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ABSTRACT

Despite a rich history of investigating smartphone overuse inter-
vention techniques, Al-based just-in-time adaptive intervention
(JITAI) methods for overuse reduction are lacking. We develop
Time2Stop, an intelligent, adaptive, and explainable JITAI system
that leverages machine learning to identify optimal intervention
timings, introduces interventions with transparent Al explanations,
and collects user feedback to establish a human-Al loop and adapt
the intervention model over time. We conducted an 8-week field
experiment (N=71) to evaluate the effectiveness of both the adapta-
tion and explanation aspects of Time2Stop. Our results indicate that
our adaptive models significantly outperform the baseline meth-
ods on intervention accuracy (>32.8% relatively) and receptivity
(>8.0%). In addition, incorporating explanations further enhances
the effectiveness by 53.8% and 11.4% on accuracy and receptivity,
respectively. Moreover, Time2Stop significantly reduces overuse,
decreasing app visit frequency by 7.0~8.9%. Our subjective data
also echoed these quantitative measures. Participants preferred the
adaptive interventions and rated the system highly on intervention
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time accuracy, effectiveness, and level of trust. We envision our
work can inspire future research on JITAI systems with a human-AI
loop to evolve with users.
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1 INTRODUCTION

The rapid advancement of technology has empowered the use of
mobile devices to engage in almost every aspect of our lives. While
bringing us convenience, smartphones also introduce numerous po-
tential risks [16, 68]. Smartphone overuse is considered a major so-
cial problem as it adversely affects individuals’ physical health (e.g.,
headaches [11], chronic neck pain [94], sleep disturbance [46]);
mental well-being (e.g., anxiety and depression [5, 26], impaired
cognitive abilities [92]); and social wellness (e.g., distraction [57],
family conflicts [79], degradation of academic and work perfor-
mance [19]).
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Figure 1: Time2Stop System Overview. The overall interaction flow consists of two loops. The first loop (green) includes: D
The mobile app continuously gathers contextual and app usage data (left) and transmits them to the cloud server. 2) On the
cloud server’s end, feature extraction, ML model inference, and explanation generation occur (right). The ML model output and
explanations are sent back to the user. The second loop (loop) includes: 3) In cases where the model predicts “overuse”, an
intervention would show up while allowing users to provide feedback. The feedback is then forwarded to the cloud server
to update the ML model. @ The updated ML model is subsequently employed to provide more personalized and adaptive

interventions.

A plethora of research has been invested in designing and exper-
imenting with various digital intervention tools and techniques to
regulate smartphone overuse. These mechanisms promote digital
well-being by informing users about their usage statistics [56, 62,
78, 82], restricting access to distracting apps [35, 38, 51, 90] or app
functionalities [10, 54, 67]. While the proposed mechanisms were
beneficial in enhancing self-awareness and reducing smartphone
usage time, they primarily intervened based on simple criteria, e.g.,
upon opening a specific app, at pre-determined intervals, or af-
ter achieving daily usage goals. However, due to the considerable
variability of human behavior, interventions based on these basic
criteria may not be optimal. For instance, users sometimes need to
take a break, and blocking usage without considering such contexts
could lead to sub-optimal designs and impact user experience. A
system should offer intelligent interventions tailored to the user’s
preferences, app characteristics, dynamically changing context, and
individual usage patterns.

In mobile health, Just-In-Time Adaptive Intervention (JITAI)
was introduced as a promising technique that provides appropriate
support at opportune times while dynamically adapting to users’
internal and external context [63, 64]. Traditional JITAI-driven
intervention systems incorporate a predefined set of rules (such as
users’ location) to determine the delivery time or content [25, 53, 73].
There has been initial research leveraging artificial intelligence
(AI) and machine learning (ML) to deliver interventions, as Al can
analyze large amounts of data and identify patterns that might not
be captured through manual rule-setting [43, 61]. Furthermore, in a
human-Al-loop setup, users can offer feedback to the Al allowing
the model to enhance its predictions and personalize interventions
based on individual needs and behaviors.

However, very little work explores empowering Al-based JITAI
with a human-in-the-loop setup [36, 49]. There is no prior work
leveraging Al-based JITAI in the realm of smartphone overuse, not

to mention the human-in-the-loop setup. Employing JITAI-based
interventions for smartphone overuse is challenging as it requires
a real-time ML pipeline (reacting in a few seconds when the user
enters an app) and prompt adaptability to users’ constantly evolving
habits (updating the model on a daily basis).

Despite the accuracy of black-box AI models, they often face
challenges of interpretability and transparency. This gave rise to the
recent advance of Explainable AI (XAI) to help users comprehend
Al systems’ decisions, thereby fostering user trust and collabora-
tion with AI [3, 72]. Recent intervention systems employed XAI
to personalize education [31], manage stress [36], and set fitness
goals [83]. However, there is no prior work integrating XAl into
JITAI-based smartphone intervention. It can improve intervention
delivery transparency, handle confusion caused by unexpected
interventions, and cultivate users’ trust through human-AlI interac-
tion.

No prior work has used Al-driven JITAI for smartphone overuse
nor incorporated a human-in-the-loop setup. Moreover, integrat-
ing XAl into JITAI-based smartphone interventions remains unex-
plored. To address these gaps, we design and implement Time2Stop,
an intelligent, adaptive, and explainable smartphone overuse
intervention system grounded in JITAI principles while tak-
ing user feedback in the loop. Our system consists of four major
parts (see Figure 1): (1) a smartphone-based sensing app to collect
users’ contexts and behavior, (2) a cloud-based ML pipeline that
extracts behavior features, detects potential smartphone overuse
behavior, and generates explanations, (3) an interface on local de-
vices that introduces interventions when the ML model detects
overuse behavior, provides intervention explanations, and collects
user-provided feedback (e.g., users’ opinions on the accuracy of
the intervention), and (4) a human-AlI feedback loop that leverage
users’ reactions to update the ML model.
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We conducted an eight-week field experiment (N=71) to deploy
and evaluate the effectiveness of the two major characteristics of
Time2Stop: (a) Adaptive, updating the model based on user feedback
in the human-AT loop; (b) Explainable, providing feature explana-
tions based on user behavior and model outcomes. Our findings
demonstrate that interventions with the adaptive models signif-
icantly outperform both the basic (statistics-based) and the per-
sonalized ML (but non-adaptive) methods on smartphone overuse
prediction accuracy (32.8~55.5% relative advantage) and interven-
tion receptivity (8.0~29.0%). Moreover, incorporating explanations
in interventions can further enhance the effectiveness (53.8~97.5%
on relative accuracy, 11.4~39.6% on relative receptivity). From the
perspective of smartphone usage behavior, our results indicate
that app visit frequency was reduced significantly with the help
of Time2Stop (7.0~8.9%). We also observe an interesting nuance of
explanations’ effect on user behavior. Our qualitative results from
the exit questionnaire and interview align with the quantitative
findings, further supporting the advantage of Time2Stop. We dis-
cuss the mixed effects of explanations and the design considerations
and ethical concerns of Al-based interventions.

The main contributions of our paper can be summarized as
follows:

o We designed and implemented Time2Stop, an adaptive and
explainable JITAI-grounded intervention system for smart-
phone overuse. Time2Stop performs real-time inference on
smartphone overuse behavior, introduces just-in-time intel-
ligent intervention with explanations, and evolves based on
users’ feedback.

e We conducted a longitudinal field experiment with micro-
randomized trials to demonstrate the effectiveness of em-
powering interventions to be adaptive and explainable. Our
results show that Time2Stop significantly outperforms base-
line techniques.

e We share the lessons learned, and discuss the design con-
siderations and ethical concerns when creating Al-based
smartphone intervention systems with humans in the loop.

We envision that empowering Al-based JITAI with both human-
in-the-loop and Al explanations can go beyond smartphone overuse.
When focusing on another application, careful design of the human-
Al-loop (e.g., updating models with user feedback in our case) and
the integration of an appropriate level of explanation (e.g., high-
lighting feature types in our case) is necessary.

2 BACKGROUND

We first summarize existing research in smartphone overuse inter-
vention techniques and just-in-time adaptive intervention (JITAI)
methods. We also provide a brief overview of explainable AT (XAI),
and emerging research in the intersection of XAl and JITAI inter-
vention domains.

2.1 Smartphone Overuse and Intervention

Excessive smartphone usage has been connected to a variety of
undesirable effects, such as distraction [57], anxiety and depres-
sion [26], neck pain [94], and disruptions in sleep patterns [46]. In
response to the negative effects of smartphone overuse, there has
been a wide range of commercial products and research solutions.
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For example, ScreenTime [78] on i0S and Digital Wellbeing [82]
on Android are built-in tools designed to assist users in tracking
app usage and setting usage limits. In addition, there are also vari-
ous third-party apps for overuse intervention, such as Forest [70],
Digital Detox [66], and StayFree [2].

Within the academic sphere, researchers have proposed a
large array of works in the smartphone overuse intervention do-
main [10, 41, 52, 54, 62, 67]. These methods can be generally divided
into two categories: (1) sending notifications or reminders [27, 39],
and (2) blocking user access to apps or phones [35, 38, 90]. The first
category aims to softly persuade users to limit digital consumption.
For example, MyTime [27] informs users about their usage time
and sends notifications upon reaching their time limit. NUGU [39]
leveraged social effects by visualizing smartphone usage among
social groups via a scoreboard. The second category is more re-
strictive, aiming to introduce a higher interaction cost and a gulf
of instant gratification. For instance, LockNType [35] adds a typ-
ing task before users can access their apps to trigger System 2,
i.e., the reasoning and analytical system in the Dual Process The-
ory [30]. Building on top of this work, TypeOut [90] integrates the
typing task with self-affirmation to effectively mitigate smartphone
overuse.

Other than dividing interventions based on their restrictive-
ness, another line of work was devoted to building smartphone
interventions at different granularities: device-level, app-level, and
feature-level. A study by Roffarello et al. [62] found that intervening
at the app-level is more effective compared to device-level, as the
former can generate more precise and interpretable statistics for
users. Orzikulova et al. [67] investigated app-level (e.g., restricting
Instagram and YouTube apps) and feature-level (e.g., limiting the
usage of app features such as viewing suggested feed on Instagram
and watching shorts on YouTube) interventions on mobile social
media apps. The results indicated that feature-level restrictive in-
terventions were particularly effective in reducing the time spent
on passive phone usage (e.g., watching short videos).

While these intervention techniques are beneficial in enhancing
user awareness and reducing phone use time, they rely on basic
conditions (such as being triggered upon opening an app) or simple
parameters specified by users (such as the daily usage limit). How-
ever, users’ behavior is changing dynamically and these manual
rules are often outdated. For an intelligent smartphone intervention
system, it is essential to account for user’s preferences, contexts,
and smartphone usage patterns, so that it can achieve a good inter-
vention performance continuously. To address this gap, Time2Stop
implements real-time adaptability to accommodate users’ evolving
contexts and behavior.

2.2 Just-in-Time Adaptive Interventions

In the context of mobile health, JITAI is an emerging interven-
tion design methodology that seeks to deliver tailored and timely
support by dynamically adjusting to an individual’s internal and
contextual conditions [63, 64]. For a JITAI to be effective, inter-
vention needs to be delivered when the user is both vulnerable
and receptive [60, 64]. Vulnerability denotes a period during which
individuals are more susceptible to experiencing negative health
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consequences (i.e., overusing smartphones in our case), whereas re-
ceptivity pertains to their ability to receive and process provided in-
terventions (i.e., accepting intervention and stopping using phones).

JITAlI-driven systems may either be rule-based [25, 73] or Al-
based [36, 43, 61]. Rule-based JITAI relies on predefined sets of rules
and conditions to trigger interventions, typically established by
domain experts. For example, Gustafson et al. [25] designed a JITAI
system for alcohol consumption that will trigger intervention when
users approach high-risk locations such as bars. Lukoft et al. [53]
designed a proof-of-concept system with adaptable commitment
interfaces for digital well-being.

In contrast, Al-based JITAI leverages large-scale user behav-
ior data and trained AI/ML models to detect appropriate in-
tervention timing and personalize interventions. For example,
Saponaro et al. [74] developed two types of Al-based JITAI sys-
tems (population-based, personalized) to reduce users’ sedentary
behavior. Until recently, very few studies explored empowering Al-
based JITAI systems with user-in-the-loop to involve user feedback
or reactions [36, 49]. Mishra et al. [60] implemented an adaptive
chatbot that updates the ML model based on users’ receptivity to
encourage physical activity. Rabbi et al. [71] and Liao et al. [49]
integrated reinforcement learning algorithms into JITAI systems
to adapt the model to each individual for more effective physical
activity intervention.

To our best knowledge, there have been very few prior studies
exploring JITAI-based intervention for smartphone overuse [53],
not to mention the advanced version that leverages users’ reactions
in the human-ATloop. There is a set of technical challenges for such
a system. First, the machine learning pipeline needs to respond
within seconds when the user opens an app. Second, the model
needs to promptly adapt to users’ ever-shifting habits. Time2Stop
aims to address these challenges by establishing a real-time human-
Al loop system.

2.3 XAI and Interventions

Although black-box Al models excel in making complex predictions
and handling intricate tasks, they often encounter challenges with
interpretability and transparency, making it difficult for users to un-
derstand how the models arrive at specific decisions or predictions.
This reflects the recent advance of explainable AI (XAI). By provid-
ing explanations for Al-driven decisions, XAl not only helps hu-
mans comprehend the rationale behind Al system outputs, but also
instills a sense of trust and confidence in these systems [3, 72, 93].
Recent advances in XAl research have not only served AI/ML prac-
titioners and data scientists, enabling them to engage in model
debugging and model behavior inspection [33, 50], but have also
extended to domain experts in diverse fields [14] and end-users [6].
In the context of smartphone overuse detection and intervention,
by showing why the users need to stop using certain applications,
explanations can help users understand Al decisions and their own
device usage patterns. Moreover, XAI has the potential to activate
System 2 within the Dual Process Theory [29], clarifying the rea-
soning behind interventions targeting smartphone overuse [80].
These explanations stimulate users’ deliberate, analytical thinking
(System 2) and introduce appropriate reliance on Al [80]. This ac-
tive engagement prompts users to reflect on their usage habits and
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make conscious adjustments, potentially leading to changes in their
smartphone usage behavior.

Despite the considerable attention given to the field of XAI,
research at the intersection of XAI and JITAI remains limited. Woz-
niak et al. [83] observed that presenting users with both algorithm-
derived fitness goals and a clear explanation for the recommen-
dation could increase their trust towards the recommended goal.
MindScope [36] is a stress management system providing different
explanation levels. The results indicated that elaborate explanations
helped users understand stress-related events, while categorical
explanations allowed them to interpret stressors from their unique
perspectives. In our case, Time2Stop integrates XAl into JITAI to
enhance the intervention delivery transparency, effectively address
users’ confusion about unexpected smartphone interventions, and
foster user trust through seamless human-AlI interaction.

3 TIME2STOP DESIGN

We developed Time2Stop — an intelligent, adaptive, and explainable
intervention system for smartphone overuse. Grounded in JITAI
principles, the main contribution of our system is the integration of
continuous user feedback to form a human-AI loop. The architec-
ture of the Time2Stop system comprises two main building blocks:
the ML pipeline to predict smartphone overuse (Section 3.1), and
the intricate design of interventions to be shown to users when
overuse is predicted (Section 3.2).

This section provides an overall introduction to these core system
components and the overall intervention flow (Section 3.3).

3.1 Machine Learning for Smartphone Overuse
Prediction

Constructing an ML-driven JITAI system for predicting smartphone
overuse and triggering intervention needs careful design across
four key aspects: (1) feature design, (2) label collection mechanism,
(3) adaptive model updates, and (4) explanation generation. In this
section, we offer an in-depth exploration of each aspect.

3.1.1 Feature Design. We design a set of five passive sensing fea-
ture categories [59, 87, 89] to capture smartphone overuse behavior:

(a) Phone and App Usage. Understanding smartphone overuse
requires a thorough analysis of usage patterns. We investigate both
the high-level phone usage and the low-level app usage pattern.
For phone usage, we track screen interactions and battery status.
Screen interactions encompass phone unlock frequency and du-
ration, calculated from screen-on/off events. As for battery usage,
we extract battery consumption rate, charge, and discharge dura-
tions. For app-related features, our approach includes statistical
metrics (count, min, max, mean, standard deviation, sum) linked to
app visit frequency and time spent. Additionally, fine-grained user
interface interactions (e.g., scrolling, tapping) provide insights into
smartphone overuse. We use Ul-event-driven features, gathering
data on quantities and proportions of events like scrolling, clicking,
focusing, and window state changes. Moreover, we also include the
count and diversity of notifications.

(b) Activity. Users’ interaction with the environment presents
another pivotal factor intertwined with smartphone overuse. Con-
cerning attributes related to physical activity, we examine station-
ary and mobile durations. Furthermore, ambient light offers insights
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into the user’s specific location (such as the room) and may vary de-
pending on the time of day. In the case of ambient light, we extract
statistical lux-related features.

(c) Social Context. Users might reduce smartphone interaction
in specific social settings, such as when with friends or peers. We
primarily focus on text message-derived features (e.g., first mes-
sage time, top contacts) and Bluetooth signals as a proxy of social
contexts (e.g., mean and standard deviations of scans, unique de-
vice counts). While we initially considered call-related features, we
excluded them due to limited usage among participants.

(d) Location. Smartphone usage can also be tied to specific
places. To capture this, we extract diverse location-based features,
including location type, variance, entropy, time at the most-visited
places, time at home, and duration of location stays. We also in-
corporate statistical WiFi data features involving metrics such as
scans from visible and connected access points.

(e) Time. Previous work has highlighted different smartphone
usage between times (e.g., night vs. daytime) [1, 85]. Therefore, we
further include an objective temporal feature to capture this.

3.1.2  Label Collection Mechanism. Time2Stop employs supervised
learning for smartphone overuse prediction, which needs labeled
data to train the model. We gather labels for two purposes: (i) to
build the initial ML model and (ii) to update and adapt the ML model
over time. Here we present the label collection mechanism for the
first step, as shown in Figure 2 (Left). Further information about
the data collection approach to update the ML model is provided in
Section 3.1.3 and 3.2.

Our label collection mechanism harnesses Ecological Momentary
Assessment (EMA) methodology [75] by presenting a prompt to
ask users to report whether they are overusing their phones. We
collect user responses and use them as labels to train our model.
Labels are collected in-the-moment in real-time as users engage
with their phones. This instantaneous label collection is crucial as it
ensures timely, contextually relevant labels while users’ app usage
memory and experience remain fresh.

We designed three distinct in-the-moment label collection rules:
entry-moment, leaving-moment, and during usage. Previous stud-
ies in smartphone notification management [28, 32, 69] showed
the effectiveness of breakpoint-based notification delivery. In-
spired by these works, we align optimal notification instances
with task-switching moments, corresponding to accessing (i.e.,
entry-moment) and leaving a monitored app (i.e., leaving-moment
prompts). In the smartphone overuse domain, empirical investi-
gations revealed that once involved with a potentially addictive
smartphone app, stopping usage becomes challenging, resulting
in unforeseen excessive usage [34, 40]. To address these instances
of overuse, we also incorporate label collection during usage, ask-
ing users to provide labels every 10 minutes during monitored
app usage. Moreover, to alleviate the labeling burden, we imple-
ment a cool-down interval. This prevents additional label collection
prompts within a cool-down period if a user recently provided a la-
bel. In addition, we also provide a post-hoc labeling process, where
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users can go back to check any missing annotations of their app
usage history. !

3.1.3  Adaptive Model Updates. We leave the specific ML model
choice for the result section (Section 6) as it needs empirical evalu-
ation. Here, we focus on the model updates first. To tailor the ML
model to each individual and accommodate their evolving behav-
iors, dynamic context, and smartphone usage patterns, we regularly
update the ML model. We collect user feedback on the intervention
as new labels. Together with the corresponding contextual data,
these data can be used to update the ML model. It is noteworthy
that the model update is personalized, i.e., we train and update a
model for each user.

Updating ML models involves deciding when to update the model
and how to update the model. For the when part, while it’s possible
to instantly update the model with each new data point, frequent
model updates will incur expensive computational costs, causing
delays in intervention delivery. We conduct ML updates daily from
12 AM to 1 AM to retain the real-time aspect of just-in-time inter-
ventions. This process, taking 2 hours on average, ensures that the
adapted models are available by the morning of each intervention
day.

How to update the model is another crucial design consideration.
A simple approach would involve re-training the model with equal
weights for all data samples, treating historical and current user
behavior equally. However, this method is sub-optimal as it fails
to account for changing user dynamics. In our approach, we adopt
decay-based sample weight assignment, i.e., recent data will have
relatively higher weights. Specifically, we adopted a linear decreas-
ing assignment from 1.0 to a minimum cap of 0.5. Based on empirical
testing with pilot experiments, we assign the weight of the most
recent day as 1.0, and it decreases linearly every half-week until it
reaches 0.5. This can help the re-trained model adapt to evolving
conditions and smartphone usage behaviors. By emphasizing re-
cent observations, the model becomes more adaptive, effectively
capturing current trends while gradually reducing the impact of
outdated information. We discuss other model update methods,
such as reinforcement learning, as future work in Section 7.

3.1.4 Model Explanation. We provide explanations derived from
model predictions to enhance users’ understanding of the ML-based
intervention system’s decisions and foster trust and collaboration
with Al [3, 72]. These explanations are generated based on the top
features contributing to an “overuse” prediction. We designed two
explanation detail levels: high and low. A high-level explanation
represents the feature category. As for the low-level explanation, a
straightforward option is to use the actual feature name. However,
our internal testing found that it introduced unnecessary details
and cognitive load. Therefore, we simplify and abstract the raw
feature name into a feature description (see Appendix A). For ex-
ample, consider the location feature “time spent at the second most
frequent location”. The high-level explanation is “location”, and the
low-level explanation is “time at frequent locations”. By default,
users will see the high-level explanations and can access more
detailed, low-level explanations if they are interested.

'We recognize that such a label collection mechanism may intervene and affect
phone usage behavior. Therefore, in Section 5, we intentionally inserted a break week
between the label collection and intervention deployment to reduce the impact.
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Figure 2: In-the-Moment Labeling and Intervention Interfaces. (Left) In-The-Moment Label Collection Interface; (Right)
Time2Stop Intervention Interface. It encompasses four key components from top to bottom: (1) typing-based intervention task,
(2) ML model explanations highlighting feature categories aligned with the model’s output, (3) collection of user feedback -
this is an optional question that users can choose to respond or ignore, and (4) user actions.

3.2 Intervention Design

The JITAlI-based intervention system aims to provide accurate and
timely support while accommodating shifts in user context and con-
ditions, as discussed in Nahum et al.’s work [65]. Following these
principles, we develop an intervention mechanism based on a typ-
ing task (offering the right support level). These interventions
are triggered by an intelligent ML model detecting instances of
“overuse” (optimal timing). Concurrently, user feedback is collected
to enhance adaptation to individual user conditions and context (ac-
commodation). This feedback loop subsequently drives updates to
the ML model. Meanwhile, we also provide explanations derived
from the model predictions.

3.2.1 Intervention Mechanism. The majority of prior work in the
smartphone intervention domain provides interventions by either
sending notifications/reminders [27, 40] or employing app access
restrictions [35, 38]. However, notification-based interventions can
be easily circumvented, while excessive restriction may agitate
users and lead to counterproductive outcomes. We followed the
previous work to balance intervention efficacy and usability and
leveraged a typing-based intervention mechanism [35, 90] as in-
teraction friction. Users are asked to input specific digits before
they can proceed to use a monitored app. The digits are randomly
generated within each intervention instance. Users can exit the
application anytime and return to the home screen. Prior work [35]
suggested that a typing task with a medium workload (10 - 20
digits) was effective and usable. Considering this, we designed a
typing task comprising 12 digits. Note that the specific intervention
mechanism is not the main focus of our paper, and we envision

our adaptive and explainable system can be integrated with other
mechanisms easily.

3.2.2 Intervention Timing. Our ML model decides whether to in-
tervene based on users’ current context and app usage behavior.
Users first select the apps for which they want to receive the inter-
vention (i.e., monitored apps), and the intervention will only focus
on these apps. When the model predicts “overuse”, an intervention
interface appears, as shown in Figure 2 (Right). Moreover, another
design choice before triggering intervention involves determining
the frequency of feature extraction and model prediction. Previous
Just-in-Time (JIT)-based smartphone overuse techniques triggered
interventions when users launched a monitored app [35, 51], or
when the duration of a target app usage reached a predefined thresh-
old [27, 67]. Our design takes both the launching moment and the
usage period into account. We opt to initiate the feature extraction
and model prediction process both upon app launch and periodi-
cally while the target app is in use. We empirically set the prediction
interval as 5 minutes based on our pilot study. We further defined
a 10-minute cool-down period after triggering an intervention to
avoid a disrupted user experience.

3.2.3  User Feedback to Update Model. To adapt to dynamic shifts
in user context and app usage behavior, we update each individual’s
ML model regularly. This entails obtaining fresh labels during the
intervention period. One straightforward approach is employing
the same label collection mechanism for constructing the initial
model (see Section 3.1.2). However, this would considerably hinder
system usability. Users would have to contend with both labeling
prompts and intervention notifications. We integrated user labeling
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within the intervention interface (Figure 2 Right) to address this
issue.

When the intervention pops up, users are encouraged to provide
feedback with a simple click to indicate whether they are overusing
the phone. We design the labeling prompt with simplicity while
ensuring it provides guidance to identify instances of smartphone
overuse. The phrasing is deliberately structured to avoid potentially
eliciting negative feelings regarding users’ behavior. Rather than
posing a direct query about smartphone or app overuse, users
are prompted to indicate their agreement or disagreement with
the statement: “I think I shouldn’t use AppName now.” In cases of
agreement, the data point is categorized as “overuse”, which can
be used to reinforce the ML model; conversely, in instances of
disagreement, it is classified as “not overuse”, which can serve as a
correction to the model. Once we receive feedback, we utilize them
as new labels to update the ML model, following the design we
introduced in Section 3.1.3. Note that this is an optional question,
and users are not forced to respond. This process can capture the
false positive cases, i.e., an intervention pops up when users are
not overusing their phones. Moreover, users can also leverage the
post-hoc labeling to provide feedback on false negative cases, i.e.,
an intervention does not pop up when they are overusing their
phones.

3.24 Model Explanations. As detailed in Section 3.1.4, our ex-
planation framework generates explanations at two levels: high
and low. Previous XAl-based JITAI work in stress management
by Kim et al. [36] showed that although most users favored more
detailed explanations, such low-level explanations could potentially
undermine the system’s trustworthiness. Based on these findings,
we decided to highlight the categories of essential features, such as
“location”, “activity”, “app usage” (see Figure 2 Right). The interface
only presents the top three crucial feature categories for the ML
model inference and hides other categories to avoid confusion. We
use their high-level explanations as icons in Figure 2. Furthermore,
we provide low-level feature descriptions for users seeking deeper
insights by clicking the “Click to see more” button.

3.3 Intervention Flow

Combining the ML and intervention design in Section 3.1 and 3.2,
the intervention flow of Time2Stop is visualized in Figure 1. There
are two loops within the flow: (1) the inner loop (green) is dedicated
to the ML model inference process, and (2) the outer loop (blue)
manages the ML model update process.

In the inner loop, ML model inference is performed through a
sequence of steps. (D) Contextual and app usage data are initially
collected by the mobile app (depicted on the left) and transmitted to
the cloud server. (2) Here, the cloud server pre-processes raw data,
extracts features, performs inference, obtains prediction output,
and generates corresponding explanations (depicted on the right of
Figure 1). The output of the model’s prediction and explanations
are then relayed to the user. In cases where the model predicts
“overuse”, the intervention interface (as illustrated in Figure 2) will
pop up.

Conversely, the outer loop takes charge of the ML model update
through user feedback and model enhancement cycles. 3) When the
interface appears, users can provide feedback indicating whether

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

they are overusing their phones. @ This feedback is then transmit-
ted to the cloud server, where new labels and features are re-trained.
The updated ML model is then employed to generate more tailored
and adaptive predictions, which are conveyed back to the user.

4 SYSTEM IMPLEMENTATION

Based on the system design in Section 3, we then introduce the
implementation details of Time2Stop. We instantiated Time2Stop
on Android OS (end-user side) and a server (cloud side), as shown
in Figure 3. We conducted a one-week pilot field study with four au-
thors of this paper to debug and finalize the system implementation,
which includes the sensing platform (Section 4.1), the intervention
interface (Section 4.2), and the ML pipeline (Section 4.3).

4.1 Context Sensing

To obtain the data we mentioned in Section 3.1.1, we leverage
AWARE, an open-source passive sensing platform designed for be-
havioral data collection [15]. Our data collection includes multiple
sensor streams: location, Bluetooth, Wi-Fi, network, light, screen
activity, activity recognition, and communication (including SMS
and calls). We further build our custom app usage tracker with
Android’s AccessibilityService API [12] that adeptly identifies
the start and end of app sessions, dynamically monitors time allo-
cation and visit frequencies, captures notifications from monitored
applications, and records fine-grained user interactions with mon-
itored apps, including scrolling, clicking, focusing, and window
state changes.

4.2 Intervention Interface

We have introduced the interface design in Section 3.2, making the
Android implementation straightforward. Moreover, the interface is
implemented as an AlertDialogue, which becomes an overlay on
top of the monitored app. When users enter the displayed random
digits correctly into the input form and click the “Continue using”
button, the overlay window is dismissed, and users are allowed
to use the app. Conversely, upon clicking the “Leave app” button,
the phone programmatically returns to the home screen. Users’
reactions to the intervention will not impact the content in the app.

4.3 Machine Learning Pipeline

Our ML pipeline consists of three parts: (1) model inference, (2)
model update, and (3) explanation generation. The technical details
of these components are described in Figure 3. The end-user side is
a mobile app running on Android OS, and the cloud side consists
of a web app (Flask), a back-end (Redis and Celery), and a database
(MySQL). The upper figure describes the model inference, and the
lower sub-figure describes the model update.

4.3.1 Model Inference. The pipeline contains seven steps. (D) The
Android client posts the contextual data to the cloud web server
with the frequency described in Section 3.2.2. 2) A Flask-based
web app manages a task queue that handles the arrived tasks. Once
the task arrives at the cloud, the web app enqueues the task and
dequeues in a first-in-first-out (FIFO) manner. 3) The back-end
processes the raw data by imputing missing values, normalizing the
raw values, and extracting features. @ It also performs the inference
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Figure 3: Overview of System Implementation. (Top): Model Inference. (Bottom): Model Update Leveraging User Feedback.

using the ML model to obtain overuse prediction. Explanations are
generated using the SHAP method (see Section 4.3.3) [55]. & Raw
data, extracted features, model outputs and generated explanations
are then stored in the cloud database. (6) Once model outputs and
explanations are ready, the web app updates the task status and
the results so that the client can pick it up. (7) The Android client
sends a request to obtain the results. In our pilot study, most of
the responses arrived within 3 seconds. If the user is still using the
monitored app when the results arrive, it checks the model output.
If the prediction is “overuse”, the Android client will pop up the
intervention, together with the feature explanations. Otherwise, no
intervention will show up.

4.3.2 Model Update. As introduced in Section 3.1.3 and 3.2.3,
Time2Stop updates the model on a daily basis. This pipeline in-
cludes five steps. (D User-provided feedback is stored in the mobile
app and sent to the cloud server. The next two steps of task handling
(®) and feature extraction ((3)) are similar to the ones in model
inference. @ Next, the adaptive ML model is re-trained, using the
user-provided feedback as new labels. We adopt the weight assign-
ment introduced in Section 3.1.3 during the re-training. ) Lastly, all
data, extracted features, and the new model checkpoint are stored
in the database.

4.3.3 Explanation Generation. To interpret the model predictions,
we measure feature importance with SHapley Additive exPlana-
tions (SHAP) [55], an XAI method that computes the impact of
each feature on prediction outcomes. We rank the features based
on their importance and obtain the corresponding high-level and
medium-level explanations introduced in Section 3.1.4 and 3.2.4.
These explanations are sent to the user along with the model out-
come during the model inference.

Table 1: Multiple Intervention Types with Characteristics.
The last row represents our complete Time2Stop system with
ML-powered adaptive and explainable JITAI

Intervention Type Charact’eristics -
ML-based | Adaptive | Explainable
Control X X X
Personalized v X X
Adaptive-wo-Exp v v X
Adaptive-w-Exp 4 v/ 4
(i.e., Time2Stop)

5 FIELD EXPERIMENT

To investigate how Al-powered intelligent and explainable JITAI
can affect smartphone overuse in real-life scenarios, we conducted
an 8-week field experiment using Time2Stop. Our study aims to eval-
uate both the adaptive aspect and explainable aspect of Time2Stop,
which requires careful experiment design (Section 5.1). We then
introduce our field experiment procedure (Section 5.2) and partici-
pants (Section 5.3).

5.1 Experiment Design

5.1.1 How to Evaluate Adaptive and Explainable Interventions? To
assess the efficacy of the adaptive and explainable components, we
devised four distinct intervention types, each taking one step more
advanced than the previous method (see Table 1).

(1) Control. This was a baseline method. It intervened with users
simply based on probability (e.g., a user might receive intervention
when launching an app and every five minutes in 30% of the cases).
The individual probability of the intervention was derived from the
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user-provided labels during the first phase of the experiment (the
modeling phase, see Section 5.2).

(2) Personalized. This method added the ML component on top
of Control, using the data collected during the modeling phase. To
ensure a Personalized model aligned with each user’s behavioral
patterns while leveraging the rich data from other users, greater
emphasis was placed on the user’s own data by assigning it higher
weights than the data collected from others. Through empirical
tests, the weight for self-data was set at 1.0, while others’ data
received a weight of 0.1. The personalized model remained static
and unchanged throughout the intervention period.

(3) Adaptive-wo-Exp. This method further added the adapting
component on top of Personalized. The model underwent a similar
training procedure as Personalized at first. It also involved daily
model re-training and updates, using continuous user feedback and
corrections in response to intervention prompts, as we introduced
in Section 3.1.3.

(4) Adaptive-w-Exp. Finally, this method added the explanation
component on top of Adaptive-wo-Exp and completed the whole
Time2Stop system. The model of Adaptive-w-Exp was identical to
that of Adaptive-wo-Exp. The only distinction was that Adaptive-w-
Exp provided ML output explanations in the intervention interface,
as introduced in Section 3.1.4 and shown in Figure 2.

Note that both Adaptive-wo-Exp and Adaptive-w-Exp fell into
the category of adaptive models. Other than Adaptive-w-Exp that
displayed explanations, the interface of the other three types was
exactly the same to reduce bias.

5.1.2  Micro-Randomized Trials. Considering the sample size to
compare four groups, we adopted a within-subject design. Specifi-
cally, we employed Micro-Randomized Trials, which is an experi-
mental design technique optimized for JITAI-grounded intervention
within the mHealth domain [37]. Instead of having users go through
different experiment groups one by one, this method proposes to
randomize the groups with smaller units (e.g., daily or each inter-
vention), so that the effect of potential confounding variables can
be reduced.

In our case, we altered the intervention type among the four
types on a daily basis, and each participant experienced only one
type of intervention every day. In order to minimize the order effect,
we employed the Latin Square design (n=4) [13] to diversify the
intervention altering order. During our study onboarding sessions,
we briefly introduced the four intervention types to users, but
they were not informed of the specific order or dates for the four
intervention types during the field study. This was also designed to
reduce cognitive bias.

5.1.3  Evaluation metrics. We focused on four quantitative metrics
to evaluate the performance of Time2Stop and the other three
intervention types. The first two were about the model performance:
(1) intervention accuracy, (2) intervention receptivity. The other
two focused on its impact on users’ phone usage patterns: (3) app
usage duration and (4) app visit frequency.

Specifically, intervention accuracy represented the proportion
of interventions that were marked as “correct” by users among the
total number of intervention pop-ups. Note that this is a subjec-
tive algorithm measure instead of an objective measure, as there
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is no way to obtain an objective ground truth of overuse. Inter-
vention receptivity, on the other hand, referred to users’ reaction
after encountering interventions, which included stopping usage
(e.g., returning to the home screen, triggering a screen-off event by
locking the phone) or continuing usage. Instances where users quit
the app were considered receptive interventions, while instances
of continued usage were designated as non-receptive interventions.
The other two metrics of app usage duration and visit frequency
were calculated from the collected app usage log.

For qualitative metrics, we revealed the exact dates for each in-
tervention type to users at the end of the study. We highlighted
the latest four days to help users recall their experience with the
four different techniques, as they had the most fresh memory. Then,
we distributed a final questionnaire, asking them to rank the four
types based on their preferences, as well as their perceived accu-
racy, effectiveness, and level of trust in different intervention types.
Moreover, we conducted semi-structured exit interviews with par-
ticipants to collect their feedback and intervention preferences. Our
interview started with questions: “What do you think of the four
intervention techniques? What’s the reason behind your prefer-
ence ranking? What do you think of the explanations coming with
interventions?” For participants with low intervention accuracy
and receptivity, we also asked about their thoughts and reactions
towards intervention. We then followed the participants’ lead and
followed up with more detailed questions. The interviews were
recorded, and three researchers followed the procedure of thematic
analysis [7] to independently analyze and code the data. Then, they
met, discussed, and iterated the coding until convergence.

5.2 Procedure

Our field experiment consisted of eight weeks, as shown in Figure 4.
After the orientation and onboarding session, our field deployment
experiment followed a sequence of four phases: (1) an initial mod-
eling phase involving label collection lasting for two weeks, (2) a
one-week break phase, (3) a subsequent week dedicated to baseline
data collection without any intervention, and (4) a final four-week
intervention phase with the design of micro-randomized trials.

In the modeling phase, we passively collected contextual and app
usage data along with user-provided labels, using the label collec-
tion mechanism (see Section 3.1.2). These data points were used to
calculate the individual probability (for Control) and train the initial
ML models (for Personalized, Adaptive-wo-Exp, and Adaptive-w-
Exp). To mitigate carry-over effects inherent in label collection, we
incorporated a designated break phase. Then, we proceeded with
the baseline week, during which we gathered baseline app usage
data (usage duration and visit frequency of monitored apps) when
there was no intervention. This data would serve as a comparative
benchmark against diverse intervention types. Finally, during the
intervention stage, interventions were introduced to users. User
feedback and the accompanying behavioral data were collected (see
Section 3.2.3) to update the Adaptive-wo-Exp and Adaptive-w-Exp
models. Since users could still provide feedback during the Con-
trol and Personalized, these data were also collected to update the
adaptive models.

At the end of the intervention phase, the intervention order was
presented to participants. They then filled out the questionnaire
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Figure 4: Field Experiment Flowchart

and completed the exit interview. They were compensated up to
$50 based on their study compliance.

5.3 Participants

We posted a call for participation on large university community
forums, together with a survey including basic demographics and
a Smartphone Addiction Scale (SAS, score ranging from 33 to
198) [44]. We selected participants who used an Android smart-
phone as their primary phone and had a high SAS score (>120). 176
participants met the criteria. 127 of them attended the onboarding
session. Among these participants, 49 discontinued their participa-
tion during the field study. Out of the 49 discontinued participants,
20 chose to exit the study citing personal reasons, 17 encountered
software and hardware issues, 8 experienced compatibility con-
cerns, 3 raised privacy issues, and 1 attributed their departure to
battery concerns. Seven participants whose sensor or usage data
only covered three or fewer intervention types were also elimi-
nated from the analysis. In total, 71 participants (48 females, and 23
males, aged 21.8 + 2.3, from 18 to 27) completed the whole study
and provided high-quality data. Our analysis results were based on
these participants.

6 RESULTS

Throughout our field experiment, we collected 497,458 minutes of
usage data for 149 monitored apps (17 + 5 apps per person) from
207,898 app sessions. App categories of entertainment, social media,
and shopping emerged as the most frequently selected app cate-
gories. In total, we collected 75,670 ground truth labels during the
modeling phase. 60.5%, 24.5%, and 14.9% of them were collected at
the entry, using, and exit stages. During the intervention phase, we
captured 47,939 intervention encounters, among which we collected
39,188 additional labels from user feedback. These data were used
for our quantitative analysis. We also investigated the qualitative
data from questionnaires and interviews.

To build the optimal initial Al-based intervention models, we
first compared multiple ML models using the data from the model-
ing phase (Section 6.1). After checking the intervention frequency
among different intervention methods (Section 6.2), we then evalu-
ated the adaptiveness and explanation aspects of Time2Stop from
multiple metrics, including accuracy and receptivity (Section 6.3),
app usage duration and visit frequency (Section 6.4), as well as
participants’ perceived effectiveness of different intervention types
(Section 6.5). Overall, our findings showed the consistent advan-
tage of the adaptive component (Adaptive-w-Exp/ Adaptive-wo-Exp
vs. Personalized/Control). We also observed interesting effects of
explanations (Adaptive-wo-Exp vs. Adaptive-w-Exp) on app usage
behavior and user experience.

6.1 ML Model Comparison

Using the data gathered during the modeling phase, we compared
a wide range of off-the-shelf ML models, including Naive Bayes
(NB), Logistic Regression (LR), Support Vector Machines (SVM),
Decision Trees (DT), Random Forest (RF), and K-Nearest Neighbors
(KNN). To account for real-world temporal changes in user behavior
and simulate actual model deployment, we used the first week for
training and the subsequent week for testing.

The collected data was imbalanced (37.8% overuse, 62.2% non-
overuse). Other than calculating individual probabilities for the
Control intervention type (42.4 + 24.4%), we experimented with
SMOTE-based under-sampling and up-sampling methods for model
training [9]. We also tuned hyperparameters on promising models
with grid search. Our results indicated that RF (number of estima-
tors: 100, max depth: 10, min samples split: 5), coupled with the
up-sampling method, had the best performance across all models,
with an F1 score of 66.7%. Other models had worse results: NB
(55.3%), LR (59.0%), SVM (59.0%), DT (59.6%), KNN (62.6%). We use
this RF model as the static ML model for Personalized, as well as
the initial model for Adaptive-wo-Exp and Adaptive-w-Exp.

We also performed a feature importance analysis across all users’
models. Our analysis revealed consistency in vital features among
participants: the most common important features were related
to phone usage (unlock duration), location (total travel distance,
moving to static ratio), and temporal feature (e.g., whether night
time).

6.2 Intervention Frequency

Prior to the comparison of intervention effectiveness, we first com-
pare the frequency of intervention in our field experiment. Our
Friedman test across four intervention types showed that the num-
ber of daily interventions was significantly different (y* = 16.60,
p < 0.001). Our post-hoc pairwise comparison (Wilcoxon signed-
rank test with Holm-Bonferroni correction) indicated differences
between Control and all the rest threes (ps < 0.01), but not for other
pairs. This means that the personalized and adaptive models sent
fewer interventions to users. As shown in the rest of this section,
they were more effective with less intervention frequency.

6.3 Intervention Accuracy and Receptivity

In this section, we investigate the effectiveness of adaption (Sec-
tion 6.3.1) and explanation (Section 6.3.2) through the perspective
of intervention accuracy and receptivity. We also measure the per-
formance dynamics over time (Section 6.3.3). Since individual be-
haviors varied greatly across participants, we used Control as the
benchmark and normalized accuracy and receptivity metrics for
each participant accordingly. A value higher than 1.0 means better
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tom) Comparison across Three Intervention Types. Error bar
indicates standard deviation. The same below. The two adap-
tive versions (with and without explanation) are merged into
Adaptive to highlight better that adaptive ML-based methods
had higher intervention accuracy and receptivity.

performance and a value lower than 1.0 indicates worse perfor-
mance.

6.3.1 Effectiveness of Adaptation. Our results indicated that
adaptive methods achieved significantly higher intervention
accuracy and receptivity. To evaluate the effectiveness of our
intelligent intervention types (static or adaptive ML models), we
first merged Adaptive-wo-Exp and Adaptive-w-Exp into a type called
Adaptive to highlight the adaptation property better. Figure 5 (Left)
shows the comparison across the three types Control, Personal-
ized (A=17.1% over Control), and Adaptive (A=55.5%). We fitted a
Generalized Linear Mixed Model (GLMM) on intervention accu-
racy, with the Gamma family based on a Kolmogorov-Smirnov
distribution test?. We set intervention type as the main effect and
participant ID as the random effect. Our results showed that the
intervention type had a significant effect (y?(2)=24.52, p<0.001).
Post-hoc analysis with Holm-Bonferroni correction further indi-
cated that both the static Personalized model (p<0.05) and the Adap-
tive models (p<0.001) had significantly higher intervention accu-
racy compared to the Control baseline. Furthermore, the Adaptive
model further significantly outperformed the static Personalized

2Unless noted otherwise, we repeated the same procedure for the rest of the
GLMM models.
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model (p<0.01, A=32.8%). These results not only revealed the effec-
tiveness of the ML component (Personalized vs. Control), but also
more importantly, indicated the effectiveness of the adaptation part
(Adaptive vs. Personalized).

While accuracy refers to explicit user subject feedback on inter-
ventions, receptivity describes their actual behavior (i.e., continue
using the app or quitting it). Hence, receptivity metrics enable us
to measure how different interventions affect participants’ actual
behavior. We ran another GLMM on the intervention receptivity
with the same setup as the accuracy test. Similarly, the results
also indicate the significance of intervention type on receptivity
(¥?(2)=18.44, p<0.001), as shown in Figure 5 (Right). The post-hoc
pairwise results indicated that participants were more receptive
when using the Personalized (p=0.005, A=19.4%) and Adaptive
(p<0.001, A=29.0%) intervention types compared to the Control.
These observations on the receptivity metric were consistent with
those in the accuracy metric.

6.3.2  Effectiveness of Explanations. Our results suggested that
adding explanations significantly enhanced intervention ac-
curacy and receptivity. To investigate the impact of explana-
tions, we divided the Adaptive type back to the original two groups
Adaptive-wo-Exp and Adaptive-w-Exp. The comparison results of
the four intervention types are shown in Figure 6 (Left). We ran
another GLMM on accuracy, with the four intervention types as
the main effect and participant ID as the random effect. The results
showed significance of intervention types (y?(3)=35.70, p<0.001),
and the post-hoc analysis suggested that Adaptive-w-Exp (i.e., our
complete Time2Stop system) interventions exhibited the highest ac-
curacy by outperforming Control (p<0.001, A=97.5%), Personalized
(p<0.01, A=66.9%), and even Adaptive-wo-Exp (p<0.05, A=53.8%).
This evidence suggested the effectiveness of explanations: By ex-
plaining why they might be overusing smartphones, Time2Stop
could help participants better realize and recognize their overuse
behavior than the cases without explanations.

Similar to accuracy, our GLMM on receptivity also showed sig-
nificance (y?(3)=25.57, p<0.001). Adaptive-w-Exp also achieved the
highest receptivity, as shown in Figure 6 (Right), with strong sig-
nificance over Control (p<0.001, A=39.6%), as well as marginal sig-
nificance over Personalized (p=0.06, A=18.9%) and Adaptive-wo-Exp
(p=0.07, A=11.4%). Combining the results of both intervention accu-
racy and receptivity, we found that Time2Stop could not only help
participants recognize their overuse behavior (higher accuracy), but
also help them stop using an app in the moment (higher receptivity).
This finding suggests the effectiveness of Time2Stop by delivering
interventions when the users were receptive [61, 64].

6.3.3 Effectiveness over Time. Both adaptive models had in-
creasing intervention performance over time. Adaptive-wo-
Exp and Adaptive-w-Exp approaches both regularly updated the ML
model nightly. We also evaluated their intervention performance as
the field study progressed. As intervention receptivity provides a
more objective reflection on user behavior, we analyzed receptivity
dynamics over time, as presented in Figure 7. The Y-axis represents
normalized receptivity, while the X-axis denotes the progress of the
intervention phase. Since we used micro-randomized trials, we took
four days as an intervention block, constituting a complete cycle of
four distinct intervention types. Block 2 coincided with a national
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Figure 6: Intervention Accuracy (Top) and Receptivity (Bot-
tom) Comparison across Four Intervention Types. The
two versions of Adaptive are divided (Adaptive-w-Exp and
Adaptive-wo-Exp) to better highlight that adding explana-
tions can further enhance the performance of interventions.

holiday period, during which participants were on a break and did
not attend classes. We observed a significant drop in receptivity
from Block 1 to 2 (see the left of Figure 7. Thus, we focused our
analysis after Block 3.

We observed an increasing trend in receptivity for the two adap-
tive intervention types, with Adaptive-w-Exp having the most posi-
tive slope (r=0.16, A=63.6%), followed by Adaptive-wo-Exp (r=0.06,
A=19.1%). These results indicated that our adaptive models could
gradually improve over time and that explanations could continu-
ously enhance the intervention’s effectiveness. Moreover, Personal-
ized’s receptivity was consistently higher than the Control baseline
across all blocks. However, Personalized showed a slight decreas-
ing trend (r=-0.03), while Control showed a slight increasing trend
(r=0.05). This result may indicate that participants got used to the
static ML-based intervention and had less receptivity over time. Our
interview data revealed the potential reason behind this interesting
finding. We will present more results in Section 6.5.1.

6.4 App Usage Behavior

In addition to intervention accuracy and receptivity, app usage
behavior patterns were also important metrics to objectively mea-
sure the impact of interventions. We analyzed the app usage logs
to investigate the changes in participants’ app usage frequency
(Section 6.4.1) and duration (Section 6.4.2) between the baseline
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week and the intervention phase. Similar to Section 6.3, we also
normalized our data against the baseline week data to reduce the
bias introduced by individual differences.

6.4.1 Change of App Visit Frequency. The two adaptive methods
achieved a significant or marginally significant reduction in
visit frequency compared to the base week. However, show-
ing explanations was not as helpful. Figure 8 (Left) compares
the normalized visit frequency of the four intervention types. The
average daily visit frequency to monitored apps during the baseline
collection period was 94.97 times (SD=52.57). Our results indicated
that the visit frequency was reduced for all intervention types:
Control (93.0%), Personalized (92.2%), Adaptive-w-Exp (91.7%), and
Adaptive-wo-Exp (89.8%). We ran a GLMM on the visit frequency,
with the intervention type as the main effect and participant ID as
the random effect, which showed significance (y*(4)=13.85, p<0.01).
Post-hoc results with Holm-Bonferroni correction showed that
the visit frequency during the days of Adaptive-wo-Exp interven-
tion was significantly lower than the baseline week (p<0.01), and
that the frequency of Adaptive-w-Exp show marginal significance
(p=0.07<0.1).

This showed the advantage of the two adaptive methods over
the Personalized and Control methods. However, although the direct
comparison between Adaptive-wo-Exp and Adaptive-w-Exp was not
significant, we observed an interesting reversed effect of explana-
tions: In Sections 6.3 and 6.4, explanations could help to improve the
intervention accuracy and receptivity; However, when looking into
the app visit frequency, adaptive intervention without explanations
had better performance.

6.4.2 Change of App Usage Duration. We also observed similar
trends for app usage duration. The average time spent on monitored
apps during the baseline week was 214.00 minutes (SD=103.57).
The usage duration was reduced for all intervention types: Control
(93.3%), Personalized (93.1%), Adaptive-w-Exp (91.7%), and Adaptive-
wo-Exp (89.9%). We still observe the similar advantage of Adaptive-
wo-Exp over Adaptive-w-Exp, but the GLMM on usage duration
did not show significance (y%(4)=2.62, p=0.62). With Adaptive-w-
Exp, although participants recognized and stopped more immediate
overuse behavior, their overall usage patterns did not change much
as Adaptive-wo-Exp. We discuss these findings more in Section 6.5
and Section 7.1.

6.5 Subjective Measure

In addition to the intervention accuracy, receptivity, and app usage
behavior results, participants’ survey responses and comments
during exit interviews also provided interesting insights.

6.5.1 Clear Advantage of Adaptive Intervention Methods. Over-
all, participants had a clear preference for Adaptive-w-Exp (i.e.,
Time2Stop) and Adaptive-wo-Exp, followed by Personalized, and
then Control. The left of Figure 9 presents participants’ ranking
results among the four intervention techniques. Adaptive-w-Exp
received the most NO.1 ranking (45% of participants), and Adaptive-
wo-Exp came as the second (43%). This observation was confirmed
by a non-parametric Friedman test on ranking numbers that showed
strong significance (x%(3)=88.01, p<0.001). Our post-hoc pairwise
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comparison (Wilcoxon signed-rank test with Holm-Bonferroni cor-
rection) indicated significance among all pairs (ps<0.001) except
Adaptive-w-Exp vs. Adaptive-wo-Exp (p=0.45).

Meanwhile, participants’ ratings on the time accuracy, inter-
vention effectiveness, and level of trust were consistent with the
ranking results, as shown in the right of Figure 9. We ran three
individual Friedman tests on the three metrics. All of them indi-
cated significance (ps<0.001). The post-hoc analysis showed that
almost all pair comparisons were significant (for Adaptive-w-Exp vs.
Adaptive-wo-Exp: Peffectiveness<0-01, prrust<0.05, all others ps<0.001).
The only exception was Adaptive-w-Exp vs. Adaptive-wo-Exp on
time accuracy (p=0.15).

Our interview data also triangulated these quantitative findings.
Many participants felt the difference when comparing Personalized
and Control. “The random version [Control] didn’t make sense, and
the timing was strange some days. I think the personalized ML version
[Personalized] was consistent with my annotations a few weeks ago.”
(P14) A similar distinction was also observed when comparing the
two adaptive versions and Personalized. “I can feel that the adaptive
version [Adaptive-wo-Exp] has been learning about my behavior. At
the later stage of the study, some days more interventions would pop up
if I overused more.” (P34) “The version with explanations [Adaptive-
w-Exp] is clearly adaptive. The intervention timing became more
comfortable after I used it for a while.” (P55) It is noteworthy that the
interface of Adaptive-wo-Exp, Personalized, and Control were the
same, and participants only learned the exact dates for intervention
methods after the study finished. So, their feeling of differences
was mainly based on their experience of the intervention timing.

These findings are in line with the results in the previous section
about the advantage of Personalized over Control, and more impor-
tantly, the advantage of Adaptive-w-Exp and Adaptive-wo-Exp over
other two methods.

Moreover, we also noticed that there was a small proportion of
users ranking Control as the top 1 type (Figure 9 left). Participants
commented that this technique was “surprising/unexpected”. This
was in contrast to the Personalized method. “Later in the study, I
could somehow expect when it [Personalized] would show up. But
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that method [Control] is hard to predict. So sometimes it is refresh-
ing.” (P15) This is also supported by previous work [42], which
could explain the increasing trend of Control’s receptivity and the
decreasing trend of Personalized over time in Section 6.3.3 and
Figure 7.

6.5.2 Trade-off between with vs. without Explanation. We also
had interesting observations that could explain the difference be-
tween intervention receptivity (where Adaptive-w-Exp had the best
performance, as shown in Figure 6 and 7) and app usage behavior
(where Adaptive-wo-Exp was the best, Figure 8).

Our survey results suggested that Adaptive-w-Exp and Adaptive-
wo-Exp had similar performance. We also found diversity in prefer-
ence ranking of Adaptive-w-Exp: Although Adaptive-w-Exp received
45% of the NO.1 voting (compared to a similar 43% for Adaptive-
wo-Exp), it also received 19% of the NO.3 voting (compared to a
much lower 8% for Adaptive-wo-Exp). While most participants liked
Adaptive-w-Exp, a certain proportion of participants found it less
preferable.

We dug deep into this difference during our exit interviews. On
the one hand, participants who preferred Adaptive-w-Exp found
explanations could trigger more self-awareness: “Seeing the expla-
nations could help me to better self-reflect, which often made me stop
using my phone.” (P26) “Those explanations pushed me to think more
about the reason behind my phone usage.” (P29) “Explanations helped
me to trust the system better” (P24) These results indicated that
showing explanations could better trigger System 2 (the reason-
ing and analytical system) with reasoning and self-analysis and
improve users’ trust in the intervention. These could explain the sig-
nificantly better effectiveness and level of trust in Adaptive-w-Exp
(vet the effective sizes were limited regeciveness=0-20, Ftrust=0.16).
On the other hand, participants who did not like Adaptive-w-Exp
found explanations overly broad and sometimes confusing. “Some-
times, the explanations felt accurate. But they were very broad so I am
not sure.” (P34) Some participants found explanations unnecessary.
“I was aware of my phone overuse, so I didn’t need explanations.” (P59)

Control
Personalized
Adaptive-wo-Exp
Adaptive-w-Exp

Block 7
D25-D28

Block 5
D17-D20

Block 6
D21-D24

Figure 7: Intervention Performance Over Time. Both adaptive models had an increasing trend, followed by the Control group,

while Personalized method showed a decreasing trend.
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These results suggest a more detailed and fine-grained explanation
could be helpful for smartphone overuse intervention.

These diverse user reactions toward intervention explanations
could explain the mixed results when comparing Adaptive-w-Exp
and Adaptive-wo-Exp. We will have more discussion about this in
Section 7.

6.6 Summary of Results

Our 8-week field experiment showed that Al-powered JITAI inter-
ventions effectively reduce smartphone overuse. Our two Adaptive
models provided significantly more accurate interventions com-
pared to Control (55.5%) and Personalized (32.8%) groups. This trend
was consistent for intervention receptivity: participants were sig-
nificantly more receptive to the two Adaptive models compared to
Personalized (8.0%) and Control (29.0%) models. Furthermore, the
intervention accuracy and receptivity were further enhanced with
explanations. Adaptive-w-Exp, i.e., our complete system Time2Stop,
could significantly better help users to recognize their overuse (high
accuracy) than Adaptive-wo-Exp (53.8%), Personalized (66.9%), and
Control (97.5%) methods. Similarly, explanations helped users to be
more receptive to interventions and quit using apps. Adaptive-w-
Exp was more receptive than Adaptive-wo-Exp (11.4%), Personalized

0.95

0.90

0.85

Normalized Visit Frequency

0.80
B . C P . .
ase/,ne Ontro/ erso,,a,iz:gapt/\,e_:\fgftlve_WO e
P “Exp

Intervention Type

1.00
0.95
0.90

0.85

Normalized Usage Duration

0.80
Base/- COnt Pers Adaps.  Adapy:
Ihe ro/ 0!1.3/;2e Plive. Ptive.
d W‘EX WO.E
P Xp
Intervention Type

Figure 8: App usage visit frequency (Top) and usage duration
(Bottom). The two adaptive methods reduced the most app
visit frequency and usage duration. Interestingly, in contrast
to Figure 5-7, showing explanations did not augment the
performance from the perspective of app usage behavior.
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(18.9%), and Control (39.6%). We also discovered that the receptivity
of adaptive models improved throughout the intervention period,
showing the potential of benefiting from long-term deployment
with adaptive ML models.

Regarding the actual smartphone usage behavior, all interven-
tion types helped users reduce usage compared to the baseline
week. We observe a significant reduction in app visit frequency
for Adaptive-wo-Exp (8.9%) and a marginally significant reduction
for Adaptive-w-Exp (7.0%) Analysis of subjective responses also
aligned with our quantitative findings. Most participants ranked
Adaptive-w-Exp and Adaptive-wo-Exp as their preferred options.
Moreover, time accuracy, effectiveness, and trust were consistent
with the results by showing the superiority of the two adaptive
models. Interestingly, we observed an unexpected mixed effect of
explanations. The intervention accuracy and receptivity results
indicated the advantage of explanations, while the app usage be-
havior suggested the opposite. Our qualitative results revealed that
some users appreciated explanations for higher transparency and
trustworthiness. On the other hand, other participants found ex-
planations sometimes redundant or overly broad. We discuss this
interesting observation in the next section.

7 DISCUSSION

We designed and developed a novel ML-based explainable JITAI
system Time2Stop for smartphone overuse intervention. To system-
atically evaluate the effectiveness of making the system adaptive
and explainable, we conducted a micro-randomized study to deploy
and measure four different intervention types. Each type added
one more component on top of the previous version: ML-based
intelligence (Personalized vs. Control), adaptivity (Adaptive-wo-Exp
vs. Personalized), and explainability (Adaptive-w-Exp vs. Adaptive-
wo-Exp). Our results demonstrate each component can improve the
performance of the intervention system to some extent, with an
interesting observation of the mixed effect of explanations. Com-
bining these components, Time2Stop provides a trustworthy and
effective intervention with accurate timing while adapting to indi-
viduals’ behaviors. In this section, we discuss the potential reasons
behind the explanations’ effect (Sec. 7.1), the design considerations
and takeaways from our field experiment (Sec. 7.2), the ethical con-
cerns accompanying Al-based JITAI systems (Sec. 7.3), as well as
the limitations in our work (Sec. 7.4).

7.1 The Mixed Effect of Explanations

In our field experiment, the advantages of Personalized over Control
and Adaptive-wo-Exp over Personalized are stable across different
metrics. However, the comparison between Adaptive-wo-Exp and
Adaptive-w-Exp shows diverse results. In Figures 6 and 7, the ad-
vantage of Adaptive-w-Exp is clear, while in Figure 8 we observe the
advantage of Adaptive-w-Exp instead. These results indicate that
during the experiment, participants tended to agree with the inter-
vention timing (higher accuracy) and leave the target apps (higher
receptivity) when interventions provided explanations. However,
such “successful intervention” did not have a lasting effect. Partic-
ipants still visited and spent more time in target apps. Although
our explanations successfully triggered their System 2 and led to
usage pauses, some participants did not effectively internalize the
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explanation content and were “pushed” by explainable interven-
tions without deep reflection. Our interview results also support
this. Although most participants found explanations helpful for self-
reflection, some found explanations confusing and overly broad.

This illustrates the need for more advanced explanation gen-
eration techniques in future deployment. Now that we have built
adaptive ML models, future explanations should be dynamic, per-
sonalized, and adaptive to users. Our interview results reveal that
individuals have different preferences in the level of detail. Thus, our
system must adapt explanations to fulfill users’ specific needs [77].
Meanwhile, recent research suggests a few promising directions,
such as explanation selection (to ensure preference alignment) [45]
and verifiability (to verify the correctness of Al outputs) [17]. Fu-
ture work can be explored along with these directions to enhance
the effectiveness of explanations further.

7.2 Design Consideration of Intelligent JITAI
with Human-in-the-Loop

We made a range of design decisions in our deployment. We reflect
on important considerations and share the lessons from our study.

Alternative User-in-the-Loop Labels. In our study, we de-
signed a simple single-click feedback button to collect user feedback
and establish the human-AI loop (see Figure 2). We then used such
feedback as new labels to tune our ML model. This design has pros
and cons. On the one hand, it retrieves users’ real-time reactions
explicitly so that the model adapts toward users’ subjective experi-
ence and preference, providing transparency and user agency to
some extent. On the other hand, it requires extra effort from users
and can miss data when users do not provide feedback. Moreover,
this approach does not consider potential bias (compulsively en-
gaged users providing incorrect labels). Another alternative is to
leverage users’ reactions towards the intervention as implicit feed-
back labels (e.g., leaving the app could be marked as being receptive
to the intervention). This method is also adopted by some previ-
ous work in Al-based JITAI systems [49, 71]. It reduces user effort
and adapts the model based on their actual behaviors. However,
such implicit labels can be affected by noisy behavior, i.e., users
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could leave/stay in the app for external reasons other than the in-
tervention. Additionally, a hybrid method utilizing both explicit
(user-provided) and implicit (behavioral reactions) labels could be
implemented. This hybrid model could be refined by measuring the
consistency between implicit and explicit labels to assign varying
weights to samples, facilitating the enhancement or updating of
the model. Moreover, involving health experts in the human-AI
loop could provide a valuable solution. Collaborating with experts
allows for a more nuanced and balanced definition of overuse, in-
corporating both user perspectives and health-related guidelines.
This collaboration ensures a more objective and informed approach
toward setting criteria that align with both user behavior and health
considerations, thereby enhancing the accuracy and reliability of
the model’s updates and interventions. Researchers, designers, and
developers must carefully inspect the specific use cases and choose
between explicit and implicit feedback or a combination of both.

Real-time vs. Reflective Feedback. Other than collecting user
feedback in situ (i.e., when using target apps), we also explored
another method to ask users to label their data at the end of the
day. This post-hoc labeling offers users more time to reflect on
their behavior. However, recalling earlier smartphone usage cases
can be challenging, especially for quick usage such as habitual
phone checks. We introduced this method in our experiment for
participants who wanted to make up for missing labels. However,
our results indicated that they barely used this method (around
3%), thus we did not include them in our analysis. This was mainly
because our label collection and feedback design was simple enough.
A reflective feedback mechanism could be a promising solution for
other behavior intervention studies involving a more complex label
collection process.

Prediction Model Update Methods and Frequency. We did
not explore more advanced models in Time2Stop, such as deep
learning or recent large language models (LLMs) [58, 91], as the
model itself is not the main focus of our paper. Time2Stop employs
re-training with recency-based weight assignment for model up-
dates. Although this method is robust, other advanced methods,
such as reinforcement learning, can be explored in future work.
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Moreover, the update frequency of the prediction model is crucial
for the system’s adaptability. We updated the model daily to bal-
ance our current design’s performance and computational costs.
But there can be other options. A high frequency of updates (e.g.,
hourly or even after each interaction) can allow the system to
rapidly adapt to users’ changing behavior and provide more timely
and relevant interventions. However, this comes with higher com-
putational costs and the risk of overfitting to temporary changes
in user behavior. Conversely, a lower frequency of updates (e.g.,
weekly or monthly) reduces the computational load and the risk of
overfitting. Still, it may result in the system being slower to adapt
to meaningful changes in user behavior. There is a trade-off be-
tween adaptability and stability that must be carefully considered.
In addition, the trade-off is also impacted by specific applications.
Interventions for mental health may require a different frequency
than the ones for smartphone overuse. Future work could explore
adaptive update frequencies, where the model update frequency is
dynamically adjusted based on the stability of user behavior and
the model’s performance.

Handling “Cold-Start” in JITAI-based Interventions In our
study, we devoted the first two weeks to data collection before
deploying the intervention. This could be hard to achieve in real-
world scenarios. To address this “cold-start” challenge, one promis-
ing future approach involves unsupervised learning [4, 18] where
users will not be required to provide labels. Instead, the model will
grasp smartphone usage patterns by leveraging (e.g., by clustering)
users’ historical data. Another potential strategy involves few-shot
domain adaptation [22, 23, 76, 81, 86], where we can pre-train a
model with a dataset (such as from this study) and then fine-tune
the model with a small amount of additional data from new users.
Additionally, test-time adaptation [20, 21], an advanced domain
adaptation technique, could directly utilize test-time data to adapt a
global model to a new user without requiring any collected training
data.

Dynamic Features for Longitudinal Model Deployment.
In our study, we conducted feature selection using the first two
weeks of the data and kept the feature set static throughout the
experiment. However, for long-term deployment, the importance
of different features may change over time. Therefore, dynamic
feature selection can be applied. One potential method is selecting
each model update’s most relevant feature set. This may help the
model to have a better performance over time. However, similar
to the frequent model updates discussed above, dynamic feature
selection will introduce additional complexity and computational
requirements. It may also result in a less stable model, which can be
challenging for explanation generation and user trust building. The
same trade-off between adaptability and stability is also needed for
dynamic feature selection.

Explanation Level of Details. As mentioned in the previous
section, our current design of high-level intervention explanations
could be too general and confusing. Sec. 7.1 discusses the poten-
tial of personalized and adaptive explanation generation. How-
ever, overly detailed explanations may inadvertently reveal sen-
sitive information about user behavior, which can raise privacy
concerns [3, 36]. It is an open research question on providing ap-
propriate detail for model explanation. For behavior change targets
that are more objective (e.g., smartphone overuse), providing more
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detailed explanations can be a good idea. While for more abstract
targets (e.g., stress management), high-level and abstract explana-
tions may be more appropriate [36].

7.3 Ethical Concerns and Risk of Al-based
Intervention System

Despite the promising performance of our explainable JITAI we
also highlight the important ethical concerns of such an intelligent
intervention system. These concerns must be addressed before any
real-world, large-scale deployment. First, there is the risk of wrongly
predicting smartphone overuse. Our best performance achieved
an F1 score of 67%. It may occasionally make incorrect predictions
and lead to poorly timed interventions, which are annoying or
even harmful to users. For example, a false positive that incorrectly
identifies a user as overusing their smartphone when they are using
it for an important task may cause unnecessary stress and disrupt
their workflow. Similarly, due to the limitations of the explanation
method and model performance, the explanation content may not
accurately reflect the actual reasons. These wrong explanations
can lead to confusion and mistrust of the system and may result
in users ignoring or rejecting the interventions. Therefore, it is
essential to carefully evaluate the model prediction performance
and explanation quality. Other than exploring more advanced ML
algorithms, LLMs [8, 47, 84, 88] may offer a new method to generate
appropriate and convincing explanation content. Besides, when
an intervention is personalized, users, especially younger ones,
could be biased towards being more receptive to adopting it [24].
Therefore, a misalignment between subjective measures (users’
feedback) and objective measures (their actual behavior) in the
study could exist. Our discussion about alternative user-in-the-loop
labels in Section 7.2 could be a potential solution. This factor should
be carefully considered when deploying interventions with explicit
personalized components. Meanwhile, privacy is another critical
concern. Our current system adopts a centralized learning method
that merges all users’ data for model training. Future work can
explore edge computing methods such as federated learning [48]
to address privacy concerns.

7.4 Limitations

There are a few limitations in our work. First, we mainly focused
on young adults. Our study population had a limited age range;
thus, the findings of our results may not be generalizable to other
population groups. Meanwhile, there is a lack of exploration on the
fairness evaluation of our methods. Second, our micro-randomized
study design took the daily level as the randomization unit. This
enabled us to conduct a within-subject design within a feasible
period. However, we could not investigate the lasting effect of
different intervention methods as they were mixed. Meanwhile, our
observational study may neglect unknown confounding variables
beyond this paper’s scope. For instance, while we employed a time-
based train-test split to train the base model, we acknowledge that
mitigating the ‘observational effect’ (the impact of monitoring and
labeling) might pose a challenge. Besides, although we revealed the
exact dates of different interventions during exit interviews and
surveys, participants’ responses might still be inaccurate or biased
by their memory. Third, we updated intelligent adaptive models at
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midnight, which might not align with college students’ sleeping
schedules. Last, our work only considered smartphone overuse as a
general intervention target. The specific types of overuse, such as
excessive use of social media or video gaming, were not investigated
in detail in this study. Similarly, as mentioned earlier, we didn’t
experiment with more intervention methods other than digit typing,
as the specific intervention method is not the focus of our work.

8 CONCLUSION

In this paper, we propose a novel Al-powered explainable JITAI sys-
tem, Time2Stop, for smartphone overuse intervention. Our system
captures user context and behavior, leverages Al to infer smart-
phone overuse scenarios, introduces interventions when overuse
is detected, provides explanations, and updates the intervention
model iteratively based on human-in-the-loop feedback to form a
human-AT loop. In order to measure the effectiveness of Time2Stop,
we conducted an 8-week field experiment (N=71) and compared
four intervention types. Our results not only showed the advan-
tage of the ML component (the static ML-powered version over
the basic control), but more importantly, underscored the advan-
tages of adaptive intervention types compared to the static version,
with significantly better intervention accuracy (32.8%) and recep-
tivity (8.0%). Furthermore, including explanations in our system
significantly amplified its accuracy (53.8%) and receptivity (11.4%).
In addition, users exhibited reduced visit frequency to apps they
considered unproductive when engaged with adaptive models (7.0-
8.9%). Findings from our qualitative analysis echoed the quantita-
tive results, with users expressing a clear preference for adaptive
interventions. We also observed an interesting mixed effect of ex-
planations, which could shed light on future research direction.
We further highlighted the important ethical concerns of Al-based
intervention systems for real-world deployment. We envision our
work can be applied beyond the field of smartphone overuse and
inspire future practitioners to explore more advanced intervention
techniques with a human-AI loop.

ACKNOWLEDGMENTS

We express our gratitude to all the participants who contributed
to our longitudinal user study. We extend our appreciation to Jen-
nifer Mankoff for her insights and discussions that significantly
enriched this project, and to Zihan Yan for her assistance in the pilot
study. This paper is based upon work supported by the VW Founda-
tion, Quanta Computing, the Natural Science Foundation of China
(NSFC) under Grant Number 62132010, Young Elite Scientists Spon-
sorship Program by CAST under Grant Number 2021QNRCO001,
Tsinghua University Initiative Scientific Research Program and In-
stitute of Information & communications Technology Planning &
Evaluation (II'TP) under Grant Number 2022-0-00495.

REFERENCES

[1] Heejune Ahn, Muhammad Eka Wijaya, and Bianca Camille Esmero. 2014. A
systemic smartphone usage pattern analysis: focusing on smartphone addiction
issue. Int J Multimed Ubiquitous Eng 9, 6 (2014), 9-14.

[2] StayFree Apps. 2017. StayFree. https://play.google.com/store/apps/details?id=
com.burockgames.timeclocker.

[3] Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel

—
B

[11

[12

(13

[14

(18

[19

[20

[21]

[22

[23

™
=)

[25

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020. Ex-
plainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible Al Information Fusion 58 (June 2020), 82-115.
https://doi.org/10.1016/j.inffus.2019.12.012

Yoshua Bengio. 2012. Deep learning of representations for unsupervised and
transfer learning. In Proceedings of ICML workshop on unsupervised and transfer
learning. JMLR Workshop and Conference Proceedings, 17-36.

Jennifer L Bevan, Jeanette Pfyl, and Brett Barclay. 2012. Negative emotional
and cognitive responses to being unfriended on Facebook: An exploratory study.
Computers in Human Behavior 28, 4 (2012), 1458-1464. https://doi.org/10.1016/j.
chb.2012.03.008

Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yunhan
Jia, Joydeep Ghosh, Ruchir Puri, José MF Moura, and Peter Eckersley. 2020.
Explainable machine learning in deployment. In Proceedings of the 2020 conference
on fairness, accountability, and transparency. 648-657.

Virginia Braun and Victoria Clarke. 2012. Thematic analysis. American Psycho-
logical Association.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha
Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. 2023. Sparks of Artificial
General Intelligence: Early experiments with GPT-4. http://arxiv.org/abs/2303.
12712

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321-357.

Hyunsung Cho, DaEun Choi, Donghwi Kim, Wan Ju Kang, Eun Kyoung Choe, and
Sung-Ju Lee. 2021. Reflect, not Regret: Understanding Regretful Smartphone Use
with App Feature-Level Analysis. Proceedings of the ACM on Human-Computer
Interaction 5, CSCW2 (Oct. 2021), 1-36. https://doi.org/10.1145/3479600

S Demirci, K Demirci, and M Akgonul. 2016. Headache in smartphone users: a
cross-sectional study. J Neurol Psychol 4, 1 (2016), 5.

Android Developers. 2021. Android Accessibility Service. https://developer.
android.com/guide/topics/ui/accessibility.

Allen L Edwards. 1951. Balanced latin-square designs in psychological research.
The American journal of psychology 64, 4 (1951), 598-603.

Malin Eiband, Hanna Schneider, Mark Bilandzic, Julian Fazekas-Con, Mareike
Haug, and Heinrich Hussmann. 2018. Bringing Transparency Design into Practice.
In 23rd International Conference on Intelligent User Interfaces. ACM, Tokyo Japan,
211-223. https://doi.org/10.1145/3172944.3172961

Denzil Ferreira, Vassilis Kostakos, and Anind K Dey. 2015. AWARE: mobile
context instrumentation framework. Frontiers in ICT 2 (2015), 6.

Linda Fischer-Grote, Oswald D Kothgassner, and Anna Felnhofer. 2019. Risk
factors for problematic smartphone use in children and adolescents: a review of
existing literature. neuropsychiatrie 33, 4 (2019), 179.

Raymond Fok and Daniel S Weld. 2023. In Search of Verifiability: Explanations
Rarely Enable Complementary Performance in Al-Advised Decision Making.
arXiv preprint arXiv:2305.07722 (2023).

Zoubin Ghahramani. 2003. Unsupervised learning. In Summer school on machine
learning. Springer, 72-112.

Fausto Giunchiglia, Mattia Zeni, Elisa Gobbi, Enrico Bignotti, and Ivano Bison.
2018. Mobile social media usage and academic performance. Computers in Human
Behavior 82 (2018), 177-185. https://doi.org/10.1016/j.chb.2017.12.041

Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-
Ju Lee. 2022. NOTE: Robust continual test-time adaptation against temporal
correlation. Advances in Neural Information Processing Systems 35 (2022), 27253~
27266.

Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju
Lee. 2023. SoTTA: Robust Test-Time Adaptation on Noisy Data Streams. In
Thirty-seventh Conference on Neural Information Processing Systems. https://
openreview.net/forum?id=3bdXag2rUd

Taesik Gong, Yewon Kim, Adiba Orzikulova, Yunxin Liu, Sung Ju Hwang, Jinwoo
Shin, and Sung-Ju Lee. 2023. DAPPER: Label-Free Performance Estimation
after Personalization for Heterogeneous Mobile Sensing. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 7, 2, Article 55 (jun 2023), 27 pages. https:
//doi.org/10.1145/3596256

Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung Ju Lee. 2019. MetaSense: Few-
shot adaptation to untrained conditions in deep mobile sensing. SenSys 2019 -
Proceedings of the 17th Conference on Embedded Networked Sensor Systems (2019),
110-123. https://doi.org/10.1145/3356250.3360020

Xitong Guo, Xiaofei Zhang, and Yongqiang Sun. 2016.  The privacy-
personalization paradox in mHealth services acceptance of different age groups.
Electronic Commerce Research and Applications 16 (2016), 55-65.

David H Gustafson, Fiona M McTavish, Ming-Yuan Chih, Amy K Atwood,
Roberta A Johnson, Michael G Boyle, Michael S Levy, Hilary Driscoll, Steven M
Chisholm, Lisa Dillenburg, et al. 2014. A smartphone application to support
recovery from alcoholism: a randomized clinical trial. JAMA psychiatry 71, 5
(2014), 566-572.


https://play.google.com/store/apps/details?id=com.burockgames.timeclocker
https://play.google.com/store/apps/details?id=com.burockgames.timeclocker
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.chb.2012.03.008
https://doi.org/10.1016/j.chb.2012.03.008
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
https://doi.org/10.1145/3479600
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://doi.org/10.1145/3172944.3172961
https://doi.org/10.1016/j.chb.2017.12.041
https://openreview.net/forum?id=3bdXag2rUd
https://openreview.net/forum?id=3bdXag2rUd
https://doi.org/10.1145/3596256
https://doi.org/10.1145/3596256
https://doi.org/10.1145/3356250.3360020

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

[26]

[27

[28

[29]

[30

[31

[32]

[33

[34

[35

[36

[37

[38]

[39]

[40]

[41]

[42]

S
&

[44]

Andree Hartanto and Hwajin Yang. 2016. Is the smartphone a smart choice? The
effect of smartphone separation on executive functions. Computers in human
behavior 64 (2016), 329-336.

Alexis Hiniker, Sungsoo (Ray) Hong, Tadayoshi Kohno, and Julie A. Kientz. 2016.
MyTime: Designing and Evaluating an Intervention for Smartphone Non-Use. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New
York, NY, USA, 4746-4757. https://doi.org/10.1145/2858036.2858403

Joyce Ho and Stephen S Intille. 2005. Using context-aware computing to reduce
the perceived burden of interruptions from mobile devices. In Proceedings of the
SIGCHI conference on Human factors in computing systems. 909-918.

Robert R Hoffman, Shane T Mueller, Gary Klein, and Jordan Litman. 2018. Metrics
for explainable AlL: Challenges and prospects. arXiv preprint arXiv:1812.04608
(2018).

Wilhelm Hofmann, Malte Friese, and Fritz Strack. 2009. Impulse and Self-Control
From a Dual-Systems Perspective. Perspectives on Psychological Science 4, 2
(March 2009), 162-176. https://doi.org/10.1111/j.1745-6924.2009.01116.x

Paul Hur, HaeJin Lee, Suma Bhat, and Nigel Bosch. 2022. Using Machine Learning
Explainability Methods to Personalize Interventions for Students. International
Educational Data Mining Society (2022).

Shamsi T Igbal and Brian P Bailey. 2010. Oasis: A framework for linking notifica-
tion delivery to the perceptual structure of goal-directed tasks. ACM Transactions
on Computer-Human Interaction (TOCHI) 17, 4 (2010), 1-28.

Harmanpreet Kaur, Harsha Nori, Samuel Jenkins, Rich Caruana, Hanna Wallach,
and Jennifer Wortman Vaughan. 2020. Interpreting Interpretability: Under-
standing Data Scientists’ Use of Interpretability Tools for Machine Learning. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
ACM, Honolulu HI USA, 1-14. https://doi.org/10.1145/3313831.3376219
Jaejeung Kim, Chiwoo Cho, and Uichin Lee. 2017. Technology supported behavior
restriction for mitigating self-interruptions in multi-device environments. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
1,3 (2017), 1-21.

Jaejeung Kim, Joonyoung Park, Hyunsoo Lee, Minsam Ko, and Uichin Lee. 2019.
LocknType: Lockout Task Intervention for Discouraging Smartphone App Use.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI '19). Association for Computing Machinery, New
York, NY, USA, 1-12. https://doi.org/10.1145/3290605.3300927

Taewan Kim, Haesoo Kim, Ha Yeon Lee, Hwarang Goh, Shakhboz Abdigapporov,
Mingon Jeong, Hyunsung Cho, Kyungsik Han, Youngtae Noh, Sung-Ju Lee, and
Hwajung Hong. 2022. Prediction for Retrospection: Integrating Algorithmic
Stress Prediction into Personal Informatics Systems for College Students’ Mental
Health. In CHI Conference on Human Factors in Computing Systems. ACM, New
Orleans LA USA, 1-20. https://doi.org/10.1145/3491102.3517701

Predrag Klasnja, Eric B Hekler, Saul Shiffman, Audrey Boruvka, Daniel Almi-
rall, Ambuj Tewari, and Susan A Murphy. 2015. Microrandomized trials: An
experimental design for developing just-in-time adaptive interventions. Health
Psychology 34, S (2015), 1220.

Minsam Ko, Seungwoo Choi, Koji Yatani, and Uichin Lee. 2016. Lock n’ LoL:
Group-Based Limiting Assistance App to Mitigate Smartphone Distractions in
Group Activities. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (San Jose, California, USA) (CHI ’16). Association for
Computing Machinery, New York, NY, USA, 998-1010. https://doi.org/10.1145/
2858036.2858568

Minsam Ko, Subin Yang, Joonwon Lee, Christian Heizmann, Jinyoung Jeong,
Uichin Lee, Daehee Shin, Koji Yatani, Junehwa Song, and Kyong-Mee Chung.
2015. NUGU: A Group-Based Intervention App for Improving Self-Regulation of
Limiting Smartphone Use. In Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing (Vancouver, BC, Canada) (CSCW
’15). Association for Computing Machinery, New York, NY, USA, 1235-1245.
https://doi.org/10.1145/2675133.2675244

Minsam Ko, Subin Yang, Joonwon Lee, Christian Heizmann, Jinyoung Jeong,
Uichin Lee, Daehee Shin, Koji Yatani, Junehwa Song, and Kyong-Mee Chung.
2015. NUGU: a group-based intervention app for improving self-regulation of
limiting smartphone use. In Proceedings of the 18th ACM conference on computer
supported cooperative work & social computing. 1235-1245.

Geza Kovacs. 2019. HabitLab: In-the-wild Behavior Change Experiments at Scale.
Stanford University.

Geza Kovacs, Zhengxuan Wu, and Michael S Bernstein. 2018. Rotating online
behavior change interventions increases effectiveness but also increases attrition.
Proceedings of the ACM on Human-Computer Interaction 2, CSCW (2018), 1-25.
Florian Kiinzler, Varun Mishra, Jan-Niklas Kramer, David Kotz, Elgar Fleisch, and
Tobias Kowatsch. 2019. Exploring the state-of-receptivity for mhealth interven-
tions. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 3, 4 (2019), 1-27.

Min Kwon, Joon-Yeop Lee, Wang-Youn Won, Jae-Woo Park, Jung-Ah Min, Chang-
tae Hahn, Xinyu Gu, Ji-Hye Choi, and Dai-Jin Kim. 2013. Development and
validation of a smartphone addiction scale (SAS). PloS one 8, 2 (2013), €56936.

[45

[46

[47

S
&

[49

[50]

[51

o
&,

[53

[54

[55

[56

[57

[58

[59

[60

e
N

[62

Adiba Orzikulova et al.

Vivian Lai, Yiming Zhang, Chacha Chen, Q Vera Liao, and Chenhao Tan. 2023.
Selective explanations: Leveraging human input to align explainable ai. arXiv
preprint arXiv:2301.09656 (2023).

Liette Lapointe, Camille Boudreau-Pinsonneault, and Isaac Vaghefi. 2013. Is
Smartphone Usage Truly Smart? A Qualitative Investigation of IT Addictive
Behaviors. In 2013 46th Hawaii International Conference on System Sciences. 1063~
1072. https://doi.org/10.1109/HICSS.2013.367

Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen, Xinlu Zhang, Zekun Li,
Hong Wang, Jing Qian, Baolin Peng, Yi Mao, et al. 2022. Explanations from large
language models make small reasoners better. arXiv preprint arXiv:2210.06726
(2022).

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing
Magazine 37, 3 (May 2020), 50-60. https://doi.org/10.1109/MSP.2020.2975749
Peng Liao, Kristjan Greenewald, Predrag Klasnja, and Susan Murphy. 2020. Per-
sonalized HeartSteps: A Reinforcement Learning Algorithm for Optimizing Phys-
ical Activity. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies 4, 1 (March 2020), 1-22. https://doi.org/10.1145/3381007
Mengchen Liu, Jiaxin Shi, Kelei Cao, Jun Zhu, and Shixia Liu. 2017. Analyzing the
training processes of deep generative models. IEEE transactions on visualization
and computer graphics 24, 1 (2017), 77-87.

Markus Lochtefeld, Matthias BShmer, and Lyubomir Ganev. 2013. AppDetox:
Helping Users with Mobile App Addiction. In Proceedings of the 12th International
Conference on Mobile and Ubiquitous Multimedia (Lulea, Sweden) (MUM ’13).
Association for Computing Machinery, New York, NY, USA, Article 43, 2 pages.
https://doi.org/10.1145/2541831.2541870

Tao Lu, Hongxiao Zheng, Tianying Zhang, Xuhai Xu, and Anhong Guo. 2024.
InteractOut: Leveraging Interaction Proxies as Input Manipulation Strategies
for Reducing Smartphone Overuse. In Proceedings of the 2024 CHI conference on
human factors in computing systems. Association for Computing Machinery, New
York, NY, USA, 1-18.

Kai Lukoff, Ulrik Lyngs, Karina Shirokova, Raveena Rao, Larry Tian, Himan-
shu Zade, Sean A. Munson, and Alexis Hiniker. 2023. SwitchTube: A Proof-
of-Concept System Introducing “Adaptable Commitment Interfaces” as a Tool
for Digital Wellbeing. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Association for
Computing Machinery, New York, NY, USA, Article 197, 22 pages. https:
//doi.org/10.1145/3544548.3580703

Kai Lukoff, Ulrik Lyngs, Himanshu Zade, J. Vera Liao, James Choi, Kaiyue Fan,
Sean A. Munson, and Alexis Hiniker. 2021. How the Design of YouTube Influences
User Sense of Agency. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems (Yokohama, Japan) (CHI °21). Association for Computing
Machinery, New York, NY, USA, Article 368, 17 pages. https://doi.org/10.1145/
3411764.3445467

Scott M. Lundberg and Su In Lee. 2017. A unified approach to interpreting model
predictions. Advances in Neural Information Processing Systems 2017-Decem,
Section 2 (2017), 4766-4775.

Ulrik Lyngs, Kai Lukoff, Laura Csuka, Petr Slovak, Max Van Kleek, and Nigel
Shadbolt. 2022. The Goldilocks level of support: Using user reviews, ratings, and
installation numbers to investigate digital self-control tools. International journal
of human-computer studies 166 (2022), 102869.

Ulrik Lyngs, Kai Lukof, Petr Slovak, Reuben Binns, Adam Slack, Michael Inzlicht,
Max Van Kleek, and Nigel Shadbolt. 2019. Self-control in cyberspace: Applying
dual systems theory to a review of digital self-control tools. In proceedings of the
2019 CHI conference on human factors in computing systems. 1-18.

Amama Mahmood, Junxiang Wang, Bingsheng Yao, Dakuo Wang, and Chien-
Ming Huang. 2023. LLM-Powered Conversational Voice Assistants: Interac-
tion Patterns, Opportunities, Challenges, and Design Guidelines. arXiv preprint
arXiv:2309.13879 (2023).

Lakmal Meegahapola, William Droz, Peter Kun, Amalia De Gotzen, Chaitanya
Nutakki, Shyam Diwakar, Salvador Ruiz Correa, Donglei Song, Hao Xu, Miriam
Bidoglia, et al. 2023. Generalization and Personalization of Mobile Sensing-Based
Mood Inference Models: An Analysis of College Students in Eight Countries. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
6, 4 (2023), 1-32.

Varun Mishra, Florian Kiinzler, Jan-Niklas Kramer, Elgar Fleisch, Tobias Kowatsch,
and David Kotz. 2021. Detecting receptivity for mHealth interventions in the
natural environment. Proceedings of the ACM on interactive, mobile, wearable and
ubiquitous technologies 5, 2 (2021), 1-24.

Varun Mishra, Florian Kiinzler, Jan-Niklas Kramer, Elgar Fleisch, Tobias Kowatsch,
and David Kotz. 2021. Detecting Receptivity for mHealth Interventions in the
Natural Environment. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 5, 2 (June 2021), 1-24. https://doi.org/10.1145/3463492
Alberto Monge Roffarello and Luigi De Russis. 2019. The Race Towards
Digital Wellbeing: Issues and Opportunities. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1-14.
https://doi.org/10.1145/3290605.3300616


https://doi.org/10.1145/2858036.2858403
https://doi.org/10.1111/j.1745-6924.2009.01116.x
https://doi.org/10.1145/3313831.3376219
https://doi.org/10.1145/3290605.3300927
https://doi.org/10.1145/3491102.3517701
https://doi.org/10.1145/2858036.2858568
https://doi.org/10.1145/2858036.2858568
https://doi.org/10.1145/2675133.2675244
https://doi.org/10.1109/HICSS.2013.367
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1145/3381007
https://doi.org/10.1145/2541831.2541870
https://doi.org/10.1145/3544548.3580703
https://doi.org/10.1145/3544548.3580703
https://doi.org/10.1145/3411764.3445467
https://doi.org/10.1145/3411764.3445467
https://doi.org/10.1145/3463492
https://doi.org/10.1145/3290605.3300616

Time2Stop

[63]

[64]

[65]

[66]

[67

[68

[69]

[70]
[71

[72

[73]

[74

[75

[76]

[77

[81]

[82

[83]

[84

Inbal Nahum-Shani, Mashfiqui Rabbi, Jamie Yap, Meredith L. Philyaw-Kotov,
Predrag Klasnja, Erin E. Bonar, Rebecca M. Cunningham, Susan A. Murphy, and
Maureen A. Walton. 2021. Translating Strategies for Promoting Engagement in
Mobile Health: A Proof-of-Concept Micro-Randomized Trial. Health psychology
: official journal of the Division of Health Psychology, American Psychological
Association 40, 12 (Dec. 2021), 974-987. https://doi.org/10.1037/hea0001101
Inbal Nahum-Shani, Shawna N Smith, Bonnie J Spring, Linda M Collins, Katie
Witkiewitz, Ambuj Tewari, and Susan A Murphy. 2018. Just-in-Time Adaptive
Interventions (JITAIs) in Mobile Health: Key Components and Design Principles
for Ongoing Health Behavior Support. Annals of Behavioral Medicine 52, 6 (May
2018), 446-462. https://doi.org/10.1007/s12160-016-9830-8

Inbal Nahum-Shani, Shawna N Smith, Bonnie J Spring, Linda M Collins, Katie
Witkiewitz, Ambuj Tewari, and Susan A Murphy. 2018. Just-in-time adaptive
interventions (JITAIs) in mobile health: key components and design principles
for ongoing health behavior support. Annals of Behavioral Medicine 52, 6 (2018),
446-462.

Urbandroid (Petr Nalevka). 2015. Digital Detox: Focus & Live. https://play.google.
com/store/apps/details?id=com.urbandroid.ddc.

Adiba Orzikulova, Hyunsung Cho, Hye-Young Chung, Hwajung Hong, Uichin
Lee, and Sung-Ju Lee. 2023. FinerMe: Examining App-level and Feature-level
Interventions to Regulate Mobile Social Media Use. Proc. ACM Hum.-Comput.
Interact. 7, CSCW2, Article 274 (oct 2023). https://doi.org/10.1145/3610065
Subramani Parasuraman, Aaseer Thamby Sam, Stephanie Wong Kah Yee, Bobby
Lau Chik Chuon, and Lee Yu Ren. 2017. Smartphone usage and increased risk of
mobile phone addiction: A concurrent study. International journal of pharmaceu-
tical investigation 7, 3 (2017), 125.

Chunjong Park, Junsung Lim, Juho Kim, Sung-Ju Lee, and Dongman Lee. 2017.
Don’t bother me. I'm socializing! A breakpoint-based smartphone notification
system. In Proceedings of the 2017 ACM Conference on Computer Supported Coop-
erative Work and Social Computing. 541-554.

Shaokan Pi. 2015. Forest. https://www.forestapp.cc/.

Mashfiqui Rabbi, Min Hane Aung, Mi Zhang, and Tanzeem Choudhury. 2015.
MyBehavior: Automatic Personalized Health Feedback from User Behaviors
and Preferences using Smartphones. Proceedings of the ACM International Joint
Conference on Pervasive and Ubiquitous Computing September (2015), 707-718.
https://doi.org/10.1145/2750858.2805840 ISBN: 9781450317702.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why should
i trust you?" Explaining the predictions of any classifier. Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
13-17-Augu (2016), 1135-1144. https://doi.org/10.1145/2939672.2939778
William Riley, Jami Obermayer, and Jersino Jean-Mary. 2008. Internet and mobile
phone text messaging intervention for college smokers. Journal of American
College Health 57, 2 (2008), 245-248.

Matthew Saponaro, Ajith Vemuri, Greg Dominick, and Keith Decker. 2021. Con-
textualization and individualization for just-in-time adaptive interventions to
reduce sedentary behavior. In Proceedings of the conference on health, inference,
and learning. 246-256.

Saul Shiffman, Arthur A Stone, and Michael R Hufford. 2008. Ecological momen-
tary assessment. Annu. Rev. Clin. Psychol. 4 (2008), 1-32.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. Advances in neural information processing systems 30 (2017).
Robert Thomson and Jordan Richard Schoenherr. 2020. Knowledge-to-
information translation training (kitt): An adaptive approach to explainable
artificial intelligence. In Adaptive Instructional Systems: Second International Con-
ference, AIS 2020, Held as Part of the 22nd HCI International Conference, HCII 2020,
Copenhagen, Denmark, July 19-24, 2020, Proceedings 22. Springer, 187-204.
Screen Time. 2020. Screen Time. https://support.apple.com/en-us/HT208982.
Ofir Turel, Alexander Serenko, and Nick Bontis. 2008. Blackberry addiction:
Symptoms and outcomes. AMCIS 2008 Proceedings (2008), 73.

Helena Vasconcelos, Matthew Jorke, Madeleine Grunde-McLaughlin, Tobias
Gerstenberg, Michael S Bernstein, and Ranjay Krishna. 2023. Explanations can
reduce overreliance on ai systems during decision-making. Proceedings of the
ACM on Human-Computer Interaction 7, CSCW1 (2023), 1-38.

Yaging Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing
from a few examples: A survey on few-shot learning. ACM computing surveys
(csur) 53, 3 (2020), 1-34.

Digital Wellbeing. 2018. Digital Wellbeing. https://www.android.com/digital-
wellbeing/.

Pawel W. Wozniak, Przemystaw Piotr Kucharski, Maartje M.A. de Graaf, and
Jasmin Niess. 2020. Exploring Understandable Algorithms to Suggest Fitness
Tracker Goals That Foster Commitment. In Proceedings of the 11th Nordic Con-
ference on Human-Computer Interaction: Shaping Experiences, Shaping Society
(Tallinn, Estonia) (NordiCHI °20). Association for Computing Machinery, New
York, NY, USA, Article 35, 12 pages. https://doi.org/10.1145/3419249.3420131
Ruolan Wu, Chun Yu, Xiaole Pan, Yujia Liu, Ningning Zhang, Yue Fu, Wang
Yuhan, Zheng Zhi, Chen Li, Jiang Qiaolei, Xuhai Xu, and Yuanchun Shi. 2024.
MindShift: Leveraging Large Language Models for Mental-States-Based Problem-
atic Smartphone Use Intervention. In Proceedings of the 2024 CHI conference on

[85

(86

[87

[88

[90

[91

[93

[94

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

human factors in computing systems. Association for Computing Machinery, New
York, NY, USA, 1-18. https://doi.org/10.1145/3613904.3642790

Xuhai Xu, Prerna Chikersal, Afsaneh Doryab, Daniella K. Villalba, Janine M.
Dutcher, Michael J. Tumminia, Tim Althoff, Sheldon Cohen, Kasey G. Creswell,
J. David Creswell, Jennifer Mankoff, and Anind K. Dey. 2019. Leveraging Routine
Behavior and Contextually-Filtered Features for Depression Detection among
College Students. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 3, 3 (Sept. 2019), 1-33. https://doi.org/10.1145/3351274
Xuhai Xu, Jun Gong, Carolina Brum, Lilian Liang, Bongsoo Suh, Shivam Kumar
Gupta, Yash Agarwal, Laurence Lindsey, Runchang Kang, Behrooz Shahsavari, Tu
Nguyen, Heriberto Nieto, Scott E Hudson, Charlie Maalouf, Jax Seyed Mousavi,
and Gierad Laput. 2022. Enabling Hand Gesture Customization on Wrist-Worn
Devices. In Proceedings of the ACM Conference on Human Factors in Computing
Systems. ACM, New Orleans LA USA, 1-19. https://doi.org/10.1145/3491102.
3501904

Xuhai Xu, Xin Liu, Han Zhang, Weichen Wang, Subgiya Nepal, Kevin S Kuehn,
Jeremy Huckins, Margaret E Morris, Paula S Nurius, Eve A Riskin, Shwetak
Patel, Tim Althoff, Andrew Campell, Anind K Dey, and Jennifer Mankoff. 2023.
GLOBEM: Cross-Dataset Generalization of Longitudinal Human Behavior Mod-
eling. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 6, 4 (2023), 32.

Xuhai Xu, Bingshen Yao, Yuanzhe Dong, Hong Yu, James Hendler, Anind K Dey,
and Dakuo Wang. 2023. Leveraging large language models for mental health
prediction via online text data. arXiv preprint arXiv:2307.14385 (2023).

Xuhai Xu, Han Zhang, Yasaman Sefidgar, Yiyi Ren, Xin Liu, Woosuk Seo, Jennifer
Brown, Kevin Kuehn, Mike Merrill, Paula Nurius, Shwetak Patel, Tim Althoff, Mar-
garet E Morris, Eve Riskin, Jennifer Mankoff, and Anind K Dey. 2022. GLOBEM
Dataset: Multi-Year Datasets for Longitudinal Human Behavior Modeling Gen-
eralization. In Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track. 18.

Xuhai Xu, Tianyuan Zou, Han Xiao, Yanzhang Li, Ruolin Wang, Tianyi Yuan,
Yuntao Wang, Yuanchun Shi, Jennifer Mankoff, and Anind K Dey. 2022. TypeOut:
Leveraging Just-in-Time Self-Affirmation for Smartphone Overuse Reduction.
In Proceedings of the ACM Conference on Human Factors in Computing Systems.
ACM, New Orleans LA USA, 1-17. https://doi.org/10.1145/3491102.3517476
Ziqi Yang, Xuhai Xu, Bingsheng Yao, Shao Zhang, Ethan Rogers, Stephen Intille,
Nawar Shara, Dakuo Wang, et al. 2023. Talk2Care: Facilitating Asynchronous
Patient-Provider Communication with Large-Language-Model. arXiv preprint
arXiv:2309.09357 (2023).

Sedat Yasin, Erman Altunisik, and Ali Zeynal Abidin Tak. 2022. Digital Danger
in Our Pockets: Effect of Smartphone Overuse on Mental Fatigue and Cognitive
Flexibility. The Journal of Nervous and Mental Disease (2022), 10-1097.

Zhan Zhang, Yegin Genc, Dakuo Wang, Mehmet Eren Ahsen, and Xiangmin
Fan. 2021. Effect of ai explanations on human perceptions of patient-facing
ai-powered healthcare systems. Journal of Medical Systems 45, 6 (2021), 64.
Linbo Zhuang, Lisheng Wang, Dongming Xu, Zhiyong Wang, and Renzheng
Liang. 2021. Association between excessive smartphone use and cervical disc
degeneration in young patients suffering from chronic neck pain. Journal of
Orthopaedic Science 26, 1 (2021), 110-115.


https://doi.org/10.1037/hea0001101
https://doi.org/10.1007/s12160-016-9830-8
https://play.google.com/store/apps/details?id=com.urbandroid.ddc
https://play.google.com/store/apps/details?id=com.urbandroid.ddc
https://doi.org/10.1145/3610065
https://www.forestapp.cc/
https://doi.org/10.1145/2750858.2805840
https://doi.org/10.1145/2939672.2939778
https://support.apple.com/en-us/HT208982
https://www.android.com/digital-wellbeing/
https://www.android.com/digital-wellbeing/
https://doi.org/10.1145/3419249.3420131
https://doi.org/10.1145/3613904.3642790
https://doi.org/10.1145/3351274
https://doi.org/10.1145/3491102.3501904
https://doi.org/10.1145/3491102.3501904
https://doi.org/10.1145/3491102.3517476

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

A EXPLANATION EXAMPLES

Adiba Orzikulova et al.

Table 2: Examples of Feature Explanations at Different Explanation Levels.

Model Feature

Readable Name

numViewScrolledCurrentAppCategory
sumDurationDischarge

countScansMostFrequentDevice
timeFirstSent

timeAtTopOneLocation
minLengthStayAtClusters

isNight

Number of Scrolls in Current App Category
Battery Discharge Duration

Duration of Being Mobile
Average Lux in Light Conditions

Number of Frequently Scanned Devices
Time of First Sent Message

Time Spent at Top One Location
Minimum Stay at Frequent Locations

Whether it is the Night Time

Explanation
High-level Low-level
Phone & App Use Number of Interactions
Phone & App Use Battery Usage
" Activity | Duration of Being Mobile
Activity Light Conditions
" Social | Number of Nearby Devices -
Social Time of Sent Message
" Location | Time at Frequent Locations -
Location Time at Frequent Locations
- Time | the Night Time
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