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A B S T R A C T

The use of therapeutic peptides for the treatment of cancer has received tremendous attention in recent
years. Anticancer peptides (ACPs) are considered new anticancer drugs which have several advantages over
chemistry-based drugs including high specificity, strong tumor penetration capacity, and low toxicity level for
normal cells. Due to the rise of experimentally verified bioactive peptides, several in silico approaches became
imperative for the investigation of the characteristics of ACPs. In this paper, we proposed a new machine
learning tool named iACP-RF that uses a combination of several sequence-based features and an ensemble of
three heterogeneously trained Random Forest classifiers to accurately predict anticancer peptides. Experimental
results show that our proposed model achieves an accuracy of 75.9% which outperforms other state-of-the-art
methods by a significant margin. We also achieve 0.52, 75.6%, and 76.2% in terms of Matthews Correlation
Coefficient (MCC), Sensitivity, and Specificity, respectively. iACP-RF as a standalone tool and its source code
are publicly available at: https://github.com/MLBC-lab/iACP-RF.
1. Introduction

Cancer is considered as a genetic disease since it is developed
due to changes in genes that control cell function, especially how
they grow and divide. According to the World Health Organization
(WHO), in 2020 alone, 10 million people died prematurely due to
cancer worldwide, which accounts for nearly one in six deaths. Due to
the inadequacy of accurate and non-invasive markers, the detection of
cancer is usually biased and not always correct [1,2]. Advancements in
he field of proteomics and genomics have recently led to the discovery
f peptide-based biomarkers, which have enhanced the detection of
ancer at its early stage [3]. After diagnosing cancer, the next step is
ts treatment.
As of yet, chemotherapy, radiation therapy, hormonal therapy, and

urgery are the conventional treatments available for treating cancer,

∗ Corresponding author at: Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA.
E-mail address: i.dehzangi@rutgers.edu (I. Dehzangi).

which still come with adverse side effects and high expenses. In ad-
dition, there are still chances of recurrences of cancer after remission,
even if the treatment shows promising results. This indicates the ne-
cessity to find more effective and improved treatment [4–6]. In recent
years, peptide-based therapy has emerged as a novel and advanced
strategy for the treatment of cancer. It has several advantages like
good efficacy, high target specificity, low toxicity, easily synthesized
and modified, and less immunogenic when combined with recombinant
antibodies [7–9].

In the past few years, therapeutic peptides have been used as a
diagnostic tool and proved to be successful in treating many diseases.
So far, more than 7000 natural peptides have been reported to exhibit
multiple bioactivities (antiviral, antifungal, antibacterial, anticancer,
tumor-homing, etc.). So far, more than 60 drugs have been approved by
vailable online 6 September 2023
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the Federal Drug Administration (FDA) and more than 500 are under
clinical trials [10–17].

The term anticancer peptides (ACPs) refer to small peptides that
exert selective and toxic properties toward cancer cells and represent a
promising class of therapeutic agents as synthetic peptide-based drugs
and vaccines due to their inherent high penetration and selectivity,
as well as ease of modification. It was shown that affinity, stability,
and selectivity for the elimination of cancer cells can be improved
by designing ACPs [18]. Amino acid residues influence the anticancer
properties by relying on cationic, hydrophobic, and amphiphilic prop-
erties with helical structures to drive cell permeability. Cationic amino
acid residues like lysine, arginine, and histidine can particularly pen-
etrate and disrupt cancer cell membranes to induce cytotoxicity. On
the other hand, anionic amino acids like glutamic and aspartic acids
provide antiproliferative activity against cancer cells [19]. Hydropho-
bic amino residues like phenylalanine, tryptophan, and tyrosine also
exert their cytotoxic activities [20]. Also, cationic and hydrophobic
mino acids that form the secondary structure of ACPs, plays a vital
ole in peptide-cancer cell membrane interaction that leads to cancer
ell disruption and necrosis [21].
ACPs are small peptides (5–50 amino acids) and are cationic by na-

ure. In general, they possess mostly 𝛼-helix based secondary structures
e.g. LL37, BMAP-27, BMAP-28, and Cecropin A). Some also fold into 𝛽-
heet (e.g. Lactoferrin, Defensins, etc.) and demonstrate extended linear
tructure like Tritrpticin, and Indolicidin [22,23]. Cancer cells display
ifferent properties in contrast to normal cells and possess a larger
urface area due to the presence of a higher number of microvilli, neg-
tively charged cell membrane, and higher fluidity of the membrane.
itochondrial membrane lysis (apoptosis) is another means for ACPs
o exhibit their function, recruiting other immune cells, or inhibiting
ngiogenesis pathway for attacking cancer cells and activating essential
roteins which ultimately lyse cancer cells [24–28].
Accurate prediction of ACPs is essential to explore the novel thera-

eutic ACPs mechanism of action and development. Experimental pro-
esses to conduct different tasks in biology are time-consuming, labor-
ntensive, and expensive. Hence, there is a demand for developing fast
nd accurate computational tools. Many machine learning-based mod-
ls have been developed to tackle different biological problems. Studies
or predicting miRNA-disease associations have also benefited from
omputational approaches like machine learning by outperforming ex-
sting works [29–31]. Previously, various sequence-based computa-
ional methods were proposed for the prediction of ACPs. Among them,
he most notables are AntiCP, iACP, ACPP, iACP-GAEnsC, MLACP,
AP, TargetACP, ACPred, ACP-DL, ACPred-FL, PTPD, Hajisharifi et al.’s
ethod, Li and Wang’s method, ACPred-Fuse and PEPred-Suite [29,30,
2–43].
In one of the early studies, Tyagi et al. [32] used Support Vector Ma-

hine (SVM) to predict ACPs. Although they reported high specificity,
heir result was poor in terms of sensitivity. To develop iACP, Chen
t al. used rigorous cross-validation by optimizing the g-gap dipeptide
omponents to predict ACPs [33], whereas Akbar et al. used genetic
lgorithm-based ensemble classifiers to tackle this problem [35]. Later
n, Manavalan et al. investigated the performance of SVM compared to
he Random Forest (RF) classifier on Tyagi-B dataset. They showed that
F demonstrates better results compared to SVM for this problem [29].
n a similar study, Schaduangrat et al. used SVM and RF together
o tackle this problem and achieved promising results [16]. Akbar
t al. introduced cACP for ACP prediction, applying features like Quasi-
equence order, conjoint triad, and Geary autocorrelation descriptor,
long with traditional ML methods such as SVM, RF, and KNN. They
lso utilized SVM for developing cACP-2LFS to predict ACPs and later
roposed cACP-DeepGram, a Deep Neural Network approach using
ord embedding features, for accurate ACP classification [44–46].
More recently, Yi et al. used a long short-term memory (LSTM)
odel to predict ACPs and demonstrated promising results. In a dif-
2

erent study, Wei et al. proposed a new adaptive feature representation r
trategy that learns the most representative features for different pep-
ide types and used RF as their classification technique to solve this
roblem [30]. Although they were able to predict different peptide
ypes simultaneously, their results were not satisfactory compared to
ther methods. More recently, Rao et al. fused the class and proba-
ilistic features with handcrafted sequential features and showed that
ombinations of diverse and heterogeneous features have a more dis-
riminative ability to predict ACPs [43]. The comprehensive review
f computational approaches proposed to predict ACPs is presented
n [16].
Despite all the efforts, the ACP prediction performance still remains

imited. The main challenge of existing work is their limited ability in
ccurately classifying the ACPs. Although the existing works show high
ccuracy, they lack behind in terms of sensitivity. In addition, ensemble
achine learning models combined with heterogeneous sets of features
ave not been explored adequately to tackle this problem. Although
equence-based feature extraction techniques like K-mer, k-Gapped K-
er, and Binary Profile features showed promising results as standalone
echniques, there has not been any study to combine all three feature
roups together for the prediction of ACPs.
To mitigate this gap, we propose a new ensemble of heterogeneously

rained classifiers called iACP-RF to accurately predict anticancer pep-
ides. To build this model, we use three effective feature extraction
echniques namely K-mer, Binary profile feature, and k-Gapped K-mer.
e utilize two variants of Gapped K-mer, which are 1-Gapped Di-Mono,
nd 1-Gapped Mono-Di. We then feed these three feature sets into
hree different Random Forest (RF) classifiers and then use majority
oting to combine them and predict anticancer peptides. iACP-RF, as an
nsemble of heterogeneous RF classifiers that are trained using different
ets of features, demonstrates better results compared to the state-
f-the-art methods found in the literature for predicting anticancer
eptides. The key contributions of this research are as follows:

• Proposing a novel architecture to classify anticancer peptides
(ACP).

• Outperforming existing models for predicting ACPs.
• Proposing a new ensemble of heterogeneous classifiers using Ran-
dom Forest as the base classifier.

• Investigating different sets of attributes for feature extraction to
build our proposed machine learning model iACP-RF.

• Building our model as a standalone tool namely iACP-RF, which
is publicly available at https://github.com/MLBC-lab/iACP-RF.

. Materials and methods

.1. Dataset

Here we utilize a dataset obtained from iACP-FSCM study which is
vailable at: iACP-FSCM. They accumulated the datasets used in their
revious studies of anticancer peptides such as ACP-DL, ACPP, ACPred-
L, AntiCP, and iACP to build their own dataset [33,34,38,39,47,48].
his dataset contains ACPs with a length between 4 and 50 residues.
hey divided the dataset into two, namely main and alternate datasets,
nd divided both further into train and independent test sets. In each
ase, we train our model on the main and alternate datasets and test
ur model on their corresponding independent test sets.
The alternate dataset consists of 776 experimentally validated posi-

ive peptides and 776 negative peptides as training sets. It also contains
94 positive peptides and 194 negative peptides in the validation set
sed to verify the model’s performance. The main dataset, contains
CPs with both anticancer and antimicrobial properties. This dataset
onsists of 689 positive anticancer peptides and 689 negative peptides.
t also contains 172 positive peptides and 172 negative peptides in its
alidation set. Using these datasets enables us to directly compare our

esults with the state-of-the-art models found in the literature.

https://github.com/MLBC-lab/iACP-RF
https://webs.iiitd.edu.in/raghava/anticp2/download.php
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Table 1
Depiction of the features extracted using our employed feature extraction techniques.
Name of features Number of features Feature structure Description

MonoMer Composition 20 X When X = 1, 20 features of peptide
DiMer Composition 400 XX When X = 2, 400 features of peptide
TriMer Composition 8000 XXX When X = 3, 8000 features of peptide
1-Gapped Di-Mono Composition 8000 XX_X When k-Gap = 1, 8000 features of peptide
1-Gapped Mono-Di Composition 8000 X_XX When k-Gap = 1, 8000 features of peptide
Binary Profile Feature 1000 [0,0, . . . ..0,1] One hot vector is 20, peptide sequence has 50 residues, 20 x 50 = 1000
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Table 2
Performance of the different ML methods for both main and alternate datasets using
K-mer as a single feature.
Models Main dataset Alternate dataset

Ac Sn Sp MCC Ac Sn Sp MCC

LR + LR + LR 68.9 59.3 78.5 0.39 89.0 85.6 92.3 0.70
DT + DT + DT 74.4 76.2 72.7 0.49 87.1 85.6 88.7 0.74
NB + NB + NB 71.5 72.1 70.9 0.43 86.6 75.8 97.4 0.75
KNN + KNN + KNN 69.2 95.3 43.0 0.45 66.5 97.4 35.6 0.42
SVM + SVM + SVM 72.7 73.3 72.1 0.45 90.0 82.0 98.0 0.81
RF + RF + RF 75.9 75.6 76.2 0.52 93.1 89.2 96.9 0.86

Table 3
Results achieved by different classifiers using Binary profile feature group.
Methods Main dataset Alternative dataset

Ac Sn Sp MCC Ac Sn Sp MCC

LR 74.1 77.3 70.9 0.48 88.7 89.2 88.1 0.77
DT 74.4 75.6 73.3 0.49 82.0 89.2 74.7 0.64
KNN 67.4 94.2 40.7 0.41 64.9 95.9 34.0 0.38
SVM 74.4 79.1 69.8 0.49 89.0 82.0 95.9 0.79
NB 58.7 93.0 24.4 0.24 65.7 93.8 37.6 0.38
RF 76.2 79.1 73.3 0.52 76.2 79.1 73.3 0.52

2.2. Feature encoding

Extracting features is a major aspect of any research in order to im-
plement an ML model. To accurately distinguish ACPs from non-ACPs
and to develop an effective computational tool, extracting informative
features with significant discriminatory information to present peptide
sequences is crucial. In this paper, we utilized sequence-based k-mer
composition and gapped k-mer composition for representing the se-
quences. These features are explained in more detail in the following
sections.

2.2.1. K-mer composition
K-mer is all the possible consecutive subsequences of length k

obtained from peptide sequences, which denote the number of times
each combination of k-mer exists in the sequence. With a sequence
of size n, the number of k-mer possibilities is 𝑛 − 𝑘 + 1. To figure out
the k-mer composition, the frequency of each k-mer of a particular
sequence is calculated and then divided by the whole sequence length
to normalize the result. This can be formulated as:

𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠) = 1
𝑛

𝑛−𝑘
∑

𝑖=0
𝑚𝑎𝑡𝑐ℎ(𝑝𝑒𝑝𝑡𝑖𝑑𝑒[𝑖 ∶ 𝑖 + 𝑘 − 1], 𝑠) (1)

here n denotes the summation of nucleotides in the sequence, s
epresents a k-mer with a length of k, and peptide[i:i+k-1] denotes the
ubstring of k peptides starting from the i index. The function match
an be presented as the following formula:

𝑎𝑡𝑐ℎ(𝑠𝑗 , 𝑠𝑙) = {
1, 𝑖𝑓 𝑠𝑗==𝑠𝑙
0, 𝑒𝑙𝑠𝑒 (2)

For instance, let us consider a peptide sequence consisting of twenty
amino acids A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y.
For the value of k = 1, we get 20 k-mers {‘A’,‘C’,‘D’,‘E’,‘F’,‘G’,‘H’,‘I’,‘K’,
‘L’,‘M’,‘N’,‘P’,‘Q’, ‘R’,‘S’,‘T’,‘V’,‘W’,‘Y’}, and using the formula (1) we
3

can represent the sequence ‘‘ACDEFGHIKLMNPQRSTVWY’’ as a feature o
vector [1/20, 1/20, 1/20, 1/20, 1/20, 1/20, 1/20, 1/20, 1/20, 1/20,
1/20, 1/20, 1/20, 1/20, 1/20, 1/20, 1/20, 1/20, 1/20, 1/20].

2.2.2. K-gapped Mono-Di and Di-Mono composition
A full k-mer refers to a letter subsequence of length k. For example,

AAGT is a full 4-mer. By contrast, a k-gapped Mono-Di refers to a
subsequence containing three letters with k-number of gaps after one
amino acid, whereas Di-Mono refers to a subsequence containing three
letters with k-number of gaps after two amino acids. The normalized
frequency of 3-mers with a single gap between them are used to
calculate these features. X_XX is the form for 1-gapped Mono-Di where
X is the amino acids A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V,
W, Y, and 1-gapped Di-Mono is in the form of XX_X.

When k-gap is equal to n, then 20 𝑥 (20 𝑥 20) 𝑥 n features will be
enerated for protein sequences. For 1-gapped Mono-Di having k-gap
1, a total of 20 𝑥 (20 𝑥 20) 𝑥 1 = 8000 features is extracted, and

he features are the number of A_AA, A_AC, A_AD, A_AE, A_AF, A_AG,
_AI, A_AK, A_AL, A_AM, A_AN, A_AP, A_AQ, A_AR, A_AS, A_AT, A_AV,
_AW, A_AY, A_CA, A_CC, . . . , Y_YA, Y_YC, Y_YD, Y_YE, Y_YF, Y_YG,
_YH, Y_YI, Y_YK, Y_YL, Y_YM, Y_YN, Y_YP, Y_YQ, Y_YR, Y_YS, Y_YT,
_YV, Y_YW, and Y_YY that are present the whole peptide sequence.
For 1-gapped Di-Mono having k-gap = 1, a total of 20 𝑥 (20 𝑥 20)
1 = 8000 features is extracted, and the features are the number of
A_A, AA_C, AA_D, AA_E, AA_F, AA_G, AA_H, AA_I, AA_K, AA_L, AA_M,
A_N, AA_P, AA_Q, AA_R, AA_S, AA_T, AA_V, AA_W, AA_Y, . . . , YY_A,
Y_C, YY_D, YY_E, YY_F, YY_G, YY_H, YY_I, YY_K, YY_L, YY_M, YY_N,
Y_P, YY_Q, YY_R, YY_S, YY_T, YY_V, YY_W, and YY_Y that are present
n the whole peptide sequence.
We extracted these features using PyFeat, a toolkit implemented

n Python for extracting various features from proteins, DNAs, and
NAs [49]. Table 1 shows the depiction of the features extracted using
he employed feature extraction technique.

.2.3. Binary profile feature
Binary profile feature (BPF) is a straightforward technique yet

roves to be quite effective in the prediction of different functionalities
rom multi-omics data [38,50]. We generate Binary profiles for each
eptide, by representing each amino acid as a vector of 20 dimensions
n terms of one hot encoding. For instance, Cytosine can be written as a
0-size one hot vector which is [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].
sequence of length M can be represented by a vector of dimensions
× 20. As the maximum size of peptide sequences in our datasets

s 50 residues, we get 50 × 20, i.e., 1000 features for each peptide
equence. We padded the peptides that are shorter than 50 amino acids
ith dummy amino acid ‘‘X’’. We encoded this dummy amino acid
ith the [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] vector. In this way, we
ake sure that the lengths of sequences are equal and no redundant
nformation is added.

.3. Classifier

.3.1. Random forest
Random forest is a meta-classifier that consists of a number of

ecision tree classifiers (referred to as base learners) trained on various
ub-samples of training data that are generated based on the concept

f bagging to solve regression and classification. It was first proposed
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Table 4
Results achieved by different classifiers using the K-mer feature group.
Methods Main dataset Alternative dataset

Ac Sn Sp MCC Ac Sn Sp MCC

LR 68.9 59.3 78.5 0.39 88.9 85.6 92.3 0.78
DT 68.3 73.3 63.4 0.37 85.1 84.5 85.6 0.70
KNN 74.1 73.8 74.4 0.48 90.2 86.1 94.3 0.81
SVM 74.1 70.3 77.9 0.48 91.8 89.2 94.3 0.84
NB 70.3 69.8 71.0 0.41 87.4 76.8 97.9 0.77
RF 75.6 74.4 76.7 0.51 92.0 88.7 95.4 0.84

Table 5
Results achieved by different classifiers using k-gapped mono-Di and k-gapped Di-mono
feature groups.
Methods Main dataset Alternative dataset

Ac Sn Sp MCC Ac Sn Sp MCC

LR 73.8 76.7 70.9 0.48 89.7 84.5 94.8 0.80
DT 62.5 79.7 45.3 0.27 67.0 91.2 42.8 0.40
KNN 57.3 95.9 18.6 0.23 49.7 99.5 0.0 −0.10
SVM 70.9 70.9 70.9 0.42 85.8 72.2 99.5 0.74
NB 73.0 65.1 80.8 0.47 83.2 68.6 97.9 0.70
RF 71.2 84.3 58.1 0.44 72.2 97.4 46.9 0.51

Table 6
Performance of the ensemble of different ML methods for both main and alternate
dataset using K-mers, BPF, K-mers & Gapped K-mers as features.
Models Main dataset Alternate dataset

Ac Sn Sp MCC Ac Sn Sp MCC

LR + LR + LR 75.3 74.4 76.2 0.51 90.2 87.1 93.3 0.81
DT + DT + DT 74.4 76.2 72.7 0.49 87.1 85.6 88.7 0.74
NB + NB + NB 71.5 72.1 70.9 0.43 86.6 75.8 97.4 0.75
KNN + KNN + KNN 69.2 95.3 43.0 0.45 66.5 97.4 35.6 0.42
SVM + SVM + SVM 72.7 73.3 72.1 0.45 90.0 82.0 98.0 0.81
AB + AB + AB 75.0 73.3 76.7 0.51 88.7 89.7 87.6 0.77
RoF + RoF + RoF 71.8 72.1 71.5 0.44 85.8 86.1 85.6 0.72
GBT + GBT + GBT 74.1 73.8 74.4 0.48 92.3 93.8 90.7 0.85
RF + RF + RF 75.9 75.6 76.2 0.52 93.1 89.2 96.9 0.86

in [51]. In bagging, the available training data is randomly subsampled
through a technique called baggining to generate different subsamples
from the original data. Random Forest estimates the outcome based on
averaging the predictions of its base learners. RF has been widely used
in similar studies and obtained promising results [16,29–31].

2.3.2. Ensemble classifier
Machine learning has been widely used to tackle different problems

in biological science including genomics, proteomics, microarrays, sys-
tems biology, evolution, and text mining [52–55]. Among different ML
approaches, ensemble classifiers are considered among the most effec-
tive ones. Ensemble learning is a concept to train multiple classifiers
and combine their predictions as a single classifier. In general, it is ex-
pected that the output of the ensemble classifier to be better compared
to any of its ensemble members with uncorrelated error on the target
data sets [56]. Ensemble models were originally designed to reduce the
variance which results in the improvement of the performance. Where
variance indicates the performance change of a model when it fits with
a different set of data. An ideal machine learning model is considered
to have low variance and low bias and these two are affected by one
another. From previous studies it is evident that some ensemble tech-
niques reduce the error of both bias and variance parts, consequently,
improving prediction performance [57,58]. Ensemble classifiers have
been shown effective in enhancing prediction performance for different
problems in bioinformatics as well [59–64].

To predict the ACP sites with precision, various types of models
have been used. We investigate the effectiveness of several classi-
fiers using single feature extraction methods (k-mer, Binary Profile
4

Feature, and k-gapped Mono-Di and Di-Mono features, separately) to
predict ACPs. We observed satisfactory results in some cases, with
better sensitivity or specificity as shown in Tables 2–5. However, the
achieved results are biased toward negative samples, which shows that
a combination of models is the next best approach to consider.

In this paper, we use an ensemble of three Random Forest (RF) clas-
sifiers which are trained heterogeneously using different feature sets
to predict the ACPs. We aggregate the final output of these classifiers
using majority voting. We extract MonoMer, DiMer, TriMer and feed
them to the first RF model, Binary profile feature into the second RF,
and a combination of K-mers, 1-gapped Mono-Di, and 1-gapped Di-
Mono to the third RF as input feature vectors. To build our model,
we have also studied several popular classification techniques such as
Linear Regression (LR), K-Nearest Neighbor (KNN), Naïve Bayes (NB),
Decision Tree (DT), and Support Vector Machines (SVM) which are
widely used for similar problems and attained promising results [65].
However, among all these classifiers, an ensemble of RF classifiers
attained the best results and significantly outperformed other classi-
fiers. We have investigated a different number of base learners for our
employed RF classifiers. Of all the variations of base learners, using
150, 250, and 400 for our three RF models, we obtained the best results.
Since our employed dataset is considerably small, we experimented
with unpruned trees where the nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split samples,
which is two in our experiment. The remaining hyperparameters were
kept as default, which are:

criterion =’gini’, max_depth = None, min_samples_split = 2,
min_samples_leaf = 1, min_weight_fraction_leaf = 0.0, max_features =
‘sqrt’, max_leaf_nodes = None, min_impurity_decrease = 0.0, bootstrap
= True, oob_score = False, n_jobs=None, random_state = None, ver-
bose = 0, warm_start = False, class_weight = None, ccp_alpha = 0.0,
max_samples = None. The general architecture of iACP-RF is shown in
Fig. 1.

3. Result analysis

3.1. Evaluation metrics

Evaluating the performance of a prediction method is crucial to
find its reliability and generality with respect to the experimental
dataset. To evaluate the performance of our model and to compare our
results with previous studies, we use different measurements including
sensitivity (Sn), specificity (Sp), accuracy (Ac), and Matthews correla-
tion coefficient (MCC). These measurements are calculated using the
following equations:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
∗ 100 (3)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
∗ 100 (4)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑡𝑛
𝑡𝑛 + 𝑓𝑝

∗ 100 (5)

𝑀𝐶𝐶 =
(𝑡𝑝 × 𝑡𝑛) − (𝑓𝑝 × 𝑓𝑛)

√

(𝑡𝑝 + 𝑓𝑝)(𝑡𝑝 + 𝑓𝑛)(𝑡𝑛 + 𝑓𝑝)(𝑡𝑛 + 𝑓𝑛)
(6)

Where tp represents the total true positive predictions, tn represents
the total true negative predictions, fp represents the false positive
predictions, and fn represents the false negative predictions.

3.2. Comparison with different ML approaches to build our ensemble clas-
sifier

First, to build our ensemble model, we compare different machine
learning classifiers including SVM, LR, DT, NB, KNN, and RF. We
further studied several other classifiers including the Adaboost (AB),
Rotation Forest (RoF), and Gradient boosting trees (GBT). The results
achieved for the best combinations of different classifiers are presented
in Table 6. As shown in the table, using an ensemble of heterogeneous
RF classifiers, we obtain the best results. Hence, we use this classifier

to build iACP-RF.
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Fig. 1. The general architecture of iACP-RF as an ensemble of heterogeneously trained RF classifiers to predict ACP sites.
Table 7
Performance of individual Random Forest models using different feature sets.
Methods Main dataset Alternate dataset

Ac Sn Sp MCC Ac Sn Sp MCC

K-mer, for k value of 1,2,3
(MonoMer, DiMer, TriMer)
8420 feature

75.6 74.4 76.7 0.51 92.0 88.7 95.4 0.84

K-gapped di-Mono
8000 feature

73.5 83.7 63.4 0.48 70.9 95.4 46.4 0.48

K-gapped mono-Di
8000 feature

69.2 82.0 56.4 0.40 74.7 96.4 53.1 0.55

K-mer and gapped k-mer
24420 feature

75.6 75.0 76.2 0.51 91.5 87.1 95.9 0.83

Binary Profile Feature
1000 feature

76.2 79.1 73.3 0.52 89.7 86.1 93.3 0.80

3.3. Investigating the impact of each classifier used to build iACP-RF

To investigate the performance of our proposed model, it was first
crucial to find out how the individual Random Forest models perform
using the given feature sets. The separate models showed impressive
results using different types of features in terms of accuracy, sensitivity,
specificity, and MCC scores, as shown in Table 7. However, the
models are not consistent with their performance as the table depicts.
Also, none of the individual RF models obtain better results than the
combination of all three classifiers.

As shown in Table 7, RF trained on K-mers shows consistent results.
However, it comes short of specificity on the alternate dataset. Whereas
RF trained on K- gapped di-Mono achieves an underwhelming result
with respect to specificity on both main and alternate datasets despite
achieving outstanding results in terms of sensitivity. They scored 83.7%
and 95.4% in both the main and alternate datasets, respectively which
was an increase of 11.1% and 7.8% in sensitivity compared to iACP-
FSCM which is considered the state-of-the-art ACP predictor. Similarly,
RF trained using K-gapped Mono-Di is also capable of achieving high
true positives rate of 82.0% and 96.4%, respectively on the main and
alternate datasets, which are an increase of 9.4% and 8.8%, respectively
compared to iACP-FSCM. However, it achieves poor specificity scores.
Promising results used for each individual classifier demonstrate the
effectiveness of our proposed features and employed classifiers to tackle
this problem. Using K-mer and Gapped K-mer (24420 feature) achieves
an increase of 2.4% on the main dataset in terms of sensitivity com-
pared to iACP-FSCM. In addition, using Binary Profile Feature (1000
feature) we obtained an increase of 6.5% in sensitivity on the main
dataset compared to iACP-FSCM.

By studying different feature sets for separate models, we demon-
strate that single independent models are not able to achieve consistent
results in terms of all the metrics used in this study for evaluation
measurements. By using an ensemble of heterogeneously trained Ran-
dom Forest methods, we achieve consistent performance for both the
main and alternate datasets, with 75.6% and 89.2% in terms of sensi-
tivity and 76.2% and 96.9% in terms of specificity, respectively. Our
5

MCC scores also outperform iACP-FSCM by 0.04, 0.03, 0.06, and 0.09
respectively as shown in Table 8.

These results show that not only our proposed features and em-
ployed classifiers are able to achieve promising results to tackle this
problem, but also our proposed ensemble of heterogeneously trained
classifiers can enhance the prediction performance with respect to all
metrics reported in this study compared to previous studies found in
the literature.

3.4. Comparison with other state-of-the-art approaches

We then compare the results achieved by iACP-RF on both main
and alternative datasets to the state-of-the-art methods found in the
literature to predict anticancer peptides. The results for this comparison
are presented in Table 9. As shown in this table, iACP-RF significantly
outperforms iACP-FSCM which is the most recent and accurate ACP
predictor on the alternative dataset. iACP-RF achieves promising re-
sults especially in terms of sensitivity on the main dataset compared
to iACP-FSCM. iACP-RF demonstrates 4.2%, 1.6%, 6.7%, and 0.09
enhancements in terms of accuracy, sensitivity, specificity, and MCC,
respectively over iACP-FSCM on the alternative dataset.

Although, in general, iACP-FSCM demonstrates better results on the
main dataset compared to our proposed model, as shown in Table 9,
iACP-RF achieved 75.6% in terms of Sensitivity compared to 72.6%
for iACP-FSCM. It shows that our model is better than determining
actual ACP sites. Considering that the main aim of this study is to
have better performance in predicting positive samples, iACP-RF can
be considered a model with better precision. Our Receiver operating
characteristic (ROC) curves in Fig. 3 show that our model predicts the
positive instances, with the Area Under the Curve (AUC) of 0.85 on
the main dataset, and 0.96 on the alternate dataset. Fig. 2 shows the
confusion matrix for the testing data. As shown in this figure, iACP-RF
can be recognized as a model of good precision.

Note that although iACP and ACPred achieve better sensitivity than
our model, they perform very poorly on negative samples which in
turn, results in low specificity and consequently, very poor MCC. This
result is mainly related to the dataset that they used to build their
model and how they trained with a significant bias toward positive
samples. In general, considering the significantly better MCC for our
model compared to these two models, we can infer that iACP-RF is
more accurate than these two models for predicting ACPs. Although
ACPred-Fuse showed their performance to exceed the other existing
models [43], we are able to outperform their result. iACP-RF also
outperforms ACPred-Fuse in all the metrics for alternate and main
datasets by a significant margin.

3.5. Performance of proposed model on external dataset

To further investigate the effectiveness of our proposed method for
predicting ACPs, we tested our model on three external datasets used in
recent studies [66–68]. Table 10 shows the experimental results using
the datasets collected from various studies. Our proposed method shows
stable prediction performance in all the datasets including the main and

alternate datasets used in this study using 5-fold cross-validation.
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Table 8
Performance of selected individual and ensemble model.
Methods Main dataset Alternate dataset

Ac Sn Sp MCC Ac Sn Sp MCC

RF1 (K-mer-8420) 75.6 74.4 76.7 0.51 92.0 88.7 95.4 0.84
RF2 (BPF-1000) 76.2 79.1 73.3 0.52 89.7 86.1 93.3 0.80
RF3 (K-mer and gapped k-mer- 24420) 75.6 75.0 76.2 0.51 91.5 87.1 95.9 0.83
iACP-RF
(ensemble of RF1, RF2, RF3)

75.9 75.6 76.2 0.52 93.1 89.2 96.9 0.86
Table 9
Performance comparison of pre-existing models with our proposed method using both main and alternate datasets.
Methods Main dataset Alternative dataset

Ac Sn Sp MCC Ac Sn Sp MCC

AntiCP 50.6 100 1.2 0.07 90.0 89.7 90.2 0.80
iACP 55.1 77.9 32.2 0.11 77.6 78.4 76.8 0.55
ACPred 53.5 85.6 21.4 0.09 85.3 87.1 83.5 0.71
PEPred-Suite 53.5 33.1 73.8 0.08 57.5 40.2 74.7 0.16
ACPred-FL 44.8 67.1 22.5 −0.12 43.8 60.2 25.6 −0.15
ACPred-Fuse 68.9 69.2 68.6 0.38 78.9 64.4 93.3 0.60
iACP-FSCM 82.5 72.6 90.3 0.64 88.9 87.6 90.2 0.77

K-mer + BPF + Gapped K-mer
(8420, 1000, 16000)

76.5 81.4 71.5 0.52 92.0 91.8 92.3 0.84

K-mer + BPF + K-mer
(8420, 1000, 8420)

75.6 75 76.2 0.51 91.8 88.2 95.4 0.83

iACP-RF (K-mer + BPF +
K-mer & Gapped K-mer, )
(8420, 1000, and 24420 respectively)

75.9 75.6 76.2 0.52 93.1 89.2 96.9 0.86
Fig. 2. The confusion matrix for iACP-RF for main and alternate datasets.
Fig. 3. Receiver operating characteristic (ROC) curves for independent datasets (main and alternate).
4. Discussion

In recent years, peptide-based therapy has emerged as a novel
and promising strategy for the treatment of cancer. It has several
advantages like high target specificity, low toxicity, good efficacy,
6

easily synthesized and modified, and less immunogenic when combined
with recombinant antibodies compared to conventional approaches. As
it is challenging to discover ACP from protein sequence data using
experimental methods, which emphasizes on the rapid advancement of
computational methods due to its efficient nature.

In this paper, we proposed a novel prediction method named iACP-
RF to accurately predict anticancer peptides. Our model demonstrates
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Table 10
Results achieved by iACP-RF on external datasets used in previous studies using 5-fold
cross-validation.
Dataset Ac Sn Sp MCC F-1 score

Main (iACP-RF) 85.4 83.0 88.2 0.72 0.86
Alternate (iACP-RF) 97.0 95.7 98.1 0.93 0.97

ACPNet iACP-RF 91.0 88.1 94.4 0.82 0.91
ACPNet 89.6 87.8 91.4 0.79 89.4

Alsanea et al. iACP-RF 95.2 95.0 100 0.66 97.4
Alsanea et al. 97.1 97.4 96.9 0.93 96.2

StackACPred iACP-RF 91.9 90.2 93.6 0.83 0.92
StackACPred 84.5 84.1 84.9 0.70 –

promising performance on the main and alternate datasets. Further-
more, it shows its effectiveness in distinguishing ACPs from non-ACPs
on external datasets compared to previous studies.

Although the performance of individual features showed promising
results with single classifiers, the results were imbalanced. However,
empirical studies show that using ensemble models reduces both bias
and variance to improve prediction accuracy. Thus, we experimented
using a combination of several sequence-based features namely K-mer,
BPF, 1-Gapped Di-Mono, and 1-Gapped Mono-Di, and achieved better
outcomes compared to existing methods. Among different combinations
of features being studied to build our model, using K-mer, BPF, K-mer
+ 1-Gapped Di-Mono + 1-Gapped Mono-Di respectively, feeding into
our heterogeneously trained base classifiers RF1, RF2, and RF3 models
combined using majority voting, the best performance was achieved.

Even so, a critical challenge in the machine learning pipeline when
working with a small amount of data is that the model can overfit
on the training data and be biased toward the dominant class. In this
study, we used a balanced dataset consisting of the same number of
samples in the positive and negative classes, which helps in getting a
balanced prediction for both classes. Testing the model’s performance
using two independent datasets and three external datasets, along with
a 5-fold CV with high and consistent performance, proves the model is
performing in an optimal manner avoiding overfitting.

Despite the merits of our proposed method, it has several limita-
tions. First, tuning the parameters to get optimal performance requires
more data. Since the dataset we worked with contains a handful of
samples, tuning the parameters optimally was not feasible. Second,
finding the optimal number of classifiers to ensemble is critical and
there is no conventional way to find the optimal number of base learn-
ers. Finally, the commonly used evaluation metrics used to evaluate
the performance of binary classifiers can be too specific. To address
these limitations and mitigate these issues we aim to build an explain-
able machine learning pipeline in the future for predicting anticancer
peptides.

5. Conclusion

Anticancer peptides play a crucial role in the study of anticancer
drugs and the treatment of cancer. Targeting cancer cells is essential in
the treatment of cancer. However, a lack of ‘‘guiding missiles’’ to target
such cells leads to less effective treatment progress. Peptide properties
can be used both in molecularly targeted drugs and ‘guiding mis-
siles’ to inhibit cell proliferation or eradicate cancer cells completely.
In this paper, we proposed an ensemble of heterogeneously trained
Random Forest models for predicting ACPs using a combination of
several sequence-based features namely K-mer, Binary profile feature,
1-Gapped Di-Mono, and 1-Gapped Mono-Di. iACP-RF tool outperforms
existing methods by a significant margin for all the metrics in the alter-
nate dataset and shows an enhancement of 3% in terms of sensitivity
for the main dataset. On the alternate dataset, we outperform iACP-
FSCM in all counts of accuracy, sensitivity, specificity, and MCC score
by a margin of 5.5%, 1.6%, 6.7%, and 0.09, respectively. Our results
7

demonstrate the effectiveness of iACP-RF in predicting anticancer pep-
tides compared to previously proposed models found in the literature.
iACP-RF as a standalone predictor and all its source code are publicly
available at: https://github.com/MLBC-lab/iACP-RF.
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