This is in particular due to the fact that it does not capture the limit solutions,
while we have observed in Section 4 that robust convergence of the Galerkin method in the high-contrast regime
critically requires to include limit solutions in the space 𝑉𝑛. Here, there is only one limit solution 𝑢∞ = 𝑢(𝑦∞)
where 𝑦∞ = (∞, 1, 1, 1), and this element is picked by the greedy method if initialized at any other point.

More precisely, we compare four strategies for selecting the 𝑦𝑘
𝐴 ∈ [1,∞]:

– Random: the 𝑦𝑘
𝐴 are drawn independently according to the uniform law for 1

𝑦𝐴
∈ [0, 1].

– Random-∞: First the limit solution corresponding to 𝑦𝐴 = ∞ is put in the basis. The rest of the elements
are randomly picked as in the previous case.

– Greedy 𝐻1
0 : The 𝑦𝑘 are picked incrementally, 𝑦𝑘+1 maximizing the relative 𝐻1

0 projection error ‖𝑢(𝑦) −
𝑃𝑉𝑘

𝑢(𝑦)‖𝐻1
0
/‖𝑢(𝑦)‖𝐻1

0
.

– Greedy Galerkin: The 𝑦𝑘 are picked incrementally, 𝑦𝑘+1 maximizing the relative 𝐻1
0 error of the Galerkin

projection ‖𝑢(𝑦)− 𝑃 𝑦
𝑉𝑘
𝑢(𝑦)‖𝐻1

0
/‖𝑢(𝑦)‖𝐻1

0
.

https://github.com/agussomacal/ROMHighContrast
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Figure 5. Galerkin (left) and 𝐻1
0 (right) projection error, both measured in 𝐻1

0 relative error,
maximized over the parameter domain, for different reduced bases, case 𝑑 = 1.

Figure 5 displays on the left the evolution of the maximal relative error of the Galerkin projection

sup
𝑦𝐴∈[1,∞]

⃦⃦
𝑢(𝑦)− 𝑃 𝑦

𝑉𝑛
𝑢(𝑦)

⃦⃦
𝐻1

0

‖𝑢(𝑦)‖𝐻1
0

,

as a function of 𝑛 = dim(𝑉𝑛) for these various selection strategies. It reveals the superiority of the greedy
selection that reaches machine precision after picking 𝑛 = 11 reduced basis elements, and the gain in including
the limit solution in the case of a random selection. As a comparison, we display on the right the decay of the
relative 𝐻1

0 -orthogonal projection error

sup
𝑦𝐴∈[1,∞]

‖𝑢(𝑦)− 𝑃𝑉𝑛𝑢(𝑦)‖𝐻1
0

‖𝑢(𝑦)‖𝐻1
0

for the same parameter selection strategies. Here, we notice that the inclusion of the limit solution 𝑢∞ is not
anymore critical for reaching good accuracy. Nevertheless, these errors still decay faster for the greedy strategies.

Remark 5.1. As the diffusion coefficient is piecewise constant on the partition Ω𝐴 ∪Ω𝑐
𝐴, the parameter space

dimension is 𝑑 = 2 in this numerical example. The theoretical results thus provide a bound on the error of order
exp(−𝑐

√
𝑛). However, this bound is obtained with local reduced spaces 𝑉ℓ,𝑘 on dyadic intervals, which does

not perform as well as 𝑉𝑛 =
⨁︀

ℓ∈𝐸𝑘
𝑉ℓ,𝑘, for which one might expect a rate closer to exp(−𝑐𝑛). In Figure 5 for

𝑛 6 11, that is, until numerical precision issues arise, we even observe a faster than exponential convergence,
that could be due to the superiority of reduced bases over polynomial approximations.

Remark 5.2. It is well known that the reduced basis can be very ill-conditioned, since 𝑢𝑛 becomes extremely
close to 𝑉𝑛−1 = span{𝑢1, . . . , 𝑢𝑛−1} as 𝑛 gets moderately large. In order to avoid numerical instabilities, prior
to the computation of the Galerkin or 𝐻1

0 projection onto 𝑉𝑛, we need to perform a change of basis, typically
by some orthonormalization process. In our numerical test, we perform this orthonormalization with respect to
the discrete ℓ2 inner product for the nodal values in the background finite element representation, using the
QR decomposition, and obtain a satisfactory stable numerical behavior. However, this process is not invariant
under permutations, and we observe that it behaves better in terms of numerical stability when sorting the
reduced basis elements from higher contrast to lower contrast.
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Figure 6. Galerkin and 𝐻1
0 projection error (both measured in 𝐻1

0 relative error maximized
over the parameter domain) for different reduced bases, case 𝑑 = 2.

Figure 7. The Galerkin projection of Greedy Galerkin method for increasing dimensionality
in geometries satisfying (left) or not (right) the assumptions.

In this one parameter scenario, both greedy strategies behaved equally well. However, as we increase the
dimensionality of the problem 𝑑 > 1, Greedy Galerkin appears to be the best selection procedure, as could
be expected since it optimizes the error based on the approximation which is effectively computed in forward
modeling. Figure 6 shows this effect when 𝑑 = 2, where 𝑦𝐴 and 𝑦𝐵 are allowed to vary independently while 𝑦𝐶

and 𝑦𝐷 are taken as background always equal to 1.

5.2. Influence of dimensionality and geometry

In order to study the impact of dimensionality on the approximation rates, we compare the behavior of the
Greedy Galerkin selection method, as we increase the number of freely varying parameters. As before, we will
have for 𝑦 = (𝑦𝐴, 1, 1, 1) when 𝑑 = 1, then 𝑦 = (𝑦𝐴, 𝑦𝐵 , 1, 1) when 𝑑 = 2, until having all four subdomains freely
varying between 1 and +∞.
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In Figure 7 the degradation with respect to dimension is clearly observed as the approximation capabilities
strongly decrease. Even thought the exponential decay rate is still conserved, the decay parameter shrinks from
almost 3 down to 0.22 when 𝑑 = 4.

Secondly, we study the case where the geometrical assumptions are not satisfied. We follow the same incre-
mental subdomains unfreezing as in the previous case but using the geometry stated in Figure 4. We observe
that the reduced basis approach still achieves exponential approximation rates, actually higher than in the
previous example. This hints that the geometric assumptions which are needed in our proofs could be artificial,
and leaves open the question of achieving such results without relying on these assumptions.
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