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Abstract. We consider the problem of numerically approximating the solutions to a partial
differential equation (PDE) when there is insufficient information to determine a unique solution.
Our main example is the Poisson boundary value problem, when the boundary data is unknown and
instead one observes finitely many linear measurements of the solution. We view this setting as an
optimal recovery problem and develop theory and numerical algorithms for its solution. The main
vehicle employed is the derivation and approximation of the Riesz representers of these functionals
with respect to relevant Hilbert spaces of harmonic functions.
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1. Introduction. The questions we investigate sit in the broad research area of
using measurements to enhance the numerical recovery of the solution u to a PDE. The
particular setting addressed in this paper is to numerically approximate the solution
to an elliptic boundary value problem when there is insufficient information on the
boundary value to determine a unique solution to the PDE. In place of complete
boundary information, we have a finite number of data observations of the solution .
This data serves to narrow the set of possible solutions. We ask what is the optimal
accuracy to which we can recover u and what is a near optimal numerical algorithm
to approximate u. Problems of this particular type arise in several fields of science
and engineering (see, e.g., [30, 4, 9] for examples in fluid dynamics), where a lack of
full information on boundary conditions arises for various reasons. For example, the
correct physics might not be fully understood [24, 26], or the boundary values are not
accessible [13], or they must be appropriately modified in numerical schemes [10, 25].
Other examples of application domains for the results of the present paper can be
found in the introduction of [11].

1.1. A model for PDEs with incomplete data. This paper is concerned
with recovering a function u that is known to solve a specific PDE while lacking some
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of the data that would determine u uniquely. Specifically, we consider the model
elliptic problem

(1.1) —Au=f in Q, u=g on I':= 09,

where Q € R? is a bounded Lipschitz domain with d = 2 or 3. The Lax-Milgram
theorem [31] implies the existence and uniqueness of a solution u from the Sobolev
space H'(Q) to (1.1), once f and g are prescribed in H~1(£2) (the dual of HZ(£2))
and in H'/2(T") (the image of H'(f2) by the trace operator), respectively.

Recall that the trace operator T is defined on a function w € C(Q) as the restric-
tion of w to I" and this definition is then generalized to functions in Sobolev spaces
by a denseness argument. In particular, the trace operator is well defined on H!(£2).
For any function v in H*(£2) we denote by vr its trace,

(1.2) vr:=T(v)=v|p, veHY(Q).
The Lax—Milgram analysis also yields the inequalities
(1.3) collvll @) S NAV| g-10) + lorllgemy < allvllm@, — veH Y (Q).

Here the constants cg, ¢; depend on €2 and on the particular choice of norms employed
on H'(Q) and HY*(T).

Our interest centers on the question of how well we can numerically recover u in
the H'! norm when we do not have sufficient knowledge to guarantee a unique solution
to (1.1). There are many possible settings to which our techniques apply, but we shall
focus on the following scenario:

(i) We have a complete knowledge of f but we do not know g.

(ii) The function g belongs to a known compact subset KB of Hz(I'). Thus,
membership in K describes our knowledge of the boundary data. The func-
tion u we wish to recover comes from the set

(1.4) K :={u: u solves (1.1) for some g € KB},

which is easily seen from (1.3) to be a compact subset of H'(Q).
(iii) We have access to finitely many data observations of the unknown solution
u, in terms of a vector

(1.5) Au) == (A1 (u),. .., A (u)) €R™,

where the A; are fixed and known linear functionals defined on the functions
from K.
Natural candidates for the compact set K P are balls of Sobolev spaces that are
compactly embedded in H %(F). We thus restrict our attention for the remainder of
this paper to the case

(1.6) KP.=Uum*(T)),

for some s > %, where U(H*(T')) denotes the unit ball of a H*(T') with respect to the
norm || - ||gs(r). The precise definition of H*(I') and its norm || - || +(r) is described
later. We have assumed that K Z is the unit ball only for convenience. The arguments
given below hold in the case when K7 is a ball of H*(T') centered at 0 of any radius
R. The numerical algorithms proposed and analyzed do not require the knowledge of
the radius R of that ball.
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1.2. The optimal recovery benchmark. Let w; := \j(u), j =1,...,m, and
let

(1.7) w:=(Wy,...,wy) =A(u) €eR™,

be the vector of data observations. Therefore, the totality of information we have
about u is that it lies in the compact set

(1.8) Ky ={ueK: \u)=w}.

Our problem is to numerically find a function @& € H'(Q) which approximates
simultaneously all the u € K,,. This is a special case of the problem of optimal
recovery from data (see [17, 29, 21]). The optimal recovery, i.e., the best choice for
@, has the following well known theoretical description. Let B(K,) be a smallest ball
in H'(Q) which contains K, let R(K,) := R(Ky)m1(q) be its radius, and let a(w)
be its center. These are called the Chebychev ball, radius, and center, respectively.
Note that the Chebyshev ball B(K,,) is unique in H'(Q2); see [6]. Then R(K,) is the
optimal recovery error, that is, the smallest error we can have for recovering v in the
norm of H(Q), and @(w) is an optimal recovery of u.

We are interested in understanding how small R(K,,) is and what are the numer-
ical algorithms which are near optimal in recovering v from the given data w. We say
that an algorithm w +— 4 = 4(w) delivers near optimal recovery with constant C' if

(1.9) Hu—ﬁ(w)HHl(Q) <CR(Ky), weR™.

Of course, we want C' to be a reasonable constant independent of m. Our results
actually deliver a recovery estimate of the form

(1.10) lu— @(w)|| 10y < R(Kw) +¢, weR™,

where € > 0 can made arbitrarily small at the price of higher computational cost. In
this sense, the recovery is near optimal with constant C' > 1 in (1.9) that can be made
arbitrarily close to 1.

1.3. A connection with the recovery of harmonic functions. There is a
natural restatement of our recovery problem in terms of harmonic functions. Let f
be the right side of (1.1), where f is a known fixed element of H~1(Q2). Let uy be the
function in H'(Q) which is the solution to (1.1) with g =0. Then, we can write any
function u € K as

(1.11) u=ug + U,

where uy, is a harmonic function in H'(£2) which has boundary value g =T (uy) with
g € KP. Recall our assumption that KZ is the unit ball of H*(I") with s> .

Let H?(Q2) denote the set of harmonic functions v defined on Q for which vr €
H?(T"). We refer the reader to [3], where a detailed study of spaces like H*(2) is
presented. We define the norm on H?®(2) to be the one induced by the norm on
H*(T"), namely,

(1.12) V]2 ) := llvrll sy, v € HIH(Q).

There exist several equivalent definitions of norms on H*(T"), as discussed later. For
the moment, observe that from (1.3) it follows the existence of a constant Cy such
that

(1.13) [l ) < Csllvllae ), veH ().
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Indeed, the space H*(£2) is a Hilbert space that is compactly embedded in H*(), as
a consequence of the compact embedding of H*(I") in HY?(T'). We denote by K™
the unit ball of H*(Q),

(1.14) K" :=UH(Q)).
Since the function wug in (1.11) is fixed, it follows from (1.6) that
(1.15) R(Ky)=R(K[ ) m(a), w':=Nuy)=w— up).

There are two conclusions that can be garnered from this reformulation. The first
is that the optimal error in recovering u € K, is the same as that in recovering the
harmonic function uy € K% in the H*(Q) norm. The harmonic recovery problem
does not involve f except in determining w’. The second point is that one possible nu-
merical algorithm for our original problem is to first construct a sufficiently accurate
approximation 4y to ug and then to numerically implement an optimal recovery of a
harmonic function in K* from data observations. This numerical approach requires
the computation of w’. In theory, ug is known to us since we have a complete knowl-
edge of f. However, ug must be computed and any approximation 4y will induce an
error. Although this error can be made arbitrarily small, it means that we only know
w’ up to a certain numerical accuracy. One can thus view the harmonic reformulation
as an optimal recovery problem with perturbed observations of w’. The numerical
algorithm presented here follows this approach. Its central constituent, namely the
recovery of harmonic functions from a finite number of noisy observations, can be
readily employed as well in a number of different application scenarios described, e.g.,
in [11].

1.4. Optimal recovery from centrally symmetric sets in a Hilbert space.
As noted above, the problem of recovering u € K,, is directly related to the problem
of recovering the harmonic component uy € K™ from the given data observations
w’. Note that K™ is the unit ball of the Hilbert space H*(2). There is a general
approach for optimal recovery from data observations in this Hilbert space setting, as
discussed, e.g., in [17, 16]. We first recollect the general principles of this technique
which will be applied in section 3.1 to our specific setting.

Let H be any Hilbert space and suppose that Aq,..., A, € H* are linearly inde-
pendent functionals from H*. Let X be a Banach space such that #H is continuously
embedded in X. We are interested in optimal recovery of a function v in the norm
Il - | x, knowing that v € K := U(H), the unit ball of H. If w € R™ is the vector of
observations, we define the minimal norm interpolant as

(1.16) v*(w) = argmin{||v||y :ve€H and A(v) =w}.

Remark 1.1. If Ky := {u € K : A(u) = w} is nonempty, the minimum norm
interpolant v*(w) is a Chebyshev center of I, in X. That is, the minimal norm in-
terpolant gives optimal recovery with constant C'=1. In other words, this Chebyshev
center does not depend on X. The radius R(K,,)x will, however, generally depend
on X.

To prove this remark, first note that any v € X, may be written as v =v*(w) +n
where 7 belongs to the null space A of A\. Because v*(w) has minimal norm, 7 is
orthogonal to v*(w) and hence from the Pythagorean theorem

lv = v*(w)[I3, = [vll7 = [l (w) 17, <1 = [lv* (w) |7, =: 7%,
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because ||v||3 < 1. Notice that v*(w) —n is also in IC,,. It follows that KC,, is precisely
the ball in the affine space v*(w)+N centered at v*(w) and of radius r. In particular,
K. is centrally symmetric around v*(w) and we now show that v*(w) is a Chebyshev
center of a Chebyshev ball in X. Recall that unless X is uniformly convex, these
quantities might not be uniquely defined [6]. Let u € K\, be the furthest away from
v*(w), i.e.,

u € arg max |[v*(w) — v||x,
w

and set 0 := ||[v*(w) — ul|x. Since K, is centrally symmetric around v*(w), u' :=

20*(w) —u € Ky and ||ju — v||x = 26. For any v € X with 0 # v*(w), the triangle
inequality yields

2 = Ju— o < lu—ollx + ' ~ ollx <2 max o~ ollx,
and so

* _ < -
max [[v*(w) —vflx < max |7 — v]lx,

which shows that v*(w) is indeed a Chebyshev center in X. In particular,
lv —v*(w)]|x <R(Ky)x, vEKyu.

Standard Hilbert space analysis shows that the mapping w — v*(w) is a linear
operator. More importantly, it has a natural expression that is useful for numerical
computation. Namely, from the Riesz representation theorem each A; can be described
as

)‘j(v):<v7¢j>7{7 UEH’

where ¢; € H is called the Riesz representer of A;. The minimal norm interpolant has
the representation

m
(1.17) vt =Y dle;,
j=1
where a* = (aj,...,ak,) solves the system of equations

Ga* =w, G = (<¢ia¢j>%)i,j:1,...,m7

with G being the Gramian matrix associated to ¢1,..., om.

Remark 1.2. Note that v*(w) is exactly the H-orthogonal projection of u onto
the space spanned by the m Riesz representers.

Remark 1.3. In the case where H is a more general Banach space, we are still
ensured that the minimal norm interpolation is a near-optimal recovery with constant
C = 2. However, its dependence on the data w is no longer linear and the above
observation regarding its computation does not apply.

Our proposed numerical recovery scheme is based on approximately realizing
(1.17).
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1.5. Objectives and outline. The main goal of this paper is to create numer-
ical algorithms which are guaranteed to produce a near optimal recovery u from the
given data w and to analyze their practical implementation. We begin in section 2
with some remarks on the definition of the space H*(I") and its norm, which are of im-
portance both in the accuracy analysis and the practical implementation of recovery
algorithms.

Next, we turn to the description of our numerical algorithms. The algorithms we
propose and analyze are based on the general approach for optimal recovery described
in section 1.4 when this approach is applied to our particular PDE setting. We
describe a solution algorithm which takes into consideration the effect of numerical
perturbations. We first consider the case when the linear functionals A; are defined
on all of H'(©) and then adapt this algorithm to the case when the linear functionals
are point evaluations

(1.18) N(uw)=u(z;), x,;€Q, j=1,....m

Point evaluations are not defined on all of H!(Q2) when d > 1; however, they are
defined on K when the smoothness order s is large enough.

The critical ingredient in our proposed algorithm is the numerical computation
of the Riesz representers ¢; of the restrictions of \; to the Hilbert space H*(€2).
Each of these Riesz representers is characterized as a solution to an elliptic problem
and can be computed offline since it does not involve the measurement vector w.
Our suggested numerical method for approximating ¢; is based on finite element
discretizations and is discussed in section 4. We establish quantitative error bounds
for the numerical approximation in terms of the mesh size. Numerical illustrations of
the optimal recovery algorithm are given in section 5.

Note that the optimal recovery error over the class K strongly depends on the
choice of the linear functionals A;. For example, in the case of point evaluation, this
error can be very large if the data sites {x; };"zl are poorly positioned, or small if they
are optimally positioned. This points to the importance of the Gelfand widths and
sampling numbers. They describe the optimal recovery error over K with optimal
choice of functionals in the general case and the point evaluation case, respectively.
The numerical behavior of these quantities in our specific setting is discussed in sec-
tion 6.

2. The spaces H*(I') and H?®(2). In this section, we discuss the definition
and basic properties of the spaces H*(I') and H*(2). We refer to [1] for a general
treatment of Sobolev spaces on domains D C R?. Recall that for fractional orders
r >0, the norm of H"(D) is defined as

|0%( “o(y)[”
HUHH’“(D) —HU||Hk(D)+ Z / |d+2(r ) dzdy,
lal= kD

where k is the integer such that k <r <k +1, and HU||§{,€(D) = Z\a|§k Hacw”%z(m is
the standard H*-norm.

2.1. Equivalent definitions of H*(T'). Let Q be any bounded Lipschitz do-
main in R?. We recall the trace operator T introduced in section 1.1. One first
possible definition of the space H*(I'), for any s > 3, is as the restriction of H+3(Q)
to I', that is,

H*(T) =T(H*"3(Q)),
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with norm
(2.1) lgllzery = min {Jfol 13 ) ¢ o0 =3}

The resulting norm is referred to as the trace norm definition for H*(T).

There is a second, more intrinsic way to define H*(T'), by properly adapting the
notion of Sobolev smoothness to the boundary. This can be done by locally mapping
the boundary onto domains of R4 and requiring that the pullback of g by such
transformation have H® smoothness on such domains. We refer the reader to [12] and
[19] for the complete intrinsic definition, where it is proved to be equivalent to the
trace definition for a range of s that depends on the smoothness of the boundary T'.

For small values of s, Sobolev norms for H*(T") may also be equivalently defined
without the help of local parameterizations, as contour integrals. For example, if
0<s<1and Q is a Lipschitz domain, we define

) — 2
ooy = ol + [ 5 daay,
I'xIl

and if s=1 and  is a polygonal domain, we define
(2.2) 1912 0y = ll9ll72 0y + 1Vrgl T2y
where Vr is the tangential gradient, and likewise

[Vrg(z) — Vrg(y)®
oty = ol + [ ek dady

I'xIl

for 1 < s < 2. In the numerical illustration given in section 5, we will specifically take
the value s =1 and a square domain using the definition (2.2).

When 2 has smooth boundary, it is known that the trace definition and intrinsic
definition of the H*(I") norms are equivalent for all s > 1/2. On the other hand,
when Q does not have a smooth boundary, it is easily seen that the two definitions
are not equivalent unless restrictions are made on s. Consider, for example, the case
of polygonal domains of R?: it is easily seen that the trace vr of a smooth function
v € C(€) has a tangential gradient Vpur that generally has jump discontinuities
at the corner points and thus does not belong to H/?(T'). In turn, the equivalence
between the trace and intrinsic norms only holds for s < % and in such case we limit
the value of s to this range. The same restriction s < 3/2 applies to a polyhedral
domain in the case d = 3.

2.2. The regularity of functions in H*(2). We next give some remarks on
the Sobolev smoothness of functions from the space H*(2) when s > 1/2. Clearly,
such harmonic functions are infinitely smooth inside €2 and also belong to H!(£2),
but one would like to know for which value of r they belong to H"(€2). To answer
this question, we consider v € H*(2). By the definition of H*(£2), v is harmonic in
Q and vp € H*(T"). Having assumed that s in the admissible range where all above
definitions of the H*(T") norms are equivalent, and using the first one, we know that
there exists a function & € H*2 (Q) such that op = vr

19170+ y = ol oy = 0l
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We define v :=v — ¥ so that v =0 + 0. We are interested in the regularity of v since
it will give the regularity of v. Notice that vr =0 and

—Av = f = Ab.

The function f belongs to the Sobolev space HS*%(Q) and we are left with the
classical question of the regularizing effect in Sobolev scales when solving the Laplace
equation with Dirichlet boundary conditions. Obviously, when €2 is smooth, we find
that o€ H*"2(£2) and so we have obtained the continuous embedding

1

H Q) CH" (), r=s+ 3

For less smooth domains, the smoothing effect is limited (in particular, by the presence
of singularities on the boundary of Q), i.e., T is only guaranteed to be in H" () where

r may be less than s+ 1/2; see [12]. More precisely

H () C H'(Q),
where
. .,
(2.3) r.:mln{s+§,r }

Here, r* = r*(£2) is the limiting bound for the smoothing effect:
(i) For smooth domains r* = oo.
(ii) For convex domains r* = 2.
(iii) For nonconvex polygonal domains in RQ, or a polyhedron in RS, one has
3/2 < r* <2 where the value of * depends on the re-entrant angles.
(iv) In particular for polygons, we can take r* =14 Z —¢ for any £ > 0 where w
is the largest inner angle.
Note that r* could be strictly smaller than s + %
In summary, for an admissible range of r > 1 that depends on s and {2 one has
the continuous embedding H*(2) C H" (), and so there exists a constant C; that
depends on (r,s) and €2, such that

(2.4) [0l (@) < Cillvllae @) = Cillorll e @), v eH Q).

3. A near optimal recovery algorithm. In this section, we present a nu-
merical algorithm for solving (1.1) when the information about the boundary value
g is incomplete. We first work under the assumption that the A;’s are continuous
over H'(Q), and assumed to be linearly independent (linear independence can be
guaranteed by throwing away dependent functionals when necessary). We prove that
the proposed numerical recovery algorithm is near optimal. We then adapt our ap-
proach to the case where the A;’s are point evaluations (see (1.18)), and therefore not
continuous over H'() when d > 2.

3.1. Minimum norm data fitting. We now apply the general optimal recovery
principles discussed in section 1.4 to our specific setting in which

H=H(Q) and X=H'(Q).

Let ¢; € H*(Q2) be the Riesz representer of the functional A\; when viewed as a
functional on H*(£2). In other words

Aj(v) = (v, 0j) s ), vEH(Q).
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We assume that the A; are linearly independent on #*(§2) and thus the Gramian
matrix

G= (gi,j)i}jzlw,,m’ 9ij = <¢j’¢i>HS(Q) = /\i(ﬁbj)a

is invertible.
Now, let u = ug + uy, with ug; € K* =U(H*()) be the function in K that gave
rise to our data observation w. So, we have

w' =w — AMug) = Mug)-

If a* is the vector in R™ which satisfies Ga* = w', then uj, 1= >0 a%¢; is the
function of minimum H*(€2) norm which satisfies the data w’, i.e., A(u3,) = w'. We

have seen that

lluge — Wyl (o) < ROKK) (0,
namely, uj, is the optimal recovery of the functions in KZ')‘, Note that the recovery
error is measured in H' not in #*(2). In turn (see (1.15)), the function u* :=uj, +ug
is the optimal recovery for functions in K,,:

||’LL — 'LL* HHl(Q) S R(Kw)Hl(Q)

The idea behind our proposed numerical method is to numerically construct a
function 4@ € H'(Q) that approximates u* well. If, for example, we have for £ > 0 the
bound

[u* = allm (o) <e,
then for any u € K, we have by the triangle inequality
lu =l 1 (0) < R(Kw)m (o) + &

Given any C > 1, by taking e small enough, we have that 4 is a near best recovery of
the functions in K,, with constant C.

3.2. The numerical recovery algorithm for H'-continuous functionals.
Motivated by the above analysis, we propose the following numerical algorithm for
solving our recovery problem. The algorithm involves approximations of the function
up and the Riesz representers ¢;, typically computed by finite element discretizations,
and the application of the linear functionals A; to these approximations. In order to
avoid extra technicalities, here we make the assumption that the applications of the
functionals to a known finite element function can be exactly computed.

We first work under the additional assumption that the linear functionals A; are
not only defined on K but that they are continuous over H'(£2). We define A as the
maximum of the norms of the A\; on H'($2). In this case

3.1 N Aollgie), veHY(Q).

In what follows, throughout this paper, we use the following weighted £ norm on R™:

1/2

1 — _
l|2]| := EZ\@F =m Y?|z||;2, z2=(21,...,2m) ER™.
j=1
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In particular, we have
M@ < Allollmie), veH Y (SQ).

Given a user prescribed accuracy € > 0, our algorithm does the following four
steps involving intermediate tolerances (g1,¢€2).
Step 1. We numerically find an approximation iy to ug which satisfies

(3:2) |uo — ol 1 () < €1-

To find such a 4y, we use standard or adaptive FEM methods. Given that 4y has
been constructed, we define w :=w — A(fp). Then, for w’' :=w — A(ug) we have (see

(3.2))

(3.3) |w" — ]| < Aey.

On the other hand, since |\;(v)| < Aljv| g1 () < Asllv|las ) < As, where
Ag :=C,A

(see (3.1), (1.13), and (1.14)), we derive that

(3.4) '] < A

Thus by triangle inequality, we also find that

(3.5) @] <As+ Aey.

Step 2. For each j = 1,...,m, we numerically compute an approximation qASj €
H'(Q) to ¢; which satisfies

(3.6) l6; — dila) <ea j=1,...,m.

This numerical computation is crucial and is performed during the offline phase of
the algorithm. We detail it in section 4. Note that the q?)j’s are not assumed to be in
H*(£2), and, in particular, not assumed to be harmonic functions.

Step 3. We define and compute the matrix

G= (gi,j)i,jzl,...,ma gi,j = >\i(¢j)v

and thus |§; ; — ¢i,;] < Aes for all 4, 5. R
It follows that for the matrix R := G — G we have

[R[ly <mAe,,

where we use the shorthand notation || - ||y := || - [, s¢, for matrices. Since G is
invertible, we are ensured that G is also invertible for €5 small enough. We define

M:=|G 1, M:=[G
While these two norms are finite, their size will depend on the nature and the posi-

tioning of the linear functionals )\;, j =1,...,m, as it will be seen in the section on
numerical experiments. These two numbers are close to one another when &5 is small
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since M converges towards the unknown quantity M as e — 0. In particular, we
have

(M = M| =[G = |G L < NG = G ML= |G RGT |1 < MMmAey,

from which we obtain that
M ~
(3.7) M<————— and M<

provided that mMAes <1 and mM Aey < 1. We also have the bound

A—1 1 M?
3.8 G -G |h £ ——————mAey =:0.
(38) [ I < T A A
It is important to observe that ¢ can be made arbitrarily small by diminishing es.

Step 4. We numerically solve the m x m algebraic system Ga =, thereby finding
a vector @ = (d1,...,0my). We then define Gy := Z;nzl a;¢; and our recovery of u is
1 = Ug + Uy. This step can be implemented by standard linear algebra solvers.

One major advantage of the above algorithm is that Steps 1-3 can be performed
offline since they do not involve the data w. That is, we can compute 4o, the approx-
imate Riesz representers ¢; and the approximate Gramian G and its inverse without
knowing w. In this way, the computation of % from given data w can be done fast
online by Step 4 which only involves solving an m X m linear system. This may
be a significant advantage, for example, when having to process a large number of
measurements for the same set of sensors.

3.3. A near optimal recovery bound. The following theorem shows that a
near optimal recovery of u can be reached provided that the tolerances in the above
described algorithm are chosen small enough.

THEOREM 3.1. For any prescribed e > 0, if the tolerances (e1,£2) are small enough
such that mMAey <1 and

(3.9) g1+ mMAseq + (Co+ea)(mMAey + m(Ag 4+ Aeq)d) <e,

M2

mm/\eg, then the function 4 gen-

where Co :=max;—1,...m |0l g1() and 6 =
erated by the above algorithm satisfies

|u =il 1) < R(Kw)pi(o) +€  for every ue Ky,
Thus, for any C > 1 it is a near optimal recovery of u with constant C provided € is

taken sufficiently small.

Proof. Let u=wug+v be our target function in K,,. We define w’ =w— A(up) and
v* := v*(w') which is the Chebyshev center of K. We recall the algebraic system
Ga* =w' associated to the characterization of v* (see (1.17)). We write

(3.10) g — anellmr o) < || al(e; — é5) +1D (a; —a)d;
Jj=1 H(Q) Jj=1 H(Q)
<lla*|lee2 + l|la* — alle, (Co + €2),
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where we have used (3.6) and the fact that

05l 1) < Ndjlla1 Q) + |05 — illH1(0) < Co + 2.
Note that
(3.11) la*lley = G, < M, < Mimljw'|| < mMA,,

where we have used that ||w’|¢, < m|w’|] and inequality (3.4). Therefore, it follows
from (3.10) and (3.11) that

(312) Hu;[ — ﬁH||H1(Q) § mMAseg + ||a* — fl”el (Co + 62).

For the estimation of ||a* — al|¢,, we introduce the intermediate vector a € R™, which
is the solution to the system Ga = w. Clearly,

16— a* e, = 16~ = w)ley < Mlio — w'lle, < Mo — w'|| < mM Aey,

where we invoked (3.3). On the other hand, in view of (3.8) and (3.5), we have

la —alle, = (G = G Hdlle, <Ol < modl <m(As + Act)é.
Combining these two estimates, we find that

lla® — alle, <mMAe; +m(As + Aep)d.

We now insert this bound into (3.12) to obtain

lluz, — || @) S mMAgea + (Co + e2) (mMAey +m(Ag + Aey)d).
Thus, for u* :=uy + uj, and using (3.2), we have

[u* =l o) < lluo — toll (@) + |z — Gl a(a)
(3.13) <ep+mMAses + (Co+ea)(mMAey + m(As + Aeq)d) <e.

Since u =ug + uy, we have

lu—w* (| ) = lus — gl (o) < RIK) o) = R(Kw) ()

and the statement of the theorem follows from this inequality and (3.13). a0

Remark 3.2. We point out that M, the norm of the matrix G~!, grows potentially
fast as m gets larger indicating that the Riesz representers become closer to be linearly
dependent. This leads to numerical difficulties when computing the estimator which,
as noted in Remark 1.2, amounts to the H-orthogonal projection onto the space
spanned by the representers. Therefore, regularization strategies might also be needed
to compete with the ill-conditioning of G in the asymptotic regime. One typical
strategy is to set to 0 the smallest eigenvalues of G according to a given threshold
and apply the pseudo-inverse. We refer, for example, to [2] where this regularized
projection strategy is reviewed and analyzed in detail.

Remark 3.3. Note that in numerical computations the quantity M is available
while M is unknown. Thus, in practice, in order to achieve the prescribed accuracy
g, we can first impose that e5 < (2mMA)~! and derive the inequalities (see (3.7))

M . . M2 . .
<———— <2M, |G =G £ —————mAey <2M*mAsy =: 0,
lmeA{:‘g 17mMA€2
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where the last inequality is proven in a similar fashion to (3.8). If we then follow the
proof of Theorem 3.1, the requirement in (3.13) can be substituted by

£1 + 2mMAeq + (Co+ 52)(2mMA51 +m(As + Asl)g) <e,

and thus all participating quantities are computable.

Remark 3.4. The result in Theorem 3.1 can easily be extended to the case of noisy
data, that is, to the case when the observations

w=w-+n,

where 7 is a noise vector of norm ||n|| < k. Indeed, the application of the algorithm to
this noisy data leads to finding in Step 1 the vector & :=w +n — A(lp) that satisfies

|w —w|| <Aey+r and ||| < Ag+e1A+ kK,

where w’ = w — A(up). Inspection of the above proof shows that under the same
assumption as in Theorem 3.1, one has the recovery bound

lu — il g1y < R(Kw) g (o) + €+ Ck for every u€ Ky,

where C':= (M + 6)m(Cy + £2).

Remark 3.5. For simplicity, we did not introduce in the above analysis the possible
errors in the application of the A; to the approximations g and (;ASJ-, and in the numer-
ical solution to the system Ga= w, which would simply result in similar conditions
involving the extra tolerance parameters.

3.4. Point evaluation data. We now want to extend the numerical algorithm
and its analysis to the case when the data functionals A;, 7 = 1,...,m, are point
evaluations

Ni(h) :=h(z;), x;€Q, j=1,...,m.

Of course these functionals are not defined for general functions h from H'(Q). How-
ever, we can formulate the recovery problem whenever the functionals A\; are well
defined on K. We now discuss settings when this is possible.

Recall that any u € K can be written as u = wug + uy, where ug is the solution to
(1.1) with right side f and g =0 and uy € H*(Q2). Point evaluation is well defined
for the harmonic functions uy € H*(Q), provided the points are in Q. In addition,
they are well defined for points on the boundary T" if the space H*(£2) continuously
embeds into C(Q2). For d = 2, this is the case when s > 1/2 and when d = 3, this is
the case when s> 1.

Concerning ug, we will need some additional assumption to guarantee that point
evaluation of up makes sense at the data sites z;, 7 = 1,...,m. For example, it is
enough to assume that wug is globally continuous or at least in a neighborhood of each
of these points. This can be guaranteed by assuming an appropriate regularity of f.
In this section, we assume that one of these settings holds. We then write

w; =uy(zj) =wj —uo(zj), j=1,...,m,
and follow the algorithm of the previous section with the following simple modifica-
tions:
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Modified Step 1. We numerically find an approximation g to ug, which, in
addition to

|uo — ol 51 () < €1,
satisfies the requirement

(3.14) max fug(x;) — do(w)| < 1.

i=1,...,m

To find such a g we use standard or adaptive FEM methods. Given that 4y has been

constructed, we define w; :=wj; —io(z;), j=1,...,m, and thus, using (3.14), we have
lw — | <e.
Modified Step 2. For each j =1,...,m, we numerically compute an approximation

<£j to ¢;, which, in addition to

l¢; — J)j”Hl(Q) <egq9, j=1,...,m,

satisfies the condition

(3.15) Pt axm|¢j(a?i)—¢§j(xi)| §€2, i,j:l,...,m.
Condition (3.15) ensures that in Step 3 we can choose the entries g; ; of the matrix

G as

Gij=j(xs), i,5=1,...,m.

Steps 3 and 4 of our algorithm remain the same as in the previous section.

THEOREM 3.6. With the above modifications, Theorem 3.1 holds with the exact
same statement in this point evaluation setting.

Proof. The proof is the same as that of Theorem 3.1. ]

4. Finite element approximations of the Riesz representers. The com-
putation of an approximation @y to ug, required in Step 1 of the algorithm, can be
carried out by standard finite element Galerkin schemes. Depending on our knowl-
edge on f one can resort to known a priori estimates for €1, or may employ standard
a posteriori estimates to ensure that the underlying discretization provides a desired
target accuracy. Therefore, in the remainder of this section, we focus on a numerical
implementation of Step 2 of the proposed algorithm.

Our proposed numerical algorithm for Step 2 is to use finite element methods to
generate the approximations éj of the Riesz representers ¢;. Note that each of the
functions ¢; is harmonic on {2 but we do not require that the sought after numerical
approximation ¢2j is itself harmonic but only that it provides an accurate H'()
approximation to ¢;. This allows us to use finite element approximations which are
themselves not harmonic. However, the (Zgj will necessarily have to be close to being
harmonic since they approximate a harmonic function in the H'(Q) norm.

Our numerical approach to constructing a qf)j, discussed in section 4.1, is to use
discretely harmonic finite elements. Here, (i;j is a discrete harmonic extension of a
finite element approximation to the trace 1; =T(¢;) computed by solving a Galerkin
problem. In order to reduce computational cost (see Remark 4.2), we incorporate
discrete harmonicity as constraints and introduce in section 4.2 an equivalent saddle
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point formulation that has the same solution (/Abj, and which is the one that we practi-
cally employ in the numerical experiments given in section 5. We give in section 4.4
an a priori analysis with error bounds for ||¢; — qASj | 51 () in terms of the finite element
mesh size, in the case where the measurement functionals are continuous on H?!(2).
These error bounds can in turn be used to ensure the prescribed accuracy €5 in Step 2.
We finally discuss in section 4.5 the extensions to the point value case where pointwise
error bounds on |¢;(x;) — ¢;(x;)| are also needed.

In order to simplify notation, we describe these procedures for finding an approx-
imation dg to the Riesz representer ¢ € H® = H*(2) of a given linear functional v
on H?®. This numerical procedure is then applied with v = A; to find the numerical
approximations qAﬁj to the Riesz representer ¢;.

For simplicity, throughout this section, we work under the assumption that 2 is
a polygonal domain of R? or polyhedral domain of R3. This allows us to define finite
element spaces based on triangular or simplicial partitions of Q that in turn induce
similar partitions on the boundary. We assume that % <s< %, which is the relevant
range for such domains, as explained in section 2. Our analysis can be extended to
more general domains with smooth or piecewise smooth boundaries, for example by
using isoparametric elements near the boundary, however at the price of considerably
higher technicalities.

4.1. A Galerkin formulation. Let s > 1/2 be fixed and assume that v is any
linear form continuous on H*(§2) with norm

(4.1) Cs :=max{v(v) : [|v|lys(0) =1}

In view of the definition of the H® norm, the representer ¢ € H*(2) of v for the
corresponding inner product can be defined as

¢:E7/}a

where E is the harmonic extension operator of (4.3) below and where ¢ € H*(T') is
the solution to the following variational problem:

(4.2) (W) s (ry = p(n) :==v(En), neHT).

Note that this problem admits a unique solution and we have
911 rr= () = 19 ll3¢= () = Cs-

Recall that

(4.3) Eg:=argmin{||Vv||2(q) : vr =g}

The function Fg is characterized by T'(Fg) =g and

/ VEg-Vu=0, veHQ).
Q

From the left inequality in (1.3), one has
(4.4) 1290z ) < Celglmrrzwy), g€ HYA(T),

where C'g can be taken to be the inverse of the constant co in (1.3).
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Therefore, one approach to discretizing this problem is the following: consider
finite element spaces V), associated to a family of meshes {7p}n~0 of §2, where as
usual h denotes the maximum meshsize. We define T}, to be the space obtained by
restriction of Vj, on the boundary I', that is,

Ty =T(Vp).

Since we have assumed that €2 is a polygonal or polyhedral domain, the space T}, is
a standard finite element space for the boundary mesh. Having also assumed that
s < 3/2, when using standard H' conforming finite elements such as Pj-Lagrange
finite elements, we are ensured that T C H°(I'). We denote by

Wy, :={vn, €V, : T(vy) =0},

the finite element space with homogeneous boundary conditions.
We define the discrete harmonic extension operator Ej, associated to V}, as follows:
for g, € Ty,

Engn = argmin{HVvhHLz(Q) :vp € Vp, T(’Uh) = gh}-

Note that Ejgp is not harmonic. Similar to E, the function Ep gy is characterized by
T(Engn) = gn and

/ VErgh-Vop=0, v, €Wy
Q
Then, we define the approximation ¢, € Vj, to ¢ as

dn = Eptp,

where ¢, € T}, is the solution to the following variational problem:

(4.5) (Vns gn) mery = pn(gn) == v(Engn);  gn € Th.

Here we are assuming that, in addition to be defined on H*(2), the functional v is
also well defined on the space Vj. We shall further consider separately two instances
where this is the case: (i) v is a continuous functional on H*(£2) and (ii) v is a point
evaluation functional.

Note that (4.5) is not the straightforward Galerkin approximation of (4.2), since
wp, differs from p. This complicates somewhat the further conducted convergence
analysis. The numerical method we employ for computing ¢y, is to numerically solve
an equivalent saddle point problem described below.

We apply the strategy (4.5) to v := A; for each j and thereby obtain the corre-
sponding approximations gf)j = ¢p € V. Since Step 2 requires that we guarantee the
error ||¢; — (;ASJ-||H1 < g9, our main goal in this section is to establish a quantitative
convergence bound for ||¢— ¢p || 1. We also need to establish a pointwise convergence
bound for |¢(z) — ¢n(x)| when considering the modified version of Step 2 in the case
that the measurements are point values.

Similar to F, it will be important in our analysis to control the stability of Ej, in
the sense of a bound

(4.6) IEngnllm @) < Dellgnllaizwy,  gn € Thy
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with a constant Dy that is independent of h. However, such a uniform bound is not
readily inherited from the stability of E. As observed in [8], its validity is known to
depend on the existence of uniformly H'-stable linear projections onto V; preserving
the homogeneous boundary condition, that is, projectors P, onto V}, that satisfy

(47) Ph(H&(Q)):Wh and ||Ph’UHH1(Q)SBHU”Hl(Q), ’UGHI(Q),

for some B independent of h. One straightforward consequence of this is that if
(S Hl(Q) with ’U|F € Ty, then Ph(v)‘r = UIF.

We next show that the existence of such projectors is sufficient to guarantee the
stability of Ej,. For this, suppose (4.7) holds and gj, € Tj,. Then P, Eg, € V;, and the
trace of P, Egy is equal to gp. It follows that

1 Engn — PoEgnl a1 (9) < CPIVEWGh — VPLEgnllr2(o)
< Cp|VEwgh|Ly) + CrIVPLEGL| L2 (0),
<2Cp||PhEgh| m (),

where Cp is the Poincaré constant for ). Here, the last inequality follows from the
minimizing property of Eg,. Thus, by triangle inequality, one has

| Ergnll o) < (1+2Cp) || PhEgnl a1 o) < (1+2Cp) Bl Egn|| a1 (o)
< (14 2Cp)BCE|gnllgi/2(ry,

which is (4.6) with Dg = (14 2Cp)BCEg.

The requirement of uniformly stable projectors Pj, with the property (4.7) is
satisfied by projectors of Scott—Zhang type [28] when the family of meshes {7 }r>0 is
shape regular, that is, when all elements T" have a uniformly bounded ratio between
their diameters h(T') and the diameter p(T') of their inner circle. In other words, the
shape parameter

hT)
4.8 oc=oc({T ‘= sup max ——-
49 (o) =sum s
is finite. In all that follows in the present paper, we work under such an assumption
on the meshes Tp,. Therefore, (4.6) holds when Vj, is subordinate to such partitions.

4.2. A saddle point formulation. Before attacking the convergence analysis,
we need to stress an important computational variant of the above described Galerkin
method, that leads to the same solution ¢j. It is based on imposing harmonicity via
a Lagrange multiplier. For this purpose, we introduce the Hilbert space X*(Q2) that
consists of all v € H'(Q) such that vr € H*(T'), and equip it with the norm

1/2
ol = (lerllzemy + IV0l32)) -

Then, the Riesz representer ¢ is equivalently determined as the solution of the saddle
point problem: find (¢,7) € X*(Q) x H(£2) such that

a(p,v) +blv,m) = v(v), veX(N),

(4.9) b(o.2) — 0, 2eHL9)

where the bilinear forms are given by

a(¢,v) :=(¢r,vr)gsry and b(v,7):=(Vv,V7T)r2(q).
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Clearly the second equation in (4.9) means that ¢ is harmonic and testing the first
equation with a v € H*(Q) shows that ¢ is the Riesz representer of v.

This saddle point formulation is well-posed: the bilinear forms a and b obviously
satisfy the continuity properties

a(9,v) < [|orllmsm)llorllm: ) < |8l x= @) vllx:(@), & veX(Q),
and for the standard norm [|v[| g1 (q) = [[Vv|[L2(0),
bv,m) < ||VU||L2(Q)HV7T||L2(Q) < ||U||X5(Q)||7T||Hé(ﬂ)a ve X*(Q), e Hé(9)~
In addition, for all v € H*(f2), one has
[0l%s 0y < lor ey + 1017 @) < llor ey +CJ%JHU||%11/2(F) <(1+Cp)a(v,v),

which shows that a is coercive on the null space of b in X*(2). Finally, the bilinear
form b satisfies the inf-sup condition

nf sup b(v,7) ) b(m, )

= =1.
reHy () vexs(@) [Vl xs@ 1Tl z1 @) — reri@) 17l x @) 7l H10)

Therefore, the standard LBB theory ensures existence and uniqueness of the solution
pair (¢,7).

We now discretize the saddle point problem by searching for (¢n, 7)) € Vi x Wy,
such that

a(én,vn) +b(vp, m) =v(vh), v € Vp,
b(¢h,zh) =0, zn € Wy,

Remark 4.1. The equivalence with the previous derivation of ¢; by the Galerkin
approach is easily checked: the second equation tells us that the solution ¢y, is dis-
cretely harmonic, and therefore equal to Fpy, for some v, € Tj,. Then taking vy of
the form Ejgy, for gp € T), gives us exactly the Galerkin formulation (4.5).

This discrete saddle point problem is uniformly well-posed when we equip the
space W), with the H} norm, and the space V, with the X* norm. The continuity of
a and b, and the inf-sup condition for b follow by the exact same arguments applied
to the finite element spaces, with the same constants. On the other hand, we need
to check the uniform ellipticity of a in the space VZL{ C V;, of discretely harmonic
functions, which can be defined as

V;L—l = {'Uh cVy : b(vh,zh) = O, Zp € Wh},

or equivalently as the image of T}, by the operator Ej,. For all v, € VI and g, = T'(vp,),
we write

lon 1 ) < llgnllZrs oy + llonllEr @) < lgnllZ oy + DEllgnllz 2wy < (1L+ DE)alvn, va),

where we have used the discrete stability of Ej,.

Remark 4.2. In practice, we use this discrete saddle point formulation for the com-
putation of ¢, rather than the equivalent Galerkin formulation (4.5) for the following
reason. Let Nj :=dimVy, M; ;= dimW,, and P, := dim T, = N — M;,. Comput-
ing the right=hand side load vector in (4.2) requires computing discretely harmonic
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extensions of P, basis functions, which means solving P, linear systems of dimension
Mp,. In addition, one has to solve the sparse linear system (4.5) of size P}, followed by
another system of size M}, to compute ¢, = Ep,. Using optimal iterative solvers of
linear complexity the minimum amount of work needed to compute one representer
scales then like

d—1

PuMy ~N, T

while solving the saddle point problem requires the order of Ny + M} ~ Nj opera-
tions. On the other hand the characterization of ¢, through (4.5) appears to be more
convenient when deriving error bounds for ||¢ — ¢ || g1 (q). This is the objective of the
next sections.

4.3. Preparatory results. In the derivation of error bounds for ||¢ — | 51 (),
we will need several ingredients.

The first is the following lemma that quantifies the perturbation induced by using
FE, in place of E.

LEMMA 4.3. For any gp € Ty, one has

(4.10) I(E = En)gnll (o) < C2h" Hgnll e (ry,
where Cy depends on r and s, the shape-parameter o, and on the geometry of €.
Proof. From the properties of E and Ej, one has
(V(E = En)gn,Vor) =0, vy, € Wy,

This orthogonality property shows that

IV(Egn — Engn)llz2) < IV(Egh — Engn — vn)ll2),  vh € Wa,

and therefore,

IV(Egn — Engn)llL20) < min IV(Egn —vn)llz2(0)
v €Vh, T (Vh)=gn

<|V(Egn — PnEgn)| 20,

where P}, is the stable projector that preserves homogeneous boundary condition; see
(4.7). Tt follows that

IV(Egn — Engn)ll2 < (1+ B) min |Egn — vrllz (@),
Vh h

where B is the uniform H'-stability bound on P,. By standard finite element ap-
proximation estimates and (2.4), we have

min ||Egy, — vpll g ) < CR" Y Egnllar@) < CCLR™ | gn | =y,

vpEVh

where the constant C' depends on r and on the shape parameter o. The estimate
(4.10) follows by Poincaré inequality since Egy, — Engn € H}(Q). d

The second ingredient concerns the regularity of the solution to the variational
problem

(4.11) (R, 0) sy =7(v), wve H* ().
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For a general linear functional v € H~*(T"), that is, continuous on H*(T"), we are
only ensured that the solution  is bounded in H*(I'), with ||k sy = 7]z r)-
However, if v has some extra regularity, this then translates into additional regularity
of k.

As a simple example, consider the case where ~y is, in addition, continuous on
L3(T), that is

(4.12) v(v) = <g7U>L2(F)

for some g € L?(I'), and assume that we work with s = 1 and a polygonal domain.
Then the variational problem has a solution x € H*(T') and, in addition, k € H?(FE)
for each edge E with weak second derivative given by

—k"=g—re L*I).
In turn, standard finite element approximation estimates yield

Join [5 = il ) < Chllgllzzw),
with a constant C' that depends on the shape parameter o.

Of course, gain of regularity theorems for elliptic problems are known in various
contexts. However, we have not found a general treatment of gain of regularity that
addresses the setting of this paper. In going forward, we do not wish to systematically
explore this gain in regularity and approximability for more general values of s and
smoothness of 7 since this would significantly enlarge the scope of this paper. Instead,
we state it as the following general assumption.

Assumption R. For s > 1 and § > 0, there exists r(s,0) > 0 such that if

v € H=3T9(T') for some § >0, then the solution » to (4.11) satisfies
(4.13) min ||k — | ey < CR™E O ||| gr-srs oy,
kp €T

with a constant C that depends on s, d, and on the shape parameter o.
The above example shows that 7(1,1) = 1 for a polygonal domain. We expect
that this assumption always holds for the range % <s< % that is considered here.

4.4. An a priori error estimate for ||¢ — ¢n|| 12 In this section, we work
under the assumption that the linear functional v is continuous on H'(£2) with norm

Cy :=max{v(v) : ||[v][g (o) =1}

Let us first check that this assumption implies a uniform a priori bound on ||y, | s (r)-
Indeed, we may write

[4nlFe () = (s ¥n) o0y = v(Entpn) < Cu Dpllvnll gseey < Co Dellnllas ),
where the first inequality used (4.6). Therefore,
(4.14) 1Yrll sy < CvDE.

We have seen in section 2 that the function ¢ belongs to the standard Sobolev
space H"(Q) for r defined in (2.3). We use this  throughout this section. From (2.4),
there exists a constant Cy such that

(4.15) ||EwHH7‘(Q) §C’1||wHHs(p), we H*(T).
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As noted in section 2, the amount of smoothness r» depends both on s and on the
geometry of Q. What is important for us is that since s > 1/2, we have shown in
section 2 that r > 1. For example, for smooth domains it is r =s + % The fact that
¢ € H"(£2) hints that the finite element approximation ¢, to ¢ should converge with
a certain rate.

This is indeed the case as given in the following result.

THEOREM 4.4. Under Assumption R, we have
(4.16) ¢ — dnllr ) < CCLRT,

where t =min{r — 1,7(s,s + ) + r(s,s — 3)}. The constant C depends on s and on
the geometry of 2, and on the family of meshes through the shape parameter o.

Proof. We use the decomposition

(4.17) ¢ —¢n=EY — Eppp, = E(Y — ) + (E — Ep)Yn.

The second term can be estimated with the help of Lemma 4.3 applied to g, = ¥,
which gives

(B — Ep)vnl ) < Coh”H[Wn| e ry < C2DpCL R

from the a priori estimate (4.14) for ¢,. We thus have obtained a bound in O(h"~1)
for the H! norm of the second term in (4.17).
For the first term, we know that

IEW = ¥n)l 1) < CellY = Ynll a2y,

and so we are led to estimate ¢ — 1y, in the H'/2(T') norm. For this purpose, we
introduce the intermediate solution 1, € T}, to the problem

(n,9n) =0y = 1(gn) =v(Egn),  gn € T,
and we use the decomposition
(4.18) Y —n= (Y =) + (), = ¥n).
We estimate the second term in (4.18) by noting that for any g, € Tp,
(p — Yn, gn) =y = V((E — En)gn) < Cull(E — En)gnll i) < CoCoh” | gn | =y,

where we have again used Lemma 4.3. Taking g, = 1, — ¥ we obtain a bound
O(hm=1) for its H*(T') norm, and in turn for its H'/?(T") norm.

It remains to estimate ||y — EhHHl/z(F). Note that v, is exactly the Galerkin
approximation of v since we use the same linear form p in both problems. In fact,
we have

(=Y, gn) oy =0, gn €T,

that is v, is the H*-orthogonal projection of 1 onto T}, and therefore,

1 =l sy = min |9 — & g (r)-
KkpE€TH
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Since the linear form u satisfies

l(g)l = W(Eg)l < CullEglla ) < CoCrIgl /2y,

and thus belongs to H~'/2(T), we may apply the estimate (4.13) to v = v, k = 1),
§=s—1>0, to reach

(4.19) 1 = Pl vy < 1% = Bl < CCLCAT72).

This proves the theorem for the value ¢ =min{r —1,7(s,s — )} > 0.
We finally improve the value of ¢ by using a standard Aubin—Nitsche duality
argument as follows. We now take x to be the solution of (4.11) with

V() = — by, v )E/2(T)s ve HYA(T),

where (.,.)gi/2ry stands for the H'/2 scalar product associated with the norm
Il zr1/2(r)- We then write

ll— ¢h||H1/2(r)—<1f’ Vpo = 1/’h>H1/2(F (K, =) o(ry = (K=K, Y =Py e *(I')

where the last equality comes from Galerkin orthogonality. It follows that

1% = DnllFrarz ey < 16 = wnllms )19 = Dull )
<CH D =By ey 16 — Bl are (o)

where we have again used (4.13) now with § = s + . Using the already established
estimate (4.19), it follows that

1% = ¥l a2y < COC,h,

with £ :=r(s,s + 3) + r(s,s — 2). With all such estimates, the desired convergence

bound follows with ¢ := min{r — 1,%}. d
Remark 4.5. In the case of a polygonal domain and s = 1 which is further
considered in our numerical experiments, we know that r = _ 3 and r(1,1) =1 50

2

that ¢ > (1, ) > 1. In turn, the convergence bound is established with t=7r—1= 5

4.5. The case of point value evaluations. We discuss now the case where

for some z € Q. In order to guarantee that point evaluation is a continuous functional
on H?®, we assume that

>d—1
s —
9

that is s > 3 L for d=2, and s > 1 for d = 3. We want to find the Riesz representer of
such a pomt evaluation functional on H?®. Note that our assumption on s ensures the
continuous embeddings

1) c o),
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as well as
H(Q) C H™(Q) CC(Q),
since in view of (2.3)

) 1, d
rfmm{er 2,7’ } > >
where in the inequality we recall that r* > % for polygonal domains.

The point evaluation functional v is thus continuous on H?®(2) with norm Cj
bounded independently of the position of z. Of course, the Galerkin scheme analyzed
above for v € H(Q)* continues to make sense since v is well defined on the space V.

As explained in section 3.4, the prescriptions in Step 2 of the recovery algorithm
need to be strengthened in the point evaluation setting. Thus, we are interested in
bounding the pointwise error |¢(x) — ¢p(2)| at the measurement points, in addition
to the H'-error ||¢ — ¢nllg1(). In what follows, we establish a modified version of
Theorem 4.4 in the point value setting that gives a convergence rate for ||¢—on|| g1 (q),
and, in addition, for ||¢ — ¢l (o) ensuring the pointwise error control. We stress
that the numerical method remains unchanged, that is, ¢ is defined in the exact
same way as previously. The new ingredients that are needed in our investigation are
two classical results on the behavior of the finite element method with respect to the
L norm.

The first one is the so-called weak discrete maximum principle which states that
there exists a constant C\,.. such that, for all h > 0,

(4.20) [Engnllze (@) < CmaxllgnllLe), gn € Th.

This result was first established in [5] with constant Cyax = 1 for piecewise linear
Lagrange finite elements under acuteness assumptions on the angles of the simplices.
The above version with Cpay > 1 is established in [27] for Lagrange finite elements
of any degree on 2d polygonal domains, under the more general assumption that the
meshes {7 }n>0 are quasi-uniform (in addition to shape regularity, all elements of
Tr, have diameters of order h). A similar result is established in [15] on 3d convex
polyhedrons.

The second ingredient we need is a stability property in the L° norm of the
Galerkin projection Ry, : H}(Q) — W), where Rpv, v € H}(Q), is defined by

/Vth-Vvhz/Vv-Vvh, vp, € Wy,
Q Q

Specifically, this result states that there exists a constant Cya and exponent a > 0
such that, for all A > 0,

(4.21) IRl Lo (0) < Cgar(1+ [In(R) ) [0l e 0y, v € L(2) N Hy (),

that is, the Ritz projection is stable and quasi-optimal, uniformly in A, up to a log-
arithmic factor. This result is established in [27] for Lagrange finite elements on 2d
polygonal domains and quasi-uniform partitions, with ¢ = 1 in the case of piecewise
linear elements and a =0 for higher order elements. A similar result is established in
[15] with @ =0 for convex polygons and polyhedrons. Going further, we assume that
the choice of finite element meshes ensures the validity of (4.20) and (4.21).

We begin our analysis with the observation that under the additional mesh as-
sumptions, Lemma 4.3 can be adapted to obtain an estimate on ||(E — Ep,)gn| £ ()-
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LEMMA 4.6. For any gy € Ty, one has
_d
(4.22) I(E = En)gnllLe() < C3(1+[In(h)[)*)h" "2 |lgnllm=(r),

where Cy depends on (r,s), the geometry of Q, and the family of meshes through Cga;.
Proof. For any vy, € V), such that T'(vy,) = gn, we write

[(E = En)gnllz= ) < [1Egn — vnllL=() + | Engn — vrll Lo (0)-

It is readily seen that Ej, gy —vnp, = Rp(Engn —vn) = Rp(Egp —vp). Indeed, Ry Engn —
RhEgh S Wh and fQ V(Rh(Ehgh - Egh)) . Vvh == fQ V(Ehgh - Egh) . V’Uh =0 for all
vy, € Wp,. Therefore, by (4.21), we obtain
I(E = En)gnllL= () < (1+ Cgai(1 + |In(R)[)*) min I Egh — vall Lo ()-
v €Vn, T (Vh)=gn
On the other hand, we are ensured that Egj belongs to H"(2) where r > £, and
therefore has Holder smoothness of order r — g > 0 with

| Egnll S CellEgnllar @) < CeCillgnll s (rys

% (@)
where C, is the relevant continuous embedding constant. By standard finite element

approximation theory,

: rd
min 1Egn — vnllzee @) < CR"" 2| Egnll

._d
v €V, T (vr)=gn EA(O)

where C' depends on r and the shape-parameter o, and therefore we obtain (4.22). O

We are now in position to give an adaptation of Theorem 4.4 to the point value
setting.

THEOREM 4.7. Under Assumption R, for any t; < min{r— g, r(s,s+ %) +r(s,s—
1)}, one has

(4.23) ¢ — dnll 1) < Ch™,

d—1

and for any to < min{r — %7 2r(s,s — %5

(4.24) ¢ — dnll Loy < Ch'™.

The constant C' depends in both cases on s, t1, and ta, on the geometry of Q, as
well as on the family of meshes through the constants Cmax and Cyqi, and the shape
parameter o.

)}, one has

Proof. We estimate ||¢ — ¢y 1 () by adapting certain steps in the proof of The-
orem 4.4. The first change lies in the a priori estimate of the H*(I') norm of v, that
was previously given by (4.14) which is not valid anymore since C, = oco. Instead, we
write

0l 0y = (Vs ¥n) s () = v(Entbn) < | Batonll oo (@) < Comaxll¥onl| Lo (r)
S Cmast||¢h||H5(F)7

where we have used (4.20) and where B; is the continuous embedding constant be-
tween H*(T") and Lo (T"). In turn, we find that

(425) H'(/JhHHS(F) Scmasta
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which results in the slightly modified estimate
(B — En)ynllm () < CoCmaxBsh™™,

for the second term of (4.17).

For the first term E(i — 1p), we proceed in a similar manner to the proof of
Theorem 4.4. Namely, we estimate the H'/2(I") norms of two summands in (4.18).
The estimate of ||, — Yl g1/2(ry is modified as follows. We note that for any g, € Th,

(Vn, = Vny gn) s () = v((E = En)gn) < [|(E = Ep)gnllL=(a)
< Ca(1+ () )R gl o),

where we have now used Lemma 4.6. Taking gj, = 1, — ¢, we obtain a bound of order
O(hr_%) up to logarithmic factors for its H*® norm, and in turn for its H'/2 norm.
The estimate of [|v) — ¢y, || gr1/2(r) is left unchanged and of order O(h'). Combining
these various estimates, we have established (4.23) for any ¢; < min{r — 4,7}, with
ti=r(s,s+1)+r(s,s—1).

We next estimate ||¢ — ¢n| () by the following adaptation of the proof of
Theorem 4.4. For the first term (E — Ep)p, of (4.17) we use Lemma 4.6 combined
with the estimate (4.25) of 1}, which give us

I(E = En)vnl e (@) < CrmaxBsCs(1 + [ In(h))*h7 2.
For the second term E (¢ — vyp,), we use the continuous maximum principle to obtain
IE() — tn)l o) S 1 — UnllLee @y < 1vn — UpllLee @y + 190 — Ppll Lo )
For the first summand, we write
[9n = plloery < Cellon — Pl e ().

where C is the relevant continuous embedding constant, and we have already observed
a

that [|¢, — ¥, | g=(r) satisfies a bound in O(h"~2) up to logarithmic factors. For the
second summand, we may write

1% = ¥nllze ) < Cell = Pnlla=o),

where C. is the relevant continuous embedding constant. Since v belongs to H~5+°(T")

for all § < s— %, we can apply the estimate (4.13) to reach a convergence bound
1 = Pullsrs vy < OB,
where C' depends on the closeness of § to s — %, and on the family of meshes

through the shape parameter . Combining these estimates then gives (4.24) for any

to < min{r — %,f} where ¢ = r(s,s — %)7 since 0 can be picked arbitrarily close to
d—1
S — 5 -

We can improve the range of ¢5 as follows: pick any s such that % <5< s and
write

llv *Eh”Lw(r) <Cely *@hHH?(F),

where C, is the relevant continuous embedding constant. We then apply a similar
Aubin—Nitsche argument to derive an estimate

[ = Pyl rs(ry < CRTED T,

Combining these estimates gives (4.24) for any t> < min{r — £,7}, where  :=2r(s,s —
d—1 d—1

5—) since 5 can be picked arbitrarily close to %5~ and ¢ arbitrarily close

d—1
to S—T 0
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5. Numerical illustrations. In this section, we implement some examples of
our numerical method. For this, we have to specify the domain €2, the functionals
A;, and a function u € H'(2) which gives rise to the data vector w = A(u). While
our numerical method can be applied to general choices for these quantities, in our
illustrations we make these choices so that the computations are not too involved but
yet allow us the flexibility to illustrate certain features of our algorithm. The specific
choices we make for our numerical example are the following.

The domain. In order to simplify the presentation, we restrict ourselves when
Q= (0,1)2 but point out again that the algorithm. can be extended to more general
domains.

The function u. For the function u we choose the harmonic function u = uy
where

(5-1) up(z,y) =ecos(y), () €Q:=(0,1)%

This choice means that ug = 0 and therefore allows us not to deal with the computation
of ©g. This choice corresponds to the right side f = 0. Note that the trace of uy on the
boundary I' is piecewise smooth and continuous. Therefore, we have T'(uy) € H(T).
We take s = 1 as our assumption on the value of s. This means that we shall seek
Riesz representor for the functionals given below when viewed as acting on H!(€).

5.1. The case of linear functionals defined on H' (). In this section,
we consider numerical experiments for linear functionals defined on H'(2). In our
illustrative example, we relabel these functionals by double indices associated with a
regular square grid. More precisely,

2
12—z 4l

2T dz, ve HY(Q), 4,j=1,...,v/m.

1
5.2 Aiji(v ::7/ v(z)e”
( ) v ) \/W o
Here, we assume that m is a square integer and r = 0.1 in our simulations. The centers
z;, 5 € §) are uniformly distributed

1
Zi = ———
Y \/ﬁ +1
Recall that our numerical algorithm as described in section 3.2 is based on finite
element methods. Specifically, we use the finite element spaces

V= {Uheco(ﬁ) : ’Uh|T€Q1, TGE}7

where 7}, are subdivisions of Q made of squares of equal side length h and Q' denotes
the space of polynomials of degree at most 1 in each direction. In order to study the
effect of the mesh-size we specifically consider

h=h,:=2"", n=4,...,9,

that is, bilinear elements on uniformly refined meshes with mesh-size 27,
We display in Table 5.1 the results of our numerical recovery algorithm. The
entries in the table are the recovery errors

e(m,n) :=lluy — tall (o),

where Uy € V},, is the recovery for the particular values of m and n.

We have proven in this paper that our numerical recovery algorithm is near op-
timal with constant C' that can be made arbitrarily close to one by choosing n suf-
ficiently large. This means that the error e(m,n) satisfies e(m,n) < CR(KX) g1 (q)
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TABLE 5.1
Recovery error e(m,n) for different amounts of Gaussian measurements m and finite element
refinements n.

. 41 9 | 16 25 36
2 071028 ] 0.2 | 141.73 | 49.43
5 0.7 028 [0.18 | 16.0 | 16.31
6 071028018 02 | 1.79
7 0.7 | 028 | 0.18 | 0.16 | 0.11
8 07028018 | 0.09 | 0.06
9 071028018 | 009 | 0.06

for n sufficiently large. Increasing the number m of measurements is expected to de-
crease this Chebyshev radius. While one is tempted to think that the entries in each
column of the table provides an upper bound for the Chebyshev radius of K for
these measurements, this is not guaranteed since we are only measuring the error for
one function from K,,, namely u, and not all possible functions from K,,. However,
the entries in any given column provide a lower bound for the Chebyshev radius of
Kt provided n is sufficiently large.

Increasing the number m of measurements requires a finer resolution, i.e., increas-
ing n, of the finite element discretization until the perturbation € in Theorem 3.1 is
sufficiently small. This is indeed confirmed by the results in Table 5.1 where stag-
nating error bounds (in each fixed column) indicate the corresponding tip-over point.
We notice, in particular, that for small values of n, the error becomes very large as
m grows. This is explained by the fact that the Gramian matrix G becomes severely
ill-conditioned, and in turn the prescriptions on |G — G||; cannot be fulfilled when
using finite element approximation of the Riesz representers on too coarse meshes.
An overall convergence of the recovery error to zero can, of course, only take place
when both m and n increase.

5.2. The case of point value measurements. In this section, we describe
our numerical experiments in the case where the linear functionals A;; are point
evaluations at points from . Recall that while the Ai,j are not defined for general
functions in H'(£2) they are defined for functions in the model class K™ := U (H*(f))
provided s is sufficiently large (s >1/2 for d =2 and s > 1 for d = 3). This means that
the optimal recovery problem is well posed in such a case. We have given in section 3.4
sufficient conditions on a numerical algorithm to give near optimal recovery and then
we have gone on to show in section 4.5 that our proposed numerical algorithm based
on discrete harmonics converges to a near optimal recovery with any constant C' > 1
provided that the finite element spaces are discretized fine enough.

In the numerical experiments of this section, we again take Q = (0,1)%, s = 1,
and the data to be the point values of the harmonic function uy defined in (5.1).
We choose the evaluation points to be the z; ; of (5.3). We now provide in Table 5.2
the recovery error e(m,n). The observed behavior is similar to the case of Gaussian
averages; see Table 5.1.

5.3. Additional comments on the approximation of Riesz representers.
We provide a little more information on the computation of the Riesz representers
that may be of interest to the reader. We work in the same setting as in the previous
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TABLE 5.2
Recovery error e(m,n) for different amounts of point evaluation measurements m and refine-
ments n.

a9 | 16| 25 | 36
n

4 0.70 | 0.28 | 0.19 | 14.43 | 15.49

5 0.70 | 0.28 | 0.18 | 32.56 | 8.02

6 0.70 | 0.28 | 0.18 | 1.51 2.27

7 0.70 | 0.28 | 0.18 | 0.53 0.89

8 0.70 | 0.28 | 0.18 | 0.20 0.14

9 0.70 | 0.28 | 0.18 | 0.14 0.11
1-000000 E T T T TT ‘ T T T T UL ‘ T T f
B Gaussian: H! error —+— 3
Point evaluation: Loo error ——— -
0.100000 E Point-evaluation: H! error 3
E order % E
0.010000 ¢ E
0.001000 k£ .
0.000100 k£ 4
0000010 i Ll | |

100 1000
dim(th)

Fic. 5.1. Approzimation errors for the Riesz representers of the Gaussian and point evaluation
functionals.

sections. Let us begin with the rate of convergence of our numerical approximations
to the Riesz representers.

We first consider the computation of the Riesz representer for the Gaussian mea-
surement functional centered at z = z;; := (0.75,0.5). Let ¢, € V;, be the ap-
proximation to the Riesz representer ¢ produced by the finite element computation.
Figure 5.1 shows the error ||¢,, — ¢gl| g1 (), n=2,...,6. This graph indicates an error

decay Cn~1/2 = Ch,, (Theorem 4.4 only guarantees Ch?: see also Remark 4.5).

Next, consider the computation of the Riesz representer for point evaluation at
the same z. Figure 5.1 reports the numerical computations of error in both the H*(£2)
and L>°(Q) norms. Again, the graph indicates an error decay Ch,, for the H*(£2) norm
and a decay rate closer to Ch2 for the L>°(€) norm which are better than the rate
guaranteed by Theorems 4.4 and 4.7.

5.4. Convergence of the estimator. We conclude the analysis of our algo-
rithm with some remarks on the convergence of the estimator provided by our al-
gorithm as m,n — +oo. We continue with the case where K = K™ = U(H*(Q))
with s > 1/2 and X is a Banach space for which 7*(2) embeds into X. For each
m=1,2,..., let
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Am = {)\Lm, ey )\m,m}

be the set of measurement functionals. Recall that we are either dealing with function-
als in H'(Q)* or with point evaluations which belong to H*(£2)* by our assumption
on s. We assume that the data vectors

(5.4) Wiy i = Wiy (1) 1= (A1 (W), .., A (), m=1,2,...,

are observations of a fixed function u € K. We are interested in what conditions on
the sets A,,, m=1,2,..., ensure that the functions 4, , produced by our algorithm
converge in || - ||x to w as m,n — oo and whether this convergence is uniform over
ue K.

Theorem 3.1 says that

(55) ||u_’&m7’ﬂ||X SR(me(u))X +€n,ma

where for each fixed m, the error &, , — 0 as n — oo. Therefore, if R(K,,,,u))x — 0
as m — 0o, then we know that given any error tolerance n > 0, the error ||u — @y, » || x
will not exceed n provided we take m sufficiently large and then n sufficiently large
(depending on m). Thus, we are left with the question of whether R(K,,  (.))x — 0,
uniformly over u € K, as the number m of measurements tends to +o0o. In other
words, we would like to know whether

(5.6) R (K™):= ma R(Ky, ()x —0, m—ooc.

This is equivalent to asking when does
(5.7) R (K™) :=max{||v]|x : ve K* NNy} =0 as m— oo.

where Ay, is the null space of A1 m,...; Amm. Indeed, R (K*) < 2R, (K*) <
2R, (K™). Obviously, the validity of (5.7) requires some density assumption on the
sets A, in X* as m — oo.

We illustrate how (5.7) is verified by considering the two specific cases studied in
our numerical experiments, i.e., the cases of Gaussian and pointwise measurements on
the Cartesian mesh points z; ; defined in (5.3). We limit our discussion, as was done
in our numerical examples, to the case when X = H'(2), Q = (0,1)?, and K = K¢,
where H = H!(Q). It follows that the functions in K are in U(H?3/2(Q)) and hence
(by the Sobolev embedding theorem) are not only continuous but in a ball of Lip «
for each a < 1/2 with

o

1 llip o = max 4 (£l ey, sup L =W
z,ye |x—y|
TF#Y

We recall that the measurement functionals in A, are associated with a grid of points
2;; where m = k2, k > 1, an integer. We denote by Q,, = (h,1—h) x (h,1 —h) C R?
the convex hull of these grid points.

Before going further, let us mention the following remark, which we will use next.

Remark 5.1. Let R := (a,b) x (¢,d) C R? be a rectangle in R?, and let R, :=
R\ (b= h,b) x [c,d]. Let g € U(H'?(R)) such that |g|/r2(r,) < e. Note that
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||g||B;{z(L2(R)) <|lgllgr1/2(ry < 1 due to the embedding of these spaces, and thus if we

define gp, : Ry = R by gn(x,y) :=g(x + h,y), we have
lgn — gll2(r.) < Y2
Then, the following bound on the norm of g on the whole rectangle R holds:
(5.8) gl 2y < V2(e + h'/?),
since
19172 ry < N9l 20y + l9nl172(ry < N9l F2 (R0 + [lgn — gll2(ra) + HQHLZ(RQD)}2
<&+ [hl/z +6]2 <2 [h1/2+5r.
Similar statements hold if R, is replaced by R\ (a+h,a) x (¢,d), R\ (a,b) x (d—h,d),
or R\ (a,b) x (¢,c+h).

Now, we consider first the case of point evaluation. In this case, any function v
appearing in the set of (5.7) is in U(H?/2(Q)) and vanishes on a grid of points with
spacing h =m~'/2. Standard Finite Element estimation shows that

(5.9) 0]l s (@, < Cm 4,

with C' an absolute constant. To extend the above estimate to €2, we use (5.8) applied
to appropriate rectangles obtained from ©,, and with h = m~2 ¢ = Cm~/* (see
(5.9)), and g =v, g = 0yv, or g=0yv. Whence, we deduce that

V] 1 () <Cm~Y4

for a different absolute constant C.

We next consider the more intricate case of Gaussian measurements. To prove
(5.7), we assume that (5.7) does not hold and derive a contradiction. So, assume there
is a sequence of functions v, € U(H'(Q))NN,,, m=1,2,..., that does not tend to 0
in H'(2). This means that we can extract an increasing sequence (m;) for which

(510) HUijHl(Q)Z(5>O, i=12,...,

for some § > 0. Since H'(f2) is continuously embedded into H3/2(Q), and H?/%(Q)

is compactly embedded in H*(Q) for each 1 < s < 2, we can further extract a sub-

sequence (which we continue to denote by (my;)) such that v,,; strongly converges
towards a v* in H*(Q)). Note, in particular, that v* is a continuous function, in fact
a Lip s — 1 function on €2, and we have

(5.11) ||U* _'UijC(Q), ||’U* _'UijHl(Q) SAHU* _UijHs(Q) —0, j—o0,
with A an absolute constant. Hence,
(5.12) [0 (| 1.(2) 2 6.

Let us now examine how the measurement functionals act on any continuous
function v € C(2). For any such v, we define

(5.13) 0:=g, * Ev,
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where

1
gr(2) == ez
" V2rr?
is the Gaussian function used for the measurements and £ is the extension operator

by 0 outside of Q. The function @ is a continuous function on R? and for any of our
measurement functionals we have

We claim that ©* is identically zero on . Indeed, we have
(515) (5 (@)] [0 (1) = By ()] + [, () = By (2)] + [5m, ()], 0,2 € 0

Given any z € 2 and € > 0, because of (5.11), we can make the first term in (5.15)
smaller than e/2 for any sufficiently large j. Then by again taking j sufficiently large,
there is a grid point z for this m; that is sufficiently close to x so that the second
term in (5.15) is also smaller than /2. Since ¥, (2) = 0 we see that [0*(x)| <e. This
proves that v* =0.

Now that we know that ©* is identically zero on (2, our final step is to show that
this implies that v* is identically zero on 2. Denoting by f the Fourier transform of
f, it follows that

0:/@*1;*:/ @*gu*:(%)*z/ Gr|Ev 2.
Q R2 R2

The positivity of g, implies that Ev* =0 and therefore v* =0 on ). This contradicts
(5.12) and is our desired contradiction.

Returning now to the general setting where X and the measurement sets A,, are
general, we will have that (5.7) holds only if the sets A, become sufficiently dense in
X* as m gets large. The precise rate of convergence of R(K™) towards 0 will depend
on the prior class H and on the choice of the A,,, m =1,2,.... In the next section
we discuss in more detail the choice of A,,,, m =1,2,..., in order to obtain the best
achievable rate.

6. Optimal data sites: Gelfand widths and sampling numbers. In this
section, we make some comments on the number of measurements m that are needed
to guarantee a prescribed error in the recovery of u. Bounds on m are known to
be governed by the Gelfand width for the case of general linear functionals and by
sampling numbers when the functionals are required to be point evaluations. We
explain what is known about these quantities for our specific model classes. As we
shall see, these issues are not completely settled for the model classes studied in
this paper. The problem of finding the best choice of functionals, respectively point
evaluations, is in need of further research.

We have seen that the accuracy of the optimal recovery of u € K, is given by the
Chebyshev radius R(K.,) := R(Ky) g1 (o) or, equivalently, R(KY) := R(K ) g1 (q) for
the harmonic component. The worst case recovery error R(K) over the class K is
defined by

(61) R(K)Hl(Q) = sup R(Kw)Hl(Q)~

weR™

Notice that this worst case error fixes the measurement functionals but allows the
measurements w to come from any function in K. Both the individual error R(K,,)
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and the worst case error R(K) are very dependent on the choice of the data functionals
Aj. For example, in the case that these functionals are point evaluations at points
2150y 2m €, then R(K,,) and R(K) will depend very much on the positioning of
these points in .

In the case of general linear functionals, one may fix m and then search for the
A1, ..., Ay that minimize the worst case recovery error over the class K. This minimal
worst case error is called the Gelfand width of K. If we restrict the linear functionals
to be given by point evaluation, we could correspondingly search for the sampling
points x1,...,Z,, minimizing the worst case recovery error. This minimal error is
called the deterministic sampling number of K.

The goal of this section is not to provide new results on Gelfand widths and
sampling numbers, since we regard this as a separate issue in need of a systematic
study, but to discuss what is known about them in our setting and refer the reader to
the relevant papers. Let us recall that R(K,,) is equivalent to R(K!)y1 and so we
restrict our discussion in what follows to sampling of harmonic functions.

6.1. Optimal choice of functionals. Suppose we fix the number m of obser-
vation to be allowed and ask what is the optimal choice for the A;, j =1,...,m,
and what is the optimal error of recovery for this choice. The answer to the second
question is given by the Gelfand width of K. Given a compact set K of a Banach
space X, we define the Gelfand width of K in X by

(62) dm(K>X Z:/\ inf)\ R(K)X,

1yeesAm
where the infimum is taken over the linear functionals defined on X. Let us mention
that this definition differs from that employed in the classical literature [23] where
d™(K)x is defined as the infimum over all spaces F' of codimension n of max{||v| x :
v € KN F}. The two definitions are equivalent in the case where K is a centrally
symmetric set such that K + K C CK for some constant C' > 1.

Any set of functionals which attains the infimum in (6.2) would be optimal. The
Gelfand width is often used as a benchmark for performance since it says that no
matter how the m functionals Aq1,...,\,, are chosen, the error of recovery of u € K
cannot be better than d™(K)x.

When X is a Hilbert space and K is the ball of a Hilbert space Y with compact
embedding in X, it is known that the Gelfand width coincides with the Kolmogorov
width, that is

d™"(K)x =dn(K)x = dim%rég:mdist(K, E)x = dim%%f)’:m max{||jv — Pgv||x : veE K},

where the infimum is taken over all linear spaces E of dimension m. This is precisely
our setting as discussed in section 3: taking X = H! := H'(Q) and K as in (1.4), we
have

(6.3)
d™(K) o) = d™(K™) o) = din(K™) 1) ~ don (KP) gz oy = ™ (K P) a2 ()

where the equivalence follows from (1.3). Upper and lower bounds for the Gelfand
width of KP in Ly(T") are explicitly given in [22].

We can estimate the rate of decay of the Kolmogorov and Gelfand width of K2
in H'/2(T") by the following general argument: as explained in section 2.1, for the ad-
missible range of smoothness, the Sobolev spaces H*(I") have an intrinsic description
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by locally mapping the boundary onto domains of RY~*. More precisely, in [19] and
[12], the H*(T") norm of g is defined as

1/2
J /

(6.4) g1l £rs(ry :== Z 1951177 (&,) ;

j=1

where the R; are open bounded rectangles of R that are mapped by transforms o7
into portions I'; that constitute a covering of I', and g; = go-y; are the local pullbacks.

From this it readily follows that the Gelfand and Kolmogorov m-width of the
unit ball of H*(I") in the norm H*(T'), with 0 <t < s behaves similar to that of the
unit ball of H*(R) in the norm H*(R) where R is a bounded rectangle of R, The
latter is known to behave like m ™ @7 Therefore, for K* = U(H*) with s > § in the
admissible range allowed by the boundary smoothness, one has

s—1/2 H s—1/2
(6.5) em” T <d™(K") gy <Cm™ &1, m>1,

where ¢ and C are positive constants depending only on €2 and s.

Remark 6.1. We have already observed in section 2 that the space H*(Q) is
continuously embedded in the Sobolev space H" () with r := max{s + 1,r*} and,
in particular, r = s+ % for smooth domains. However, the Gelfand and Kolmogorov
widths of the unit ball of H"(€) in H(Q) have the slower decay rate m~"= =
I compared to (6.5) for H*(2). This improvement reflects the fact that the
functions from H*(2) have d variables but are, in fact, determined by functions of
d — 1 variables. The reduction in dimension from d to d —1 is related to the fact that

in our formulation of our problem we have complete knowledge of f.

6.2. Optimal choice of sampling points. We turn to the particular setting
where the A; are point evaluations functionals,

Aj(v) = v(z;)

at m points x; € Q. Similar to the Gelfand width, the deterministic sampling numbers
are defined as

L1yeeyTm
A variant of this is to measure the worst case expected recovery error when the m
points are chosen at random according to a probability distribution and search for the

distribution that minimizes this error, leading to the randomized sampling number of
K. Obviously, one has

(6.7) P (K)x > d™(K) x.

In the majority of the literature, deterministic and randomized sampling numbers
are studied with error measured in the Lo(2) norm. In this setting, concrete strategies
for optimal deterministic and randomized point design have been given when K is the
unit ball of a reproducing kernel Hilbert space H defined on 2. In particular, the
recent results in [18, 14, 20, 7] show that under the assumption

Z |dm(K>L2(Q)|2 < 00,

m>0
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then, for all ¢ > %,

sup m'd™ (K ) 2() <00 == sup m'p™ (K)2(q) < oc.
m>1 m>1

In words, under the above assumptions, optimal recovery in Ly(£2) has the same
algebraic convergence rate when using optimally chosen point values compared to an
optimal choice of general linear functionals.

While similar general results have not been established for Gelfand width and
sampling numbers in the H' norm, we argue that they hold in our particular setting
where H = H*(2). For simplicity, as in section 4, we consider a domain that is
either a polygon when d =2 or polyhedron when d = 3, and thus consider the range
% < s < 3 where the restriction from below ensures that H*(€2) C C(€2). Recalling
the finite element spaces V;, and their traces Tj on the boundary, based on quasi-
uniform meshes {7;}r>0, we consider for a given h > 0 the measurement points
x1,...,T, that are the mesh vertices located on I'. By the quasi-uniformity property
the number m =m(h) of these points satisfies

ch' =4 <m<Cht—4

for some ¢,C > 0 independent of h. If v € H*(R), its trace vr belongs to H*(T).
Then, denoting by I, the piecewise linear interpolant on the boundary, standard
finite element approximation theory ensures the estimate

1 1
lor = Invrl gz ey < CR°72 ol g ) = CR°7 2 |[v]l= ()
for some C that only depends on s. Therefore, introducing v := EIv, one has
- 7571/2
v =8|z < Crllor — Invr| g1z S CDEm™ 71 ||v]l3:(q)-

Since v only depends on the value of v at the points z1,...,z,,, we have thus proved
an upper bound of order m =T for pm(KH)Hl(Q), and in turn for p™(K)g1(q). In
view of (6.7) and (6.5), a lower bound of the same order must hold. In summary,
similar to the Gelfand widths, the sampling numbers satisfy

s—1/2 s—1/2

(6.8) em” T < p"(K) iy <Cm™ a1, m>1,

where ¢ and C are positive constants depending only on Q and s.
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