www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates
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residues in proteins using
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model features
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Protein—peptide interactions play a crucial role in various cellular processes and are implicated in
abnormal cellular behaviors leading to diseases such as cancer. Therefore, understanding these
interactions is vital for both functional genomics and drug discovery efforts. Despite a significant
increase in the availability of protein—peptide complexes, experimental methods for studying
these interactions remain laborious, time-consuming, and expensive. Computational methods
offer a complementary approach but often fall short in terms of prediction accuracy. To address
these challenges, we introduce PepCNN, a deep learning-based prediction model that incorporates
structural and sequence-based information from primary protein sequences. By utilizing a
combination of half-sphere exposure, position specific scoring matrices from multiple-sequence
alignment tool, and embedding from a pre-trained protein language model, PepCNN outperforms
state-of-the-art methods in terms of specificity, precision, and AUC. The PepCNN software and
datasets are publicly available at https://github.com/abelavit/PepCNN.git.

Protein—peptide interactions are pivotal for a myriad of cellular functions including metabolism, gene expres-
sion, and DNA replication?. These interactions are essential to cellular health but can also be implicated in
pathological conditions like viral infections and cancer®. Understanding these interactions at a molecular level
holds the potential for breakthroughs in therapeutic interventions and diagnostic methods. Remarkably, small
peptides mediate approximately 40% of these crucial interactions®.

Traditional experimental approaches to study protein-peptide interactions, despite advances in structural
biology, have significant limitations®. They are often costly, time-consuming, and technically challenging due to
factors such as small peptide sizes®, weak binding affinities’, and peptide flexibility®. On the other hand, com-
putational methods offer a complementary approach but are also encumbered by issues related to prediction
accuracy and computational efficiency. This is often due to the limitations of current algorithms for the inherently
complex nature of protein-peptide interactions.

Computational methods aimed at predicting protein-peptide interactions primarily belong to two distinct
categories: structure-based and sequence-based. In the realm of structure-based models like PepSite’, SPRINT-
Str'®, and Peptimap!! leverage an array of structural attributes, such as Accessible Surface Area (ASA), Secondary
Structure (SS), and Half-Sphere Exposure (HSE), to make their predictions. Conversely, sequence-based methods
like SPRINT-Seq!?, PepBind'?, Visual'*, PepNN-Seq'®, and PepBCL!S, utilize machine learning algorithms and
various features, including amino acid sequences, physicochemical properties, and evolutionary information.
Notably, PepBind"’ was the first to incorporate intrinsic disorder into feature design, acknowledging its relevance
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to protein—peptide interactions'”. Most recently, SPPPred'® employed both structure-based and sequence-based
attributes such as HSE, SS, ASA, PSSM, and physicochemical properties to predict protein-peptide binding
residues.

The rise of deep learning technologies has added another dimension to the computational proteomics land-
scape. Various algorithms now facilitate the conversion of protein features into image-like formats, making them
compatible with deep learning architectures such as Convolutional Neural Network (CNN)*. Transformer-based
models have also emerged as powerful tools for sequence representation®, often outperforming traditional
models by capturing long-range interactions within the sequence. For example, Wardah et al.'* introduced a
CNN-based method called Visual, which encodes protein sequences as image-like representations to predict
peptide-binding residues in proteins. Abdin et al.'® unveiled PepNN-Seq, a method leveraging the capabilities of
a pre-trained contextualized language model named ProtBert? for protein sequence embedding. Most recently,
Wang et al.'° used ProtBert® in a contrastive learning framework for predicting protein-peptide binding residues.

Deep learning algorithms, a specialized subset of machine learning, have shown considerable promise in
addressing complex challenges in protein science and structural biology?>*. These algorithms, inspired by human
cognitive processes, employ artificial neural networks to learn complex data representations**?*. Compared to
the traditional machine learning framework like Random Forest (RF) and Support Vector Machines (SVM),
deep learning models excel in autonomously discovering patterns and features from data?. Initially popular-
ized in fields like medical imaging, speech recognition, computer vision, and natural language processing, these
algorithms have marked milestones such as predicting folding of proteins with remarkable accuracy, making
them particularly effective when applied to large and complex data””. Given the data-intensive nature of mod-
ern biotechnological research, proteomics is increasingly becoming a fertile ground for the application of deep
learning technologies?®-*.

CNNs’! have demonstrated exceptional prowess in image classification tasks, thereby suggesting their appli-
cability to other forms of spatial data, including protein structures®>**. Their ability to preserve spatial hierar-
chies within the data makes them uniquely suited for applications in proteomics. Concurrently, advancements
in natural language processing have facilitated the development of pre-trained contextualized language models
specifically designed for protein biology, further enriching computational tools available for the field***.

Motivated by these technological leaps, we designed PepCNN, an innovative model that synergistically inte-
grates protein sequence embeddings from protein language model (pLM) with CNN. Our method represents
a groundbreaking, consensus-based approach by amalgamating sequence-based features derived from ProtT5-
XL-UniRef50, transformer language model by Elnaggar et al.”® (herein called ProtT5) with traditional sequence-
based (Position Specific Scoring Matrices (PSSMs)) and structure-based attributes to train a one-dimensional
(1D) CNN, as shown in Fig. 1. Rigorous evaluations underscore that PepCNN sets a new benchmark, outclassing
existing methods such as the recent sequence-based PepBCL, PepNN-Seq that utilizes a pre-trained language
model, PepBind with intrinsic disorder features, SPRINT-Str with its emphasis on structural features like ASA,
SS, and HSE, and most lately the SPPPred method that incoporates both structural and sequence-based features.
The marked superiority of PepCNN over these methodologies, in both input requirements and predictive per-
formance, promises not only to redefine computational methods but also to accelerate drug discovery, enhance
our understanding of disease mechanisms, and pioneer new computational approaches in bioinformatics.

Results

Experimental setup

We used two widely used benchmark datasets in this study to fairly assess and compare our proposed method
with the existing approaches. These datasets are commonly used by recent state-of-the-art methods for model
training and test in order to carry out evaluation and comparisons'®. We also followed the same process for
a fair comparison. The two datasets were initially obtained from the BioLiP database®*® and sequences with a
redundancy of > 30% sequence identity were removed using ‘blastclust’ in the BLAST package®. We addressed
the issue of class imbalance in the training set of our datasets by employing random under-sampling***. This
ensures that our model is not biased towards any particular class and can generalize well during evaluation. A
residue in a protein sequence is said to be binding if any of its heavy atom is within 3.5 A (angstrom) from a
heavy atom in the peptide'? found during lab experimentation. The resulting 1279 peptide-binding proteins
contain 290,943 non-binding residues (experimental label = 0) and 16,749 binding residues (experimental label
= 1). We designated the two datasets as Datasets 1 and 2, respectively, to make the discussions easier. Table 1
displays the datasets’ executive summary. The following subsections describe the specifics of the datasets for
model training and evaluation.

Dataset 1

In Dataset 1, the test set (TE125) was proposed by Taherzadeh et al.' in their structure-based approach called
SPRINT-Str. To create this set, they firstly selected proteins which were thirty amino acids or more in length
and contained three or more binding residues. TE125 was then constructed by randomly selecting 10% of the
proteins and the remaining were assigned to the training set. There are 29,154 non-binding residues and 1716
binding residues in the 125 proteins that make up the TE125 set. In this work, we followed a similar procedure
as Taherzadeh et al.'’ to construct our training set, i.e. selecting proteins if they had more than thirty amino
acids and contained three or more binding residues. As a result, 1,115 proteins were obtained for training which
constituted of 251,770 non-binding residues and 14,942 binding residues. These numbers clearly show that there
is an imbalance ratio of around 1:17 between the binding and non-binding residues. This can bias any model
towards the classification of non-binding residues over the classification of binding residues if trained directly
on this training set. Therefore, random under-sampling technique was applied to the train set which resulted in
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Figure 1. Flow diagram of the proposed work for the prediction of binding and non-binding residues. (A)
Feature extraction component is where the features for each proteins are generated. (B) Residue extraction
component is where the feature set pertaining to each residue is extracted. (C) The model training block
contains the CNN model training step using 80% of the training set to train the network, and the remaining

20% for validation. (D) The model evaluation component is where the residues in the test set are predicted to be
binding or non-binding using the trained CNN model. Figure created using Inkscape software?'.
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Dataset 1 Dataset 2
TE125 TR1115 TE639 TR640
(test set) | (trainset) | (testset) | (train set)

No. of proteins 125 1115 639 640

No. of residues 30,870 266,712 150,330 157,362
No. of non-binding residues 29,154 251,770 141,840 149,103
No. of binding residues 1716 14,942 8490 8259

Table 1. Breakdowns of Dataset 1 and Dataset 2.

a total of 37,355 residues. From this training set, 80% of the residues were actually used for training the model,
and the remaining 20% of the residues were used as the validation set during the training stage.

Dataset 2

In Dataset 2, the test set (TE639) was proposed by Zhao et al."* in their sequence-based approach called PepBind.
They constructed their train and test sets by randomly dividing the 1279 proteins into two equal subsets. There
were 141,840 non-binding residues and 8490 binding residues in the 639 proteins that make up the TE639 set.
In the training set, there were 640 proteins, but to save training time, 20% of the proteins were selected to train
their model. The training set in this work was however created by keeping all of the 640 proteins and this resulted
in 149,103 non-binding residues and 8259 binding residues. It is evident that this training set is also highly
imbalanced, with an imbalance ratio of 1:18 between the binding and non-binding residues. After the random
under-sampling technique, the final number of residues in the training set was therefore 20,647. This final set
then underwent a split with 80:20 ratio for the final training and validation set during the model training stage.

Comparison with existing methods

To show the performance of our PepCNN model, we compared the results with nine existing methods. These are:
Pepsite®, Peptimap'!, SPRINT-Seq'?, SPRINT-Str!?, PepBind'?, Visual'¥, PepNN-Seq'®, PepBCL'®, and SPPPreds.
We employed sensitivity, specificity, precision, mathews correlation coefficient (MCC), and area under the
receiver operating characteristic (ROC) curve (popularly known as AUC) as our evaluation metrics. Sensitivity
measures the true positive rate, specificity indicates the true negative rate, precision signifies the positive pre-
dictive value, MCC measures the contrast between the predicted labels and the experimental labels, and AUC
represents the model’s overall classification ability. Note that all the metrics, except AUC, rely on the probability
threshold where varying the threshold would also alter the metric values. AUC metric therefore provides more
confidence for evaluating a model’s performance.

The results on TE125 and TE639 test sets are shown in Tables 2 and 3, respectively. In the result tables, a
threshold value of 0.877 is used in Table 2 and a value of 0.885 is used in Table 3. Since the test sets were also
employed by the previous methods, their results in the tables below are taken directly from their work. As seen
from the results on TE125 and TE639 test sets, PepCNN (our proposed method) achieves higher performance
compared to all of the previous methods.

For TE125 (Table 2), PepCNN achieves 0.254 sensitivity, 0.988 specificity, 0.55 precision, 0.350 MCC, and
0.843 AUC. In comparison to all the previous methods, including the PepBCL method (the best performing
method so far), specificity, precision, and AUC have been improved by our method. The biggest improvement
was seen on the AUC metric (3.4%), which is a valuable measure for the overall discriminatory capacity of the
classifiers*®41,

The results on TE639 test set is shown in Table 3 where the sensitivity, specificity, precision, MCC, and AUC
values obtained by our method are 0.217, 0.986, 0.479, 0.297, and 0.826, respectively. Similar results as TE125

Methods Sensitivity | Specificity | Precision | MCC | AUC
Pepsite’ 0.180 0.970 - 0.200 |0.610
Peptimap'! 0.320 0.950 - 0.270 | 0.630
SPRINT-Seq'? 0.210 0.960 - 0.200 | 0.680
SPRINT-Str!? 0.240 0.980 - 0.290 |0.780
PepBind"? 0.344 - 0.469 0.372 | 0.793
Visual'* 0.670 0.680 - 0.170 | 0.730
PepNN-Seq'® - - - 0.278 | 0.805
PepBCL'® 0.315 0.984 0.540 0.385 | 0.815
SPPPred'® 0.315 0.959 - 0.230 |0.710
PepCNN (ours) 0.254 0.988 0.55 0.350 |0.843

Table 2. Performances of the proposed PepCNN model and the previous methods on the TE125 test set. The
highest values in each column are highlighted in bold.
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Methods Sensitivity Specificity Precision MCC AUC
PepBind"® 0.317 - 0.450 0.348 0.767
PepNN-Seq'® - - - 0.251 0.792
PepBCL'® 0.252 0.983 0.470 0.312 0.804
PepCNN (ours) 0.217 0.986 0.479 0.297 0.826

Table 3. Performances of the proposed PepCNN model and the previous methods on the TE639 test set. The
highest values in each column are highlighted in bold..

are observed on the TE639 test set, whereby, the specificity, precision, and AUC have been increased compared
to the previous methods. Again, the biggest improvement was achieved on the AUC metric (by 2.7%) compared
to the previous best performing method, PepBCL. Even though our method did not perform the best on all the
metrics in the two test sets, it surpassed the other methods on majority of the metrics, including AUC. These
improvements portray the importance of feature sets from pLM, PSI-BLAST (a multiple-sequence alignment
(MSA) tool), and structural information pertaining to half-sphere exposure and the use of this feature set with
CNN to learn robust features for the prediction of binding and non-binding residues in protein sequences.

Case study
To elaborate on the output prediction of our proposed method, we randomly selected three protein sequences
from the TE125 test set after they had been predicted by our model. These proteins were pdbID: 1dpuA, pdbID:
2bugA, and pdbID: 1ujOA and are visualized as 3D structures in Fig. 2A-F, respectively. The magenta color in
the figure shows the binding residues and the gray color shows the non-binding residues. The top visualization
in the figure illustrates the experimental output (the true binding residues) of the proteins, while the bottom
visualization shows the binding residues of the proteins predicted by our model. The protein structures B, D,
and F of Fig. 2 show that the predicted binding residues by our PepCNN model closely resembles the actual
binding residues in the corresponding proteins detected by the lab experiment (structures A, C, and E of Fig. 2).
To further quantify the prediction of the amino acids in these three proteins in relation to the actual binding
sites, we unrolled the sequences into a one-dimensional representation (see Fig. 3). The amino acids in the top
and bottom sequences show the experimental labels and the predicted labels by our proposed method, respec-
tively. The experimental and predicted labels are further distinguished by the use of blue and red colors, respec-
tively. From the figure, it can be seen that in terms of the binding sites, our model correctly predicted 6 out of
the 11 sites in 1dpuA, 6 out of the 9 sites in 2bugA, and 8 out of the 9 sites in 1uj0A, which results in a sensitivity
value of 0.545, 0.667, and 0.889, respectively, for the proteins. Furthermore, in terms of the non-binding sites,
our model correctly predicted 56 out of the 58 sites in 1dpuA, 119 out of the 122 sites in 2bugA, and 42 out of

4

Experimental

Predicted Predicted

Figure 2. 3D structure visualization of three proteins (pdbID: 1dpuA, pdbID: 2bugA, and pdbID: 1ujOA)
illustrating the binding (in magenta) and non-binding (in gray) residues using the PyMol software*?. The
experimental output (true binding residues) of the proteins are located in the top part (A, C, and E) and its
corresponding predicted binding residues by our method PepCNN are located in the bottom part (B, D, and F).
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1dpuA

Experimental:
Predicted:

ANGLTVAQNQVLNLIKACPRPEGLNFQDLKNQLKHMSVSSIKQAVDFLSNEGHIYSTVDDDHFKSTDAE
ANGLTVAQNQVLNLIKACPRPEGLNFQDLKNQLKHMSVSSIKQAVDFLSNEGHIYSTVDDDHFKSTDAE

2bugA

Experimental:
Predicted:

Experimental:
Predicted:

TDPPADGALKRAEELKTQANDYFKAKDYENAIKFYSQAIELNPSNAIYYGNRSLAYLRTECYGYALNDAT..
TDPPADGALKRAEELKTQANDYFKAKDYENAIKFYSQAIELNPSNAIYYGNRSLAYLRTECYGYALNDAT..

RAIELDKKYIKGYYRRAASNMALGKFRAALRDYETVVKVKPHDKDAKMKYQECNKIVKQKA
RAIELDKKYIKGYYRRAASNMALGKFRAALRDYETVVKVKPHDKDAKMKYQECNKIVKQKA

1ujoA

Experimental:
Predicted:

MARRVRALYDFEAVEDNELTFKHGELITVLDDSDANWWOQGENHRGTGLFPSNFVTTDL
MARRVRALYDFEAVEDNELTFKHGELITVLDDSDANWWQGENHRGTGLFPSNFVTTDL

Figure 3. Unrolled protein sequences pdbID: 1dpuA (A), pdbID: 2bugA (B), and pdbID: 1ujOA (C) presented
as a one-dimensional representation. The top sequence of each protein showcases experimentally confirmed
binding residues (in blue), while the bottom sequence depicts the predicted binding residues by our proposed
method, PepCNN (in red).

the 49 sites in 1ujOA, which results in a specificity value of 0.966, 0.975, and 0.857, respectively, for the proteins.
It can be seen that even though the sensitivity measure is not high for all the proteins, the ability to attain a high
number of correctly predicted non-binding sites and low number of false positive sites allow the model to predict
the binding sites in the same regions as the experimental findings for all the three protein sequences. The close
detection of the binding sites in the sequences by our proposed method can therefore greatly assist the efforts of
the experimental procedures by narrowing down the regions for further investigations, thereby tremendously
reducing the time, effort, and cost needed to confirm and understand the protein—peptide binding sites in new
proteins. The observations from Figs. 2 and 3 indicate a high degree of similarity between predicted and actual
binding residues which validates that our algorithm effectively leverages information from primary protein
sequences for the residue prediction task.

Insights into the residue features

Before embarking on the deep learning algorithm, we had built initial models in this work in which the perfor-
mance of each of the feature sets and their combinations had been evaluated. In the initial models, we employed
an ensemble of RF classifiers to have diverse training sets for Dataset 1 for a thorough evaluation. Moreover, it
allowed for us to have less computational complexity compared to using a deep learning model. The ensemble
consisted of 15 individual RF classifiers with different training sets by randomly selecting different non-binding
residues during the data balancing stage. The hyper-parameters of the classifiers were tuned using the Hyperopt
algorithm™® with 5-fold cross-validation scheme. The ensemble’s final predictions on the test set were determined
by averaging the individual RF classifiers’ probabilities, ensuring a robust and generalized performance.

Figure 4 shows the ROC curves obtained for the individual feature sets and the different feature set com-
binations on TE125. It can be seen that the embedding from the ProtT5 pLM attains a significantly high AUC
value (0.81) in comparison to the PSSM feature set (AUC of 0.642), the HSE feature set (AUC of 0.56), and even
the PSSM+HSE feature combination (AUC of 0.697). As the bindings are dependent on the conformations of
proteins*, this affirms that the embedding from the pre-trained transformer model captures essential information
concealed in the primary protein sequences which relates to the structure and function of proteins and therefore

ROC Curves
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Figure 4. ROC curves for the individual feature sets and the different feature set combinations using the
ensemble of RF classifiers on TE125.
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contributes immensely to the binding prediction. The incorporation of PSSM and HSE feature sets to the embed-
ding saw a further increase in the performances, with the most increase coming from the Embedding+HSE
feature combination (0.821) and a slight increase in the Embedding + PSSM feature combination (0.812) when
compared to just the performance of the embedding. Moreover, the feature combination Embedding + HSE +
PSSM achieved the overall best AUC value of 0.823. The result obtained by combining the three features sug-
gests that PSSMs from sequence alignment and the structural properties from half-sphere exposure add valuable
information in terms of the evolutionary properties and protein surface attributes to the protein sequence rep-
resentations of the transformer model. This final feature combination was then used to build our deep learning
model to further improve the performance.

Discussion

We have demonstrated that PepCNN can effectively predict binding and non-binding residues in the protein
sequences. It established the possibility of the pLM embedding, PSSM, and HSE feature combination with CNN
as feature extractor to predict interaction sites and explore the mechanisms of protein—peptide binding. The
three proteins were randomly selected for visualization so that the similarity of the predicted and experimental
binding residues could be deciphered. The strong correlation observed suggests that our approach holds promise
for identifying prospective binding sites in a broad array of proteins.

When evaluating a predictor, the most ideal model would be the one which has the sensitivity and specific-
ity measures equal to 1, however, this incidence is not prevalent in clinical and computational biology research
since the measures increase when either of them decreases*. The ROC curve, which is an analytical method
represented as a graph, is therefore mainly used for evaluating the performance of a binary classification model
and to also compare the test result of two or more models. Essentially, the curve plots the coordinate points using
the false positive rate (1-specificity) as the x-axis and the true positive rate (sensitivity) as the y-axis. The closer
the plot is to the upper left corner of the graph, the higher the model’s performance is since the upper left corner
has sensitivity equal to 1 and the false positive rate equal to 0 (specificity is equal to 1). The desired ROC curve
hence has an AUC (area under the ROC curve) equal to 1.

The study of protein—peptide binding is desired since the peptides exhibit low toxicity and posses small inter-
face areas (as peptides are mostly 5-15 residues long*®), making them good targets for efficacious therapeutic
designs and drug discovery process*. In addition, peptide-like inhibitors are used for treating diabetes, cancer,
and autoimmune diseases*. In the past, search for peptides as therapeutics was discouraged due to their short
half-life and slow absorption*’, however, these short amino acid chains are considered drug candidates once
again due to the emergence of synthetic approaches which allow for changes to its biophysical and biochemical
properties.

Understanding the structure of protein-peptide complexes is often a prerequisite for the design of peptide-
based drugs. The challenges of studying these complexes are unique compared to other interactions such as
protein-protein and protein-ligand. In protein-protein interactions, complexes are usually formed based on
well-defined 3D structures, and in the protein-ligand interactions, small ligands typically bind in deeply buried
regions of proteins. Conversely, peptides often lack stable structures and usually bind with weak affinity to large,
shallow pockets on protein surfaces®. Given these complexities, and the limitations of current experimental
methods like X-ray crystallography and nuclear magnetic resonance, there is a compelling need for robust
computational methods.

In summary, our work contributes to addressing these challenges by offering a highly accurate and compu-
tationally efficient method for predicting protein-peptide interaction sites. Such advances are crucial for both
fundamental biological research and practical applications in drug design.

Conclusion

In this work, we have developed a new deep learning-based protein-peptide binding residue predictor called
PepCNN. The model leverages sequence-based features, which are extracted from a pre-trained pLM, as well as
from a MSA tool. In addition to these, we incorporated a structure-based feature known as half-sphere exposure.
Utilizing these diverse properties of protein sequences as input, our convolutional neural network was effective
in learning essential features. As a result, PepCNN was able to outperform existing methods that also rely on
primary protein sequence information, as demonstrated by tests on two distinct datasets.

Looking ahead, our future research aims to further enhance the model’s performance. One innovative avenue
for exploration will involve integrating Deeplnsight technology®. This technology converts feature vectors into
their corresponding image representations, thus enabling the application of 2D CNN architectures. This change
opens up the possibility of implementing transfer learning techniques to boost the model’s predictive power.

Methods

Evaluation metrics

The proposed model in this work was evaluated using the residues in the test sets TE125 and TE639 after being
trained on their respective training sets. These test sets are highly imbalanced, and for this reason, suitable
metrics were chosen to effectively evaluate our model for the classification task. These metrics were Sensitivity,
Specificity, Precision, and MCC. The formulation of these metrics are given below.

TP

Sei’lSltIVIty = m

(1)
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Specificity = N 2
peci CZy_TN—FFP (2)
Precisi P 3
recision = —————
TP + FP 3)
TP x TN — FP x FN
Mcc (4)

- /(TP + FN)(TP + FP)(IN + FP)(TN + FN)

In the above formulas, TP stands for True Positives, TN stands for True Negatives, FP stands for False Posi-
tives, and FN stands for False Negatives. TP is the number of actual binding residues correctly classified by the
model, TN is the number of actual non-binding residues correctly classified by the model, FP is the number of
actual non-binding residues incorrectly classified by the model, and finally FN is the number of actual binding
residues incorrectly classified by the model. For the given model, the Sensitivity metric [given by Eq. (1)] and
the Specificity metric [given by Eq. (2)] calculate the fraction of binding residues and non-binding residues
correctly predicted, respectively, the Precision metric [given by Eq. (3)] calculates the proportion of binding
residues correctly classified out of all the residues classified as binding, and the MCC metric [given by Eq. (4)]
calculates the prediction ability for both the binding and non-binding residues. The values range from 0 to 1
for the Sensitivity, Specificity, and Precision metrics and the higher the value, the better the prediction model
is. The MCC metric takes on values ranging from — 1 to + 1 where + 1 indicates a highly positive correlation,
while — 1 indicates a highly negative correlation. It should be noted that the above metrics are dependent of
the probability threshold of the classifier and varying the threshold would also vary the metric values. For this
reason, these metrics cannot be heavily relied upon for the model evaluation. Therefore, in addition to the above
metrics, we have also included the AUC metric which is calculated based on the classification probability values
and is independent of the threshold setting. The metric therefore gives more confidence in the evaluation of a
model’s performance. AUC is also a very useful metric since it measures the overall performance of the clas-
sification model by calculating its separability between the predicted binding and non-binding residues. The
range of values for the AUC metric is from 0 to 1, with 0 being the worst measure of separability and 1 being a
very good measure of separability.

Feature extraction

The features chosen in this study are the representations from a pre-trained pLM, evolutionary relationships
in the protein sequences using a MSA tool, and the structural attributes in terms of the solvent exposure of the
residues in the sequences. In the feature extraction stage of our proposed method (Fig. 1A), the three differ-
ent feature-types were obtained by submitting the 1,279 proteins to the three tools: pre-trained ProtT5 pLM?,
PSI-BLAST?¥, and HSEpred*? to acquire the Embedding, PSSM, and HSE values, respectively. The following
subsections elucidates each of these features in detail.

Transformer embedding

Transformer models from natural language processing employ latest DL algorithms and such architectures have
shown huge potential in proteomics field due to its ability to leverage on the growing databases of protein
sequences. These models offer transfer learning where the knowledge acquired from data-rich tasks can be
transferred to similar data-limited tasks. Several pLMs have been developed by Elnaggar et al.** and out of those
models, ProtT5 is amongst the most widely used pre-trained models in the literature to tackle various tasks>. It
is based on the T5 architecture®, which is akin to the originally proposed architecture for language translation
task® as depicted in Fig. 5. It consists of the encoder and decoder blocks, where the encoder projects the input
sequence to an embedding space and the decoder generates the output embedding based on the embedding of
the encoder. To do this, firstly the input sequence tokens (x, ..., X,) are mapped by the encoder to generate
representation z (z, ..., 2,). The decoder then uses the representation z to produce output sequence (y1, ..., ¥»),
element by element. Both the encoder and decoder have the main components known as the multi-head atten-
tion and the feed-forward layer. The multi-head attention is a result of combining multiple self-attention modules
(heads), where the self-attention is an attention mechanism that relates different positions in the input sequence
to compute its representation. The attention function maps a position’s query vector and a set of key-value vectors
for all the positions to an output vector. In order to carry out this operation for all the positions simultaneously,
the query, key and value vectors are packed together into matrices Q, K, and V, respectively, and the output
matrix is computed as: head = Attention(Q, K, V) = softmax(Q—KZ) V, where ﬁ is the scaling factor. It is much
beneficial to have multi-head attention instead of a single self-attention module since it allows for the capturing
of information from different representations at the different positions. This is done by linearly projecting the
queries, keys and values » times. The multi-head attention is therefore given by: MultiHead(Q, K, V) =
Concat(heady, ..., head,)W©, where head; = Attention(QWiQ, KWiK R VW,»V); WS, WiK R WiV and WO are projection
matrices. The ProtT5 transformer used in this work is a 3 billion parameter model which was trained on the Big
Fantastic Database® and fine-tuned on the UniRef50°” database. Even though ProtT5 has both encoder and
decoder blocks in its architecture, the authors found that the encoder embedding outperformed the decoder
embedding on all tasks, hence the pre-trained model extracts the embedding from its encoder side. The output
embedding of the ProtT5 model is a matrix of dimension L x 1024 (where L represents the protein’s length and
1024 the values of the network’s last hidden layer). This matrix captures relationships between amino acid residues
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Figure 5. The original encoder-decoder Transformer® which was proposed for language translation task. The
network can have layers of these encoder-decoder modules, denoted by Nx. The input sequence is fed to the
encoder and the decoder produces a new output sequence. At each timestep, an output is predicted, which is
then fed back to the network (decoder), including all the previous outputs, to predict the output for the next
timestep and so on until the output sequence (translation) is produced.

in the input protein sequence based on the attention mechanism and produces a rich set of features that encom-
passes relevant protein structural and functional information.

Position specific scoring matrices

In protein engineering, MSAs are a popularly used technique for aligning sequences to determine their evolu-
tionary relationships and structural/functional constraints within families of proteins to aid diverse prediction
pipelines®. For instance, it has been a vital component for contact and structure predictions®*, as well as other
prediction tasks such as functional effects of mutations®' and rational protein design®. To incorporate the potency
of the information held in MSA, PSI-BLAST tool was employed in this work to obtained the sequence-profiles.
It was run using the E-value threshold of 0.001 in three iterations which resulted in two matrices, log odds and
linear probabilities of the amino acids, with dimensions L x 20 (where 20 represents the 20 different amino acids
of the genetic code). The matrix with linear probabilities was used in this work in which each of the elements
in the row represent the substitution probabilities of the amino acid with all the 20 amino acids in the genetic
code. PSSM can therefore be formulated as P = {P;;: i = 1...L and j = 1...20}, where Pj; is the probability for the jth
amino acid in the ith position of the input sequence and has a high value for a highly conserved position, while
a low value indicates a weakly conserved position.

Half-sphere exposure

The information about a protein’s surface is valuable for the prediction of protein-peptide binding sites as the
peptides often bind to the shallow surface regions™. HSE is an effective property that measures the solvent expo-
sure for distinguishing buried, partially buried and exposed residues®. It has been widely used in protein-peptide
and other binding prediction tasks!®!#64% In this work, the HSE values of the proteins were obtained from
the HSEpred server, which gives a measure of how buried an amino acid is in the protein’s three-dimensional
structure. HSE for a residue is measured by firstly setting a sphere of radius 74 = 13 A at the residue’s Car atom.
Secondly, this sphere is divided into two halves by constructing a plane perpendicular to a given Ca-Cp vector
that goes through the residue’s Ca atom resulting in two HSE measures: HSE-up and HSE-down. HSE-up refers
to the upper sphere in the direction of the side chain and HSE-down refers to the lower sphere which is in the
opposite direction to the side chain. Finally, the number of Ca atoms in the upper and lower half of the sphere
are measured, respectively>*. Refer to Fig. 6 for the illustration of the HSE-up and HSE-down measures. Contact
number is another important measure and it indicates the total number of Ca atoms in the sphere of the Cor
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Protein Sequence

Figure 6. Depiction of the HSE-up and HSE-down measures. The dotted lines indicate the plane’s position
which divides the sphere of the residue’s Ca atom (in orange) with radius r, into two equal half spheres. The
other Cr atoms (in green) represents parts of other residues in the protein sequence.

atom of a residue®. The output of HSEpred is therefore a feature matrix of dimension L x 3 where 3 represents
the values of HSE-up, HSE-down, and the contact number for each residue.

Convolutional neural network

From the deep learning area, CNN is one of the most widely used network in the recent times®’. It is a type of
feed-forward neural network that uses convolutional structures to extract features from data. A CNN has three
main components: convolutional layer, pooling layer, and fully connected layer. The convolutional layer consists
of several convolution filters. It produces what are known as feature maps by convolving the input with a filter
and then applying nonlinear activation function to each of the resulting elements. The border information can
be lost during the convolution process, so to mitigate this, padding is introduced to increase the input with a zero
value, which can indirectly change its size. Additionally, the stride is used to control the convolving density. The
density is lower for longer strides. The pooling layer down-samples an image, which reduces the amount of data
and at the same time preserves useful information. Moreover, by eliminating superfluous features, it can also
lower the number of model parameters. One or more fully connected layers are added after several convolutional
and pooling layers. In the fully connected layers, all the previous layer neurons are connected to every neurons
in the current layer and this results in the generation of global semantic information. The network can more
accurately approximate the target function by increasing its depth, however, this also makes the network more
complex, which makes it harder to optimize and are more likely to overfit.
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Figure 7. A sample 1D CNN depiction which shows the flow of information from the input to the output
through its three main layers: convolutional, pooling, and fully connected.

CNN has made some outstanding advancements in a variety of fields, including, but not limited to, computer
vision and natural language processing, which has garnered significant interest from researchers in various fields.
A CNN can also be applied to 1D and multidimensional input data in addition to the processing of 2D images.
In order to process 1D data, CNN typically uses 1D convolutional filters (as portrayed in Fig. 7).

Building the deep learning model

In order to build a classifier that carries out per residue binding/non-binding prediction, it is important to extract
information pertaining to each residue. In the residue extraction stage of our proposed method (Fig. 1B), we
represented each residue with its sequence based (pre-trained pLM embedding and PSSM) and structure (HSE)
based information. This was done by extracting the values corresponding to each residue from the three feature
matrices obtained when the proteins were submitted to the three feature extraction tools. Tensor sum was applied
to the resulting vectors, i.e. 1 x 1024 Embedding vector, 1 x 20 PSSM vector, and 1 x 3 HSE vector, which formed
a feature vector of dimension 1 x 1,047 to represent each residue. These residues were kept in their respective
sets (i.e. train and test) to effectively train and evaluate the model without bias.

In the model training stage (Fig. 1C), we trained a 1D CNN to build our predictor based on the Tensorflow
framework®. The model has 8.7 million trainable parameters which were trained using 80% of the training set,
and the remaining 20% were used for network validation. The model is composed of three 1D convolutional
layers and two fully connected (dense) layers. For the convolutional layers, the first layer contains 128 filters of
size 5, the second layer contains 128 filters of size 3, and the third layer contains 64 filters of size 3. The stride for
each layer was kept as 1 and the padding was used such that the output size of each layer was equal to the input
size to the layer. Dropouts were used after each convolutional layer. In the fully connected layers, the first layer
and the second layer contains 128 and 32 neurons, respectively. Finally, the output was made of a single neuron
for binary classification. The ReLU activation function was used in each of the layers, while a sigmoid activation
function was used in the output neuron. The model was trained using Adam optimizer with a learning rate of 1 x
1075, loss using binary crossentropy, and metric as AUC. Moreover, early stopping was employed with a patience
of 3. The network was optimized using the Bayesian Optimization algorithm in the Keras Tuner library®. The
plots of the training progress of the model for the training sets TR1115 and TR640 are shown in Fig. 8.
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Figure 8. Plots of AUC and loss for the training progress of the proposed model on the two training sets: (A)
TR1115 train set (achieving an AUC of 0.8521 on the validation set), and (B) TR640 train set (achieving an

AUC 0of 0.8301 on the validation set).

Data availability

The datasets used in this paper can be downloaded from the GitHub link https://github.com/abelavit/PepCNN.

git.
Code availability

The PepCNN codes (in Python) are available at the GitHub link https://github.com/abelavit/PepCNN.git.
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