
Time2Stop: Adaptive and Explainable Human-AI Loop for 
Smartphone Overuse Intervention 

Adiba Orzikulova Han Xiao Zhipeng Li 
KAIST Beijing University of Posts and Tsinghua University 

Republic of Korea Telecommunications Beijing, China 
adiorz@kaist.ac.kr Beijing, Beijing, China lizhipeng0603@gmail.com 

umihara@bupt.edu.cn 

Yukang Yan Yuntao Wang∗ Yuanchun Shi 
Carnegie Mellon University Tsinghua University Tsinghua University 

Pittsburgh, Pennsylvania, USA Beijing, Beijing, China Beijing, Beijing, China 
yukangy@andrew.cmu.edu yuntaowang@tsinghua.edu.cn shiyc@tsinghua.edu.cn 

Marzyeh Ghassemi Sung-Ju Lee Anind K. Dey 
Massachusetts Institute of Technology KAIST University of Washington 

Cambridge, MA, USA Republic of Korea Seattle, UW, USA 
mghassem@mit.edu profsj@kaist.ac.kr anind@uw.edu 

Xuhai Xu† 

Massachusetts Institute of Technology 
Cambridge, MA, USA 

orson.xuhai.xu@gmail.com 

ABSTRACT 
Despite a rich history of investigating smartphone overuse inter-
vention techniques, AI-based just-in-time adaptive intervention 
(JITAI) methods for overuse reduction are lacking. We develop 
Time2Stop, an intelligent, adaptive, and explainable JITAI system 
that leverages machine learning to identify optimal intervention 
timings, introduces interventions with transparent AI explanations, 
and collects user feedback to establish a human-AI loop and adapt 
the intervention model over time. We conducted an 8-week field 
experiment (N=71) to evaluate the effectiveness of both the adapta-
tion and explanation aspects of Time2Stop. Our results indicate that 
our adaptive models significantly outperform the baseline meth-
ods on intervention accuracy (>32.8% relatively) and receptivity 
(>8.0%). In addition, incorporating explanations further enhances 
the effectiveness by 53.8% and 11.4% on accuracy and receptivity, 
respectively. Moreover, Time2Stop significantly reduces overuse, 
decreasing app visit frequency by 7.0∼8.9%. Our subjective data 
also echoed these quantitative measures. Participants preferred the 
adaptive interventions and rated the system highly on intervention 
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time accuracy, effectiveness, and level of trust. We envision our 
work can inspire future research on JITAI systems with a human-AI 
loop to evolve with users. 
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1 INTRODUCTION 
The rapid advancement of technology has empowered the use of 
mobile devices to engage in almost every aspect of our lives. While 
bringing us convenience, smartphones also introduce numerous po-
tential risks [16, 68]. Smartphone overuse is considered a major so-
cial problem as it adversely affects individuals’ physical health (e.g., 
headaches [11], chronic neck pain [94], sleep disturbance [46]); 
mental well-being (e.g., anxiety and depression [5, 26], impaired 
cognitive abilities [92]); and social wellness (e.g., distraction [57], 
family conflicts [79], degradation of academic and work perfor-
mance [19]). 
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Figure 1: Time2Stop System Overview. The overall interaction flow consists of two loops. The first loop (green) includes: 1 ○
The mobile app continuously gathers contextual and app usage data (left) and transmits them to the cloud server. 2 ○ On the 
cloud server’s end, feature extraction, ML model inference, and explanation generation occur (right). The ML model output and 
explanations are sent back to the user. The second loop (loop) includes: 3 ○ In cases where the model predicts “overuse”, an 
intervention would show up while allowing users to provide feedback. The feedback is then forwarded to the cloud server 
to update the ML model. 4 ○ The updated ML model is subsequently employed to provide more personalized and adaptive 
interventions. 

A plethora of research has been invested in designing and exper-
imenting with various digital intervention tools and techniques to 
regulate smartphone overuse. These mechanisms promote digital 
well-being by informing users about their usage statistics [56, 62, 
78, 82], restricting access to distracting apps [35, 38, 51, 90] or app 
functionalities [10, 54, 67]. While the proposed mechanisms were 
beneficial in enhancing self-awareness and reducing smartphone 
usage time, they primarily intervened based on simple criteria, e.g., 
upon opening a specific app, at pre-determined intervals, or af-
ter achieving daily usage goals. However, due to the considerable 
variability of human behavior, interventions based on these basic 
criteria may not be optimal. For instance, users sometimes need to 
take a break, and blocking usage without considering such contexts 
could lead to sub-optimal designs and impact user experience. A 
system should offer intelligent interventions tailored to the user’s 
preferences, app characteristics, dynamically changing context, and 
individual usage patterns. 

In mobile health, Just-In-Time Adaptive Intervention (JITAI) 
was introduced as a promising technique that provides appropriate 
support at opportune times while dynamically adapting to users’ 
internal and external context [63, 64]. Traditional JITAI-driven 
intervention systems incorporate a predefined set of rules (such as 
users’ location) to determine the delivery time or content [25, 53, 73]. 
There has been initial research leveraging artificial intelligence 
(AI) and machine learning (ML) to deliver interventions, as AI can 
analyze large amounts of data and identify patterns that might not 
be captured through manual rule-setting [43, 61]. Furthermore, in a 
human-AI-loop setup, users can offer feedback to the AI, allowing 
the model to enhance its predictions and personalize interventions 
based on individual needs and behaviors. 

However, very little work explores empowering AI-based JITAI 
with a human-in-the-loop setup [36, 49]. There is no prior work 
leveraging AI-based JITAI in the realm of smartphone overuse, not 

to mention the human-in-the-loop setup. Employing JITAI-based 
interventions for smartphone overuse is challenging as it requires 
a real-time ML pipeline (reacting in a few seconds when the user 
enters an app) and prompt adaptability to users’ constantly evolving 
habits (updating the model on a daily basis). 

Despite the accuracy of black-box AI models, they often face 
challenges of interpretability and transparency. This gave rise to the 
recent advance of Explainable AI (XAI) to help users comprehend 
AI systems’ decisions, thereby fostering user trust and collabora-
tion with AI [3, 72]. Recent intervention systems employed XAI 
to personalize education [31], manage stress [36], and set fitness 
goals [83]. However, there is no prior work integrating XAI into 
JITAI-based smartphone intervention. It can improve intervention 
delivery transparency, handle confusion caused by unexpected 
interventions, and cultivate users’ trust through human-AI interac-
tion. 

No prior work has used AI-driven JITAI for smartphone overuse 
nor incorporated a human-in-the-loop setup. Moreover, integrat-
ing XAI into JITAI-based smartphone interventions remains unex-
plored. To address these gaps, we design and implement Time2Stop, 
an intelligent, adaptive, and explainable smartphone overuse 
intervention system grounded in JITAI principles while tak-
ing user feedback in the loop. Our system consists of four major 
parts (see Figure 1): (1) a smartphone-based sensing app to collect 
users’ contexts and behavior, (2) a cloud-based ML pipeline that 
extracts behavior features, detects potential smartphone overuse 
behavior, and generates explanations, (3) an interface on local de-
vices that introduces interventions when the ML model detects 
overuse behavior, provides intervention explanations, and collects 
user-provided feedback (e.g., users’ opinions on the accuracy of 
the intervention), and (4) a human-AI feedback loop that leverage 
users’ reactions to update the ML model. 
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We conducted an eight-week field experiment (N=71) to deploy 
and evaluate the effectiveness of the two major characteristics of 
Time2Stop: (a) Adaptive, updating the model based on user feedback 
in the human-AI loop; (b) Explainable, providing feature explana-
tions based on user behavior and model outcomes. Our findings 
demonstrate that interventions with the adaptive models signif-
icantly outperform both the basic (statistics-based) and the per-
sonalized ML (but non-adaptive) methods on smartphone overuse 
prediction accuracy (32.8∼55.5% relative advantage) and interven-
tion receptivity (8.0∼29.0%). Moreover, incorporating explanations 
in interventions can further enhance the effectiveness (53.8∼97.5% 
on relative accuracy, 11.4∼39.6% on relative receptivity). From the 
perspective of smartphone usage behavior, our results indicate 
that app visit frequency was reduced significantly with the help 
of Time2Stop (7.0∼8.9%). We also observe an interesting nuance of 
explanations’ effect on user behavior. Our qualitative results from 
the exit questionnaire and interview align with the quantitative 
findings, further supporting the advantage of Time2Stop. We dis-
cuss the mixed effects of explanations and the design considerations 
and ethical concerns of AI-based interventions. 

The main contributions of our paper can be summarized as 
follows: 

• We designed and implemented Time2Stop, an adaptive and 
explainable JITAI-grounded intervention system for smart-
phone overuse. Time2Stop performs real-time inference on 
smartphone overuse behavior, introduces just-in-time intel-
ligent intervention with explanations, and evolves based on 
users’ feedback. 

• We conducted a longitudinal field experiment with micro-
randomized trials to demonstrate the effectiveness of em-
powering interventions to be adaptive and explainable. Our 
results show that Time2Stop significantly outperforms base-
line techniques. 

• We share the lessons learned, and discuss the design con-
siderations and ethical concerns when creating AI-based 
smartphone intervention systems with humans in the loop. 

We envision that empowering AI-based JITAI with both human-
in-the-loop and AI explanations can go beyond smartphone overuse. 
When focusing on another application, careful design of the human-
AI-loop (e.g., updating models with user feedback in our case) and 
the integration of an appropriate level of explanation (e.g., high-
lighting feature types in our case) is necessary. 

2 BACKGROUND 
We first summarize existing research in smartphone overuse inter-
vention techniques and just-in-time adaptive intervention (JITAI) 
methods. We also provide a brief overview of explainable AI (XAI), 
and emerging research in the intersection of XAI and JITAI inter-
vention domains. 

2.1 Smartphone Overuse and Intervention 
Excessive smartphone usage has been connected to a variety of 
undesirable effects, such as distraction [57], anxiety and depres-
sion [26], neck pain [94], and disruptions in sleep patterns [46]. In 
response to the negative effects of smartphone overuse, there has 
been a wide range of commercial products and research solutions. 

For example, ScreenTime [78] on iOS and Digital Wellbeing [82] 
on Android are built-in tools designed to assist users in tracking 
app usage and setting usage limits. In addition, there are also vari-
ous third-party apps for overuse intervention, such as Forest [70], 
Digital Detox [66], and StayFree [2]. 

Within the academic sphere, researchers have proposed a 
large array of works in the smartphone overuse intervention do-
main [10, 41, 52, 54, 62, 67]. These methods can be generally divided 
into two categories: (1) sending notifications or reminders [27, 39], 
and (2) blocking user access to apps or phones [35, 38, 90]. The first 
category aims to softly persuade users to limit digital consumption. 
For example, MyTime [27] informs users about their usage time 
and sends notifications upon reaching their time limit. NUGU [39] 
leveraged social effects by visualizing smartphone usage among 
social groups via a scoreboard. The second category is more re-
strictive, aiming to introduce a higher interaction cost and a gulf 
of instant gratification. For instance, LockNType [35] adds a typ-
ing task before users can access their apps to trigger System 2, 
i.e., the reasoning and analytical system in the Dual Process The-
ory [30]. Building on top of this work, TypeOut [90] integrates the 
typing task with self-affirmation to effectively mitigate smartphone 
overuse. 

Other than dividing interventions based on their restrictive-
ness, another line of work was devoted to building smartphone 
interventions at different granularities: device-level, app-level, and 
feature-level. A study by Roffarello et al. [62] found that intervening 
at the app-level is more effective compared to device-level, as the 
former can generate more precise and interpretable statistics for 
users. Orzikulova et al. [67] investigated app-level (e.g., restricting 
Instagram and YouTube apps) and feature-level (e.g., limiting the 
usage of app features such as viewing suggested feed on Instagram 
and watching shorts on YouTube) interventions on mobile social 
media apps. The results indicated that feature-level restrictive in-
terventions were particularly effective in reducing the time spent 
on passive phone usage (e.g., watching short videos). 

While these intervention techniques are beneficial in enhancing 
user awareness and reducing phone use time, they rely on basic 
conditions (such as being triggered upon opening an app) or simple 
parameters specified by users (such as the daily usage limit). How-
ever, users’ behavior is changing dynamically and these manual 
rules are often outdated. For an intelligent smartphone intervention 
system, it is essential to account for user’s preferences, contexts, 
and smartphone usage patterns, so that it can achieve a good inter-
vention performance continuously. To address this gap, Time2Stop 
implements real-time adaptability to accommodate users’ evolving 
contexts and behavior. 

2.2 Just-in-Time Adaptive Interventions 
In the context of mobile health, JITAI is an emerging interven-
tion design methodology that seeks to deliver tailored and timely 
support by dynamically adjusting to an individual’s internal and 
contextual conditions [63, 64]. For a JITAI to be effective, inter-
vention needs to be delivered when the user is both vulnerable 
and receptive [60, 64]. Vulnerability denotes a period during which 
individuals are more susceptible to experiencing negative health 
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consequences (i.e., overusing smartphones in our case), whereas re-
ceptivity pertains to their ability to receive and process provided in-
terventions (i.e., accepting intervention and stopping using phones). 

JITAI-driven systems may either be rule-based [25, 73] or AI-
based [36, 43, 61]. Rule-based JITAI relies on predefined sets of rules 
and conditions to trigger interventions, typically established by 
domain experts. For example, Gustafson et al. [25] designed a JITAI 
system for alcohol consumption that will trigger intervention when 
users approach high-risk locations such as bars. Lukoff et al. [53] 
designed a proof-of-concept system with adaptable commitment 
interfaces for digital well-being. 

In contrast, AI-based JITAI leverages large-scale user behav-
ior data and trained AI/ML models to detect appropriate in-
tervention timing and personalize interventions. For example, 
Saponaro et al. [74] developed two types of AI-based JITAI sys-
tems (population-based, personalized) to reduce users’ sedentary 
behavior. Until recently, very few studies explored empowering AI-
based JITAI systems with user-in-the-loop to involve user feedback 
or reactions [36, 49]. Mishra et al. [60] implemented an adaptive 
chatbot that updates the ML model based on users’ receptivity to 
encourage physical activity. Rabbi et al. [71] and Liao et al. [49] 
integrated reinforcement learning algorithms into JITAI systems 
to adapt the model to each individual for more effective physical 
activity intervention. 

To our best knowledge, there have been very few prior studies 
exploring JITAI-based intervention for smartphone overuse [53], 
not to mention the advanced version that leverages users’ reactions 
in the human-AI loop. There is a set of technical challenges for such 
a system. First, the machine learning pipeline needs to respond 
within seconds when the user opens an app. Second, the model 
needs to promptly adapt to users’ ever-shifting habits. Time2Stop 
aims to address these challenges by establishing a real-time human-
AI loop system. 

2.3 XAI and Interventions 
Although black-box AI models excel in making complex predictions 
and handling intricate tasks, they often encounter challenges with 
interpretability and transparency, making it difficult for users to un-
derstand how the models arrive at specific decisions or predictions. 
This reflects the recent advance of explainable AI (XAI). By provid-
ing explanations for AI-driven decisions, XAI not only helps hu-
mans comprehend the rationale behind AI system outputs, but also 
instills a sense of trust and confidence in these systems [3, 72, 93]. 
Recent advances in XAI research have not only served AI/ML prac-
titioners and data scientists, enabling them to engage in model 
debugging and model behavior inspection [33, 50], but have also 
extended to domain experts in diverse fields [14] and end-users [6]. 
In the context of smartphone overuse detection and intervention, 
by showing why the users need to stop using certain applications, 
explanations can help users understand AI decisions and their own 
device usage patterns. Moreover, XAI has the potential to activate 
System 2 within the Dual Process Theory [29], clarifying the rea-
soning behind interventions targeting smartphone overuse [80]. 
These explanations stimulate users’ deliberate, analytical thinking 
(System 2) and introduce appropriate reliance on AI [80]. This ac-
tive engagement prompts users to reflect on their usage habits and 

make conscious adjustments, potentially leading to changes in their 
smartphone usage behavior. 

Despite the considerable attention given to the field of XAI, 
research at the intersection of XAI and JITAI remains limited. Woź-
niak et al. [83] observed that presenting users with both algorithm-
derived fitness goals and a clear explanation for the recommen-
dation could increase their trust towards the recommended goal. 
MindScope [36] is a stress management system providing different 
explanation levels. The results indicated that elaborate explanations 
helped users understand stress-related events, while categorical 
explanations allowed them to interpret stressors from their unique 
perspectives. In our case, Time2Stop integrates XAI into JITAI to 
enhance the intervention delivery transparency, effectively address 
users’ confusion about unexpected smartphone interventions, and 
foster user trust through seamless human-AI interaction. 

3 TIME2STOP DESIGN 
We developed Time2Stop — an intelligent, adaptive, and explainable 
intervention system for smartphone overuse. Grounded in JITAI 
principles, the main contribution of our system is the integration of 
continuous user feedback to form a human-AI loop. The architec-
ture of the Time2Stop system comprises two main building blocks: 
the ML pipeline to predict smartphone overuse (Section 3.1), and 
the intricate design of interventions to be shown to users when 
overuse is predicted (Section 3.2). 

This section provides an overall introduction to these core system 
components and the overall intervention flow (Section 3.3). 

3.1 Machine Learning for Smartphone Overuse 
Prediction 

Constructing an ML-driven JITAI system for predicting smartphone 
overuse and triggering intervention needs careful design across 
four key aspects: (1) feature design, (2) label collection mechanism, 
(3) adaptive model updates, and (4) explanation generation. In this 
section, we offer an in-depth exploration of each aspect. 

3.1.1 Feature Design. We design a set of five passive sensing fea-
ture categories [59, 87, 89] to capture smartphone overuse behavior: 

(a) Phone and App Usage. Understanding smartphone overuse 
requires a thorough analysis of usage patterns. We investigate both 
the high-level phone usage and the low-level app usage pattern. 
For phone usage, we track screen interactions and battery status. 
Screen interactions encompass phone unlock frequency and du-
ration, calculated from screen-on/off events. As for battery usage, 
we extract battery consumption rate, charge, and discharge dura-
tions. For app-related features, our approach includes statistical 
metrics (count, min, max, mean, standard deviation, sum) linked to 
app visit frequency and time spent. Additionally, fine-grained user 
interface interactions (e.g., scrolling, tapping) provide insights into 
smartphone overuse. We use UI-event-driven features, gathering 
data on quantities and proportions of events like scrolling, clicking, 
focusing, and window state changes. Moreover, we also include the 
count and diversity of notifications. 

(b) Activity. Users’ interaction with the environment presents 
another pivotal factor intertwined with smartphone overuse. Con-
cerning attributes related to physical activity, we examine station-
ary and mobile durations. Furthermore, ambient light offers insights 
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into the user’s specific location (such as the room) and may vary de-
pending on the time of day. In the case of ambient light, we extract 
statistical lux-related features. 

(c) Social Context. Users might reduce smartphone interaction 
in specific social settings, such as when with friends or peers. We 
primarily focus on text message-derived features (e.g., first mes-
sage time, top contacts) and Bluetooth signals as a proxy of social 
contexts (e.g., mean and standard deviations of scans, unique de-
vice counts). While we initially considered call-related features, we 
excluded them due to limited usage among participants. 

(d) Location. Smartphone usage can also be tied to specific 
places. To capture this, we extract diverse location-based features, 
including location type, variance, entropy, time at the most-visited 
places, time at home, and duration of location stays. We also in-
corporate statistical WiFi data features involving metrics such as 
scans from visible and connected access points. 

(e) Time. Previous work has highlighted different smartphone 
usage between times (e.g., night vs. daytime) [1, 85]. Therefore, we 
further include an objective temporal feature to capture this. 

3.1.2 Label Collection Mechanism. Time2Stop employs supervised 
learning for smartphone overuse prediction, which needs labeled 
data to train the model. We gather labels for two purposes: (i) to 
build the initial ML model and (ii) to update and adapt the ML model 
over time. Here we present the label collection mechanism for the 
first step, as shown in Figure 2 (Left). Further information about 
the data collection approach to update the ML model is provided in 
Section 3.1.3 and 3.2. 

Our label collection mechanism harnesses Ecological Momentary 
Assessment (EMA) methodology [75] by presenting a prompt to 
ask users to report whether they are overusing their phones. We 
collect user responses and use them as labels to train our model. 
Labels are collected in-the-moment in real-time as users engage 
with their phones. This instantaneous label collection is crucial as it 
ensures timely, contextually relevant labels while users’ app usage 
memory and experience remain fresh. 

We designed three distinct in-the-moment label collection rules: 
entry-moment, leaving-moment, and during usage. Previous stud-
ies in smartphone notification management [28, 32, 69] showed 
the effectiveness of breakpoint-based notification delivery. In-
spired by these works, we align optimal notification instances 
with task-switching moments, corresponding to accessing (i.e., 
entry-moment) and leaving a monitored app (i.e., leaving-moment 
prompts). In the smartphone overuse domain, empirical investi-
gations revealed that once involved with a potentially addictive 
smartphone app, stopping usage becomes challenging, resulting 
in unforeseen excessive usage [34, 40]. To address these instances 
of overuse, we also incorporate label collection during usage, ask-
ing users to provide labels every 10 minutes during monitored 
app usage. Moreover, to alleviate the labeling burden, we imple-
ment a cool-down interval. This prevents additional label collection 
prompts within a cool-down period if a user recently provided a la-
bel. In addition, we also provide a post-hoc labeling process, where 

users can go back to check any missing annotations of their app 
usage history. 1 

3.1.3 Adaptive Model Updates. We leave the specific ML model 
choice for the result section (Section 6) as it needs empirical evalu-
ation. Here, we focus on the model updates first. To tailor the ML 
model to each individual and accommodate their evolving behav-
iors, dynamic context, and smartphone usage patterns, we regularly 
update the ML model. We collect user feedback on the intervention 
as new labels. Together with the corresponding contextual data, 
these data can be used to update the ML model. It is noteworthy 
that the model update is personalized, i.e., we train and update a 
model for each user. 

Updating ML models involves deciding when to update the model 
and how to update the model. For the when part, while it’s possible 
to instantly update the model with each new data point, frequent 
model updates will incur expensive computational costs, causing 
delays in intervention delivery. We conduct ML updates daily from 
12 AM to 1 AM to retain the real-time aspect of just-in-time inter-
ventions. This process, taking 2 hours on average, ensures that the 
adapted models are available by the morning of each intervention 
day. 

How to update the model is another crucial design consideration. 
A simple approach would involve re-training the model with equal 
weights for all data samples, treating historical and current user 
behavior equally. However, this method is sub-optimal as it fails 
to account for changing user dynamics. In our approach, we adopt 
decay-based sample weight assignment, i.e., recent data will have 
relatively higher weights. Specifically, we adopted a linear decreas-
ing assignment from 1.0 to a minimum cap of 0.5. Based on empirical 
testing with pilot experiments, we assign the weight of the most 
recent day as 1.0, and it decreases linearly every half-week until it 
reaches 0.5. This can help the re-trained model adapt to evolving 
conditions and smartphone usage behaviors. By emphasizing re-
cent observations, the model becomes more adaptive, effectively 
capturing current trends while gradually reducing the impact of 
outdated information. We discuss other model update methods, 
such as reinforcement learning, as future work in Section 7. 

3.1.4 Model Explanation. We provide explanations derived from 
model predictions to enhance users’ understanding of the ML-based 
intervention system’s decisions and foster trust and collaboration 
with AI [3, 72]. These explanations are generated based on the top 
features contributing to an “overuse” prediction. We designed two 
explanation detail levels: high and low. A high-level explanation 
represents the feature category. As for the low-level explanation, a 
straightforward option is to use the actual feature name. However, 
our internal testing found that it introduced unnecessary details 
and cognitive load. Therefore, we simplify and abstract the raw 
feature name into a feature description (see Appendix A). For ex-
ample, consider the location feature “time spent at the second most 
frequent location”. The high-level explanation is “location”, and the 
low-level explanation is “time at frequent locations”. By default, 
users will see the high-level explanations and can access more 
detailed, low-level explanations if they are interested. 

1We recognize that such a label collection mechanism may intervene and affect 
phone usage behavior. Therefore, in Section 5, we intentionally inserted a break week 
between the label collection and intervention deployment to reduce the impact. 
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Figure 2: In-the-Moment Labeling and Intervention Interfaces. (Left) In-The-Moment Label Collection Interface; (Right) 
Time2Stop Intervention Interface. It encompasses four key components from top to bottom: (1) typing-based intervention task, 
(2) ML model explanations highlighting feature categories aligned with the model’s output, (3) collection of user feedback – 
this is an optional question that users can choose to respond or ignore, and (4) user actions. 

3.2 Intervention Design 
The JITAI-based intervention system aims to provide accurate and 
timely support while accommodating shifts in user context and con-
ditions, as discussed in Nahum et al.’s work [65]. Following these 
principles, we develop an intervention mechanism based on a typ-
ing task (offering the right support level). These interventions 
are triggered by an intelligent ML model detecting instances of 
“overuse” (optimal timing). Concurrently, user feedback is collected 
to enhance adaptation to individual user conditions and context (ac-
commodation). This feedback loop subsequently drives updates to 
the ML model. Meanwhile, we also provide explanations derived 
from the model predictions. 

3.2.1 Intervention Mechanism. The majority of prior work in the 
smartphone intervention domain provides interventions by either 
sending notifications/reminders [27, 40] or employing app access 
restrictions [35, 38]. However, notification-based interventions can 
be easily circumvented, while excessive restriction may agitate 
users and lead to counterproductive outcomes. We followed the 
previous work to balance intervention efficacy and usability and 
leveraged a typing-based intervention mechanism [35, 90] as in-
teraction friction. Users are asked to input specific digits before 
they can proceed to use a monitored app. The digits are randomly 
generated within each intervention instance. Users can exit the 
application anytime and return to the home screen. Prior work [35] 
suggested that a typing task with a medium workload (10 - 20 
digits) was effective and usable. Considering this, we designed a 
typing task comprising 12 digits. Note that the specific intervention 
mechanism is not the main focus of our paper, and we envision 

our adaptive and explainable system can be integrated with other 
mechanisms easily. 

3.2.2 Intervention Timing. Our ML model decides whether to in-
tervene based on users’ current context and app usage behavior. 
Users first select the apps for which they want to receive the inter-
vention (i.e., monitored apps), and the intervention will only focus 
on these apps. When the model predicts “overuse”, an intervention 
interface appears, as shown in Figure 2 (Right). Moreover, another 
design choice before triggering intervention involves determining 
the frequency of feature extraction and model prediction. Previous 
Just-in-Time (JIT)-based smartphone overuse techniques triggered 
interventions when users launched a monitored app [35, 51], or 
when the duration of a target app usage reached a predefined thresh-
old [27, 67]. Our design takes both the launching moment and the 
usage period into account. We opt to initiate the feature extraction 
and model prediction process both upon app launch and periodi-
cally while the target app is in use. We empirically set the prediction 
interval as 5 minutes based on our pilot study. We further defined 
a 10-minute cool-down period after triggering an intervention to 
avoid a disrupted user experience. 

3.2.3 User Feedback to Update Model. To adapt to dynamic shifts 
in user context and app usage behavior, we update each individual’s 
ML model regularly. This entails obtaining fresh labels during the 
intervention period. One straightforward approach is employing 
the same label collection mechanism for constructing the initial 
model (see Section 3.1.2). However, this would considerably hinder 
system usability. Users would have to contend with both labeling 
prompts and intervention notifications. We integrated user labeling 
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within the intervention interface (Figure 2 Right) to address this 
issue. 

When the intervention pops up, users are encouraged to provide 
feedback with a simple click to indicate whether they are overusing 
the phone. We design the labeling prompt with simplicity while 
ensuring it provides guidance to identify instances of smartphone 
overuse. The phrasing is deliberately structured to avoid potentially 
eliciting negative feelings regarding users’ behavior. Rather than 
posing a direct query about smartphone or app overuse, users 
are prompted to indicate their agreement or disagreement with 
the statement: “I think I shouldn’t use AppName now.” In cases of 
agreement, the data point is categorized as “overuse”, which can 
be used to reinforce the ML model; conversely, in instances of 
disagreement, it is classified as “not overuse”, which can serve as a 
correction to the model. Once we receive feedback, we utilize them 
as new labels to update the ML model, following the design we 
introduced in Section 3.1.3. Note that this is an optional question, 
and users are not forced to respond. This process can capture the 
false positive cases, i.e., an intervention pops up when users are 
not overusing their phones. Moreover, users can also leverage the 
post-hoc labeling to provide feedback on false negative cases, i.e., 
an intervention does not pop up when they are overusing their 
phones. 

3.2.4 Model Explanations. As detailed in Section 3.1.4, our ex-
planation framework generates explanations at two levels: high 
and low. Previous XAI-based JITAI work in stress management 
by Kim et al. [36] showed that although most users favored more 
detailed explanations, such low-level explanations could potentially 
undermine the system’s trustworthiness. Based on these findings, 
we decided to highlight the categories of essential features, such as 
“location”, “activity”, “app usage” (see Figure 2 Right). The interface 
only presents the top three crucial feature categories for the ML 
model inference and hides other categories to avoid confusion. We 
use their high-level explanations as icons in Figure 2. Furthermore, 
we provide low-level feature descriptions for users seeking deeper 
insights by clicking the “Click to see more” button. 

3.3 Intervention Flow 
Combining the ML and intervention design in Section 3.1 and 3.2, 
the intervention flow of Time2Stop is visualized in Figure 1. There 
are two loops within the flow: (1) the inner loop (green) is dedicated 
to the ML model inference process, and (2) the outer loop (blue) 
manages the ML model update process. 

In the inner loop, ML model inference is performed through a 
sequence of steps. 1 ○ Contextual and app usage data are initially 
collected by the mobile app (depicted on the left) and transmitted to 
the cloud server. 2 ○ Here, the cloud server pre-processes raw data, 
extracts features, performs inference, obtains prediction output, 
and generates corresponding explanations (depicted on the right of 
Figure 1). The output of the model’s prediction and explanations 
are then relayed to the user. In cases where the model predicts 
“overuse”, the intervention interface (as illustrated in Figure 2) will 
pop up. 

Conversely, the outer loop takes charge of the ML model update 
through user feedback and model enhancement cycles. 3 ○When the 
interface appears, users can provide feedback indicating whether 

they are overusing their phones. 4 ○ This feedback is then transmit-
ted to the cloud server, where new labels and features are re-trained. 
The updated ML model is then employed to generate more tailored 
and adaptive predictions, which are conveyed back to the user. 

4 SYSTEM IMPLEMENTATION 
Based on the system design in Section 3, we then introduce the 
implementation details of Time2Stop. We instantiated Time2Stop 
on Android OS (end-user side) and a server (cloud side), as shown 
in Figure 3. We conducted a one-week pilot field study with four au-
thors of this paper to debug and finalize the system implementation, 
which includes the sensing platform (Section 4.1), the intervention 
interface (Section 4.2), and the ML pipeline (Section 4.3). 

4.1 Context Sensing 
To obtain the data we mentioned in Section 3.1.1, we leverage 
AWARE, an open-source passive sensing platform designed for be-
havioral data collection [15]. Our data collection includes multiple 
sensor streams: location, Bluetooth, Wi-Fi, network, light, screen 
activity, activity recognition, and communication (including SMS 
and calls). We further build our custom app usage tracker with 
Android’s AccessibilityService API [12] that adeptly identifies 
the start and end of app sessions, dynamically monitors time allo-
cation and visit frequencies, captures notifications from monitored 
applications, and records fine-grained user interactions with mon-
itored apps, including scrolling, clicking, focusing, and window 
state changes. 

4.2 Intervention Interface 
We have introduced the interface design in Section 3.2, making the 
Android implementation straightforward. Moreover, the interface is 
implemented as an AlertDialogue, which becomes an overlay on 
top of the monitored app. When users enter the displayed random 
digits correctly into the input form and click the “Continue using” 
button, the overlay window is dismissed, and users are allowed 
to use the app. Conversely, upon clicking the “Leave app” button, 
the phone programmatically returns to the home screen. Users’ 
reactions to the intervention will not impact the content in the app. 

4.3 Machine Learning Pipeline 
Our ML pipeline consists of three parts: (1) model inference, (2) 
model update, and (3) explanation generation. The technical details 
of these components are described in Figure 3. The end-user side is 
a mobile app running on Android OS, and the cloud side consists 
of a web app (Flask), a back-end (Redis and Celery), and a database 
(MySQL). The upper figure describes the model inference, and the 
lower sub-figure describes the model update. 

4.3.1 Model Inference. The pipeline contains seven steps. 1 ○ The 
Android client posts the contextual data to the cloud web server 
with the frequency described in Section 3.2.2. 2 ○ A Flask-based 
web app manages a task queue that handles the arrived tasks. Once 
the task arrives at the cloud, the web app enqueues the task and 
dequeues in a first-in-first-out (FIFO) manner. 3 ○ The back-end 
processes the raw data by imputing missing values, normalizing the 
raw values, and extracting features. 4 ○ It also performs the inference 
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Figure 3: Overview of System Implementation. (Top): Model Inference. (Bottom): Model Update Leveraging User Feedback. 

using the ML model to obtain overuse prediction. Explanations are 
generated using the SHAP method (see Section 4.3.3) [55]. 5 ○ Raw 
data, extracted features, model outputs and generated explanations 
are then stored in the cloud database. 6 ○ Once model outputs and 
explanations are ready, the web app updates the task status and 
the results so that the client can pick it up. 7 ○ The Android client 
sends a request to obtain the results. In our pilot study, most of 
the responses arrived within 3 seconds. If the user is still using the 
monitored app when the results arrive, it checks the model output. 
If the prediction is “overuse”, the Android client will pop up the 
intervention, together with the feature explanations. Otherwise, no 
intervention will show up. 

4.3.2 Model Update. As introduced in Section 3.1.3 and 3.2.3, 
Time2Stop updates the model on a daily basis. This pipeline in-
cludes five steps. 1 ○ User-provided feedback is stored in the mobile 
app and sent to the cloud server. The next two steps of task handling 
( 2 ○) and feature extraction ( 3 ○) are similar to the ones in model 
inference. 4 ○ Next, the adaptive ML model is re-trained, using the 
user-provided feedback as new labels. We adopt the weight assign-
ment introduced in Section 3.1.3 during the re-training. 5 ○ Lastly, all 
data, extracted features, and the new model checkpoint are stored 
in the database. 

4.3.3 Explanation Generation. To interpret the model predictions, 
we measure feature importance with SHapley Additive exPlana-
tions (SHAP) [55], an XAI method that computes the impact of 
each feature on prediction outcomes. We rank the features based 
on their importance and obtain the corresponding high-level and 
medium-level explanations introduced in Section 3.1.4 and 3.2.4. 
These explanations are sent to the user along with the model out-
come during the model inference. 

Table 1: Multiple Intervention Types with Characteristics. 
The last row represents our complete Time2Stop system with 
ML-powered adaptive and explainable JITAI. 

Intervention Type Characteristics 
ML-based Adaptive Explainable 

Control    
Personalized    

Adaptive-wo-Exp    
Adaptive-w-Exp 
(i.e., Time2Stop)    

5 FIELD EXPERIMENT 
To investigate how AI-powered intelligent and explainable JITAI 
can affect smartphone overuse in real-life scenarios, we conducted 
an 8-week field experiment using Time2Stop. Our study aims to eval-
uate both the adaptive aspect and explainable aspect of Time2Stop, 
which requires careful experiment design (Section 5.1). We then 
introduce our field experiment procedure (Section 5.2) and partici-
pants (Section 5.3). 

5.1 Experiment Design 
5.1.1 How to Evaluate Adaptive and Explainable Interventions? To 
assess the efficacy of the adaptive and explainable components, we 
devised four distinct intervention types, each taking one step more 
advanced than the previous method (see Table 1). 

(1) Control. This was a baseline method. It intervened with users 
simply based on probability (e.g., a user might receive intervention 
when launching an app and every five minutes in 30% of the cases). 
The individual probability of the intervention was derived from the 
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user-provided labels during the first phase of the experiment (the 
modeling phase, see Section 5.2). 

(2) Personalized. This method added the ML component on top 
of Control, using the data collected during the modeling phase. To 
ensure a Personalized model aligned with each user’s behavioral 
patterns while leveraging the rich data from other users, greater 
emphasis was placed on the user’s own data by assigning it higher 
weights than the data collected from others. Through empirical 
tests, the weight for self-data was set at 1.0, while others’ data 
received a weight of 0.1. The personalized model remained static 
and unchanged throughout the intervention period. 

(3) Adaptive-wo-Exp. This method further added the adapting 
component on top of Personalized. The model underwent a similar 
training procedure as Personalized at first. It also involved daily 
model re-training and updates, using continuous user feedback and 
corrections in response to intervention prompts, as we introduced 
in Section 3.1.3. 

(4) Adaptive-w-Exp. Finally, this method added the explanation 
component on top of Adaptive-wo-Exp and completed the whole 
Time2Stop system. The model of Adaptive-w-Exp was identical to 
that of Adaptive-wo-Exp. The only distinction was that Adaptive-w-
Exp provided ML output explanations in the intervention interface, 
as introduced in Section 3.1.4 and shown in Figure 2. 

Note that both Adaptive-wo-Exp and Adaptive-w-Exp fell into 
the category of adaptive models. Other than Adaptive-w-Exp that 
displayed explanations, the interface of the other three types was 
exactly the same to reduce bias. 

5.1.2 Micro-Randomized Trials. Considering the sample size to 
compare four groups, we adopted a within-subject design. Specifi-
cally, we employed Micro-Randomized Trials, which is an experi-
mental design technique optimized for JITAI-grounded intervention 
within the mHealth domain [37]. Instead of having users go through 
different experiment groups one by one, this method proposes to 
randomize the groups with smaller units (e.g., daily or each inter-
vention), so that the effect of potential confounding variables can 
be reduced. 

In our case, we altered the intervention type among the four 
types on a daily basis, and each participant experienced only one 
type of intervention every day. In order to minimize the order effect, 
we employed the Latin Square design (𝑛=4) [13] to diversify the 
intervention altering order. During our study onboarding sessions, 
we briefly introduced the four intervention types to users, but 
they were not informed of the specific order or dates for the four 
intervention types during the field study. This was also designed to 
reduce cognitive bias. 

5.1.3 Evaluation metrics. We focused on four quantitative metrics 
to evaluate the performance of Time2Stop and the other three 
intervention types. The first two were about the model performance: 
(1) intervention accuracy, (2) intervention receptivity. The other 
two focused on its impact on users’ phone usage patterns: (3) app 
usage duration and (4) app visit frequency. 

Specifically, intervention accuracy represented the proportion 
of interventions that were marked as “correct” by users among the 
total number of intervention pop-ups. Note that this is a subjec-
tive algorithm measure instead of an objective measure, as there 

is no way to obtain an objective ground truth of overuse. Inter-
vention receptivity, on the other hand, referred to users’ reaction 
after encountering interventions, which included stopping usage 
(e.g., returning to the home screen, triggering a screen-off event by 
locking the phone) or continuing usage. Instances where users quit 
the app were considered receptive interventions, while instances 
of continued usage were designated as non-receptive interventions. 
The other two metrics of app usage duration and visit frequency 
were calculated from the collected app usage log. 

For qualitative metrics, we revealed the exact dates for each in-
tervention type to users at the end of the study. We highlighted 
the latest four days to help users recall their experience with the 
four different techniques, as they had the most fresh memory. Then, 
we distributed a final questionnaire, asking them to rank the four 
types based on their preferences, as well as their perceived accu-
racy, effectiveness, and level of trust in different intervention types. 
Moreover, we conducted semi-structured exit interviews with par-
ticipants to collect their feedback and intervention preferences. Our 
interview started with questions: “What do you think of the four 
intervention techniques? What’s the reason behind your prefer-
ence ranking? What do you think of the explanations coming with 
interventions?” For participants with low intervention accuracy 
and receptivity, we also asked about their thoughts and reactions 
towards intervention. We then followed the participants’ lead and 
followed up with more detailed questions. The interviews were 
recorded, and three researchers followed the procedure of thematic 
analysis [7] to independently analyze and code the data. Then, they 
met, discussed, and iterated the coding until convergence. 

5.2 Procedure 
Our field experiment consisted of eight weeks, as shown in Figure 4. 
After the orientation and onboarding session, our field deployment 
experiment followed a sequence of four phases: (1) an initial mod-
eling phase involving label collection lasting for two weeks, (2) a 
one-week break phase, (3) a subsequent week dedicated to baseline 
data collection without any intervention, and (4) a final four-week 
intervention phase with the design of micro-randomized trials. 

In the modeling phase, we passively collected contextual and app 
usage data along with user-provided labels, using the label collec-
tion mechanism (see Section 3.1.2). These data points were used to 
calculate the individual probability (for Control) and train the initial 
ML models (for Personalized, Adaptive-wo-Exp, and Adaptive-w-
Exp). To mitigate carry-over effects inherent in label collection, we 
incorporated a designated break phase. Then, we proceeded with 
the baseline week, during which we gathered baseline app usage 
data (usage duration and visit frequency of monitored apps) when 
there was no intervention. This data would serve as a comparative 
benchmark against diverse intervention types. Finally, during the 
intervention stage, interventions were introduced to users. User 
feedback and the accompanying behavioral data were collected (see 
Section 3.2.3) to update the Adaptive-wo-Exp and Adaptive-w-Exp 
models. Since users could still provide feedback during the Con-
trol and Personalized, these data were also collected to update the 
adaptive models. 

At the end of the intervention phase, the intervention order was 
presented to participants. They then filled out the questionnaire 
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Figure 4: Field Experiment Flowchart 

and completed the exit interview. They were compensated up to 
$50 based on their study compliance. 

5.3 Participants 
We posted a call for participation on large university community 
forums, together with a survey including basic demographics and 
a Smartphone Addiction Scale (SAS, score ranging from 33 to 
198) [44]. We selected participants who used an Android smart-
phone as their primary phone and had a high SAS score (>120). 176 
participants met the criteria. 127 of them attended the onboarding 
session. Among these participants, 49 discontinued their participa-
tion during the field study. Out of the 49 discontinued participants, 
20 chose to exit the study citing personal reasons, 17 encountered 
software and hardware issues, 8 experienced compatibility con-
cerns, 3 raised privacy issues, and 1 attributed their departure to 
battery concerns. Seven participants whose sensor or usage data 
only covered three or fewer intervention types were also elimi-
nated from the analysis. In total, 71 participants (48 females, and 23 
males, aged 21.8 ± 2.3, from 18 to 27) completed the whole study 
and provided high-quality data. Our analysis results were based on 
these participants. 

6 RESULTS 
Throughout our field experiment, we collected 497,458 minutes of 
usage data for 149 monitored apps (17 ± 5 apps per person) from 
207,898 app sessions. App categories of entertainment, social media, 
and shopping emerged as the most frequently selected app cate-
gories. In total, we collected 75,670 ground truth labels during the 
modeling phase. 60.5%, 24.5%, and 14.9% of them were collected at 
the entry, using, and exit stages. During the intervention phase, we 
captured 47,939 intervention encounters, among which we collected 
39,188 additional labels from user feedback. These data were used 
for our quantitative analysis. We also investigated the qualitative 
data from questionnaires and interviews. 

To build the optimal initial AI-based intervention models, we 
first compared multiple ML models using the data from the model-
ing phase (Section 6.1). After checking the intervention frequency 
among different intervention methods (Section 6.2), we then evalu-
ated the adaptiveness and explanation aspects of Time2Stop from 
multiple metrics, including accuracy and receptivity (Section 6.3), 
app usage duration and visit frequency (Section 6.4), as well as 
participants’ perceived effectiveness of different intervention types 
(Section 6.5). Overall, our findings showed the consistent advan-
tage of the adaptive component (Adaptive-w-Exp/Adaptive-wo-Exp 
vs. Personalized/Control). We also observed interesting effects of 
explanations (Adaptive-wo-Exp vs. Adaptive-w-Exp) on app usage 
behavior and user experience. 

6.1 ML Model Comparison 
Using the data gathered during the modeling phase, we compared 
a wide range of off-the-shelf ML models, including Naive Bayes 
(NB), Logistic Regression (LR), Support Vector Machines (SVM), 
Decision Trees (DT), Random Forest (RF), and K-Nearest Neighbors 
(KNN). To account for real-world temporal changes in user behavior 
and simulate actual model deployment, we used the first week for 
training and the subsequent week for testing. 

The collected data was imbalanced (37.8% overuse, 62.2% non-
overuse). Other than calculating individual probabilities for the 
Control intervention type (42.4 ± 24.4%), we experimented with 
SMOTE-based under-sampling and up-sampling methods for model 
training [9]. We also tuned hyperparameters on promising models 
with grid search. Our results indicated that RF (number of estima-
tors: 100, max depth: 10, min samples split: 5), coupled with the 
up-sampling method, had the best performance across all models, 
with an F1 score of 66.7%. Other models had worse results: NB 
(55.3%), LR (59.0%), SVM (59.0%), DT (59.6%), KNN (62.6%). We use 
this RF model as the static ML model for Personalized, as well as 
the initial model for Adaptive-wo-Exp and Adaptive-w-Exp. 

We also performed a feature importance analysis across all users’ 
models. Our analysis revealed consistency in vital features among 
participants: the most common important features were related 
to phone usage (unlock duration), location (total travel distance, 
moving to static ratio), and temporal feature (e.g., whether night 
time). 

6.2 Intervention Frequency 
Prior to the comparison of intervention effectiveness, we first com-
pare the frequency of intervention in our field experiment. Our 
Friedman test across four intervention types showed that the num-
ber of daily interventions was significantly different (𝜒 2 = 16.60, 
𝑝 < 0.001). Our post-hoc pairwise comparison (Wilcoxon signed-
rank test with Holm-Bonferroni correction) indicated differences 
between Control and all the rest threes (𝑝s < 0.01), but not for other 
pairs. This means that the personalized and adaptive models sent 
fewer interventions to users. As shown in the rest of this section, 
they were more effective with less intervention frequency. 

6.3 Intervention Accuracy and Receptivity 
In this section, we investigate the effectiveness of adaption (Sec-
tion 6.3.1) and explanation (Section 6.3.2) through the perspective 
of intervention accuracy and receptivity. We also measure the per-
formance dynamics over time (Section 6.3.3). Since individual be-
haviors varied greatly across participants, we used Control as the 
benchmark and normalized accuracy and receptivity metrics for 
each participant accordingly. A value higher than 1.0 means better 
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Figure 5: Intervention Accuracy (Top) and Receptivity (Bot-
tom) Comparison across Three Intervention Types. Error bar 
indicates standard deviation. The same below. The two adap-
tive versions (with and without explanation) are merged into 
Adaptive to highlight better that adaptive ML-based methods 
had higher intervention accuracy and receptivity. 

performance and a value lower than 1.0 indicates worse perfor-
mance. 

6.3.1 Effectiveness of Adaptation. Our results indicated that 
adaptive methods achieved significantly higher intervention 
accuracy and receptivity. To evaluate the effectiveness of our 
intelligent intervention types (static or adaptive ML models), we 
first merged Adaptive-wo-Exp and Adaptive-w-Exp into a type called 
Adaptive to highlight the adaptation property better. Figure 5 (Left) 
shows the comparison across the three types Control, Personal-
ized (Δ=17.1% over Control), and Adaptive (Δ=55.5%). We fitted a 
Generalized Linear Mixed Model (GLMM) on intervention accu-
racy, with the Gamma family based on a Kolmogorov–Smirnov 
distribution test2 . We set intervention type as the main effect and 
participant ID as the random effect. Our results showed that the 
intervention type had a significant effect (𝜒 2 (2)=24.52, 𝑝<0.001). 
Post-hoc analysis with Holm-Bonferroni correction further indi-
cated that both the static Personalized model (𝑝<0.05) and the Adap-
tive models (𝑝<0.001) had significantly higher intervention accu-
racy compared to the Control baseline. Furthermore, the Adaptive 
model further significantly outperformed the static Personalized 

2Unless noted otherwise, we repeated the same procedure for the rest of the 
GLMM models. 

model (𝑝<0.01, Δ=32.8%). These results not only revealed the effec-
tiveness of the ML component (Personalized vs. Control), but also 
more importantly, indicated the effectiveness of the adaptation part 
(Adaptive vs. Personalized). 

While accuracy refers to explicit user subject feedback on inter-
ventions, receptivity describes their actual behavior (i.e., continue 
using the app or quitting it). Hence, receptivity metrics enable us 
to measure how different interventions affect participants’ actual 
behavior. We ran another GLMM on the intervention receptivity 
with the same setup as the accuracy test. Similarly, the results 
also indicate the significance of intervention type on receptivity 
(𝜒 2 (2)=18.44, 𝑝<0.001), as shown in Figure 5 (Right). The post-hoc 
pairwise results indicated that participants were more receptive 
when using the Personalized (𝑝=0.005, Δ=19.4%) and Adaptive 
(𝑝<0.001, Δ=29.0%) intervention types compared to the Control. 
These observations on the receptivity metric were consistent with 
those in the accuracy metric. 

6.3.2 Effectiveness of Explanations. Our results suggested that 
adding explanations significantly enhanced intervention ac-
curacy and receptivity. To investigate the impact of explana-
tions, we divided the Adaptive type back to the original two groups 
Adaptive-wo-Exp and Adaptive-w-Exp. The comparison results of 
the four intervention types are shown in Figure 6 (Left). We ran 
another GLMM on accuracy, with the four intervention types as 
the main effect and participant ID as the random effect. The results 
showed significance of intervention types (𝜒 2 (3)=35.70, 𝑝<0.001), 
and the post-hoc analysis suggested that Adaptive-w-Exp (i.e., our 
complete Time2Stop system) interventions exhibited the highest ac-
curacy by outperforming Control (𝑝<0.001, Δ=97.5%), Personalized 
(𝑝<0.01, Δ=66.9%), and even Adaptive-wo-Exp (𝑝<0.05, Δ=53.8%). 
This evidence suggested the effectiveness of explanations: By ex-
plaining why they might be overusing smartphones, Time2Stop 
could help participants better realize and recognize their overuse 
behavior than the cases without explanations. 

Similar to accuracy, our GLMM on receptivity also showed sig-
nificance (𝜒 2 (3)=25.57, 𝑝<0.001). Adaptive-w-Exp also achieved the 
highest receptivity, as shown in Figure 6 (Right), with strong sig-
nificance over Control (𝑝<0.001, Δ=39.6%), as well as marginal sig-
nificance over Personalized (𝑝=0.06, Δ=18.9%) and Adaptive-wo-Exp 
(𝑝=0.07, Δ=11.4%). Combining the results of both intervention accu-
racy and receptivity, we found that Time2Stop could not only help 
participants recognize their overuse behavior (higher accuracy), but 
also help them stop using an app in the moment (higher receptivity). 
This finding suggests the effectiveness of Time2Stop by delivering 
interventions when the users were receptive [61, 64]. 

6.3.3 Effectiveness over Time. Both adaptive models had in-
creasing intervention performance over time. Adaptive-wo-
Exp and Adaptive-w-Exp approaches both regularly updated the ML 
model nightly. We also evaluated their intervention performance as 
the field study progressed. As intervention receptivity provides a 
more objective reflection on user behavior, we analyzed receptivity 
dynamics over time, as presented in Figure 7. The Y-axis represents 
normalized receptivity, while the X-axis denotes the progress of the 
intervention phase. Since we used micro-randomized trials, we took 
four days as an intervention block, constituting a complete cycle of 
four distinct intervention types. Block 2 coincided with a national 
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Figure 6: Intervention Accuracy (Top) and Receptivity (Bot-
tom) Comparison across Four Intervention Types. The 
two versions of Adaptive are divided (Adaptive-w-Exp and 
Adaptive-wo-Exp) to better highlight that adding explana-
tions can further enhance the performance of interventions. 

holiday period, during which participants were on a break and did 
not attend classes. We observed a significant drop in receptivity 
from Block 1 to 2 (see the left of Figure 7. Thus, we focused our 
analysis after Block 3. 

We observed an increasing trend in receptivity for the two adap-
tive intervention types, with Adaptive-w-Exp having the most posi-
tive slope (𝑟 =0.16, Δ=63.6%), followed by Adaptive-wo-Exp (𝑟 =0.06, 
Δ=19.1%). These results indicated that our adaptive models could 
gradually improve over time and that explanations could continu-
ously enhance the intervention’s effectiveness. Moreover, Personal-
ized’s receptivity was consistently higher than the Control baseline 
across all blocks. However, Personalized showed a slight decreas-
ing trend (𝑟 =-0.03), while Control showed a slight increasing trend 
(𝑟 =0.05). This result may indicate that participants got used to the 
static ML-based intervention and had less receptivity over time. Our 
interview data revealed the potential reason behind this interesting 
finding. We will present more results in Section 6.5.1. 

6.4 App Usage Behavior 
In addition to intervention accuracy and receptivity, app usage 
behavior patterns were also important metrics to objectively mea-
sure the impact of interventions. We analyzed the app usage logs 
to investigate the changes in participants’ app usage frequency 
(Section 6.4.1) and duration (Section 6.4.2) between the baseline 

week and the intervention phase. Similar to Section 6.3, we also 
normalized our data against the baseline week data to reduce the 
bias introduced by individual differences. 

6.4.1 Change of App Visit Frequency. The two adaptive methods 
achieved a significant or marginally significant reduction in 
visit frequency compared to the base week. However, show-
ing explanations was not as helpful. Figure 8 (Left) compares 
the normalized visit frequency of the four intervention types. The 
average daily visit frequency to monitored apps during the baseline 
collection period was 94.97 times (SD=52.57). Our results indicated 
that the visit frequency was reduced for all intervention types: 
Control (93.0%), Personalized (92.2%), Adaptive-w-Exp (91.7%), and 
Adaptive-wo-Exp (89.8%). We ran a GLMM on the visit frequency, 
with the intervention type as the main effect and participant ID as 
the random effect, which showed significance (𝜒 2 (4)=13.85, 𝑝<0.01). 
Post-hoc results with Holm-Bonferroni correction showed that 
the visit frequency during the days of Adaptive-wo-Exp interven-
tion was significantly lower than the baseline week (𝑝<0.01), and 
that the frequency of Adaptive-w-Exp show marginal significance 
(𝑝=0.07<0.1). 

This showed the advantage of the two adaptive methods over 
the Personalized and Control methods. However, although the direct 
comparison between Adaptive-wo-Exp and Adaptive-w-Exp was not 
significant, we observed an interesting reversed effect of explana-
tions: In Sections 6.3 and 6.4, explanations could help to improve the 
intervention accuracy and receptivity; However, when looking into 
the app visit frequency, adaptive intervention without explanations 
had better performance. 

6.4.2 Change of App Usage Duration. We also observed similar 
trends for app usage duration. The average time spent on monitored 
apps during the baseline week was 214.00 minutes (SD=103.57). 
The usage duration was reduced for all intervention types: Control 
(93.3%), Personalized (93.1%), Adaptive-w-Exp (91.7%), and Adaptive-
wo-Exp (89.9%). We still observe the similar advantage of Adaptive-
wo-Exp over Adaptive-w-Exp, but the GLMM on usage duration 
did not show significance (𝜒 2 (4)=2.62, 𝑝=0.62). With Adaptive-w-
Exp, although participants recognized and stopped more immediate 
overuse behavior, their overall usage patterns did not change much 
as Adaptive-wo-Exp. We discuss these findings more in Section 6.5 
and Section 7.1. 

6.5 Subjective Measure 
In addition to the intervention accuracy, receptivity, and app usage 
behavior results, participants’ survey responses and comments 
during exit interviews also provided interesting insights. 

6.5.1 Clear Advantage of Adaptive Intervention Methods. Over-
all, participants had a clear preference for Adaptive-w-Exp (i.e., 
Time2Stop) and Adaptive-wo-Exp, followed by Personalized, and 
then Control. The left of Figure 9 presents participants’ ranking 
results among the four intervention techniques. Adaptive-w-Exp 
received the most NO.1 ranking (45% of participants), and Adaptive-
wo-Exp came as the second (43%). This observation was confirmed 
by a non-parametric Friedman test on ranking numbers that showed 
strong significance (𝜒 2 (3)=88.01, 𝑝<0.001). Our post-hoc pairwise 
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comparison (Wilcoxon signed-rank test with Holm-Bonferroni cor-
rection) indicated significance among all pairs (𝑝s<0.001) except 
Adaptive-w-Exp vs. Adaptive-wo-Exp (𝑝=0.45). 

Meanwhile, participants’ ratings on the time accuracy, inter-
vention effectiveness, and level of trust were consistent with the 
ranking results, as shown in the right of Figure 9. We ran three 
individual Friedman tests on the three metrics. All of them indi-
cated significance (𝑝s<0.001). The post-hoc analysis showed that 
almost all pair comparisons were significant (for Adaptive-w-Exp vs. 
Adaptive-wo-Exp: 𝑝effectiveness<0.01, 𝑝trust<0.05, all others 𝑝s<0.001). 
The only exception was Adaptive-w-Exp vs. Adaptive-wo-Exp on 
time accuracy (𝑝=0.15). 

Our interview data also triangulated these quantitative findings. 
Many participants felt the difference when comparing Personalized 
and Control. “The random version [Control] didn’t make sense, and 
the timing was strange some days. I think the personalized ML version 
[Personalized] was consistent with my annotations a few weeks ago.” 
(P14) A similar distinction was also observed when comparing the 
two adaptive versions and Personalized. “I can feel that the adaptive 
version [Adaptive-wo-Exp] has been learning about my behavior. At 
the later stage of the study, some days more interventions would pop up 
if I overused more.” (P34) “The version with explanations [Adaptive-
w-Exp] is clearly adaptive. The intervention timing became more 
comfortable after I used it for a while.” (P55) It is noteworthy that the 
interface of Adaptive-wo-Exp, Personalized, and Control were the 
same, and participants only learned the exact dates for intervention 
methods after the study finished. So, their feeling of differences 
was mainly based on their experience of the intervention timing. 

These findings are in line with the results in the previous section 
about the advantage of Personalized over Control, and more impor-
tantly, the advantage of Adaptive-w-Exp and Adaptive-wo-Exp over 
other two methods. 

Moreover, we also noticed that there was a small proportion of 
users ranking Control as the top 1 type (Figure 9 left). Participants 
commented that this technique was “surprising/unexpected”. This 
was in contrast to the Personalized method. “Later in the study, I 
could somehow expect when it [Personalized] would show up. But 

that method [Control] is hard to predict. So sometimes it is refresh-
ing.” (P15) This is also supported by previous work [42], which 
could explain the increasing trend of Control’s receptivity and the 
decreasing trend of Personalized over time in Section 6.3.3 and 
Figure 7. 

6.5.2 Trade-off between with vs. without Explanation. We also 
had interesting observations that could explain the difference be-
tween intervention receptivity (where Adaptive-w-Exp had the best 
performance, as shown in Figure 6 and 7) and app usage behavior 
(where Adaptive-wo-Exp was the best, Figure 8). 

Our survey results suggested that Adaptive-w-Exp and Adaptive-
wo-Exp had similar performance. We also found diversity in prefer-
ence ranking of Adaptive-w-Exp: Although Adaptive-w-Exp received 
45% of the NO.1 voting (compared to a similar 43% for Adaptive-
wo-Exp), it also received 19% of the NO.3 voting (compared to a 
much lower 8% for Adaptive-wo-Exp). While most participants liked 
Adaptive-w-Exp, a certain proportion of participants found it less 
preferable. 

We dug deep into this difference during our exit interviews. On 
the one hand, participants who preferred Adaptive-w-Exp found 
explanations could trigger more self-awareness: “Seeing the expla-
nations could help me to better self-reflect, which often made me stop 
using my phone.” (P26) “Those explanations pushed me to think more 
about the reason behind my phone usage.” (P29) “Explanations helped 
me to trust the system better.” (P24) These results indicated that 
showing explanations could better trigger System 2 (the reason-
ing and analytical system) with reasoning and self-analysis and 
improve users’ trust in the intervention. These could explain the sig-
nificantly better effectiveness and level of trust in Adaptive-w-Exp 
(yet the effective sizes were limited 𝑟effectiveness=0.20, 𝑟𝑡 𝑟 𝑢𝑠𝑡 =0.16). 
On the other hand, participants who did not like Adaptive-w-Exp 
found explanations overly broad and sometimes confusing. “Some-
times, the explanations felt accurate. But they were very broad so I am 
not sure.” (P34) Some participants found explanations unnecessary. 
“I was aware of my phone overuse, so I didn’t need explanations.” (P59) 

Figure 7: Intervention Performance Over Time. Both adaptive models had an increasing trend, followed by the Control group, 
while Personalized method showed a decreasing trend. 
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These results suggest a more detailed and fine-grained explanation 
could be helpful for smartphone overuse intervention. 

These diverse user reactions toward intervention explanations 
could explain the mixed results when comparing Adaptive-w-Exp 
and Adaptive-wo-Exp. We will have more discussion about this in 
Section 7. 

6.6 Summary of Results 
Our 8-week field experiment showed that AI-powered JITAI inter-
ventions effectively reduce smartphone overuse. Our two Adaptive 
models provided significantly more accurate interventions com-
pared to Control (55.5%) and Personalized (32.8%) groups. This trend 
was consistent for intervention receptivity: participants were sig-
nificantly more receptive to the two Adaptive models compared to 
Personalized (8.0%) and Control (29.0%) models. Furthermore, the 
intervention accuracy and receptivity were further enhanced with 
explanations. Adaptive-w-Exp, i.e., our complete system Time2Stop, 
could significantly better help users to recognize their overuse (high 
accuracy) than Adaptive-wo-Exp (53.8%), Personalized (66.9%), and 
Control (97.5%) methods. Similarly, explanations helped users to be 
more receptive to interventions and quit using apps. Adaptive-w-
Exp was more receptive than Adaptive-wo-Exp (11.4%), Personalized 

Figure 8: App usage visit frequency (Top) and usage duration 
(Bottom). The two adaptive methods reduced the most app 
visit frequency and usage duration. Interestingly, in contrast 
to Figure 5-7, showing explanations did not augment the 
performance from the perspective of app usage behavior. 

(18.9%), and Control (39.6%). We also discovered that the receptivity 
of adaptive models improved throughout the intervention period, 
showing the potential of benefiting from long-term deployment 
with adaptive ML models. 

Regarding the actual smartphone usage behavior, all interven-
tion types helped users reduce usage compared to the baseline 
week. We observe a significant reduction in app visit frequency 
for Adaptive-wo-Exp (8.9%) and a marginally significant reduction 
for Adaptive-w-Exp (7.0%) Analysis of subjective responses also 
aligned with our quantitative findings. Most participants ranked 
Adaptive-w-Exp and Adaptive-wo-Exp as their preferred options. 
Moreover, time accuracy, effectiveness, and trust were consistent 
with the results by showing the superiority of the two adaptive 
models. Interestingly, we observed an unexpected mixed effect of 
explanations. The intervention accuracy and receptivity results 
indicated the advantage of explanations, while the app usage be-
havior suggested the opposite. Our qualitative results revealed that 
some users appreciated explanations for higher transparency and 
trustworthiness. On the other hand, other participants found ex-
planations sometimes redundant or overly broad. We discuss this 
interesting observation in the next section. 

7 DISCUSSION 
We designed and developed a novel ML-based explainable JITAI 
system Time2Stop for smartphone overuse intervention. To system-
atically evaluate the effectiveness of making the system adaptive 
and explainable, we conducted a micro-randomized study to deploy 
and measure four different intervention types. Each type added 
one more component on top of the previous version: ML-based 
intelligence (Personalized vs. Control), adaptivity (Adaptive-wo-Exp 
vs. Personalized), and explainability (Adaptive-w-Exp vs. Adaptive-
wo-Exp). Our results demonstrate each component can improve the 
performance of the intervention system to some extent, with an 
interesting observation of the mixed effect of explanations. Com-
bining these components, Time2Stop provides a trustworthy and 
effective intervention with accurate timing while adapting to indi-
viduals’ behaviors. In this section, we discuss the potential reasons 
behind the explanations’ effect (Sec. 7.1), the design considerations 
and takeaways from our field experiment (Sec. 7.2), the ethical con-
cerns accompanying AI-based JITAI systems (Sec. 7.3), as well as 
the limitations in our work (Sec. 7.4). 

7.1 The Mixed Effect of Explanations 
In our field experiment, the advantages of Personalized over Control 
and Adaptive-wo-Exp over Personalized are stable across different 
metrics. However, the comparison between Adaptive-wo-Exp and 
Adaptive-w-Exp shows diverse results. In Figures 6 and 7, the ad-
vantage of Adaptive-w-Exp is clear, while in Figure 8 we observe the 
advantage of Adaptive-w-Exp instead. These results indicate that 
during the experiment, participants tended to agree with the inter-
vention timing (higher accuracy) and leave the target apps (higher 
receptivity) when interventions provided explanations. However, 
such “successful intervention” did not have a lasting effect. Partic-
ipants still visited and spent more time in target apps. Although 
our explanations successfully triggered their System 2 and led to 
usage pauses, some participants did not effectively internalize the 
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explanation content and were “pushed” by explainable interven-
tions without deep reflection. Our interview results also support 
this. Although most participants found explanations helpful for self-
reflection, some found explanations confusing and overly broad. 

This illustrates the need for more advanced explanation gen-
eration techniques in future deployment. Now that we have built 
adaptive ML models, future explanations should be dynamic, per-
sonalized, and adaptive to users. Our interview results reveal that 
individuals have different preferences in the level of detail. Thus, our 
system must adapt explanations to fulfill users’ specific needs [77]. 
Meanwhile, recent research suggests a few promising directions, 
such as explanation selection (to ensure preference alignment) [45] 
and verifiability (to verify the correctness of AI outputs) [17]. Fu-
ture work can be explored along with these directions to enhance 
the effectiveness of explanations further. 

7.2 Design Consideration of Intelligent JITAI 
with Human-in-the-Loop 

We made a range of design decisions in our deployment. We reflect 
on important considerations and share the lessons from our study. 

Alternative User-in-the-Loop Labels. In our study, we de-
signed a simple single-click feedback button to collect user feedback 
and establish the human-AI loop (see Figure 2). We then used such 
feedback as new labels to tune our ML model. This design has pros 
and cons. On the one hand, it retrieves users’ real-time reactions 
explicitly so that the model adapts toward users’ subjective experi-
ence and preference, providing transparency and user agency to 
some extent. On the other hand, it requires extra effort from users 
and can miss data when users do not provide feedback. Moreover, 
this approach does not consider potential bias (compulsively en-
gaged users providing incorrect labels). Another alternative is to 
leverage users’ reactions towards the intervention as implicit feed-
back labels (e.g., leaving the app could be marked as being receptive 
to the intervention). This method is also adopted by some previ-
ous work in AI-based JITAI systems [49, 71]. It reduces user effort 
and adapts the model based on their actual behaviors. However, 
such implicit labels can be affected by noisy behavior, i.e., users 

could leave/stay in the app for external reasons other than the in-
tervention. Additionally, a hybrid method utilizing both explicit 
(user-provided) and implicit (behavioral reactions) labels could be 
implemented. This hybrid model could be refined by measuring the 
consistency between implicit and explicit labels to assign varying 
weights to samples, facilitating the enhancement or updating of 
the model. Moreover, involving health experts in the human-AI 
loop could provide a valuable solution. Collaborating with experts 
allows for a more nuanced and balanced definition of overuse, in-
corporating both user perspectives and health-related guidelines. 
This collaboration ensures a more objective and informed approach 
toward setting criteria that align with both user behavior and health 
considerations, thereby enhancing the accuracy and reliability of 
the model’s updates and interventions. Researchers, designers, and 
developers must carefully inspect the specific use cases and choose 
between explicit and implicit feedback or a combination of both. 

Real-time vs. Reflective Feedback. Other than collecting user 
feedback in situ (i.e., when using target apps), we also explored 
another method to ask users to label their data at the end of the 
day. This post-hoc labeling offers users more time to reflect on 
their behavior. However, recalling earlier smartphone usage cases 
can be challenging, especially for quick usage such as habitual 
phone checks. We introduced this method in our experiment for 
participants who wanted to make up for missing labels. However, 
our results indicated that they barely used this method (around 
3%), thus we did not include them in our analysis. This was mainly 
because our label collection and feedback design was simple enough. 
A reflective feedback mechanism could be a promising solution for 
other behavior intervention studies involving a more complex label 
collection process. 

Prediction Model Update Methods and Frequency. We did 
not explore more advanced models in Time2Stop, such as deep 
learning or recent large language models (LLMs) [58, 91], as the 
model itself is not the main focus of our paper. Time2Stop employs 
re-training with recency-based weight assignment for model up-
dates. Although this method is robust, other advanced methods, 
such as reinforcement learning, can be explored in future work. 

Figure 9: Survey Results Summary. (Left) User Preference Rankings among The Four Intervention Methods. (Right) User 
Ratings on Intervention Time Accuracy, Perceived Effectiveness, and Level of Trust to Different Methods. The two adaptive 
methods received the highest user subjective preference and ratings. 
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Moreover, the update frequency of the prediction model is crucial 
for the system’s adaptability. We updated the model daily to bal-
ance our current design’s performance and computational costs. 
But there can be other options. A high frequency of updates (e.g., 
hourly or even after each interaction) can allow the system to 
rapidly adapt to users’ changing behavior and provide more timely 
and relevant interventions. However, this comes with higher com-
putational costs and the risk of overfitting to temporary changes 
in user behavior. Conversely, a lower frequency of updates (e.g., 
weekly or monthly) reduces the computational load and the risk of 
overfitting. Still, it may result in the system being slower to adapt 
to meaningful changes in user behavior. There is a trade-off be-
tween adaptability and stability that must be carefully considered. 
In addition, the trade-off is also impacted by specific applications. 
Interventions for mental health may require a different frequency 
than the ones for smartphone overuse. Future work could explore 
adaptive update frequencies, where the model update frequency is 
dynamically adjusted based on the stability of user behavior and 
the model’s performance. 

Handling “Cold-Start” in JITAI-based Interventions In our 
study, we devoted the first two weeks to data collection before 
deploying the intervention. This could be hard to achieve in real-
world scenarios. To address this “cold-start” challenge, one promis-
ing future approach involves unsupervised learning [4, 18] where 
users will not be required to provide labels. Instead, the model will 
grasp smartphone usage patterns by leveraging (e.g., by clustering) 
users’ historical data. Another potential strategy involves few-shot 
domain adaptation [22, 23, 76, 81, 86], where we can pre-train a 
model with a dataset (such as from this study) and then fine-tune 
the model with a small amount of additional data from new users. 
Additionally, test-time adaptation [20, 21], an advanced domain 
adaptation technique, could directly utilize test-time data to adapt a 
global model to a new user without requiring any collected training 
data. 

Dynamic Features for Longitudinal Model Deployment. 
In our study, we conducted feature selection using the first two 
weeks of the data and kept the feature set static throughout the 
experiment. However, for long-term deployment, the importance 
of different features may change over time. Therefore, dynamic 
feature selection can be applied. One potential method is selecting 
each model update’s most relevant feature set. This may help the 
model to have a better performance over time. However, similar 
to the frequent model updates discussed above, dynamic feature 
selection will introduce additional complexity and computational 
requirements. It may also result in a less stable model, which can be 
challenging for explanation generation and user trust building. The 
same trade-off between adaptability and stability is also needed for 
dynamic feature selection. 

Explanation Level of Details. As mentioned in the previous 
section, our current design of high-level intervention explanations 
could be too general and confusing. Sec. 7.1 discusses the poten-
tial of personalized and adaptive explanation generation. How-
ever, overly detailed explanations may inadvertently reveal sen-
sitive information about user behavior, which can raise privacy 
concerns [3, 36]. It is an open research question on providing ap-
propriate detail for model explanation. For behavior change targets 
that are more objective (e.g., smartphone overuse), providing more 

detailed explanations can be a good idea. While for more abstract 
targets (e.g., stress management), high-level and abstract explana-
tions may be more appropriate [36]. 

7.3 Ethical Concerns and Risk of AI-based 
Intervention System 

Despite the promising performance of our explainable JITAI, we 
also highlight the important ethical concerns of such an intelligent 
intervention system. These concerns must be addressed before any 
real-world, large-scale deployment. First, there is the risk of wrongly 
predicting smartphone overuse. Our best performance achieved 
an F1 score of 67%. It may occasionally make incorrect predictions 
and lead to poorly timed interventions, which are annoying or 
even harmful to users. For example, a false positive that incorrectly 
identifies a user as overusing their smartphone when they are using 
it for an important task may cause unnecessary stress and disrupt 
their workflow. Similarly, due to the limitations of the explanation 
method and model performance, the explanation content may not 
accurately reflect the actual reasons. These wrong explanations 
can lead to confusion and mistrust of the system and may result 
in users ignoring or rejecting the interventions. Therefore, it is 
essential to carefully evaluate the model prediction performance 
and explanation quality. Other than exploring more advanced ML 
algorithms, LLMs [8, 47, 84, 88] may offer a new method to generate 
appropriate and convincing explanation content. Besides, when 
an intervention is personalized, users, especially younger ones, 
could be biased towards being more receptive to adopting it [24]. 
Therefore, a misalignment between subjective measures (users’ 
feedback) and objective measures (their actual behavior) in the 
study could exist. Our discussion about alternative user-in-the-loop 
labels in Section 7.2 could be a potential solution. This factor should 
be carefully considered when deploying interventions with explicit 
personalized components. Meanwhile, privacy is another critical 
concern. Our current system adopts a centralized learning method 
that merges all users’ data for model training. Future work can 
explore edge computing methods such as federated learning [48] 
to address privacy concerns. 

7.4 Limitations 
There are a few limitations in our work. First, we mainly focused 
on young adults. Our study population had a limited age range; 
thus, the findings of our results may not be generalizable to other 
population groups. Meanwhile, there is a lack of exploration on the 
fairness evaluation of our methods. Second, our micro-randomized 
study design took the daily level as the randomization unit. This 
enabled us to conduct a within-subject design within a feasible 
period. However, we could not investigate the lasting effect of 
different intervention methods as they were mixed. Meanwhile, our 
observational study may neglect unknown confounding variables 
beyond this paper’s scope. For instance, while we employed a time-
based train-test split to train the base model, we acknowledge that 
mitigating the ‘observational effect’ (the impact of monitoring and 
labeling) might pose a challenge. Besides, although we revealed the 
exact dates of different interventions during exit interviews and 
surveys, participants’ responses might still be inaccurate or biased 
by their memory. Third, we updated intelligent adaptive models at 
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midnight, which might not align with college students’ sleeping 
schedules. Last, our work only considered smartphone overuse as a 
general intervention target. The specific types of overuse, such as 
excessive use of social media or video gaming, were not investigated 
in detail in this study. Similarly, as mentioned earlier, we didn’t 
experiment with more intervention methods other than digit typing, 
as the specific intervention method is not the focus of our work. 

8 CONCLUSION 
In this paper, we propose a novel AI-powered explainable JITAI sys-
tem, Time2Stop, for smartphone overuse intervention. Our system 
captures user context and behavior, leverages AI to infer smart-
phone overuse scenarios, introduces interventions when overuse 
is detected, provides explanations, and updates the intervention 
model iteratively based on human-in-the-loop feedback to form a 
human-AI loop. In order to measure the effectiveness of Time2Stop, 
we conducted an 8-week field experiment (N=71) and compared 
four intervention types. Our results not only showed the advan-
tage of the ML component (the static ML-powered version over 
the basic control), but more importantly, underscored the advan-
tages of adaptive intervention types compared to the static version, 
with significantly better intervention accuracy (32.8%) and recep-
tivity (8.0%). Furthermore, including explanations in our system 
significantly amplified its accuracy (53.8%) and receptivity (11.4%). 
In addition, users exhibited reduced visit frequency to apps they 
considered unproductive when engaged with adaptive models (7.0-
8.9%). Findings from our qualitative analysis echoed the quantita-
tive results, with users expressing a clear preference for adaptive 
interventions. We also observed an interesting mixed effect of ex-
planations, which could shed light on future research direction. 
We further highlighted the important ethical concerns of AI-based 
intervention systems for real-world deployment. We envision our 
work can be applied beyond the field of smartphone overuse and 
inspire future practitioners to explore more advanced intervention 
techniques with a human-AI loop. 
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A EXPLANATION EXAMPLES 

Table 2: Examples of Feature Explanations at Different Explanation Levels. 

Model Feature Readable Name Explanation 
High-level Low-level 

numViewScrolledCurrentAppCategory Number of Scrolls in Current App Category Phone & App Use Number of Interactions 
sumDurationDischarge Battery Discharge Duration Phone & App Use Battery Usage 

durationMobile Duration of Being Mobile Activity Duration of Being Mobile 
avgLux Average Lux in Light Conditions Activity Light Conditions 

countScansMostFrequentDevice Number of Frequently Scanned Devices Social Number of Nearby Devices 
timeFirstSent Time of First Sent Message Social Time of Sent Message 

timeAtTopOneLocation Time Spent at Top One Location Location Time at Frequent Locations 
minLengthStayAtClusters Minimum Stay at Frequent Locations Location Time at Frequent Locations 

isNight Whether it is the Night Time Time the Night Time 
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