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Abstract. We consider the problem of numerically approximating the solutions to a partial
differential equation (PDE) when there is insufficient information to determine a unique solution.
Our main example is the Poisson boundary value problem, when the boundary data is unknown and
instead one observes finitely many linear measurements of the solution. We view this setting as an
optimal recovery problem and develop theory and numerical algorithms for its solution. The main
vehicle employed is the derivation and approximation of the Riesz representers of these functionals
with respect to relevant Hilbert spaces of harmonic functions.
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1. Introduction. The questions we investigate sit in the broad research area of
using measurements to enhance the numerical recovery of the solution u to a PDE. The
particular setting addressed in this paper is to numerically approximate the solution
to an elliptic boundary value problem when there is insufficient information on the
boundary value to determine a unique solution to the PDE. In place of complete
boundary information, we have a finite number of data observations of the solution u.
This data serves to narrow the set of possible solutions. We ask what is the optimal
accuracy to which we can recover u and what is a near optimal numerical algorithm
to approximate u. Problems of this particular type arise in several fields of science
and engineering (see, e.g., [30, 4, 9] for examples in fluid dynamics), where a lack of
full information on boundary conditions arises for various reasons. For example, the
correct physics might not be fully understood [24, 26], or the boundary values are not
accessible [13], or they must be appropriately modified in numerical schemes [10, 25].
Other examples of application domains for the results of the present paper can be
found in the introduction of [11].

1.1. A model for PDEs with incomplete data. This paper is concerned
with recovering a function u that is known to solve a specific PDE while lacking some
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1279

of the data that would determine u uniquely. Specifically, we consider the model
elliptic problem

−∆u= f in Ω, u= g on Γ := ∂Ω,(1.1)

where Ω ⊂ R
d is a bounded Lipschitz domain with d = 2 or 3. The Lax–Milgram

theorem [31] implies the existence and uniqueness of a solution u from the Sobolev
space H1(Ω) to (1.1), once f and g are prescribed in H−1(Ω) (the dual of H1

0 (Ω))
and in H1/2(Γ) (the image of H1(Ω) by the trace operator), respectively.

Recall that the trace operator T is defined on a function w ∈C(Ω̄) as the restric-
tion of w to Γ and this definition is then generalized to functions in Sobolev spaces
by a denseness argument. In particular, the trace operator is well defined on H1(Ω).
For any function v in H1(Ω) we denote by vΓ its trace,

vΓ := T (v) = v|Γ, v ∈H1(Ω).(1.2)

The Lax–Milgram analysis also yields the inequalities

c0‖v‖H1(Ω) ≤ ‖∆v‖H−1(Ω) + ‖vΓ‖H1/2(Γ) ≤ c1‖v‖H1(Ω), v ∈H1(Ω).(1.3)

Here the constants c0, c1 depend on Ω and on the particular choice of norms employed
on H1(Ω) and H1/2(Γ).

Our interest centers on the question of how well we can numerically recover u in
the H1 norm when we do not have sufficient knowledge to guarantee a unique solution
to (1.1). There are many possible settings to which our techniques apply, but we shall
focus on the following scenario:

(i) We have a complete knowledge of f but we do not know g.
(ii) The function g belongs to a known compact subset KB of H

1
2 (Γ). Thus,

membership in KB describes our knowledge of the boundary data. The func-
tion u we wish to recover comes from the set

K := {u : u solves (1.1) for some g ∈KB},(1.4)

which is easily seen from (1.3) to be a compact subset of H1(Ω).
(iii) We have access to finitely many data observations of the unknown solution

u, in terms of a vector

λ(u) := (λ1(u), . . . , λm(u))∈R
m,(1.5)

where the λj are fixed and known linear functionals defined on the functions
from K.

Natural candidates for the compact set KB are balls of Sobolev spaces that are
compactly embedded in H

1
2 (Γ). We thus restrict our attention for the remainder of

this paper to the case

KB :=U(Hs(Γ)),(1.6)

for some s > 1
2 , where U(Hs(Γ)) denotes the unit ball of a Hs(Γ) with respect to the

norm ‖ · ‖Hs(Γ). The precise definition of Hs(Γ) and its norm ‖ · ‖Hs(Γ) is described
later. We have assumed that KB is the unit ball only for convenience. The arguments
given below hold in the case when KB is a ball of Hs(Γ) centered at 0 of any radius
R. The numerical algorithms proposed and analyzed do not require the knowledge of
the radius R of that ball.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1280 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

1.2. The optimal recovery benchmark. Let wj := λj(u), j = 1, . . . ,m, and
let

w := (w1, . . . ,wm) = λ(u)∈R
m,(1.7)

be the vector of data observations. Therefore, the totality of information we have
about u is that it lies in the compact set

Kw := {u∈K : λ(u) =w}.(1.8)

Our problem is to numerically find a function û ∈ H1(Ω) which approximates
simultaneously all the u ∈ Kw. This is a special case of the problem of optimal
recovery from data (see [17, 29, 21]). The optimal recovery, i.e., the best choice for
û, has the following well known theoretical description. Let B(Kw) be a smallest ball
in H1(Ω) which contains Kw, let R(Kw) := R(Kw)H1(Ω) be its radius, and let û(w)
be its center. These are called the Chebychev ball, radius, and center, respectively.
Note that the Chebyshev ball B(Kw) is unique in H1(Ω); see [6]. Then R(Kw) is the
optimal recovery error, that is, the smallest error we can have for recovering u in the
norm of H1(Ω), and û(w) is an optimal recovery of u.

We are interested in understanding how small R(Kw) is and what are the numer-
ical algorithms which are near optimal in recovering u from the given data w. We say
that an algorithm w 7→ û= û(w) delivers near optimal recovery with constant C if

‖u− û(w)‖H1(Ω) ≤CR(Kw), w ∈R
m.(1.9)

Of course, we want C to be a reasonable constant independent of m. Our results
actually deliver a recovery estimate of the form

‖u− û(w)‖H1(Ω) ≤R(Kw) + ε, w ∈R
m,(1.10)

where ε > 0 can made arbitrarily small at the price of higher computational cost. In
this sense, the recovery is near optimal with constant C > 1 in (1.9) that can be made
arbitrarily close to 1.

1.3. A connection with the recovery of harmonic functions. There is a
natural restatement of our recovery problem in terms of harmonic functions. Let f
be the right side of (1.1), where f is a known fixed element of H−1(Ω). Let u0 be the
function in H1(Ω) which is the solution to (1.1) with g = 0. Then, we can write any
function u∈K as

u= u0 + uH,(1.11)

where uH is a harmonic function in H1(Ω) which has boundary value g= T (uH) with
g ∈KB . Recall our assumption that KB is the unit ball of Hs(Γ) with s > 1

2 .
Let Hs(Ω) denote the set of harmonic functions v defined on Ω for which vΓ ∈

Hs(Γ). We refer the reader to [3], where a detailed study of spaces like Hs(Ω) is
presented. We define the norm on Hs(Ω) to be the one induced by the norm on
Hs(Γ), namely,

‖v‖Hs(Ω) := ‖vΓ‖Hs(Γ), v ∈Hs(Ω).(1.12)

There exist several equivalent definitions of norms on Hs(Γ), as discussed later. For
the moment, observe that from (1.3) it follows the existence of a constant Cs such
that

‖v‖H1(Ω) ≤Cs‖v‖Hs(Ω), v ∈Hs(Ω).(1.13)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1281

Indeed, the space Hs(Ω) is a Hilbert space that is compactly embedded in H1(Ω), as
a consequence of the compact embedding of Hs(Γ) in H1/2(Γ). We denote by KH

the unit ball of Hs(Ω),

KH :=U(Hs(Ω)).(1.14)

Since the function u0 in (1.11) is fixed, it follows from (1.6) that

R(Kw) =R(KH
w′)H1(Ω), w′ := λ(uH) =w− λ(u0).(1.15)

There are two conclusions that can be garnered from this reformulation. The first
is that the optimal error in recovering u ∈ Kw is the same as that in recovering the
harmonic function uH ∈ KH

w′ in the H1(Ω) norm. The harmonic recovery problem
does not involve f except in determining w′. The second point is that one possible nu-
merical algorithm for our original problem is to first construct a sufficiently accurate
approximation û0 to u0 and then to numerically implement an optimal recovery of a
harmonic function in KH from data observations. This numerical approach requires
the computation of w′. In theory, u0 is known to us since we have a complete knowl-
edge of f . However, u0 must be computed and any approximation û0 will induce an
error. Although this error can be made arbitrarily small, it means that we only know
w′ up to a certain numerical accuracy. One can thus view the harmonic reformulation
as an optimal recovery problem with perturbed observations of w′. The numerical
algorithm presented here follows this approach. Its central constituent, namely the
recovery of harmonic functions from a finite number of noisy observations, can be
readily employed as well in a number of different application scenarios described, e.g.,
in [11].

1.4. Optimal recovery from centrally symmetric sets in a Hilbert space.
As noted above, the problem of recovering u ∈Kw is directly related to the problem
of recovering the harmonic component uH ∈ KH from the given data observations
w′. Note that KH is the unit ball of the Hilbert space Hs(Ω). There is a general
approach for optimal recovery from data observations in this Hilbert space setting, as
discussed, e.g., in [17, 16]. We first recollect the general principles of this technique
which will be applied in section 3.1 to our specific setting.

Let H be any Hilbert space and suppose that λ1, . . . , λm ∈ H∗ are linearly inde-
pendent functionals from H∗. Let X be a Banach space such that H is continuously
embedded in X. We are interested in optimal recovery of a function v in the norm
‖ · ‖X , knowing that v ∈ K := U(H), the unit ball of H. If w ∈ R

m is the vector of
observations, we define the minimal norm interpolant as

v∗(w) = argmin{‖v‖H : v ∈H and λ(v) =w}.(1.16)

Remark 1.1. If Kw := {u ∈ K : λ(u) = w} is nonempty, the minimum norm
interpolant v∗(w) is a Chebyshev center of Kw in X. That is, the minimal norm in-
terpolant gives optimal recovery with constant C = 1. In other words, this Chebyshev
center does not depend on X. The radius R(Kw)X will, however, generally depend
on X.

To prove this remark, first note that any v ∈Kw may be written as v= v∗(w)+ η
where η belongs to the null space N of λ. Because v∗(w) has minimal norm, η is
orthogonal to v∗(w) and hence from the Pythagorean theorem

‖v− v∗(w)‖2H = ‖v‖2H − ‖v∗(w)‖2H ≤ 1− ‖v∗(w)‖2H =: r2,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1282 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

because ‖v‖H ≤ 1. Notice that v∗(w)−η is also in Kw. It follows that Kw is precisely
the ball in the affine space v∗(w)+N centered at v∗(w) and of radius r. In particular,
Kw is centrally symmetric around v∗(w) and we now show that v∗(w) is a Chebyshev
center of a Chebyshev ball in X. Recall that unless X is uniformly convex, these
quantities might not be uniquely defined [6]. Let u ∈ Kw be the furthest away from
v∗(w), i.e.,

u∈ arg max
v∈Kw

‖v∗(w)− v‖X ,

and set δ := ‖v∗(w) − u‖X . Since Kw is centrally symmetric around v∗(w), u′ :=
2v∗(w) − u ∈ Kw and ‖u − u′‖X = 2δ. For any v̄ ∈ X with v̄ 6= v∗(w), the triangle
inequality yields

2δ= ‖u− u′‖X ≤ ‖u− v̄‖X + ‖u′ − v̄‖X ≤ 2 max
v∈Kw

‖v̄− v‖X ,

and so

max
v∈Kw

‖v∗(w)− v‖X ≤ max
v∈Kw

‖v̄− v‖X ,

which shows that v∗(w) is indeed a Chebyshev center in X. In particular,

‖v− v∗(w)‖X ≤R(Kw)X , v ∈Kw.

Standard Hilbert space analysis shows that the mapping w 7→ v∗(w) is a linear
operator. More importantly, it has a natural expression that is useful for numerical
computation. Namely, from the Riesz representation theorem each λj can be described
as

λj(v) = 〈v,φj〉H, v ∈H,

where φj ∈H is called the Riesz representer of λj . The minimal norm interpolant has
the representation

v∗ =

m∑

j=1

a∗jφj ,(1.17)

where a∗ = (a∗1, . . . , a
∗
m) solves the system of equations

Ga∗ =w, G := (〈φi, φj〉H)i,j=1,...,m,

with G being the Gramian matrix associated to φ1, . . . , φm.

Remark 1.2. Note that v∗(w) is exactly the H-orthogonal projection of u onto
the space spanned by the m Riesz representers.

Remark 1.3. In the case where H is a more general Banach space, we are still
ensured that the minimal norm interpolation is a near-optimal recovery with constant
C = 2. However, its dependence on the data w is no longer linear and the above
observation regarding its computation does not apply.

Our proposed numerical recovery scheme is based on approximately realizing
(1.17).
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1283

1.5. Objectives and outline. The main goal of this paper is to create numer-
ical algorithms which are guaranteed to produce a near optimal recovery û from the
given data w and to analyze their practical implementation. We begin in section 2
with some remarks on the definition of the space Hs(Γ) and its norm, which are of im-
portance both in the accuracy analysis and the practical implementation of recovery
algorithms.

Next, we turn to the description of our numerical algorithms. The algorithms we
propose and analyze are based on the general approach for optimal recovery described
in section 1.4 when this approach is applied to our particular PDE setting. We
describe a solution algorithm which takes into consideration the effect of numerical
perturbations. We first consider the case when the linear functionals λj are defined
on all of H1(Ω) and then adapt this algorithm to the case when the linear functionals
are point evaluations

λj(u) := u(xj), xj ∈Ω, j = 1, . . . ,m.(1.18)

Point evaluations are not defined on all of H1(Ω) when d > 1; however, they are
defined on K when the smoothness order s is large enough.

The critical ingredient in our proposed algorithm is the numerical computation
of the Riesz representers φj of the restrictions of λj to the Hilbert space Hs(Ω).
Each of these Riesz representers is characterized as a solution to an elliptic problem
and can be computed offline since it does not involve the measurement vector w.
Our suggested numerical method for approximating φj is based on finite element
discretizations and is discussed in section 4. We establish quantitative error bounds
for the numerical approximation in terms of the mesh size. Numerical illustrations of
the optimal recovery algorithm are given in section 5.

Note that the optimal recovery error over the class K strongly depends on the
choice of the linear functionals λj . For example, in the case of point evaluation, this
error can be very large if the data sites {xj}mj=1 are poorly positioned, or small if they
are optimally positioned. This points to the importance of the Gelfand widths and
sampling numbers. They describe the optimal recovery error over K with optimal
choice of functionals in the general case and the point evaluation case, respectively.
The numerical behavior of these quantities in our specific setting is discussed in sec-
tion 6.

2. The spaces Hs(Γ) and Hs(Ω). In this section, we discuss the definition
and basic properties of the spaces Hs(Γ) and Hs(Ω). We refer to [1] for a general
treatment of Sobolev spaces on domains D ⊂ R

d. Recall that for fractional orders
r > 0, the norm of Hr(D) is defined as

‖v‖2Hr(D) := ‖v‖2Hk(D) +
∑

|α|=k

∫

D×D

|∂αv(x)− ∂αv(y)|2
|x− y|d+2(r−k)

dxdy,

where k is the integer such that k < r < k+1, and ‖v‖2Hk(D) :=
∑

|α|≤k ‖∂αv‖2L2(D) is

the standard Hk-norm.

2.1. Equivalent definitions of Hs(Γ). Let Ω be any bounded Lipschitz do-
main in R

d. We recall the trace operator T introduced in section 1.1. One first
possible definition of the space Hs(Γ), for any s≥ 1

2 , is as the restriction of Hs+ 1
2 (Ω)

to Γ, that is,

Hs(Γ) = T (Hs+ 1
2 (Ω)),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1284 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

with norm

‖g‖Hs(Γ) :=min
{
‖v‖

Hs+1
2 (Ω)

: vΓ = g
}
.(2.1)

The resulting norm is referred to as the trace norm definition for Hs(Γ).
There is a second, more intrinsic way to define Hs(Γ), by properly adapting the

notion of Sobolev smoothness to the boundary. This can be done by locally mapping
the boundary onto domains of Rd−1 and requiring that the pullback of g by such
transformation have Hs smoothness on such domains. We refer the reader to [12] and
[19] for the complete intrinsic definition, where it is proved to be equivalent to the
trace definition for a range of s that depends on the smoothness of the boundary Γ.

For small values of s, Sobolev norms for Hs(Γ) may also be equivalently defined
without the help of local parameterizations, as contour integrals. For example, if
0< s< 1 and Ω is a Lipschitz domain, we define

‖g‖2Hs(Γ) := ‖g‖2L2(Γ) +

∫

Γ×Γ

|g(x)− g(y)|2
|x− y|d−1+2s

dxdy,

and if s= 1 and Ω is a polygonal domain, we define

‖g‖2H1(Γ) := ‖g‖2L2(Γ) + ‖∇Γg‖2L2(Γ),(2.2)

where ∇Γ is the tangential gradient, and likewise

‖g‖2Hs(Γ) := ‖g‖2H1(Γ) +

∫

Γ×Γ

|∇Γg(x)−∇Γg(y)|2
|x− y|d−1+2(s−1)

dxdy

for 1< s< 2. In the numerical illustration given in section 5, we will specifically take
the value s= 1 and a square domain using the definition (2.2).

When Ω has smooth boundary, it is known that the trace definition and intrinsic
definition of the Hs(Γ) norms are equivalent for all s ≥ 1/2. On the other hand,
when Ω does not have a smooth boundary, it is easily seen that the two definitions
are not equivalent unless restrictions are made on s. Consider, for example, the case
of polygonal domains of R2: it is easily seen that the trace vΓ of a smooth function
v ∈ C∞(Ω) has a tangential gradient ∇ΓvΓ that generally has jump discontinuities
at the corner points and thus does not belong to H1/2(Γ). In turn, the equivalence
between the trace and intrinsic norms only holds for s < 3

2 and in such case we limit
the value of s to this range. The same restriction s < 3/2 applies to a polyhedral
domain in the case d= 3.

2.2. The regularity of functions in Hs(Ω). We next give some remarks on
the Sobolev smoothness of functions from the space Hs(Ω) when s > 1/2. Clearly,
such harmonic functions are infinitely smooth inside Ω and also belong to H1(Ω),
but one would like to know for which value of r they belong to Hr(Ω). To answer
this question, we consider v ∈ Hs(Ω). By the definition of Hs(Ω), v is harmonic in
Ω and vΓ ∈ Hs(Γ). Having assumed that s in the admissible range where all above
definitions of the Hs(Γ) norms are equivalent, and using the first one, we know that
there exists a function ṽ ∈Hs+ 1

2 (Ω) such that ṽΓ = vΓ

‖ṽ‖
Hs+1

2 (Ω)
= ‖vΓ‖Hs(Γ) = ‖v‖Hs(Ω).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1285

We define v := v − ṽ so that v = ṽ + v. We are interested in the regularity of v since
it will give the regularity of v. Notice that vΓ = 0 and

−∆v= f :=∆ṽ.

The function f belongs to the Sobolev space Hs− 3
2 (Ω) and we are left with the

classical question of the regularizing effect in Sobolev scales when solving the Laplace
equation with Dirichlet boundary conditions. Obviously, when Ω is smooth, we find
that v ∈Hs+ 1

2 (Ω) and so we have obtained the continuous embedding

Hs(Ω)⊂Hr(Ω), r= s+
1

2
.

For less smooth domains, the smoothing effect is limited (in particular, by the presence
of singularities on the boundary of Ω), i.e., v is only guaranteed to be in Hr(Ω) where
r may be less than s+ 1/2; see [12]. More precisely

Hs(Ω)⊂Hr(Ω),

where

r :=min
{
s+

1

2
, r∗

}
.(2.3)

Here, r∗ = r∗(Ω) is the limiting bound for the smoothing effect:
(i) For smooth domains r∗ =∞.
(ii) For convex domains r∗ = 2.
(iii) For nonconvex polygonal domains in R

2, or a polyhedron in R
3, one has

3/2< r∗ < 2 where the value of r∗ depends on the re-entrant angles.
(iv) In particular for polygons, we can take r∗ = 1+ π

ω − ε for any ε > 0 where ω
is the largest inner angle.

Note that r∗ could be strictly smaller than s+ 1
2 .

In summary, for an admissible range of r > 1 that depends on s and Ω one has
the continuous embedding Hs(Ω) ⊂ Hr(Ω), and so there exists a constant C1 that
depends on (r, s) and Ω, such that

‖v‖Hr(Ω) ≤C1‖v‖Hs(Ω) =C1‖vΓ‖Hs(Γ), v ∈Hs(Ω).(2.4)

3. A near optimal recovery algorithm. In this section, we present a nu-
merical algorithm for solving (1.1) when the information about the boundary value
g is incomplete. We first work under the assumption that the λj ’s are continuous
over H1(Ω), and assumed to be linearly independent (linear independence can be
guaranteed by throwing away dependent functionals when necessary). We prove that
the proposed numerical recovery algorithm is near optimal. We then adapt our ap-
proach to the case where the λj ’s are point evaluations (see (1.18)), and therefore not
continuous over H1(Ω) when d≥ 2.

3.1. Minimum norm data fitting. We now apply the general optimal recovery
principles discussed in section 1.4 to our specific setting in which

H=Hs(Ω) and X =H1(Ω).

Let φj ∈ Hs(Ω) be the Riesz representer of the functional λj when viewed as a
functional on Hs(Ω). In other words

λj(v) = 〈v,φj〉Hs(Ω), v ∈Hs(Ω).
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We assume that the λj are linearly independent on Hs(Ω) and thus the Gramian
matrix

G=
(
gi,j

)
i,j=1,...,m

, gi,j := 〈φj , φi〉Hs(Ω) = λi(φj),

is invertible.
Now, let u= u0+uH, with uH ∈KH =U(Hs(Ω)) be the function in K that gave

rise to our data observation w. So, we have

w′ =w− λ(u0) = λ(uH).

If a∗ is the vector in R
m which satisfies Ga∗ = w′, then u∗H :=

∑m
j=1 a

∗
jφj is the

function of minimum Hs(Ω) norm which satisfies the data w′, i.e., λ(u∗H) = w′. We
have seen that

‖uH − u∗H‖H1(Ω) ≤R(KH
w′)H1(Ω),

namely, u∗H is the optimal recovery of the functions in KH
w′ . Note that the recovery

error is measured in H1 not in Hs(Ω). In turn (see (1.15)), the function u∗ := u∗H+u0
is the optimal recovery for functions in Kw:

‖u− u∗‖H1(Ω) ≤R(Kw)H1(Ω).

The idea behind our proposed numerical method is to numerically construct a
function û∈H1(Ω) that approximates u∗ well. If, for example, we have for ε > 0 the
bound

‖u∗ − û‖H1(Ω) ≤ ε,

then for any u∈K, we have by the triangle inequality

‖u− û‖H1(Ω) ≤R(Kw)H1(Ω) + ε.

Given any C > 1, by taking ε small enough, we have that û is a near best recovery of
the functions in Kw with constant C.

3.2. The numerical recovery algorithm for H1-continuous functionals.
Motivated by the above analysis, we propose the following numerical algorithm for
solving our recovery problem. The algorithm involves approximations of the function
u0 and the Riesz representers φj , typically computed by finite element discretizations,
and the application of the linear functionals λj to these approximations. In order to
avoid extra technicalities, here we make the assumption that the applications of the
functionals to a known finite element function can be exactly computed.

We first work under the additional assumption that the linear functionals λj are
not only defined on K but that they are continuous over H1(Ω). We define Λ as the
maximum of the norms of the λj on H1(Ω). In this case

|λj(v)| ≤Λ‖v‖H1(Ω), v ∈H1(Ω).(3.1)

In what follows, throughout this paper, we use the following weighted `2 norm on R
m:

‖z‖ :=


 1

m

m∑

j=1

|zj |2



1/2

=m−1/2‖z‖`2 , z = (z1, . . . , zm)∈R
m.
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1287

In particular, we have

‖λ(v)‖ ≤Λ‖v‖H1(Ω), v ∈H1(Ω).

Given a user prescribed accuracy ε > 0, our algorithm does the following four
steps involving intermediate tolerances (ε1, ε2).

Step 1. We numerically find an approximation û0 to u0 which satisfies

‖u0 − û0‖H1(Ω) ≤ ε1.(3.2)

To find such a û0, we use standard or adaptive FEM methods. Given that û0 has
been constructed, we define ŵ := w − λ(û0). Then, for w′ := w − λ(u0) we have (see
(3.2))

‖w′ − ŵ‖ ≤Λε1.(3.3)

On the other hand, since |λj(v)| ≤Λ‖v‖H1(Ω) ≤Λs‖v‖Hs(Ω) ≤Λs, where

Λs :=CsΛ

(see (3.1), (1.13), and (1.14)), we derive that

‖w′‖ ≤Λs.(3.4)

Thus by triangle inequality, we also find that

‖ŵ‖ ≤Λs +Λε1.(3.5)

Step 2. For each j = 1, . . . ,m, we numerically compute an approximation φ̂j ∈
H1(Ω) to φj which satisfies

‖φj − φ̂j‖H1(Ω) ≤ ε2, j = 1, . . . ,m.(3.6)

This numerical computation is crucial and is performed during the offline phase of
the algorithm. We detail it in section 4. Note that the φ̂j ’s are not assumed to be in
Hs(Ω), and, in particular, not assumed to be harmonic functions.

Step 3. We define and compute the matrix

Ĝ= (ĝi,j)i,j=1,...,m, ĝi,j := λi(φ̂j),

and thus |ĝi,j − gi,j | ≤Λε2 for all i, j.
It follows that for the matrix R :=G− Ĝ we have

‖R‖1 ≤mΛε2,

where we use the shorthand notation ‖ · ‖1 := ‖ · ‖`1→`1 for matrices. Since G is
invertible, we are ensured that Ĝ is also invertible for ε2 small enough. We define

M := ‖G−1‖1, M̂ := ‖Ĝ−1‖1.

While these two norms are finite, their size will depend on the nature and the posi-
tioning of the linear functionals λj , j = 1, . . . ,m, as it will be seen in the section on
numerical experiments. These two numbers are close to one another when ε2 is small
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since M̂ converges towards the unknown quantity M as ε2 → 0. In particular, we
have

|M − M̂ |= |‖G−1‖1 − ‖Ĝ−1‖1| ≤ ‖G−1 − Ĝ−1‖1 = ‖Ĝ−1RG−1‖1 ≤MM̂mΛε2,

from which we obtain that

M ≤ M̂

1−mM̂Λε2
and M̂ ≤ M

1−mMΛε2
,(3.7)

provided that mMΛε2 < 1 and mM̂Λε2 < 1. We also have the bound

‖Ĝ−1 −G−1‖1 ≤
M2

1−mMΛε2
mΛε2 =: δ.(3.8)

It is important to observe that δ can be made arbitrarily small by diminishing ε2.
Step 4. We numerically solve the m×m algebraic system Ĝâ= ŵ, thereby finding

a vector â = (â1, . . . , âm). We then define ûH :=
∑m

j=1 âj φ̂j and our recovery of u is
û := û0 + ûH. This step can be implemented by standard linear algebra solvers.

One major advantage of the above algorithm is that Steps 1–3 can be performed
offline since they do not involve the data w. That is, we can compute û0, the approx-
imate Riesz representers φ̂j and the approximate Gramian Ĝ and its inverse without
knowing w. In this way, the computation of û from given data w can be done fast
online by Step 4 which only involves solving an m × m linear system. This may
be a significant advantage, for example, when having to process a large number of
measurements for the same set of sensors.

3.3. A near optimal recovery bound. The following theorem shows that a
near optimal recovery of u can be reached provided that the tolerances in the above
described algorithm are chosen small enough.

Theorem 3.1. For any prescribed ε > 0, if the tolerances (ε1, ε2) are small enough

such that mMΛε2 < 1 and

ε1 +mMΛsε2 + (C0 + ε2)(mMΛε1 +m(Λs +Λε1)δ)≤ ε,(3.9)

where C0 := maxj=1,...,m ‖φj‖H1(Ω) and δ = M2

1−mMΛε2
mΛε2, then the function û gen-

erated by the above algorithm satisfies

‖u− û‖H1(Ω) ≤R(Kw)H1(Ω) + ε for every u∈Kw.

Thus, for any C > 1 it is a near optimal recovery of u with constant C provided ε is

taken sufficiently small.

Proof. Let u= u0+v be our target function in Kw. We define w′ =w−λ(u0) and
v∗ := v∗(w′) which is the Chebyshev center of KH

w′ . We recall the algebraic system
Ga∗ =w′ associated to the characterization of v∗ (see (1.17)). We write

‖u∗H − ûH‖H1(Ω) ≤

∥∥∥∥∥∥

m∑

j=1

a∗j (φj − φ̂j)

∥∥∥∥∥∥
H1(Ω)

+

∥∥∥∥∥∥

m∑

j=1

(a∗j − âj)φ̂j

∥∥∥∥∥∥
H1(Ω)

(3.10)

≤ ‖a∗‖`1ε2 + ‖a∗ − â‖`1(C0 + ε2),
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1289

where we have used (3.6) and the fact that

‖φ̂j‖H1(Ω) ≤ ‖φj‖H1(Ω) + ‖φj − φ̂j‖H1(Ω) ≤C0 + ε2.

Note that

‖a∗‖`1 = ‖G−1w′‖`1 ≤M‖w′‖`1 ≤Mm‖w′‖ ≤mMΛs,(3.11)

where we have used that ‖w′‖`1 ≤m‖w′‖ and inequality (3.4). Therefore, it follows
from (3.10) and (3.11) that

‖u∗H − ûH‖H1(Ω) ≤mMΛsε2 + ‖a∗ − â‖`1(C0 + ε2).(3.12)

For the estimation of ‖a∗ − â‖`1 , we introduce the intermediate vector ã∈R
m, which

is the solution to the system Gã= ŵ. Clearly,

‖ã− a∗‖`1 = ‖G−1(ŵ−w′)‖`1 ≤M‖ŵ−w′‖`1 ≤Mm‖ŵ−w′‖ ≤mMΛε1,

where we invoked (3.3). On the other hand, in view of (3.8) and (3.5), we have

‖ã− â‖`1 = ‖(G−1 − Ĝ−1)ŵ‖`1 ≤ δ‖ŵ‖`1 ≤mδ‖ŵ‖ ≤m(Λs +Λε1)δ.

Combining these two estimates, we find that

‖a∗ − â‖`1 ≤mMΛε1 +m(Λs +Λε1)δ.

We now insert this bound into (3.12) to obtain

‖u∗H − ûH‖H1(Ω) ≤mMΛsε2 + (C0 + ε2)(mMΛε1 +m(Λs +Λε1)δ).

Thus, for u∗ := u0 + u∗H and using (3.2), we have

‖u∗ − û‖H1(Ω) ≤ ‖u0 − û0‖H1(Ω) + ‖u∗H − ûH‖H1(Ω)

≤ ε1 +mMΛsε2 + (C0 + ε2)(mMΛε1 +m(Λs +Λε1)δ)≤ ε.(3.13)

Since u= u0 + uH, we have

‖u− u∗‖H1(Ω) = ‖uH − u∗H‖H1(Ω) ≤R(KH
w′)H1(Ω) =R(Kw)H1(Ω),

and the statement of the theorem follows from this inequality and (3.13).

Remark 3.2. We point out thatM , the norm of the matrix G−1, grows potentially
fast asm gets larger indicating that the Riesz representers become closer to be linearly
dependent. This leads to numerical difficulties when computing the estimator which,
as noted in Remark 1.2, amounts to the H-orthogonal projection onto the space
spanned by the representers. Therefore, regularization strategies might also be needed
to compete with the ill-conditioning of G in the asymptotic regime. One typical
strategy is to set to 0 the smallest eigenvalues of G according to a given threshold
and apply the pseudo-inverse. We refer, for example, to [2] where this regularized
projection strategy is reviewed and analyzed in detail.

Remark 3.3. Note that in numerical computations the quantity M̂ is available
while M is unknown. Thus, in practice, in order to achieve the prescribed accuracy
ε, we can first impose that ε2 < (2mM̂Λ)−1 and derive the inequalities (see (3.7))

M ≤ M̂

1−mM̂Λε2
≤ 2M̂, ‖G−1 − Ĝ−1‖1 ≤

M̂2

1−mM̂Λε2
mΛε2 ≤ 2M̂2mΛε2 =: δ̂,
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1290 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

where the last inequality is proven in a similar fashion to (3.8). If we then follow the
proof of Theorem 3.1, the requirement in (3.13) can be substituted by

ε1 + 2mM̂Λsε2 + (C0 + ε2)(2mM̂Λε1 +m(Λs +Λε1)δ̂)≤ ε,

and thus all participating quantities are computable.

Remark 3.4. The result in Theorem 3.1 can easily be extended to the case of noisy
data, that is, to the case when the observations

w̃=w+ η,

where η is a noise vector of norm ‖η‖ ≤ κ. Indeed, the application of the algorithm to
this noisy data leads to finding in Step 1 the vector ŵ :=w+ η− λ(û0) that satisfies

‖w′ − ŵ‖ ≤Λε1 + κ and ‖ŵ‖ ≤Λs + ε1Λ+ κ,

where w′ = w − λ(u0). Inspection of the above proof shows that under the same
assumption as in Theorem 3.1, one has the recovery bound

‖u− û‖H1(Ω) ≤R(Kw)H1(Ω) + ε+Cκ for every u∈Kw,

where C := (M + δ)m(C0 + ε2).

Remark 3.5. For simplicity, we did not introduce in the above analysis the possible
errors in the application of the λi to the approximations û0 and φ̂j , and in the numer-
ical solution to the system Ĝâ = ŵ, which would simply result in similar conditions
involving the extra tolerance parameters.

3.4. Point evaluation data. We now want to extend the numerical algorithm
and its analysis to the case when the data functionals λj , j = 1, . . . ,m, are point
evaluations

λj(h) := h(xj), xj ∈Ω, j = 1, . . . ,m.

Of course these functionals are not defined for general functions h from H1(Ω). How-
ever, we can formulate the recovery problem whenever the functionals λj are well
defined on K. We now discuss settings when this is possible.

Recall that any u∈K can be written as u= u0 + uH, where u0 is the solution to
(1.1) with right side f and g = 0 and uH ∈ Hs(Ω). Point evaluation is well defined
for the harmonic functions uH ∈ Hs(Ω), provided the points are in Ω. In addition,
they are well defined for points on the boundary Γ if the space Hs(Ω) continuously
embeds into C(Ω). For d = 2, this is the case when s > 1/2 and when d = 3, this is
the case when s > 1.

Concerning u0, we will need some additional assumption to guarantee that point
evaluation of u0 makes sense at the data sites xj , j = 1, . . . ,m. For example, it is
enough to assume that u0 is globally continuous or at least in a neighborhood of each
of these points. This can be guaranteed by assuming an appropriate regularity of f .
In this section, we assume that one of these settings holds. We then write

w′
j := uH(xj) =wj − u0(xj), j = 1, . . . ,m,

and follow the algorithm of the previous section with the following simple modifica-
tions:
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Modified Step 1. We numerically find an approximation û0 to u0, which, in
addition to

‖u0 − û0‖H1(Ω) ≤ ε1,

satisfies the requirement

max
i=1,...,m

|u0(xi)− û0(xi)| ≤ ε1.(3.14)

To find such a û0 we use standard or adaptive FEM methods. Given that û0 has been
constructed, we define ŵj :=wj− û0(xj), j = 1, . . . ,m, and thus, using (3.14), we have
‖w′ − ŵ‖ ≤ ε1.

Modified Step 2. For each j = 1, . . . ,m, we numerically compute an approximation
φ̂j to φj , which, in addition to

‖φj − φ̂j‖H1(Ω) ≤ ε2, j = 1, . . . ,m,

satisfies the condition

max
i=1,...,m

|φj(xi)− φ̂j(xi)| ≤ ε2, i, j = 1, . . . ,m.(3.15)

Condition (3.15) ensures that in Step 3 we can choose the entries ĝi,j of the matrix
Ĝ as

ĝi,j = φ̂j(xi), i, j = 1, . . . ,m.

Steps 3 and 4 of our algorithm remain the same as in the previous section.

Theorem 3.6. With the above modifications, Theorem 3.1 holds with the exact

same statement in this point evaluation setting.

Proof. The proof is the same as that of Theorem 3.1.

4. Finite element approximations of the Riesz representers. The com-
putation of an approximation û0 to u0, required in Step 1 of the algorithm, can be
carried out by standard finite element Galerkin schemes. Depending on our knowl-
edge on f one can resort to known a priori estimates for ε1, or may employ standard
a posteriori estimates to ensure that the underlying discretization provides a desired
target accuracy. Therefore, in the remainder of this section, we focus on a numerical
implementation of Step 2 of the proposed algorithm.

Our proposed numerical algorithm for Step 2 is to use finite element methods to
generate the approximations φ̂j of the Riesz representers φj . Note that each of the
functions φj is harmonic on Ω but we do not require that the sought after numerical
approximation φ̂j is itself harmonic but only that it provides an accurate H1(Ω)
approximation to φj . This allows us to use finite element approximations which are
themselves not harmonic. However, the φ̂j will necessarily have to be close to being
harmonic since they approximate a harmonic function in the H1(Ω) norm.

Our numerical approach to constructing a φ̂j , discussed in section 4.1, is to use
discretely harmonic finite elements. Here, φ̂j is a discrete harmonic extension of a
finite element approximation to the trace ψj = T (φj) computed by solving a Galerkin
problem. In order to reduce computational cost (see Remark 4.2), we incorporate
discrete harmonicity as constraints and introduce in section 4.2 an equivalent saddle
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point formulation that has the same solution φ̂j , and which is the one that we practi-
cally employ in the numerical experiments given in section 5. We give in section 4.4
an a priori analysis with error bounds for ‖φj− φ̂j‖H1(Ω) in terms of the finite element
mesh size, in the case where the measurement functionals are continuous on H1(Ω).
These error bounds can in turn be used to ensure the prescribed accuracy ε2 in Step 2.
We finally discuss in section 4.5 the extensions to the point value case where pointwise
error bounds on |φ̂j(xi)− φ̂j(xi)| are also needed.

In order to simplify notation, we describe these procedures for finding an approx-
imation φ̂ to the Riesz representer φ ∈ Hs = Hs(Ω) of a given linear functional ν
on Hs. This numerical procedure is then applied with ν = λj to find the numerical
approximations φ̂j to the Riesz representer φj .

For simplicity, throughout this section, we work under the assumption that Ω is
a polygonal domain of R2 or polyhedral domain of R3. This allows us to define finite
element spaces based on triangular or simplicial partitions of Ω that in turn induce
similar partitions on the boundary. We assume that 1

2 < s < 3
2 , which is the relevant

range for such domains, as explained in section 2. Our analysis can be extended to
more general domains with smooth or piecewise smooth boundaries, for example by
using isoparametric elements near the boundary, however at the price of considerably
higher technicalities.

4.1. A Galerkin formulation. Let s > 1/2 be fixed and assume that ν is any
linear form continuous on Hs(Ω) with norm

Cs :=max{ν(v) : ‖v‖Hs(Ω) = 1}.(4.1)

In view of the definition of the Hs norm, the representer φ ∈ Hs(Ω) of ν for the
corresponding inner product can be defined as

φ=Eψ,

where E is the harmonic extension operator of (4.3) below and where ψ ∈ Hs(Γ) is
the solution to the following variational problem:

〈ψ,η〉Hs(Γ) = µ(η) := ν(Eη), η ∈Hs(Γ).(4.2)

Note that this problem admits a unique solution and we have

‖ψ‖Hs(Γ) = ‖φ‖Hs(Ω) =Cs.

Recall that

Eg := argmin{‖∇v‖L2(Ω) : vΓ = g}.(4.3)

The function Eg is characterized by T (Eg) = g and

∫

Ω

∇Eg · ∇v= 0, v ∈H1
0 (Ω).

From the left inequality in (1.3), one has

‖Eg‖H1(Ω) ≤CE‖g‖H1/2(Γ), g ∈H1/2(Γ),(4.4)

where CE can be taken to be the inverse of the constant c0 in (1.3).
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1293

Therefore, one approach to discretizing this problem is the following: consider
finite element spaces Vh associated to a family of meshes {Th}h>0 of Ω, where as
usual h denotes the maximum meshsize. We define Th to be the space obtained by
restriction of Vh on the boundary Γ, that is,

Th = T (Vh).

Since we have assumed that Ω is a polygonal or polyhedral domain, the space Th is
a standard finite element space for the boundary mesh. Having also assumed that
s < 3/2, when using standard H1 conforming finite elements such as Pk-Lagrange
finite elements, we are ensured that Th ⊂Hs(Γ). We denote by

Wh := {vh ∈Vh : T (vh) = 0},

the finite element space with homogeneous boundary conditions.
We define the discrete harmonic extension operator Eh associated to Vh as follows:

for gh ∈Th,

Ehgh := argmin{‖∇vh‖L2(Ω) : vh ∈Vh, T (vh) = gh}.

Note that Ehgh is not harmonic. Similar to E, the function Ehgh is characterized by
T (Ehgh) = gh and

∫

Ω

∇Ehgh · ∇vh = 0, vh ∈Wh.

Then, we define the approximation φh ∈Vh to φ as

φh =Ehψh,

where ψh ∈Th is the solution to the following variational problem:

〈ψh, gh〉Hs(Γ) = µh(gh) := ν(Ehgh), gh ∈Th.(4.5)

Here we are assuming that, in addition to be defined on Hs(Ω), the functional ν is
also well defined on the space Vh. We shall further consider separately two instances
where this is the case: (i) ν is a continuous functional on H1(Ω) and (ii) ν is a point
evaluation functional.

Note that (4.5) is not the straightforward Galerkin approximation of (4.2), since
µh differs from µ. This complicates somewhat the further conducted convergence
analysis. The numerical method we employ for computing φh is to numerically solve
an equivalent saddle point problem described below.

We apply the strategy (4.5) to ν := λj for each j and thereby obtain the corre-
sponding approximations φ̂j := φh ∈Vh. Since Step 2 requires that we guarantee the
error ‖φj − φ̂j‖H1 ≤ ε2, our main goal in this section is to establish a quantitative
convergence bound for ‖φ−φh‖H1 . We also need to establish a pointwise convergence
bound for |φ(x)− φh(x)| when considering the modified version of Step 2 in the case
that the measurements are point values.

Similar to E, it will be important in our analysis to control the stability of Eh in
the sense of a bound

‖Ehgh‖H1(Ω) ≤DE‖gh‖H1/2(Γ), gh ∈Th,(4.6)
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1294 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

with a constant DE that is independent of h. However, such a uniform bound is not
readily inherited from the stability of E. As observed in [8], its validity is known to
depend on the existence of uniformly H1-stable linear projections onto Vh preserving
the homogeneous boundary condition, that is, projectors Ph onto Vh that satisfy

Ph(H
1
0 (Ω)) =Wh and ‖Phv‖H1(Ω) ≤B‖v‖H1(Ω), v ∈H1(Ω),(4.7)

for some B independent of h. One straightforward consequence of this is that if
v ∈H1(Ω) with v|Γ ∈Th, then Ph(v)|Γ = v|Γ.

We next show that the existence of such projectors is sufficient to guarantee the
stability of Eh. For this, suppose (4.7) holds and gh ∈Th. Then PhEgh ∈Vh and the
trace of PhEgh is equal to gh. It follows that

‖Ehgh − PhEgh‖H1(Ω) ≤CP ‖∇Ehgh −∇PhEgh‖L2(Ω)

≤CP ‖∇Ehgh‖L2(Ω) +CP ‖∇PhEgh‖L2(Ω),
≤ 2CP ‖PhEgh‖H1(Ω),

where CP is the Poincaré constant for Ω. Here, the last inequality follows from the
minimizing property of Ehgh. Thus, by triangle inequality, one has

‖Ehgh‖H1(Ω) ≤ (1 + 2CP )‖PhEgh‖H1(Ω) ≤ (1 + 2CP )B‖Egh‖H1(Ω)

≤ (1 + 2CP )BCE‖gh‖H1/2(Γ),

which is (4.6) with DE = (1+ 2CP )BCE .
The requirement of uniformly stable projectors Ph with the property (4.7) is

satisfied by projectors of Scott–Zhang type [28] when the family of meshes {Th}h>0 is
shape regular, that is, when all elements T have a uniformly bounded ratio between
their diameters h(T ) and the diameter ρ(T ) of their inner circle. In other words, the
shape parameter

σ= σ({Th}h>0) := sup
h>0

max
T∈Th

h(T )

ρ(T )
(4.8)

is finite. In all that follows in the present paper, we work under such an assumption
on the meshes Th. Therefore, (4.6) holds when Vh is subordinate to such partitions.

4.2. A saddle point formulation. Before attacking the convergence analysis,
we need to stress an important computational variant of the above described Galerkin
method, that leads to the same solution φh. It is based on imposing harmonicity via
a Lagrange multiplier. For this purpose, we introduce the Hilbert space Xs(Ω) that
consists of all v ∈H1(Ω) such that vΓ ∈Hs(Γ), and equip it with the norm

‖v‖Xs(Ω) :=
(
‖vΓ‖2Hs(Γ) + ‖∇v‖2L2(Ω)

)1/2

.

Then, the Riesz representer φ is equivalently determined as the solution of the saddle
point problem: find (φ,π)∈Xs(Ω)×H1

0 (Ω) such that

a(φ, v) + b(v,π) = ν(v), v ∈Xs(Ω),
b(φ, z) = 0, z ∈H1

0 (Ω),
(4.9)

where the bilinear forms are given by

a(φ, v) := 〈φΓ, vΓ〉Hs(Γ) and b(v,π) := 〈∇v,∇π〉L2(Ω).
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1295

Clearly the second equation in (4.9) means that φ is harmonic and testing the first
equation with a v ∈Hs(Ω) shows that φ is the Riesz representer of ν.

This saddle point formulation is well-posed: the bilinear forms a and b obviously
satisfy the continuity properties

a(φ, v)≤ ‖φΓ‖Hs(Γ)‖vΓ‖Hs(Γ) ≤ ‖φ‖Xs(Ω)‖v‖Xs(Ω), φ, v ∈Xs(Ω),

and for the standard norm ‖v‖H1
0 (Ω) = ‖∇v‖L2(Ω),

b(v,π)≤ ‖∇v‖L2(Ω)‖∇π‖L2(Ω) ≤ ‖v‖Xs(Ω)‖π‖H1
0 (Ω), v ∈Xs(Ω), π ∈H1

0 (Ω).

In addition, for all v ∈Hs(Ω), one has

‖v‖2Xs(Ω) ≤ ‖vΓ‖2Hs(Γ) + ‖v‖2H1(Ω) ≤ ‖vΓ‖2Hs(Γ) +C2
E‖v‖2H1/2(Γ) ≤ (1 +C2

E)a(v, v),

which shows that a is coercive on the null space of b in Xs(Ω). Finally, the bilinear
form b satisfies the inf-sup condition

inf
π∈H1

0 (Ω)
sup

v∈Xs(Ω)

b(v,π)

‖v‖Xs(Ω)‖π‖H1
0 (Ω)

≥ inf
π∈H1

0 (Ω)

b(π,π)

‖π‖Xs(Ω)‖π‖H1
0 (Ω)

= 1.

Therefore, the standard LBB theory ensures existence and uniqueness of the solution
pair (φ,π).

We now discretize the saddle point problem by searching for (φh, πh) ∈Vh ×Wh

such that

a(φh, vh) + b(vh, πh) = ν(vh), vh ∈Vh,
b(φh, zh) = 0, zh ∈Wh.

Remark 4.1. The equivalence with the previous derivation of φh by the Galerkin
approach is easily checked: the second equation tells us that the solution φh is dis-
cretely harmonic, and therefore equal to Ehψh for some ψh ∈ Th. Then taking vh of
the form Ehgh for gh ∈Th gives us exactly the Galerkin formulation (4.5).

This discrete saddle point problem is uniformly well-posed when we equip the
space Wh with the H1

0 norm, and the space Vh with the Xs norm. The continuity of
a and b, and the inf-sup condition for b follow by the exact same arguments applied
to the finite element spaces, with the same constants. On the other hand, we need
to check the uniform ellipticity of a in the space V

H
h ⊂ Vh of discretely harmonic

functions, which can be defined as

V
H
h := {vh ∈Vh : b(vh, zh) = 0, zh ∈Wh},

or equivalently as the image of Th by the operator Eh. For all vh ∈V
H
h and gh = T (vh),

we write

‖vh‖2Xs(Ω) ≤ ‖gh‖2Hs(Γ) + ‖vh‖2H1(Ω) ≤ ‖gh‖2Hs(Γ) +D2
E‖gh‖2H1/2(Γ) ≤ (1 +D2

E)a(vh, vh),

where we have used the discrete stability of Eh.

Remark 4.2. In practice, we use this discrete saddle point formulation for the com-
putation of φh rather than the equivalent Galerkin formulation (4.5) for the following
reason. Let Nh := dimVh, Mh := dimWh, and Ph := dimTh = Nh −Mh. Comput-
ing the right=hand side load vector in (4.2) requires computing discretely harmonic
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1296 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

extensions of Ph basis functions, which means solving Ph linear systems of dimension
Mh. In addition, one has to solve the sparse linear system (4.5) of size Ph followed by
another system of size Mh to compute φh =Ehψh. Using optimal iterative solvers of
linear complexity the minimum amount of work needed to compute one representer
scales then like

PhMh ∼N
1+ d−1

d

h

while solving the saddle point problem requires the order of Nh +Mh ∼ Nh opera-
tions. On the other hand the characterization of φh through (4.5) appears to be more
convenient when deriving error bounds for ‖φ−φh‖H1(Ω). This is the objective of the
next sections.

4.3. Preparatory results. In the derivation of error bounds for ‖φ−φh‖H1(Ω),
we will need several ingredients.

The first is the following lemma that quantifies the perturbation induced by using
Eh in place of E.

Lemma 4.3. For any gh ∈Th, one has

‖(E −Eh)gh‖H1(Ω) ≤C2h
r−1‖gh‖Hs(Γ),(4.10)

where C2 depends on r and s, the shape-parameter σ, and on the geometry of Ω.

Proof. From the properties of E and Eh, one has

〈∇(E −Eh)gh,∇vh〉= 0, vh ∈Wh.

This orthogonality property shows that

‖∇(Egh −Ehgh)‖L2(Ω) ≤ ‖∇(Egh −Ehgh − vh)‖L2(Ω), vh ∈Wh,

and therefore,

‖∇(Egh −Ehgh)‖L2(Ω) ≤ min
vh∈Vh,T (vh)=gh

‖∇(Egh − vh)‖L2(Ω)

≤ ‖∇(Egh − PhEgh)‖L2(Ω),

where Ph is the stable projector that preserves homogeneous boundary condition; see
(4.7). It follows that

‖∇(Egh −Ehgh)‖L2(Ω) ≤ (1 +B) min
vh∈Vh

‖Egh − vh‖H1(Ω),

where B is the uniform H1-stability bound on Ph. By standard finite element ap-
proximation estimates and (2.4), we have

min
vh∈Vh

‖Egh − vh‖H1(Ω) ≤Chr−1‖Egh‖Hr(Ω) ≤CC1h
r−1‖gh‖Hs(Γ),

where the constant C depends on r and on the shape parameter σ. The estimate
(4.10) follows by Poincaré inequality since Egh −Ehgh ∈H1

0 (Ω).

The second ingredient concerns the regularity of the solution to the variational
problem

〈κ, v〉Hs(Γ) = γ(v), v ∈Hs(Γ).(4.11)
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1297

For a general linear functional γ ∈ H−s(Γ), that is, continuous on Hs(Γ), we are
only ensured that the solution κ is bounded in Hs(Γ), with ‖κ‖Hs(Γ) = ‖γ‖H−s(Γ).
However, if γ has some extra regularity, this then translates into additional regularity
of κ.

As a simple example, consider the case where γ is, in addition, continuous on
L2(Γ), that is

γ(v) = 〈g, v〉L2(Γ)(4.12)

for some g ∈ L2(Γ), and assume that we work with s = 1 and a polygonal domain.
Then the variational problem has a solution κ ∈H1(Γ) and, in addition, κ ∈H2(E)
for each edge E with weak second derivative given by

−κ′′ = g− κ∈L2(Γ).

In turn, standard finite element approximation estimates yield

min
κh∈Th

‖κ− κh‖H1(Γ) ≤Ch‖g‖L2(Γ),

with a constant C that depends on the shape parameter σ.
Of course, gain of regularity theorems for elliptic problems are known in various

contexts. However, we have not found a general treatment of gain of regularity that
addresses the setting of this paper. In going forward, we do not wish to systematically
explore this gain in regularity and approximability for more general values of s and
smoothness of γ since this would significantly enlarge the scope of this paper. Instead,
we state it as the following general assumption.

Assumption R. For s > 1
2 and δ > 0, there exists r(s, δ) > 0 such that if

γ ∈H−s+δ(Γ) for some δ > 0, then the solution κ to (4.11) satisfies

min
κh∈Th

‖κ− κh‖Hs(Γ) ≤Chr(s,δ)‖γ‖H−s+δ(Γ),(4.13)

with a constant C that depends on s, δ, and on the shape parameter σ.
The above example shows that r(1,1) = 1 for a polygonal domain. We expect

that this assumption always holds for the range 1
2 < s<

3
2 that is considered here.

4.4. An a priori error estimate for ‖φ− φh‖H1(Ω) . In this section, we work
under the assumption that the linear functional ν is continuous on H1(Ω) with norm

Cν :=max{ν(v) : ‖v‖H1(Ω) = 1}.

Let us first check that this assumption implies a uniform a priori bound on ‖ψh‖Hs(Γ).
Indeed, we may write

‖ψh‖2Hs(Γ) = 〈ψh, ψh〉Hs(Γ) = ν(Ehψh)≤CνDE‖ψh‖H1/2(Γ) ≤CνDE‖ψh‖Hs(Γ),

where the first inequality used (4.6). Therefore,

‖ψh‖Hs(Γ) ≤CνDE .(4.14)

We have seen in section 2 that the function φ belongs to the standard Sobolev
space Hr(Ω) for r defined in (2.3). We use this r throughout this section. From (2.4),
there exists a constant C1 such that

‖Ew‖Hr(Ω) ≤C1‖w‖Hs(Γ), w ∈Hs(Γ).(4.15)
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1298 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

As noted in section 2, the amount of smoothness r depends both on s and on the
geometry of Ω. What is important for us is that since s > 1/2, we have shown in
section 2 that r > 1. For example, for smooth domains it is r = s+ 1

2 . The fact that
φ ∈Hr(Ω) hints that the finite element approximation φh to φ should converge with
a certain rate.

This is indeed the case as given in the following result.

Theorem 4.4. Under Assumption R, we have

‖φ− φh‖H1(Ω) ≤CCνh
t,(4.16)

where t =min{r − 1, r(s, s+ 1
2 ) + r(s, s− 1

2 )}. The constant C depends on s and on

the geometry of Ω, and on the family of meshes through the shape parameter σ.

Proof. We use the decomposition

φ− φh =Eψ−Ehψh =E(ψ−ψh) + (E −Eh)ψh.(4.17)

The second term can be estimated with the help of Lemma 4.3 applied to gh = ψh

which gives

‖(E −Eh)ψh‖H1(Ω) ≤C2h
r−1‖ψh‖Hs(Γ) ≤C2DECνh

r−1

from the a priori estimate (4.14) for ψh. We thus have obtained a bound in O(hr−1)
for the H1 norm of the second term in (4.17).

For the first term, we know that

‖E(ψ−ψh)‖H1(Ω) ≤CE‖ψ−ψh‖H1/2(Γ),

and so we are led to estimate ψ − ψh in the H1/2(Γ) norm. For this purpose, we
introduce the intermediate solution ψh ∈Th to the problem

〈ψh, gh〉Hs(Γ) = µ(gh) = ν(Egh), gh ∈Th,

and we use the decomposition

ψ−ψh = (ψ−ψh) + (ψh −ψh).(4.18)

We estimate the second term in (4.18) by noting that for any gh ∈Th,

〈ψh −ψh, gh〉Hs(Γ) = ν((E −Eh)gh)≤Cν‖(E −Eh)gh‖H1(Ω) ≤CνC2h
r−1‖gh‖Hs(Γ),

where we have again used Lemma 4.3. Taking gh = ψh − ψh we obtain a bound
O(hr−1) for its Hs(Γ) norm, and in turn for its H1/2(Γ) norm.

It remains to estimate ‖ψ − ψh‖H1/2(Γ). Note that ψh is exactly the Galerkin
approximation of ψ since we use the same linear form µ in both problems. In fact,
we have

〈ψ−ψh, gh〉Hs(Γ) = 0, gh ∈Th,

that is ψh is the Hs-orthogonal projection of ψ onto Th, and therefore,

‖ψ−ψh‖Hs(Γ) = min
κh∈Th

‖ψ− κh‖Hs(Γ).
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Since the linear form µ satisfies

|µ(g)|= |ν(Eg)| ≤Cν‖Eg‖H1(Ω) ≤CνCE‖g‖H1/2(Γ),

and thus belongs to H−1/2(Γ), we may apply the estimate (4.13) to γ = ν, κ = ψ,
δ= s− 1

2 > 0, to reach

‖ψ−ψh‖H1/2(Γ) ≤ ‖ψ−ψh‖Hs(Γ) ≤CCνCEh
r(s,s− 1

2
).(4.19)

This proves the theorem for the value t=min{r− 1, r(s, s− 1
2 )}> 0.

We finally improve the value of t by using a standard Aubin–Nitsche duality
argument as follows. We now take κ to be the solution of (4.11) with

γ(v) = 〈ψ−ψh, v〉H1/2(Γ), v ∈H1/2(Γ),

where 〈., .〉H1/2(Γ) stands for the H1/2 scalar product associated with the norm
‖.‖H1/2(Γ). We then write

‖ψ−ψh‖2H1/2(Γ)=〈ψ−ψh, ψ−ψh〉H1/2(Γ)=〈κ,ψ−ψh〉Hs(Γ) = 〈κ−κh, ψ−ψh〉Hs(Γ),

where the last equality comes from Galerkin orthogonality. It follows that

‖ψ−ψh‖2H1/2(Γ) ≤ ‖κ− κh‖Hs(Γ)‖ψ−ψh‖Hs(Γ)

≤Chr(s,s+
1
2
)‖ψ−ψh‖H1/2(Γ)‖ψ−ψh‖Hs(Γ),

where we have again used (4.13) now with δ = s+ 1
2 . Using the already established

estimate (4.19), it follows that

‖ψ−ψh‖H1/2(Γ) ≤CCECνh
t̃,

with t̃ := r(s, s + 1
2 ) + r(s, s − 1

2 ). With all such estimates, the desired convergence
bound follows with t :=min{r− 1, t̃}.

Remark 4.5. In the case of a polygonal domain and s = 1 which is further
considered in our numerical experiments, we know that r = 3

2 and r(1,1) = 1 so
that t̃≥ r(1, 32 )≥ 1. In turn, the convergence bound is established with t= r− 1 = 1

2 .

4.5. The case of point value evaluations. We discuss now the case where

ν(v) = δz(v) = v(z)

for some z ∈Ω. In order to guarantee that point evaluation is a continuous functional
on Hs, we assume that

s >
d− 1

2
,

that is s > 1
2 for d= 2, and s > 1 for d= 3. We want to find the Riesz representer of

such a point evaluation functional on Hs. Note that our assumption on s ensures the
continuous embeddings

Hs(Γ)⊂C(Γ),
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1300 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

as well as

Hs(Ω)⊂Hr(Ω)⊂C(Ω),

since in view of (2.3)

r=min
{
s+

1

2
, r∗

}
>
d

2
,

where in the inequality we recall that r∗ > 3
2 for polygonal domains.

The point evaluation functional ν is thus continuous on Hs(Ω) with norm Cs

bounded independently of the position of z. Of course, the Galerkin scheme analyzed
above for ν ∈H1(Ω)∗ continues to make sense since ν is well defined on the space Vh.

As explained in section 3.4, the prescriptions in Step 2 of the recovery algorithm
need to be strengthened in the point evaluation setting. Thus, we are interested in
bounding the pointwise error |φ(x)− φh(x)| at the measurement points, in addition
to the H1-error ‖φ − φh‖H1(Ω). In what follows, we establish a modified version of
Theorem 4.4 in the point value setting that gives a convergence rate for ‖φ−φh‖H1(Ω),
and, in addition, for ‖φ− φh‖L∞(Ω) ensuring the pointwise error control. We stress
that the numerical method remains unchanged, that is, φh is defined in the exact
same way as previously. The new ingredients that are needed in our investigation are
two classical results on the behavior of the finite element method with respect to the
L∞ norm.

The first one is the so-called weak discrete maximum principle which states that
there exists a constant Cmax such that, for all h> 0,

‖Ehgh‖L∞(Ω) ≤Cmax‖gh‖L∞(Γ), gh ∈Th.(4.20)

This result was first established in [5] with constant Cmax = 1 for piecewise linear
Lagrange finite elements under acuteness assumptions on the angles of the simplices.
The above version with Cmax ≥ 1 is established in [27] for Lagrange finite elements
of any degree on 2d polygonal domains, under the more general assumption that the
meshes {Th}h>0 are quasi-uniform (in addition to shape regularity, all elements of
Th have diameters of order h). A similar result is established in [15] on 3d convex
polyhedrons.

The second ingredient we need is a stability property in the L∞ norm of the
Galerkin projection Rh :H1

0 (Ω)→Wh where Rhv, v ∈H1
0 (Ω), is defined by

∫

Ω

∇Rhv · ∇vh =

∫

Ω

∇v · ∇vh, vh ∈Wh.

Specifically, this result states that there exists a constant Cgal and exponent a ≥ 0
such that, for all h> 0,

‖Rhv‖L∞(Ω) ≤Cgal(1 + | ln(h)|)a‖v‖L∞(Ω), v ∈L∞(Ω)∩H1
0 (Ω),(4.21)

that is, the Ritz projection is stable and quasi-optimal, uniformly in h, up to a log-
arithmic factor. This result is established in [27] for Lagrange finite elements on 2d
polygonal domains and quasi-uniform partitions, with a = 1 in the case of piecewise
linear elements and a= 0 for higher order elements. A similar result is established in
[15] with a= 0 for convex polygons and polyhedrons. Going further, we assume that
the choice of finite element meshes ensures the validity of (4.20) and (4.21).

We begin our analysis with the observation that under the additional mesh as-
sumptions, Lemma 4.3 can be adapted to obtain an estimate on ‖(E −Eh)gh‖L∞(Ω).
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1301

Lemma 4.6. For any gh ∈Th, one has

‖(E −Eh)gh‖L∞(Ω) ≤C3(1 + | ln(h)|)a)hr− d
2 ‖gh‖Hs(Γ),(4.22)

where C3 depends on (r, s), the geometry of Ω, and the family of meshes through Cgal.

Proof. For any vh ∈Vh such that T (vh) = gh, we write

‖(E −Eh)gh‖L∞(Ω) ≤ ‖Egh − vh‖L∞(Ω) + ‖Ehgh − vh‖L∞(Ω).

It is readily seen that Ehgh−vh =Rh(Ehgh−vh) =Rh(Egh−vh). Indeed, RhEhgh−
RhEgh ∈Wh and

∫
Ω
∇(Rh(Ehgh −Egh)) · ∇vh =

∫
Ω
∇(Ehgh −Egh) · ∇vh = 0 for all

vh ∈Wh. Therefore, by (4.21), we obtain

‖(E −Eh)gh‖L∞(Ω) ≤ (1 +Cgal(1 + | ln(h)|)a) min
vh∈Vh,T (vh)=gh

‖Egh − vh‖L∞(Ω).

On the other hand, we are ensured that Egh belongs to Hr(Ω) where r > d
2 , and

therefore has Hölder smoothness of order r− d
2 > 0 with

‖Egh‖
Cr− d

2 (Ω)
≤Ce‖Egh‖Hr(Ω) ≤CeC1‖gh‖Hs(Γ),

where Ce is the relevant continuous embedding constant. By standard finite element
approximation theory,

min
vh∈Vh,T (vh)=gh

‖Egh − vh‖L∞(Ω) ≤Chr−
d
2 ‖Egh‖

Cr− d
2 (Ω)

,

where C depends on r and the shape-parameter σ, and therefore we obtain (4.22).

We are now in position to give an adaptation of Theorem 4.4 to the point value
setting.

Theorem 4.7. Under Assumption R, for any t1 <min{r− d
2 , r(s, s+

1
2 )+r(s, s−

1
2 )}, one has

‖φ− φh‖H1(Ω) ≤Cht1 ,(4.23)

and for any t2 <min{r− d
2 ,2r(s, s− d−1

2 )}, one has

‖φ− φh‖L∞(Ω) ≤Cht2 .(4.24)

The constant C depends in both cases on s, t1, and t2, on the geometry of Ω, as

well as on the family of meshes through the constants Cmax and Cgal, and the shape

parameter σ.

Proof. We estimate ‖φ−φh‖H1(Ω) by adapting certain steps in the proof of The-
orem 4.4. The first change lies in the a priori estimate of the Hs(Γ) norm of ψh that
was previously given by (4.14) which is not valid anymore since Cν =∞. Instead, we
write

‖ψh‖2Hs(Γ) = 〈ψh, ψh〉Hs(Γ) = ν(Ehψh)≤ ‖Ehψh‖L∞(Ω) ≤Cmax‖ψh‖L∞(Γ)

≤CmaxBs‖ψh‖Hs(Γ),

where we have used (4.20) and where Bs is the continuous embedding constant be-
tween Hs(Γ) and L∞(Γ). In turn, we find that

‖ψh‖Hs(Γ) ≤CmaxBs,(4.25)
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1302 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

which results in the slightly modified estimate

‖(E −Eh)ψh‖H1(Ω) ≤C2CmaxBsh
r−1,

for the second term of (4.17).
For the first term E(ψ − ψh), we proceed in a similar manner to the proof of

Theorem 4.4. Namely, we estimate the H1/2(Γ) norms of two summands in (4.18).
The estimate of ‖ψh−ψh‖H1/2(Γ) is modified as follows. We note that for any gh ∈Th,

〈ψh −ψh, gh〉Hs(Γ) = ν((E −Eh)gh)≤ ‖(E −Eh)gh‖L∞(Ω)

≤C3(1 + | ln(h)|)a)hr− d
2 ‖gh‖Hs(Γ),

where we have now used Lemma 4.6. Taking gh =ψh−ψh we obtain a bound of order
O(hr−

d
2 ) up to logarithmic factors for its Hs norm, and in turn for its H1/2 norm.

The estimate of ‖ψ − ψh‖H1/2(Γ) is left unchanged and of order O(ht̃). Combining

these various estimates, we have established (4.23) for any t1 < min{r − d
2 , t̃}, with

t̃ := r(s, s+ 1
2 ) + r(s, s− 1

2 ).
We next estimate ‖φ − φh‖L∞(Ω) by the following adaptation of the proof of

Theorem 4.4. For the first term (E − Eh)ψh of (4.17) we use Lemma 4.6 combined
with the estimate (4.25) of ψh which give us

‖(E −Eh)ψh‖L∞(Ω) ≤CmaxBsC3(1 + | ln(h)|)ahr− d
2 .

For the second term E(ψ−ψh), we use the continuous maximum principle to obtain

‖E(ψ−ψh)‖L∞(Ω) ≤ ‖ψ−ψh‖L∞(Γ) ≤ ‖ψh −ψh‖L∞(Γ) + ‖ψ−ψh‖L∞(Γ)

For the first summand, we write

‖ψh −ψh‖L∞(Γ) ≤Ce‖ψh −ψh‖Hs(Γ),

where Ce is the relevant continuous embedding constant, and we have already observed
that ‖ψh − ψh‖Hs(Γ) satisfies a bound in O(hr−

d
2 ) up to logarithmic factors. For the

second summand, we may write

‖ψ−ψh‖L∞(Γ) ≤Ce‖ψ−ψh‖Hs(Γ),

where Ce is the relevant continuous embedding constant. Since ν belongs toH−s+δ(Γ)
for all δ < s− d−1

2 , we can apply the estimate (4.13) to reach a convergence bound

‖ψ−ψh‖Hs(Γ) ≤Chr(s,δ),

where C depends on the closeness of δ to s − d−1
2 , and on the family of meshes

through the shape parameter σ. Combining these estimates then gives (4.24) for any
t2 < min{r − d

2 , t̃} where t̃ = r(s, s− d−1
2 ), since δ can be picked arbitrarily close to

s− d−1
2 .
We can improve the range of t2 as follows: pick any s such that d−1

2 < s< s and
write

‖ψ−ψh‖L∞(Γ) ≤Ce‖ψ−ψh‖Hs(Γ),

where Ce is the relevant continuous embedding constant. We then apply a similar
Aubin–Nitsche argument to derive an estimate

‖ψ−ψh‖Hs(Γ) ≤Chr(s,δ)+r(s,s−s).

Combining these estimates gives (4.24) for any t2 <min{r− d
2 , t}, where t := 2r(s, s−

d−1
2 ) since s can be picked arbitrarily close to d−1

2 and δ arbitrarily close
to s− d−1

2 .
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1303

5. Numerical illustrations. In this section, we implement some examples of
our numerical method. For this, we have to specify the domain Ω, the functionals
λj , and a function u ∈ H1(Ω) which gives rise to the data vector w = λ(u). While
our numerical method can be applied to general choices for these quantities, in our
illustrations we make these choices so that the computations are not too involved but
yet allow us the flexibility to illustrate certain features of our algorithm. The specific
choices we make for our numerical example are the following.

The domain. In order to simplify the presentation, we restrict ourselves when
Ω= (0,1)2 but point out again that the algorithm. can be extended to more general
domains.

The function u. For the function u we choose the harmonic function u = uH
where

uH(x, y) = ex cos(y), (x, y)∈Ω := (0,1)2.(5.1)

This choice means that u0 = 0 and therefore allows us not to deal with the computation
of û0. This choice corresponds to the right side f = 0. Note that the trace of uH on the
boundary Γ is piecewise smooth and continuous. Therefore, we have T (uH)∈H1(Γ).
We take s = 1 as our assumption on the value of s. This means that we shall seek
Riesz representor for the functionals given below when viewed as acting on H1(Ω).

5.1. The case of linear functionals defined on H1(Ω). In this section,
we consider numerical experiments for linear functionals defined on H1(Ω). In our
illustrative example, we relabel these functionals by double indices associated with a
regular square grid. More precisely,

λi,j(v) :=
1√
2πr2

∫

Ω

v(z)e−
1
2

|z−zi,j |
2

r2 dz, v ∈H1(Ω), i, j = 1, . . . ,
√
m.(5.2)

Here, we assume thatm is a square integer and r= 0.1 in our simulations. The centers
zi,j ∈Ω are uniformly distributed

zi,j :=
1√
m+ 1

(i, j), i, j = 1, . . . ,
√
m.(5.3)

Recall that our numerical algorithm as described in section 3.2 is based on finite
element methods. Specifically, we use the finite element spaces

Vh :=
{
vh ∈C0(Ω) : vh|T ∈Q1, T ∈ Th

}
,

where Th are subdivisions of Ω made of squares of equal side length h and Q1 denotes
the space of polynomials of degree at most 1 in each direction. In order to study the
effect of the mesh-size we specifically consider

h= hn := 2−n, n= 4, . . . ,9,

that is, bilinear elements on uniformly refined meshes with mesh-size 2−n.
We display in Table 5.1 the results of our numerical recovery algorithm. The

entries in the table are the recovery errors

e(m,n) := ‖uH − ûH‖H1(Ω),

where ûH ∈Vhn is the recovery for the particular values of m and n.
We have proven in this paper that our numerical recovery algorithm is near op-

timal with constant C that can be made arbitrarily close to one by choosing n suf-
ficiently large. This means that the error e(m,n) satisfies e(m,n) ≤ CR(KH

w )H1(Ω)
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1304 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

Table 5.1

Recovery error e(m,n) for different amounts of Gaussian measurements m and finite element

refinements n.

n

m
4 9 16 25 36

4 0.7 0.28 0.2 141.73 49.43

5 0.7 0.28 0.18 16.0 16.31

6 0.7 0.28 0.18 0.2 1.79

7 0.7 0.28 0.18 0.16 0.11

8 0.7 0.28 0.18 0.09 0.06

9 0.7 0.28 0.18 0.09 0.06

for n sufficiently large. Increasing the number m of measurements is expected to de-
crease this Chebyshev radius. While one is tempted to think that the entries in each
column of the table provides an upper bound for the Chebyshev radius of KH

w for
these measurements, this is not guaranteed since we are only measuring the error for
one function from Kw, namely uH, and not all possible functions from Kw. However,
the entries in any given column provide a lower bound for the Chebyshev radius of
KH

w provided n is sufficiently large.
Increasing the number m of measurements requires a finer resolution, i.e., increas-

ing n, of the finite element discretization until the perturbation ε in Theorem 3.1 is
sufficiently small. This is indeed confirmed by the results in Table 5.1 where stag-
nating error bounds (in each fixed column) indicate the corresponding tip-over point.
We notice, in particular, that for small values of n, the error becomes very large as
m grows. This is explained by the fact that the Gramian matrix G becomes severely
ill-conditioned, and in turn the prescriptions on ‖G − Ĝ‖1 cannot be fulfilled when
using finite element approximation of the Riesz representers on too coarse meshes.
An overall convergence of the recovery error to zero can, of course, only take place
when both m and n increase.

5.2. The case of point value measurements. In this section, we describe
our numerical experiments in the case where the linear functionals λi,j are point
evaluations at points from Ω. Recall that while the λi,j are not defined for general
functions in H1(Ω) they are defined for functions in the model class KH :=U(Hs(Ω))
provided s is sufficiently large (s > 1/2 for d= 2 and s > 1 for d= 3). This means that
the optimal recovery problem is well posed in such a case. We have given in section 3.4
sufficient conditions on a numerical algorithm to give near optimal recovery and then
we have gone on to show in section 4.5 that our proposed numerical algorithm based
on discrete harmonics converges to a near optimal recovery with any constant C > 1
provided that the finite element spaces are discretized fine enough.

In the numerical experiments of this section, we again take Ω = (0,1)2, s = 1,
and the data to be the point values of the harmonic function uH defined in (5.1).
We choose the evaluation points to be the zi,j of (5.3). We now provide in Table 5.2
the recovery error e(m,n). The observed behavior is similar to the case of Gaussian
averages; see Table 5.1.

5.3. Additional comments on the approximation of Riesz representers.
We provide a little more information on the computation of the Riesz representers
that may be of interest to the reader. We work in the same setting as in the previous

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1305

Table 5.2

Recovery error e(m,n) for different amounts of point evaluation measurements m and refine-

ments n.

n

m
4 9 16 25 36

4 0.70 0.28 0.19 14.43 15.49

5 0.70 0.28 0.18 32.56 8.02

6 0.70 0.28 0.18 1.51 2.27

7 0.70 0.28 0.18 0.53 0.89

8 0.70 0.28 0.18 0.20 0.14

9 0.70 0.28 0.18 0.14 0.11

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

100 1000

dim(Vhn
)

Gaussian: H
1 error

Point evaluation: L∞ error

Point evaluation: H
1 error

order
1

2

Fig. 5.1. Approximation errors for the Riesz representers of the Gaussian and point evaluation

functionals.

sections. Let us begin with the rate of convergence of our numerical approximations
to the Riesz representers.

We first consider the computation of the Riesz representer for the Gaussian mea-
surement functional centered at z = zi,j := (0.75,0.5). Let φn ∈ Vhn

be the ap-
proximation to the Riesz representer φ produced by the finite element computation.
Figure 5.1 shows the error ‖φn−φ9‖H1(Ω), n= 2, . . . ,6. This graph indicates an error

decay Cn−1/2 =Chn (Theorem 4.4 only guarantees Ch
1/2
n ; see also Remark 4.5).

Next, consider the computation of the Riesz representer for point evaluation at
the same z. Figure 5.1 reports the numerical computations of error in both the H1(Ω)
and L∞(Ω) norms. Again, the graph indicates an error decay Chn for theH1(Ω) norm
and a decay rate closer to Ch2n for the L∞(Ω) norm which are better than the rate
guaranteed by Theorems 4.4 and 4.7.

5.4. Convergence of the estimator. We conclude the analysis of our algo-
rithm with some remarks on the convergence of the estimator provided by our al-
gorithm as m,n → +∞. We continue with the case where K = KH = U(Hs(Ω))
with s > 1/2 and X is a Banach space for which Hs(Ω) embeds into X. For each
m= 1,2, . . . , let

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1306 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

Λm := {λ1,m, . . . , λm,m}

be the set of measurement functionals. Recall that we are either dealing with function-
als in H1(Ω)∗ or with point evaluations which belong to Hs(Ω)∗ by our assumption
on s. We assume that the data vectors

wm :=wm(u) := (λ1,m(u), . . . , λm,m(u)), m= 1,2, . . . ,(5.4)

are observations of a fixed function u ∈K. We are interested in what conditions on
the sets Λm, m= 1,2, . . . , ensure that the functions ûm,n produced by our algorithm
converge in ‖ · ‖X to u as m,n → ∞ and whether this convergence is uniform over
u∈K.

Theorem 3.1 says that

‖u− ûm,n‖X ≤R(Kwm(u))X + εn,m,(5.5)

where for each fixed m, the error εn,m → 0 as n→∞. Therefore, if R(Kwm(u))X → 0
as m→∞, then we know that given any error tolerance η > 0, the error ‖u− ûm,n‖X
will not exceed η provided we take m sufficiently large and then n sufficiently large
(depending on m). Thus, we are left with the question of whether R(Kwm(u))X → 0,
uniformly over u ∈ K, as the number m of measurements tends to +∞. In other
words, we would like to know whether

Rm(KH) :=max
u∈K

R(Kwm(u))X → 0, m→∞.(5.6)

This is equivalent to asking when does

R̃m(KH) :=max{‖v‖X : v ∈KH ∩Nm}→ 0 as m→∞.(5.7)

where Nm is the null space of λ1,m, . . . , λm,m. Indeed, R̃m(KH) ≤ 2Rm(KH) ≤
2R̃m(KH). Obviously, the validity of (5.7) requires some density assumption on the
sets Λm in X∗ as m→∞.

We illustrate how (5.7) is verified by considering the two specific cases studied in
our numerical experiments, i.e., the cases of Gaussian and pointwise measurements on
the Cartesian mesh points zi,j defined in (5.3). We limit our discussion, as was done
in our numerical examples, to the case when X =H1(Ω), Ω = (0,1)2, and K =KH,
where H = H1(Ω). It follows that the functions in K are in U(H3/2(Ω)) and hence
(by the Sobolev embedding theorem) are not only continuous but in a ball of Lip α
for each α< 1/2 with

‖f‖Lip α :=max




‖f‖L∞(Ω), sup

x,y∈Ω
x 6=y

|f(x)− f(y)|
|x− y|α




.

We recall that the measurement functionals in Λm are associated with a grid of points
zi,j where m= k2, k ≥ 1, an integer. We denote by Ωm = (h,1− h)× (h,1− h)⊂R

2

the convex hull of these grid points.
Before going further, let us mention the following remark, which we will use next.

Remark 5.1. Let R := (a, b) × (c, d) ⊂ R
2 be a rectangle in R

2, and let Rx :=
R \ (b − h, b) × [c, d]. Let g ∈ U(H1/2(R)) such that ‖g‖L2(Rx) ≤ ε. Note that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1307

‖g‖
B

1/2
∞ (L2(R))

≤ ‖g‖H1/2(R) ≤ 1 due to the embedding of these spaces, and thus if we

define gh :Rx →R by gh(x, y) := g(x+ h, y), we have

‖gh − g‖L2(Rx) ≤ h1/2.

Then, the following bound on the norm of g on the whole rectangle R holds:

‖g‖L2(R) ≤
√
2(ε+ h1/2),(5.8)

since

‖g‖2L2(R) ≤ ‖g‖2L2(Rx)
+ ‖gh‖2L2(Rx)

≤ ‖g‖2L2(Rx)
+
[
‖gh − g‖L2(Rx) + ‖g‖L2(Rx)

]2

≤ ε2 +
[
h1/2 + ε

]2
< 2

[
h1/2 + ε

]2
.

Similar statements hold if Rx is replaced by R\(a+h,a)× (c, d), R\(a, b)× (d−h,d),
or R \ (a, b)× (c, c+ h).

Now, we consider first the case of point evaluation. In this case, any function v
appearing in the set of (5.7) is in U(H3/2(Ω)) and vanishes on a grid of points with
spacing h=m−1/2. Standard Finite Element estimation shows that

‖v‖H1(Ωm) ≤Cm−1/4,(5.9)

with C an absolute constant. To extend the above estimate to Ω, we use (5.8) applied
to appropriate rectangles obtained from Ωm and with h = m−1/2, ε = Cm−1/4 (see
(5.9)), and g= v, g= ∂xv, or g= ∂yv. Whence, we deduce that

‖v‖H1(Ω) ≤Cm−1/4

for a different absolute constant C.
We next consider the more intricate case of Gaussian measurements. To prove

(5.7), we assume that (5.7) does not hold and derive a contradiction. So, assume there
is a sequence of functions vm ∈U(H1(Ω))∩Nm, m= 1,2, . . . , that does not tend to 0
in H1(Ω). This means that we can extract an increasing sequence (mj) for which

‖vmj
‖H1(Ω) ≥ δ > 0, j = 1,2, . . . ,(5.10)

for some δ > 0. Since H1(Ω) is continuously embedded into H3/2(Ω), and H3/2(Ω)
is compactly embedded in Hs(Ω) for each 1 < s < 3

2 , we can further extract a sub-
sequence (which we continue to denote by (mj)) such that vmj strongly converges
towards a v∗ in Hs(Ω). Note, in particular, that v∗ is a continuous function, in fact
a Lip s− 1 function on Ω, and we have

‖v∗ − vmj
‖C(Ω), ‖v∗ − vmj

‖H1(Ω) ≤A‖v∗ − vmj
‖Hs(Ω) → 0, j→∞,(5.11)

with A an absolute constant. Hence,

‖v∗‖H1(Ω) ≥ δ.(5.12)

Let us now examine how the measurement functionals act on any continuous
function v ∈C(Ω). For any such v, we define

ṽ := gr ∗ Ev,(5.13)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1308 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

where

gr(z) :=
1√
2πr2

e−
1
2

|z|2

r2

is the Gaussian function used for the measurements and E is the extension operator
by 0 outside of Ω. The function ṽ is a continuous function on R

2 and for any of our
measurement functionals we have

λi,j(v) = ṽ(zi,j), 1≤ i≤ j.(5.14)

We claim that ṽ∗ is identically zero on Ω. Indeed, we have

|ṽ∗(x)| ≤ |ṽ∗(x)− ṽmj
(x)|+ |ṽmj

(x)− ṽmj
(z)|+ |ṽmj

(z)|, x, z ∈Ω.(5.15)

Given any x ∈ Ω and ε > 0, because of (5.11), we can make the first term in (5.15)
smaller than ε/2 for any sufficiently large j. Then by again taking j sufficiently large,
there is a grid point z for this mj that is sufficiently close to x so that the second
term in (5.15) is also smaller than ε/2. Since ṽmj

(z) = 0 we see that |ṽ∗(x)|< ε. This
proves that ṽ∗ = 0.

Now that we know that ṽ∗ is identically zero on Ω, our final step is to show that
this implies that v∗ is identically zero on Ω. Denoting by f̂ the Fourier transform of
f , it follows that

0 =

∫

Ω

ṽ∗v∗ =

∫

R2

ṽ∗Ev∗ = (2π)−2

∫

R2

ĝr|Êv∗|2.

The positivity of ĝr implies that Ev∗ = 0 and therefore v∗ = 0 on Ω. This contradicts
(5.12) and is our desired contradiction.

Returning now to the general setting where X and the measurement sets Λm are
general, we will have that (5.7) holds only if the sets Λm become sufficiently dense in
X∗ as m gets large. The precise rate of convergence of R(KH) towards 0 will depend
on the prior class H and on the choice of the Λm, m = 1,2, . . . . In the next section
we discuss in more detail the choice of Λm, m = 1,2, . . . , in order to obtain the best
achievable rate.

6. Optimal data sites: Gelfand widths and sampling numbers. In this
section, we make some comments on the number of measurements m that are needed
to guarantee a prescribed error in the recovery of u. Bounds on m are known to
be governed by the Gelfand width for the case of general linear functionals and by
sampling numbers when the functionals are required to be point evaluations. We
explain what is known about these quantities for our specific model classes. As we
shall see, these issues are not completely settled for the model classes studied in
this paper. The problem of finding the best choice of functionals, respectively point
evaluations, is in need of further research.

We have seen that the accuracy of the optimal recovery of u∈Kw is given by the
Chebyshev radius R(Kw) :=R(Kw)H1(Ω) or, equivalently, R(K

H
w ) :=R(KH

w )H1(Ω) for
the harmonic component. The worst case recovery error R(K) over the class K is
defined by

R(K)H1(Ω) := sup
w∈Rm

R(Kw)H1(Ω).(6.1)

Notice that this worst case error fixes the measurement functionals but allows the
measurements w to come from any function in K. Both the individual error R(Kw)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SOLVING PDEs WITH INCOMPLETE INFORMATION 1309

and the worst case error R(K) are very dependent on the choice of the data functionals
λj . For example, in the case that these functionals are point evaluations at points
z1, . . . , zm ∈ Ω̄, then R(Kw) and R(K) will depend very much on the positioning of
these points in Ω̄.

In the case of general linear functionals, one may fix m and then search for the
λ1, . . . , λm that minimize the worst case recovery error over the class K. This minimal
worst case error is called the Gelfand width of K. If we restrict the linear functionals
to be given by point evaluation, we could correspondingly search for the sampling
points x1, . . . , xm minimizing the worst case recovery error. This minimal error is
called the deterministic sampling number of K.

The goal of this section is not to provide new results on Gelfand widths and
sampling numbers, since we regard this as a separate issue in need of a systematic
study, but to discuss what is known about them in our setting and refer the reader to
the relevant papers. Let us recall that R(Kw) is equivalent to R(KH

w )H1 and so we
restrict our discussion in what follows to sampling of harmonic functions.

6.1. Optimal choice of functionals. Suppose we fix the number m of obser-
vation to be allowed and ask what is the optimal choice for the λj , j = 1, . . . ,m,
and what is the optimal error of recovery for this choice. The answer to the second
question is given by the Gelfand width of K. Given a compact set K of a Banach
space X, we define the Gelfand width of K in X by

dm(K)X := inf
λ1,...,λm

R(K)X ,(6.2)

where the infimum is taken over the linear functionals defined on X. Let us mention
that this definition differs from that employed in the classical literature [23] where
dm(K)X is defined as the infimum over all spaces F of codimension n of max{‖v‖X :
v ∈ K ∩ F}. The two definitions are equivalent in the case where K is a centrally
symmetric set such that K +K ⊂CK for some constant C ≥ 1.

Any set of functionals which attains the infimum in (6.2) would be optimal. The
Gelfand width is often used as a benchmark for performance since it says that no
matter how the m functionals λ1, . . . , λm are chosen, the error of recovery of u ∈ K
cannot be better than dm(K)X .

When X is a Hilbert space and K is the ball of a Hilbert space Y with compact
embedding in X, it is known that the Gelfand width coincides with the Kolmogorov
width, that is

dm(K)X = dm(K)X := inf
dim(E)=m

dist(K,E)X = inf
dim(E)=m

max{‖v− PEv‖X : v ∈K},

where the infimum is taken over all linear spaces E of dimension m. This is precisely
our setting as discussed in section 3: taking X =H1 :=H1(Ω) and K as in (1.4), we
have

dm(K)H1(Ω) = dm(KH)H1(Ω) = dm(KH)H1(Ω) ∼ dm(KB)H1/2(Γ) = dm(KB)H1/2(Γ),

(6.3)

where the equivalence follows from (1.3). Upper and lower bounds for the Gelfand
width of KB in L2(Γ) are explicitly given in [22].

We can estimate the rate of decay of the Kolmogorov and Gelfand width of KB

in H1/2(Γ) by the following general argument: as explained in section 2.1, for the ad-
missible range of smoothness, the Sobolev spaces Hs(Γ) have an intrinsic description
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1310 BINEV, BONITO, COHEN, DAHMEN, DEVORE, PETROVA

by locally mapping the boundary onto domains of Rd−1. More precisely, in [19] and
[12], the Hs(Γ) norm of g is defined as

‖g‖Hs(Γ) :=




J∑

j=1

‖gj‖2Hs(Rj)




1/2

,(6.4)

where the Rj are open bounded rectangles of Rd−1 that are mapped by transforms γj
into portions Γj that constitute a covering of Γ, and gj = g◦γj are the local pullbacks.

From this it readily follows that the Gelfand and Kolmogorov m-width of the
unit ball of Hs(Γ) in the norm Ht(Γ), with 0 ≤ t < s behaves similar to that of the
unit ball of Hs(R) in the norm Ht(R) where R is a bounded rectangle of Rd−1. The

latter is known to behave like m− s−t
d−1 . Therefore, for KH = U(Hs) with s > 1

2 in the
admissible range allowed by the boundary smoothness, one has

cm−
s−1/2
d−1 ≤ dm(KH)H1(Ω) ≤Cm−

s−1/2
d−1 , m≥ 1,(6.5)

where c and C are positive constants depending only on Ω and s.

Remark 6.1. We have already observed in section 2 that the space Hs(Ω) is
continuously embedded in the Sobolev space Hr(Ω) with r := max{s + 1

2 , r
∗} and,

in particular, r = s+ 1
2 for smooth domains. However, the Gelfand and Kolmogorov

widths of the unit ball of Hr(Ω) in H1(Ω) have the slower decay rate m− r−1
d =

m−
s−1/2

d compared to (6.5) for Hs(Ω). This improvement reflects the fact that the
functions from Hs(Ω) have d variables but are, in fact, determined by functions of
d− 1 variables. The reduction in dimension from d to d− 1 is related to the fact that
in our formulation of our problem we have complete knowledge of f .

6.2. Optimal choice of sampling points. We turn to the particular setting
where the λj are point evaluations functionals,

λj(v) = v(xj)

at m points xj ∈Ω. Similar to the Gelfand width, the deterministic sampling numbers

are defined as

ρm(K)X := inf
x1,...,xm

R(K)X .(6.6)

A variant of this is to measure the worst case expected recovery error when the m
points are chosen at random according to a probability distribution and search for the
distribution that minimizes this error, leading to the randomized sampling number of
K. Obviously, one has

ρm(K)X ≥ dm(K)X .(6.7)

In the majority of the literature, deterministic and randomized sampling numbers
are studied with error measured in the L2(Ω) norm. In this setting, concrete strategies
for optimal deterministic and randomized point design have been given when K is the
unit ball of a reproducing kernel Hilbert space H defined on Ω. In particular, the
recent results in [18, 14, 20, 7] show that under the assumption

∑

m>0

|dm(K)L2(Ω)|2 <∞,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

8
/2

4
 t

o
 7

5
.4

.1
6
6
.9

5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



SOLVING PDEs WITH INCOMPLETE INFORMATION 1311

then, for all t > 1
2 ,

sup
m≥1

mtdm(K)L2(Ω) <∞ =⇒ sup
m≥1

mtρm(K)L2(Ω) <∞.

In words, under the above assumptions, optimal recovery in L2(Ω) has the same
algebraic convergence rate when using optimally chosen point values compared to an
optimal choice of general linear functionals.

While similar general results have not been established for Gelfand width and
sampling numbers in the H1 norm, we argue that they hold in our particular setting
where H = Hs(Ω). For simplicity, as in section 4, we consider a domain that is
either a polygon when d= 2 or polyhedron when d= 3, and thus consider the range
d−1
2 < s < 3

2 where the restriction from below ensures that Hs(Ω)⊂ C(Ω). Recalling
the finite element spaces Vh and their traces Th on the boundary, based on quasi-
uniform meshes {Th}h>0, we consider for a given h > 0 the measurement points
x1, . . . , xm that are the mesh vertices located on Γ. By the quasi-uniformity property
the number m=m(h) of these points satisfies

ch1−d ≤m≤Ch1−d

for some c,C > 0 independent of h. If v ∈ Hs(Ω), its trace vΓ belongs to Hs(Γ).
Then, denoting by Ih the piecewise linear interpolant on the boundary, standard
finite element approximation theory ensures the estimate

‖vΓ − IhvΓ‖H1/2(Γ) ≤Chs−
1
2 ‖vΓ‖Hs(Γ) =Chs−

1
2 ‖v‖Hs(Ω)

for some C that only depends on s. Therefore, introducing ṽ :=EIhv, one has

‖v− ṽ‖H1(Ω) ≤CE‖vΓ − IhvΓ‖H1/2(Γ) ≤CDEm
−

s−1/2
d−1 ‖v‖Hs(Ω).

Since ṽ only depends on the value of v at the points x1, . . . , xm, we have thus proved

an upper bound of order m−
s−1/2
d−1 for ρm(KH)H1(Ω), and in turn for ρm(K)H1(Ω). In

view of (6.7) and (6.5), a lower bound of the same order must hold. In summary,
similar to the Gelfand widths, the sampling numbers satisfy

c̃m−
s−1/2
d−1 ≤ ρm(K)H1(Ω) ≤ C̃m−

s−1/2
d−1 , m≥ 1,(6.8)

where c̃ and C̃ are positive constants depending only on Ω and s.
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